
'

&

$

%

Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

Refutation Decision Procedures

A decision procedure determines if a collection of formulas

is satisfiable.

A decision procedure is given by a collection of reduction

rules on a logical state ψ.

State ψ is of the form κ1| . . . |κn, where each κi is a

configuration.

The logical content of κ is either ⊥ or is given by a finite

set of formulas of the form A1, . . . , Am.

A state ψ of the form κ1, . . . , κn is satisfiable if some

configuration κi is satisfiable.

A configuration κ of the form A1, . . . , Am is satisfiable if

there is an interpretation M and an assignment ρ such that

M,ρ |= Ai for 1 ≤ i ≤ m.

2

'

&

$

%

Inference Systems for Decision Procedures

A refutation procedure proves A by refuting ¬A through the

application of reduction rules.

An application of an reduction rule transforms a state ψ to

a state ψ′ (written ψ |⇒ ψ′).

The states ψ and ψ′ must be equivalent: Any M, ρ such

that M, ρ |= ψ there is a ρ′ extending ρ such that M, ρ′ |= ψ′,

and conversely whenever M, ρ′ |= ψ′, there is a ρ extending

ρ′ such that M, ρ′ |= ψ.

If relation |⇒ between states is well-founded and any

non-bottom irreducible state is satisfiable, we say that the

inference system is a decision procedure.

Ex: Prove that a decision procedure as given above is

sound and complete.

3

'

&

$

%

Truth Table

An inference rule
κ

κ1| . . . |κn

is shorthand for
ψ[κ]

ψ[κ1| . . . |κn]
.

The truth table procedure can be viewed as a model

elimination procedure.

Γ

Γ, p | Γ,¬p
split p and ¬p are not in Γ.

Γ, F

⊥
elim F is falsified by the literals in Γ.

A literal is a proposition or the negation of a proposition.

The literals in Γ can be viewed as a partial interpretation.

Ex: Prove correctness (soundness, termination, and

completeness).

4

'

&

$

%

Truth Table (Example)

A truth table refutation of {p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p}:

p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p

p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p, q | p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p,¬q

p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p, q | ⊥

p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p, q

p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p, q, r | p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p, q,¬r

⊥ | p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p, q,¬r

p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p, q,¬r

⊥

Ex: Implement the truth table procedure.

5

'

&

$

%

Semantic Tableaux

The inference rules for the Semantic Tableaux procedure

are:

A ∧B,Γ

A,B,Γ
∧+

¬(A ∧B),Γ

¬A,Γ | ¬B,Γ
∧−

¬(A ∨B),Γ

¬A,¬B,Γ
∨−

(A ∨B),Γ

A,Γ | B,Γ
∨+

¬(A⇒ B),Γ

A,¬B,Γ
⇒ −

(A⇒ B),Γ

¬A,Γ | B,Γ
⇒ +

¬¬A,Γ

A,Γ
¬

A,¬A,Γ

⊥
⊥

Semantic Tableaux is a “DNF translator”.

Ex: Prove correctness.

6

'

&

$

%

Semantic Tableaux (Example)

Refutation of ¬(p ∨ q ⇒ q ∨ p):

¬(p ∨ q ⇒ q ∨ p)

p ∨ q,¬(q ∨ p)

p,¬(q ∨ p) | q,¬(q ∨ p)

p,¬q,¬p | q,¬(q ∨ p)

⊥ | q,¬(q ∨ p)

q,¬(q ∨ p)

q,¬q,¬p

⊥

Ex: Use the Semantic Tableaux procedure to refute

¬(p ∨ (q ∧ r) ⇒ (p ∨ q) ∧ (p ∨ r)).

Ex: Implement the Semantic Tableaux.

7

'

&

$

%

Semantic Tableaux (Cont.)

The complexity of Semantic Tableaux proofs depends on

the length of the formula to be decided.

The complexity of the truth-table procedure depends only

on the number of distinct propositional variables which

occur in it.

The Semantic Tableaux procedure does not p-simulate the

truth-table procedure. Consider fat formulas such as:

(p1 ∨ p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3) ∧

(p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧

(p1 ∨ p2 ∨ ¬p3) ∧ (¬p1 ∨ p2 ∨ ¬p3) ∧

(p1 ∨ ¬p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3)

Ex: Use Semantic Tableaux to refute the formula above.

8

'

&

$

%

Semantic Tableaux (Cont.)

The classical notion of truth is governed by two basic

principles:

Non-contradiction no proposition can be true and false at

the same time.

Bivalence every proposition is either true of false.

There is no rule in the Semantic Tableaux procedure which

correspondes to the principle of bivalence.

The elimination of the principle of bivalence seem to be

inadequate from the point of view of efficiency.

9

'

&

$

%

Semantic Tableaux + Bivalence

The principle of bivalence can be recovered if we replace

the Semantic Tableaux branching rules by:

¬(A ∧B),Γ

¬A,Γ | A,¬B,Γ
∧left−

¬(A ∧B),Γ

¬B,Γ | B,¬A,Γ
∧right−

(A ∨B),Γ

A,Γ | ¬A,B,Γ
∨left+

(A ∨B),Γ

B,Γ | ¬B,A,Γ
∨right+

(A⇒ B),Γ

¬A,Γ | A,B,Γ
⇒left +

(A⇒ B),Γ

B,Γ | ¬B,¬A,Γ
⇒right +

The new rules are asymmetric.

Ex: Show that the new rules are sound.

10

'

&

$

%

CNF

A CNF formula is a conjunction of clauses. A clause is a

disjunction of literals.

Ex: Implement a linear-time decision procedure for 2CNF

(each clause has at most 2 literals).

A clause is trivial if it contains a complementary pair of

literals.

Since the order of the literals in a clause is irrelevant, the

clause can be treated as a set.

A set of clauses is trivial if it contains the empty clause

(false).

11

'

&

$

%

CNF (cont.)

Equivalence rules can be used to translate any formula to

CNF.

eliminate ⇒ A⇒ B ≡ ¬A ∨B

reduce the scope of ¬ ¬(A ∨B) ≡ ¬A ∧ ¬B,

¬(A ∧B) ≡ ¬A ∨ ¬B

apply distributivity A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C),

A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C)

12

'

&

$

%

CNF (cont.)

The CNF translation described in the previous slide is too

expensive (distributivity rule).

However, there is a linear time translation to CNF that

produces an equisatisfiable formula. Replace the

distributivity rules by the following rules:

F [li op lj]

F [x], x⇔ li op lj
∗

x⇔ li ∨ lj

¬x ∨ li ∨ lj ,¬li ∨ x,¬lj ∨ x

x⇔ li ∧ lj

¬x ∨ li,¬x ∨ lj ,¬li ∨ ¬lj ∨ x

(*) x must be a fresh variable.

Ex: Show that the rules preserve equisatisfiability.

13

'

&

$

%

CNF translation (example)

Translation of (p ∧ (q ∨ r)) ∨ t:

(p ∧ (q ∨ r)) ∨ t

(p ∧ x1) ∨ t, x1 ⇔ q ∨ r

x2 ∨ t, x2 ⇔ p ∧ x1, x1 ⇔ q ∨ r

x2 ∨ t,¬x2 ∨ p,¬x2 ∨ x1,¬p ∨ ¬x1 ∨ x2, x1 ⇔ q ∨ r

x2 ∨ t,¬x2 ∨ p,¬x2 ∨ x1,¬p ∨ ¬x1 ∨ x2,¬x1 ∨ q ∨ r,¬q ∨ x1,¬r ∨ x1

Ex: Implement a CNF translator.

14

'

&

$

%

Semantic Trees

A semantic tree represents the set of partial interpretations

for a set of clauses. A semantic tree for

{p ∨ ¬q ∨ ¬r, p ∨ r, p ∨ q,¬p}:

o

o

p

o

q

o

r

o

¬r

o

¬q

o

r

o

¬r

o

¬p

o

q

o

r

o

¬r

o

¬q

o

r

o

¬r

A node N is a failure node if its associated interpretation

falsifies a clause, but its ancestor doesn’t.

Ex: Show that the semantic tree for an unsatisfiable

(non-trivial) set of clauses must contain a non failure node

such that its descendants are failure nodes.

15

'

&

$

%

Resolution

Formula must be in CNF.

Resolution procedure uses only one rule:

C1 ∨ p, C2 ∨ ¬p

C1 ∨ p, C2 ∨ ¬p, C1 ∨ C2

res

The result of the resolution rule is also a clause, it is called

the resolvent. Duplicate literals in a clause and trivial

clauses are eliminated.

There is no branching in the resolution procedure.

Example: The resolvent of p ∨ q ∨ r, and ¬p ∨ r ∨ t is q ∨ r ∨ t.

Termination argument: there is a finite number of distinct

clauses over n propositional variables.

Ex: Show that the resolution rule is sound.

16

'

&

$

%

Resolution (example)

A refutation of ¬p ∨ ¬q ∨ r, p ∨ r, q ∨ r, ¬r:

⊥

p

p ∨ r ¬r

¬p

¬p ∨ ¬q

¬p ∨ ¬q ∨ r ¬r

q

q ∨ r ¬r

Ex: Implement a näıve resolution procedure.

17

'

&

$

%

Completeness of the Resolution Procedure

Let Res(S) be the closure of S under the resolution rule.

Completeness: S is unsatisfiable iff Res(S) contains the

empty clause.

Proof (⇒):

Assume that S is unsatisfiable, and Res(S) does not contain

the empty clause.

Key points: Res(S) is unsatisfiable, and Res(S) is a non

trivial set of clauses.

The semantic tree of Res(S) must contain a non failure

node N such that its descendants (Np, N¬p) are failure

nodes.

18

'

&

$

%

Completeness of the Resolution Procedure (cont.)

N

Np

p

N¬p

¬p

There is C1 ∨ ¬p which is falsified by Np, but not by N .

There is C2 ∨ p which is falsified by N¬p, but not by N .

C1 ∨ C2 is the resolvent of C1 ∨ ¬p and C2 ∨ p.

C1 ∨ C2 is in Res(S), and it is falsified by N (contradiction).

Proof (⇐): Res(S) is unsatisfiable, and equivalent to S. So,

S is unsatisifiable.

19

'

&

$

%

Subsumption

The resolution procedure may generate several irrelevant

and redundant clauses.

Subsumption is a clause deletion strategy for the resolution

procedure.

C1, C1 ∨ C2

C1

sub

Example: p ∨ ¬q subsumes p ∨ ¬q ∨ r ∨ t.

Deletion strategy: Remove the subsumed clauses.

20

'

&

$

%

Unit & Input Resolution

Unit resolution: one of the clauses is a unit clause.

C ∨ l̄, l

C, l
unit

Unit resolution always decreases the configuration size

(C ∨ l̄ is subsumed by C).

Input resolution: one of the clauses is in S.

Ex: Show that the unit and input resolution procedures are

not complete.

Ex: Show that a set of clauses S has an unit refutation iff it

has an input refutation (hint: induction on the number of

propositions).

21

'

&

$

%

Horn Clauses

Each clause has at most on positive literal.

Rule base systems (¬p1 ∨ . . . ∨ ¬pn ∨ q ≡ p1 ∧ . . . ∧ pn ⇒ q).

Positive unit rule:

C ∨ ¬p, p

C, p
unit+

Horn clauses are the basis of programming languages as

Prolog.

Ex: Show that the positive unit rule is a complete

procedure for Horn clauses.

Ex: Implement a linear time algorithm for Horn clauses.

22

'

&

$

%

Semantic Resolution

Remark: An interpretation I can be used to divide an

unsatisfiable set of clauses S.

Let I be an interpretation, and P an ordering on the

propositional variables. A finite set of clauses {E1, . . . , Eq, N}

is called a clash with respect to P and I, if and only if:

• E1, . . . , Eq are false in I.

• R1 = N , for each i = 1, . . . , q, there is a resolvent Ri+1 of Ri and Ei.

• The literal in Ei, which is resolved upon, contains the largest

propositional variable.

• Rq+1 is false in I. Rq+1 is the PI-resolvent of the clash.

23

'

&

$

%

Semantic Resolution (example)

Let I = {p,¬q}, S = {p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q}, and

P = [p < q].

⊥

¬p q

¬p

¬p ∨ q ¬p ∨ ¬q

p ∨ q

p ∨ ¬q

Ex: Show that PI-resolution is complete (hint: induction on

the number of propositions).

24

'

&

$

%

Special cases of Semantic Resolution

Positive Hyperresolution: I contains only negative literals.

Negative Hyperresolution: I contains only positive literals.

A subset T of a set of clauses S is called a set-of-support of

S if S − T is satisfiable.

A set-of-support resolution is a resolution of two clauses

that are not both from S − T .

Ex: Show that set-of-support resolution is complete (hint:

use PI-resolution completeness).

25

'

&

$

%

Basic Davis Putnam

Davis Putnam = Unit resolution + Split rule.

Γ

Γ, p | Γ,¬p
split p and ¬p are not in Γ.

C ∨ l̄, l

C, l
unit

Used in the most efficient SAT solvers.

Next lecture, we will describe several refinements of the

Davis Putnam procedure.

26

