Stanford Little Engines Course (Fall 2003; Lecture 4)

Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com
URL: http://www.csl.sri.com/“shankar/LEP.html

Computer Science Laboratory
SRI International
Menlo Park, CA

/ Stalmarck Method \

Stalmarck Method = Lookahead + equivalence classes.
Input: triplets (p=10; Al;, and p=1; & 1;).

Ex: Write a program to convert a formula into a set of
triplets.

Configuration: triplets, equalities between literals.

Equivalence classes are usually used to represent the set of
equalities between literals.

l1 = 12,00 =3 l1 =1l
trans symm
l1 =lo,l2 = 13,11 =3 l1 =l2,l2 =14

l1 =1 l1 = 12,01 =3
I =1y 1

/

Stalmarck Method: A-triplets rules

p:ll/\lg,p:T

p:T,llzT,lng

p:ll/\lg,p:l_l

llzT,ZQZJ_,p:J_

p:ll/\lg,p:l_g

llZJ_,ZQZT,p:J_

p:ll/\lg,llz—r

p:ll/\lg,lgz—r

p=Ily,l1 =T p=1I1,lo =T
p=UL Nl =1 p=10 N, lo =L

p=Lll=1 p=_1L,ls=1
p=1U Nl =1 p=1 Al 11 =I5
p=li,p=1ll1 =1 p=_L01 =1

~

Stalmarck Method: <-triplets rules

p:l1<:>l2,l1:T

p:l1<:>l2,l2:T

p=1Ils,l1 =T p=1Il1,lo =T
p=lishli=1L|p=l1lly=_1
p=ly,l1 =1L p=1,lp=_1
p=b<sl,p=T | p=h<elp=1
p=T,l1 =1 p=_L,0 =1
p=heblh=lk|p=hellh=I0
p=T,l1 =1 p=_L,0l =1
p=l<l,p=1h p=1l <lp=I
p=li,lo=T p=lo,lh =T
p=0L<Sl,p=10 p=10 Slo,p=1Iy
p=1l,la=1 p=lo,l1 =1

\Ex: Show the triplet rules are sound.

~

4)

Stalmarck Method (cont.)

The triplet rules are constraint propagation rules.

A formula is n-easy if it can be refuted using LA(n) and the
triplet rules.

Strategy: t_rules™;la(1)*;1a(2)*;1la(3)*;. . ..

Stalmarck Method is usually used as an optimization, since
it is infeasible to perform la(n)* (n < 2) for big formulas.

The Stalmarck Method is a breadth-first search procedure.

Remark: the triplet rules can be used in a depth-first search
procedure based on case-splits.

. _/

/ Stalmarck Method (example) \

Proof of: F = (p1 < p2) A (p2 < p3) = (p1 < p3)

Refute: I' = {a1 = (p1 © p2),a2 = (p2 & p3),a3 = a1 ANaz,as =
(Pl <:>p3),a5 = a3 N\ 7G4, a5 = l}

I —as = L
I'as =T ad = az N\ —aq
I'as = a3 = —-aq4 =T as3 = a1 N\ ag
I'yas =a3 =—ag =a1 =az =T a1 = (p1 < p2)
I'as = a3 = —aqg = a1 =az2 = T,p1 = p2 az = (p2 < p3)

I'Nas = a3 =—a4a =a1 =az = T,p1 =p2=p3 a4 = (p1 < p3)
I'...,ma4=T,a4 =T
1

F' is a 0-easy formula.

\Ex: Use DP to prove F. /

Binary Decision Diagrams

/ Boolean Functions

f:{0,1}" — {0,1}
A propositional formula F' (over {pi1,...,pn}) induces a
boolean function f:

flx1,...,xn) =1 iff {p1 «— x1,...,pn < xn} satisfies F.

We assume all functions have the same arguments:

{5131,...33'”} .

Notation:
constant: 0,1
identity: xT;
negation: f

conjunction: f-g
disjunction: f+g

4)

Boolean Functions (definitions)

A restriction or cofactor of f is obtained by replacing one of
its arguments by a constant (0,1):

f xi:b(xl, ... ,.I'n) == f(ﬂ?l, e ey xi—l; b, ,Tz'_|_1, ... ,.I'n)
The Shannon expansion over x; iS:
f=xi flo,=1 +Zi - flz,=0

Ex: Show that Shannon expansion is correct.

The composition of f and g is:

flai=g(®1, .. yxpn) = f(21,.. ., zic1, 9(@1, .-, Tn), Tig1, - - -, Tn)
The dependency set of a function f contains the arguments
on which f depends: Iy ={i| fls,=0 # fla;=1}

Examples: Io =0, Iy 42, = {1,2}, Iy, (2y420) = {11}

. _/

/

There are 2" elements in the set 0,1", so there are 22"
boolean functions.

Representation of Boolean Functions

Every representation consumes exponential size in the
worst-case.

Forms to represent boolean functions:

Truth table

List of cubes: Sum of Products, DNF

List of conjuncts: Product of sums, CNF
Boolean formula

Binary Decision Tree, Binary Decision Diagram

10

/ Binary Decision Trees

A binary decision tree contains two kinds of vertices:
terminal vertices and nonterminal vertices.

A terminal vertex v has no children and its labeled by
value(v) € {0,1}.

A nonterminal vertex v is labeled by a variable var(v) and
has two children:

e [ow(v) corresponding to the case where var(v) is
assignment to 0.

e high(v) corresponding to the case where var(v) is
assignment to 1.

Ex: Show that every vertex of a binary decision tree
Qorresponds to a boolean function.

11

/ Binary Decision Trees (Example)

Binary decision tree for the function: f=x1 + (25 - 3)
(dashed is low, solid is high).

L1
A/ \
X9 L2

/ \ / \

/ /

/ /
¥ ¥
xr3 x3 L3 L3
/ / / /
NN N
¥ ¥ ¥ ¥
0 0 0 1 1 1 1 1

To find the value of the function for a given truth
stignment, simply traverse the tree from the root.

~

_/

12

/

Binary Decision Diagrams (BDD's)

Binary decision trees usually contain a lot of redundancy.

Optimization: merge isomorphic subtrees.

The result is a directed acyclic graph (DAG), called a binary
decision diagram (BDD).

~

13

/ Ordered Binary Decision Diagrams (OBDD'’s) \

Given an ordering < of the variables {x1,...,z,}. An ordered
binary decision diagram (OBDD) is a BDD which satisfies
the properties var(v) < var(low(v)), and var(v) < var(high(v))
for each vertex v.

Example: 3 < 29 < 11

14

/ Reduced Binary Decision Diagrams \

Optimization: Eliminate vertices v such that
low(v) = high(v).

Reduced Ordered Binary Decision Diagrams (ROBDD) are
commonly used to represent boolean functions.

X3

/
/
/

15

. Construct the OBDD for the boolean function

. Construct the OBDD for the boolean function

EXxercises \

(CLl . bl) —+ (a2 . bg) + (CL3 . bg) with ordering
a1 < as < az < by < by < bs.

(a1 - b1) + (az - ba) + (a3 - bg) with ordering
a1 < by < ag < by < a3z < bs.

. Show that for each boolean function f there is an
unique ROBDD representing f (hint: induction on the
size of I;).

. Show that the ROBDD for f is the OBDD with fewer

vertices. /

16

/

ROBDD are canonical.

Canonicity

Two boolean functions are equivalent iff they are
represented by the same ROBDD.

A tautology is represented by the ROBDD with a single
vertex labeled 1.

A formula is unsatisfiable iff it is represented by the
ROBDD with a single vertex labeled O.

Ex: Implement a linear time algorithm (called Reduce) to
convert a OBDD in a ROBDD.

From now on, when we refer to BDD’s, we mean
ROBDD’s.

_

_/

17

/

Computing Function Restrictions(Cofactors)

fle,=p Can be computed in linear time using a depth-first
traversal.

Main idea: for any vertex vy which has a reference to a

vertex vy such that wvar(vs) = x;, we replace the reference
with low(vs) if b=0 and high(vs) if b= 1.

We must apply Reduce to ensure the result is canonical.
Ex: Implement the restriction(cofactor) algorithm.

Ex: Show the algorithm is correct.

_

18

All binary boolean operators & on ROBDD's are
implemented using the apply(©®,v1,v2) operation.

For all boolean operators © the following holds:
fJOg=1x- <f|w:0 @g|$20> T <f‘w:1 @g|a:=1>

The result of apply(®,v1,v2) is constructed by recursively
constructing the low and high-branches.

We ensure the result is reduced.

We avoid an exponential blow-up of recursive calls by using
dynamic programming.

Optimization: When operating on a terminal node with a
dominant value(e.g., 1 is the dominant value for +) then

/ Apply Operation \

\return the terminal value. /

19

/ Apply Operation (pseudo-code) \

apply(®,v1,v2) =

mk _leaf (value(v1) ® value(vs)) if v1 and v are terminal
mk_node(var(vy),l’, h") if var(vy) = var(va)
where:

' = apply(©®, low(v1), low(v2))

h! = apply(®, high(v1), high(v2)))
mk_node(var(vy),l’, h’) if v1 <2

where:

I = apply(©, low(v1),v2)

h' = apply(®, high(v1),v2)
mk_node(var(vy),l’, h") if v2 < v

where:

! = apply(®,v1, low(va))

h! = apply(®, v1, high(v2)))

\Remark: mk_node(mk_leaf) creates a reduced non-terminal(terminal). /

20

/ Apply Operation (example) \

f=x1+ (w2 -23) g= (71 72)+ 73 f+g

1 1 1
/ / /
: / \ /
4 / /
L2 / L2 /
/ / 4 /
/ I v
I Y £ T3
T3 L3 |
} \ ' \ ' \
\ | | Y
\Y Y
0 1 0 1 0 L

Ex: Implement the apply operation.

Ex: Show that using dynamic programming the complexity

\Of apply is O(|v1| X |va]). /

21

Quantified Boolean Formulas

Quantified Boolean Formulas (QBF): propositional logic
with quantifiers 4, V.

Deciding satisfiability of QBF is PSPACE-complete.
Jo.f = f|a;:O + f‘mzl
Va.f = fle=o0 - fla=1

_

22

/

ROBDD’s are uniqgue for given variable order.

Variable Ordering

Ordering can have large effect on size.
Finding good ordering is essential (NP-complete).

Simple heuristic: related variables should be close to each
other.

Dynamic Variable Reordering: variable order changes as
computation progress (invisible to the user).

Example: simple greedy algorithm. Choose a variable; Try
all positions in the variable order (swap); Move to best
position found.

Ex: Implement the simple dynamic reordering heuristic.

N _/

23

/

Applications

Equivalence of Combinatorial Circuits.
Logic Synthesis.
Symbolic Model Checking.

Data-structure for representing (huge) finite sets.

Data Compression.

Constraint Satisfaction Problems.

Ex: Solve the N-Queen Problem using ROBDD's.

_

24

/

Available BDD packages

CUDD (http://vlsi.colorado.edu/ fabio/CUDD)
BuDDy (http://www.itu.dk/research/buddy)

MuDDy - ML interface for BuDDy
(http://www.itu.dk/research/muddy)

CAL (Berkeley) (http://www-
cad.eecs.berkeley.edu/Respep/Research/bdd/cal_bdd)

_

25

