Stanford Little Engines Course (Fall 2003; Lecture 4)

Stålmarck Method

Stålmarck Method = Lookahead + equivalence classes.

Input: *triplets* $(p = l_i \land l_j, \text{ and } p = l_i \Leftrightarrow l_j)$.

Ex: Write a program to convert a formula into a set of triplets.

Configuration: triplets, equalities between literals.

Equivalence classes are usually used to represent the set of equalities between literals.

$$\begin{array}{c} \frac{l_1 = l_2, l_2 = l_3}{l_1 = l_2, l_2 = l_3, l_1 = l_3} trans & \frac{l_1 = l_2}{l_1 = l_2, l_2 = l_1} symm \\ \frac{l_1 = l_2}{\bar{l}_1 = \bar{l}_2} & \frac{l_1 = l_2, l_2 = l_1}{\bar{l}_1 = \bar{l}_2} \\ \end{array}$$

Stålmarck Method: A-triplets rules

Ex: Show the *triplet* rules are sound.

Stålmarck Method (cont.)

The triplet rules are constraint propagation rules.

A formula is *n*-easy if it can be refuted using LA(n) and the *triplet* rules.

Strategy: t_rules^* ; $la(1)^*$; $la(2)^*$; $la(3)^*$;

Stålmarck Method is usually used as an optimization, since it is infeasible to perform $la(n)^*$ ($n \le 2$) for big formulas.

The Stålmarck Method is a *breadth-first search* procedure.

Remark: the *triplet* rules can be used in a *depth-first search* procedure based on *case-splits*.

Stålmarck Method (example)

Proof of: $F \equiv (p_1 \Leftrightarrow p_2) \land (p_2 \Leftrightarrow p_3) \Rightarrow (p_1 \Leftrightarrow p_3)$ Refute: $\Gamma = \{a_1 = (p_1 \Leftrightarrow p_2), a_2 = (p_2 \Leftrightarrow p_3), a_3 = a_1 \land a_2, a_4 = a_1 \land a_4 = a_2 \land a_4 = a_2 \land a_4 = a_4 \land a_4 = a$ $(p_1 \Leftrightarrow p_3), a_5 = a_3 \land \neg a_4, \neg a_5 = \bot$ Г $\neg a_5 = \bot$ $\Gamma, a_5 = \top$ $a5 = a_3 \wedge \neg a_4$ $\Gamma, a_5 = a_3 = \neg a_4 = \top$ $a_3 = a_1 \wedge a_2$ $\Gamma, a_5 = a_3 = \neg a_4 = a_1 = a_2 = \top$ $a_1 = (p_1 \Leftrightarrow p_2)$ $\Gamma, a_5 = a_3 = \neg a_4 = a_1 = a_2 = \top, p_1 = p_2$ $a_2 = (p_2 \Leftrightarrow p_3)$ $\Gamma, a_5 = a_3 = \neg a_4 = a_1 = a_2 = \top, p_1 = p_2 = p_3$ $a_4 = (p_1 \Leftrightarrow p_3)$ $\Gamma, \ldots, \neg a_4 = \top, a_4 = \top$

F is a 0-easy formula.

Ex: Use DP to prove F.

Binary Decision Diagrams

Boolean Functions

 $f: \{0,1\}^n \to \{0,1\}$

A propositional formula F (over $\{p_1, \ldots, p_n\}$) induces a boolean function f:

 $f(x_1,\ldots,x_n) = 1$ iff $\{p_1 \leftarrow x_1,\ldots,p_n \leftarrow x_n\}$ satisfies F.

We assume all functions have the same arguments: $\{x_1,\ldots x_n\}$.

Notation:

constant:	0, 1
identity:	x_i
negation:	$ar{f}$
conjunction:	$f\cdot g$
disjunction:	f+g

Boolean Functions (definitions)

A restriction or cofactor of f is obtained by replacing one of its arguments by a constant (0, 1):

$$f|_{x_i=b}(x_1,\ldots,x_n) = f(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

The Shannon expansion over x_i is:

$$f = x_i \cdot f|_{x_i=1} + \bar{x}_i \cdot f|_{x_i=0}$$

Ex: Show that Shannon expansion is correct.

The *composition* of *f* and *g* is: $f|_{x_i=q}(x_1,...,x_n) = f(x_1,...,x_{i-1},g(x_1,...,x_n),x_{i+1},...,x_n)$

The dependency set of a function f contains the arguments on which f depends: $I_f = \{i \mid f|_{x_i=0} \neq f|_{x_i=1}\}$

Examples: $I_0 = \emptyset$, $I_{x_1+x_2} = \{1, 2\}$, $I_{x_1 \cdot (x_1+x_2)} = \{1\}$.

Representation of Boolean Functions

```
There are 2^n elements in the set 0, 1^n, so there are 2^{2^n} boolean functions.
```

Every representation consumes *exponential size* in the *worst-case*.

Forms to represent boolean functions:

Truth table List of cubes: Sum of Products, DNF List of conjuncts: Product of sums, CNF Boolean formula Binary Decision Tree, Binary Decision Diagram

Binary Decision Trees

A binary decision tree contains two kinds of vertices: terminal vertices and nonterminal vertices.

A terminal vertex v has no children and its labeled by $value(v) \in \{0,1\}.$

A nonterminal vertex v is labeled by a variable var(v) and has two children:

- low(v) corresponding to the case where var(v) is assignment to 0.
- high(v) corresponding to the case where var(v) is assignment to 1.

Ex: Show that every vertex of a binary decision tree corresponds to a boolean function.

Binary Decision Trees (Example)

Binary decision tree for the function: $f \equiv x_1 + (x_2 \cdot x_3)$ (dashed is *low*, solid is *high*).

To find the value of the function for a given truth assignment, simply traverse the tree from the root.

Binary Decision Diagrams (BDD's)

Binary decision trees usually contain a lot of redundancy.

Optimization: *merge isomorphic subtrees*.

The result is a directed acyclic graph (DAG), called a binary decision diagram (BDD).

Ordered Binary Decision Diagrams (OBDD's)

Given an ordering \prec of the variables $\{x_1, \ldots, x_n\}$. An ordered binary decision diagram (OBDD) is a BDD which satisfies the properties $var(v) \prec var(low(v))$, and $var(v) \prec var(high(v))$ for each vertex v.

Example: $x_3 \prec x_2 \prec x_1$

Reduced Binary Decision Diagrams

Optimization: Eliminate vertices v such that low(v) = high(v).

Reduced Ordered Binary Decision Diagrams (ROBDD) are commonly used to represent boolean functions.

Exercises

- 1. Construct the OBDD for the boolean function $(a_1 \cdot b_1) + (a_2 \cdot b_2) + (a_3 \cdot b_3)$ with ordering $a_1 \prec a_2 \prec a_3 \prec b_1 \prec b_2 \prec b_3$.
- 2. Construct the OBDD for the boolean function $(a_1 \cdot b_1) + (a_2 \cdot b_2) + (a_3 \cdot b_3)$ with ordering $a_1 \prec b_1 \prec a_2 \prec b_2 \prec a_3 \prec b_3$.
- 3. Show that for each boolean function f there is an unique ROBDD representing f (hint: induction on the size of I_f).
- 4. Show that the ROBDD for f is the OBDD with fewer vertices.

Canonicity

ROBDD are canonical.

Two boolean functions are *equivalent* iff they are represented by the same ROBDD.

A *tautology* is represented by the ROBDD with a *single vertex labeled 1*.

A formula is *unsatisfiable* iff it is represented by the ROBDD with a *single vertex labeled 0*.

Ex: Implement a linear time algorithm (called Reduce) to convert a OBDD in a ROBDD.

From now on, when we refer to BDD's, we mean ROBDD's.

Computing Function Restrictions(Cofactors)

 $f|_{x_i=b}$ can be computed in linear time using a *depth-first traversal*.

Main idea: for any vertex v_1 which has a reference to a vertex v_2 such that $var(v_2) = x_i$, we replace the reference with $low(v_2)$ if b = 0 and $high(v_2)$ if b = 1.

We must apply *Reduce* to ensure the result is canonical.

Ex: Implement the restriction(cofactor) algorithm.

Ex: Show the algorithm is correct.

Apply Operation

All binary boolean operators \odot on ROBDD's are implemented using the $apply(\odot, v_1, v_2)$ operation.

For all *boolean operators* \odot the following holds:

 $f \odot g = \bar{x} \cdot (f|_{x=0} \odot g|_{x=0}) + x \cdot (f|_{x=1} \odot g|_{x=1})$

The result of $apply(\odot, v_1, v_2)$ is constructed by recursively constructing the *low* and *high*-branches.

We ensure the result is reduced.

We avoid an exponential blow-up of *recursive calls* by using *dynamic programming*.

Optimization: When operating on a terminal node with a *dominant value*(e.g., 1 is the dominant value for +) then return the terminal value.

Apply Operation (pseudo-code)

 $apply(\odot, v_1, v_2) =$ $mk_leaf(value(v_1) \odot value(v_2))$ if v_1 and v_2 are terminal $mk_node(var(v_1), l', h')$ if $var(v_1) = var(v_2)$ where: $l' = apply(\odot, low(v_1), low(v_2))$ $h' = apply(\odot, high(v_1), high(v_2)))$ $mk_node(var(v_1), l', h')$ if $v_1 \prec v_2$ where: $l' = apply(\odot, low(v_1), v_2)$ $h' = apply(\odot, high(v_1), v_2)$ $mk_node(var(v_1), l', h')$ if $v_2 \prec v_1$ where: $l' = apply(\odot, v_1, low(v_2))$ $h' = apply(\odot, v_1, high(v_2)))$

Remark: $mk_node(mk_leaf)$ creates a reduced non-terminal(terminal).

Quantified Boolean Formulas

Quantified Boolean Formulas (QBF): propositional logic with quantifiers \exists , \forall .

Deciding satisfiability of QBF is PSPACE-complete.

$$\exists x.f = f|_{x=0} + f|_{x=2}$$

$$\forall x.f = f|_{x=0} \cdot f|_{x=1}$$

Variable Ordering

ROBDD's are unique for given variable order.

Ordering can have large effect on size.

Finding good ordering is essential (NP-complete).

Simple heuristic: related variables should be close to each other.

Dynamic Variable Reordering: variable order changes as computation progress (*invisible* to the user).

Example: simple *greedy* algorithm. Choose a variable; Try all positions in the variable order (swap); Move to best position found.

Ex: Implement the simple dynamic reordering heuristic.

Applications

Equivalence of Combinatorial Circuits.

Logic Synthesis.

Symbolic Model Checking.

Data-structure for representing (huge) finite sets.

Data Compression.

Constraint Satisfaction Problems.

Ex: Solve the N-Queen Problem using ROBDD's.

Available BDD packages

CUDD (http://vlsi.colorado.edu/ fabio/CUDD)

BuDDy (http://www.itu.dk/research/buddy)

MuDDy - ML interface for BuDDy

(http://www.itu.dk/research/muddy)

CAL (Berkeley) (http://wwwcad.eecs.berkeley.edu/Respep/Research/bdd/cal_bdd)