
'

&

$

%

Stanford Little Engines Course (Fall 2003; Lecture 4)

'

&

$

%

Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

St̊almarck Method

St̊almarck Method = Lookahead + equivalence classes.

Input: triplets (p = li ∧ lj, and p = li ⇔ lj).

Ex: Write a program to convert a formula into a set of

triplets.

Configuration: triplets, equalities between literals.

Equivalence classes are usually used to represent the set of

equalities between literals.

l1 = l2, l2 = l3

l1 = l2, l2 = l3, l1 = l3
trans

l1 = l2

l1 = l2, l2 = l1
symm

l1 = l2

l̄1 = l̄2

l1 = l2, l1 = l̄2

⊥

2

'

&

$

%

St̊almarck Method: ∧-triplets rules

p = l1 ∧ l2, p = >

p = >, l1 = >, l2 = >

p = l1 ∧ l2, p = l̄1

l1 = >, l2 = ⊥, p = ⊥

p = l1 ∧ l2, p = l̄2

l1 = ⊥, l2 = >, p = ⊥

p = l1 ∧ l2, l1 = >

p = l2, l1 = >

p = l1 ∧ l2, l2 = >

p = l1, l2 = >

p = l1 ∧ l2, l1 = ⊥

p = ⊥, l1 = ⊥

p = l1 ∧ l2, l2 = ⊥

p = ⊥, l2 = ⊥

p = l1 ∧ l2, l1 = l2

p = l1, p = l2, l1 = l2

p = l1 ∧ l2, l1 = l̄2

p = ⊥, l1 = l̄2

3

'

&

$

%

St̊almarck Method: ⇔-triplets rules

p = l1 ⇔ l2, l1 = >

p = l2, l1 = >

p = l1 ⇔ l2, l2 = >

p = l1, l2 = >

p = l1 ⇔ l2, l1 = ⊥

p = l̄2, l1 = ⊥

p = l1 ⇔ l2, l2 = ⊥

p = l̄1, l2 = ⊥

p = l1 ⇔ l2, p = >

p = >, l1 = l2

p = l1 ⇔ l2, p = ⊥

p = ⊥, l1 = l̄2

p = l1 ⇔ l2, l1 = l2

p = >, l1 = l2

p = l1 ⇔ l2, l1 = l̄2

p = ⊥, l1 = l̄2

p = l1 ⇔ l2, p = l1

p = l1, l2 = >

p = l1 ⇔ l2, p = l2

p = l2, l1 = >

p = l1 ⇔ l2, p = l̄1

p = l̄1, l2 = ⊥

p = l1 ⇔ l2, p = l̄2

p = l̄2, l1 = ⊥

Ex: Show the triplet rules are sound.

4

'

&

$

%

St̊almarck Method (cont.)

The triplet rules are constraint propagation rules.

A formula is n-easy if it can be refuted using LA(n) and the

triplet rules.

Strategy: t rules∗; la(1)∗; la(2)∗; la(3)∗;

St̊almarck Method is usually used as an optimization, since

it is infeasible to perform la(n)∗ (n ≤ 2) for big formulas.

The St̊almarck Method is a breadth-first search procedure.

Remark: the triplet rules can be used in a depth-first search

procedure based on case-splits.

5

'

&

$

%

St̊almarck Method (example)

Proof of: F ≡ (p1 ⇔ p2) ∧ (p2 ⇔ p3) ⇒ (p1 ⇔ p3)

Refute: Γ = {a1 = (p1 ⇔ p2), a2 = (p2 ⇔ p3), a3 = a1 ∧ a2, a4 =

(p1 ⇔ p3), a5 = a3 ∧ ¬a4,¬a5 = ⊥}

Γ ¬a5 = ⊥

Γ, a5 = > a5 = a3 ∧ ¬a4

Γ, a5 = a3 = ¬a4 = > a3 = a1 ∧ a2

Γ, a5 = a3 = ¬a4 = a1 = a2 = > a1 = (p1 ⇔ p2)

Γ, a5 = a3 = ¬a4 = a1 = a2 = >, p1 = p2 a2 = (p2 ⇔ p3)

Γ, a5 = a3 = ¬a4 = a1 = a2 = >, p1 = p2 = p3 a4 = (p1 ⇔ p3)

Γ, . . . ,¬a4 = >, a4 = >

⊥

F is a 0-easy formula.

Ex: Use DP to prove F .

6

'

&

$

%

Binary Decision Diagrams

7

'

&

$

%

Boolean Functions

f : {0, 1}n → {0, 1}

A propositional formula F (over {p1, . . . , pn}) induces a

boolean function f :

f(x1, . . . , xn) = 1 iff {p1 ← x1, . . . , pn ← xn} satisfies F .

We assume all functions have the same arguments:

{x1, . . . xn} .

Notation:

constant: 0, 1

identity: xi

negation: f̄

conjunction: f · g

disjunction: f + g

8

'

&

$

%

Boolean Functions (definitions)

A restriction or cofactor of f is obtained by replacing one of

its arguments by a constant (0, 1):

f |xi=b(x1, . . . , xn) = f(x1, . . . , xi−1, b, xi+1, . . . , xn)

The Shannon expansion over xi is:

f = xi · f |xi=1 + x̄i · f |xi=0

Ex: Show that Shannon expansion is correct.

The composition of f and g is:

f |xi=g(x1, . . . , xn) = f(x1, . . . , xi−1, g(x1, . . . , xn), xi+1, . . . , xn)

The dependency set of a function f contains the arguments

on which f depends: If = {i | f |xi=0 6= f |xi=1}

Examples: I0 = ∅, Ix1+x2
= {1, 2}, Ix1·(x1+x2) = {1}.

9

'

&

$

%

Representation of Boolean Functions

There are 2n elements in the set 0, 1n, so there are 22n

boolean functions.

Every representation consumes exponential size in the

worst-case.

Forms to represent boolean functions:

Truth table

List of cubes: Sum of Products, DNF

List of conjuncts: Product of sums, CNF

Boolean formula

Binary Decision Tree, Binary Decision Diagram

10

'

&

$

%

Binary Decision Trees

A binary decision tree contains two kinds of vertices:

terminal vertices and nonterminal vertices.

A terminal vertex v has no children and its labeled by

value(v) ∈ {0, 1}.

A nonterminal vertex v is labeled by a variable var(v) and

has two children:

• low(v) corresponding to the case where var(v) is

assignment to 0.

• high(v) corresponding to the case where var(v) is

assignment to 1.

Ex: Show that every vertex of a binary decision tree

corresponds to a boolean function.

11

'

&

$

%

Binary Decision Trees (Example)

Binary decision tree for the function: f ≡ x1 + (x2 · x3)

(dashed is low, solid is high).

x1

xxq q q q q q

&&MMMMMMMMMMM

x2

���
�

�
�

��
<<

<<
<<

< x2

���
�

�
�

��
<<

<<
<<

<

x3

���
�
�

��
--

--
--

x3

���
�
�

��
--

--
--

x3

���
�
�

��
--

--
--

x3

���
�
�

��
--

--
--

0 0 0 1 1 1 1 1

To find the value of the function for a given truth

assignment, simply traverse the tree from the root.

12

'

&

$

%

Binary Decision Diagrams (BDD’s)

Binary decision trees usually contain a lot of redundancy.

Optimization: merge isomorphic subtrees.

The result is a directed acyclic graph (DAG), called a binary

decision diagram (BDD).

x1

���
�

�

��
00

00
00

x2

���
�

�

��
00

00
00

x2

��

��
*

��

x3

��

��
*

��

x3

��~
~

~
~

��
//

//
//

x3

��

��
*

��

0 1

13

'

&

$

%

Ordered Binary Decision Diagrams (OBDD’s)

Given an ordering ≺ of the variables {x1, . . . , xn}. An ordered

binary decision diagram (OBDD) is a BDD which satisfies

the properties var(v) ≺ var(low(v)), and var(v) ≺ var(high(v))

for each vertex v.

Example: x3 ≺ x2 ≺ x1

x3

���
�

�

��
00

00
00

x2

��

��
*

��

x2

~~~
~

~
~

��

x1

��
�
�
�

��
@@

@@
@@

@@
x1

��

��
*

��

0 1

14



'

&

$

%

Reduced Binary Decision Diagrams

Optimization: Eliminate vertices v such that

low(v) = high(v).

Reduced Ordered Binary Decision Diagrams (ROBDD) are

commonly used to represent boolean functions.

x3

���
�
�
�
�
�
�

��
00

00
00

x2

~~~
~

~
~

��

x1

��
�
�
�

��
@@

@@
@@

@@

0 1

15

'

&

$

%

Exercises

1. Construct the OBDD for the boolean function

(a1 · b1) + (a2 · b2) + (a3 · b3) with ordering

a1 ≺ a2 ≺ a3 ≺ b1 ≺ b2 ≺ b3.

2. Construct the OBDD for the boolean function

(a1 · b1) + (a2 · b2) + (a3 · b3) with ordering

a1 ≺ b1 ≺ a2 ≺ b2 ≺ a3 ≺ b3.

3. Show that for each boolean function f there is an

unique ROBDD representing f (hint: induction on the

size of If).

4. Show that the ROBDD for f is the OBDD with fewer

vertices.

16

'

&

$

%

Canonicity

ROBDD are canonical.

Two boolean functions are equivalent iff they are

represented by the same ROBDD.

A tautology is represented by the ROBDD with a single

vertex labeled 1.

A formula is unsatisfiable iff it is represented by the

ROBDD with a single vertex labeled 0.

Ex: Implement a linear time algorithm (called Reduce) to

convert a OBDD in a ROBDD.

From now on, when we refer to BDD’s, we mean

ROBDD’s.

17

'

&

$

%

Computing Function Restrictions(Cofactors)

f |xi=b can be computed in linear time using a depth-first

traversal.

Main idea: for any vertex v1 which has a reference to a

vertex v2 such that var(v2) = xi, we replace the reference

with low(v2) if b = 0 and high(v2) if b = 1.

We must apply Reduce to ensure the result is canonical.

Ex: Implement the restriction(cofactor) algorithm.

Ex: Show the algorithm is correct.

18

'

&

$

%

Apply Operation

All binary boolean operators � on ROBDD’s are

implemented using the apply(�, v1, v2) operation.

For all boolean operators � the following holds:

f � g = x̄ · (f |x=0 � g|x=0) + x · (f |x=1 � g|x=1)

The result of apply(�, v1, v2) is constructed by recursively

constructing the low and high-branches.

We ensure the result is reduced.

We avoid an exponential blow-up of recursive calls by using

dynamic programming.

Optimization: When operating on a terminal node with a

dominant value(e.g., 1 is the dominant value for +) then

return the terminal value.

19

'

&

$

%

Apply Operation (pseudo-code)

apply(�, v1, v2) =

mk leaf (value(v1)� value(v2)) if v1 and v2 are terminal

mk node(var(v1), l′, h′) if var(v1) = var(v2)

where:

l′ = apply(�, low(v1), low(v2))

h′ = apply(�, high(v1), high(v2)))

mk node(var(v1), l′, h′) if v1 ≺ v2

where:

l′ = apply(�, low(v1), v2)

h′ = apply(�, high(v1), v2)

mk node(var(v1), l′, h′) if v2 ≺ v1

where:

l′ = apply(�, v1, low(v2))

h′ = apply(�, v1, high(v2)))

Remark: mk node(mk leaf) creates a reduced non-terminal(terminal).

20

'

&

$

%

Apply Operation (example)

f = x1 + (x2 · x3) g = (x1 · x2) + x3 f + g

x1

���
�

�

��
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$

x2

��

�
�
��
"
$
'

��

x3

��
�
�
�

��
>>

>>
>>

>

0 1

x1

���
�
�
�
�
�
�

��
00

00
00

x2

~~~
~

~
~

��

x3

��
�
�
�

��
@@

@@
@@

@@

0 1

x1



�
�
�
�
�
�

��
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

x3

��
�
�
�

��
>>

>>
>>

>

0 1

Ex: Implement the apply operation.

Ex: Show that using dynamic programming the complexity

of apply is O(|v1| × |v2|).

21



'

&

$

%

Quantified Boolean Formulas

Quantified Boolean Formulas (QBF): propositional logic

with quantifiers ∃, ∀.

Deciding satisfiability of QBF is PSPACE-complete.

∃x.f = f |x=0 + f |x=1

∀x.f = f |x=0 · f |x=1

22



'

&

$

%

Variable Ordering

ROBDD’s are unique for given variable order.

Ordering can have large effect on size.

Finding good ordering is essential (NP-complete).

Simple heuristic: related variables should be close to each

other.

Dynamic Variable Reordering: variable order changes as

computation progress (invisible to the user).

Example: simple greedy algorithm. Choose a variable; Try

all positions in the variable order (swap); Move to best

position found.

Ex: Implement the simple dynamic reordering heuristic.

23



'

&

$

%

Applications

Equivalence of Combinatorial Circuits.

Logic Synthesis.

Symbolic Model Checking.

Data-structure for representing (huge) finite sets.

Data Compression.

Constraint Satisfaction Problems.

Ex: Solve the N-Queen Problem using ROBDD’s.

24



'

&

$

%

Available BDD packages

CUDD (http://vlsi.colorado.edu/ fabio/CUDD)

BuDDy (http://www.itu.dk/research/buddy)

MuDDy - ML interface for BuDDy

(http://www.itu.dk/research/muddy)

CAL (Berkeley) (http://www-

cad.eecs.berkeley.edu/Respep/Research/bdd/cal bdd)

25


