
'

&

$

%

Stanford Little Engines Course (Fall 2003; Lecture 20)

'

&

$

%

Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

Application II

We have studied decision procedures for

• various classes of formulas

• over different logical theories

There are two classes of applications

• Direct – theorem provers, constraint solvers, optimizers

• Embedded – compilers, type checkers, model checkers,

test generation, parameter computation, diagnosis,

model construction

We discuss application to verification

2

'

&

$

%

Verification

• Bounded model checking:

◦ finite state systems: SAT

◦ infinite state systems or systems with datatypes:

lazy/eager theorem proving

• Abstraction

◦ discrete transition systems

◦ hybrid dynamical systems

3

'

&

$

%

Verification

Model

MC, BMC, TP

+
Property

proof
or
counterexample

We saw how theorem proving can be used in the process of

model checking/ bounded model checking

4

'

&

$

%

Abstraction

Model
 +
Property

Model
 +
Property

Abstraction

MC, BMC, TP
proof
or
counterexample

Theorem proving and decision procedures also play a

central role in creating simpler abstractions of complex

initial models

5

'

&

$

%

Transition Systems

Transition system M = (S, I, T)

S: set of states.

valuation of state variables

I ⊆ S: set of initial states.

T ⊆ S × S: transition relation.

Semantics [[M]]. Collection of valid traces/paths

Trace. A sequence of states

s0 → s1 → s2 → s3 → s4 → s5 → s6 → . . .

s.t. s0 ∈ I and (si, si+1) ∈ T

6

'

&

$

%

Abstractions and Refinements

M = (S, I, T), M̂ = (Ŝ, Î, T̂): Two transition systems

α: S 7→ Ŝ, α surjective

α defines an equivalence relation ≡ on S: s ≡ s′ iff

α(s) = α(s′)

M̂ is an abstraction of M (w.r.t the mapping α) if

• ŝ ∈ Î if ∃s ∈ S.α(s) = ŝ ∧ s ∈ I

• (ŝ, ŝ′) ∈ T̂ if ∃s, s′ ∈ S.α(s) = ŝ ∧ α(s′) = ŝ′ ∧ (s, s′) ∈ T

There are other notions of abstractions depending on the

property.

View M̂ as M/ ≡

7

'

&

$

%

Abstractions

If M̂ is an abstraction of M (w.r.t α) then [[M̂]] ⊇ α([[M]])

Ex. Prove the above theorem.

If there is no path in M̂ to a b̂ad state, then there is no

path to a bad state in M

Approach to verifying safety properties of a transition

system M :

• pick an abstract domain Ŝ

• choose an abstraction mapping α

• construct an abstract system M̂ (w.r.t α)

• verify the (mapped) property on M̂

• if previous step fails, refine the mapping α

8

'

&

$

%

Constructing Abstractions

Elimination method: Requires theorem proving support

• ŝ ∈ Î if ∃s ∈ S.α(s) = ŝ ∧ s ∈ I

• (ŝ, ŝ′) ∈ T̂ if ∃s, s′ ∈ S.α(s) = ŝ ∧ α(s′) = ŝ′ ∧ (s, s′) ∈ T

Theory: depends on the language used to specify I, T , Ŝ,

and α

Class of formulas: if I, T, α are specified using QF formulas,

then we only need satisfiability of QF formulas

Works even when the prover is incomplete

9

'

&

$

%

Hybrid Systems

Several real-world systems are best modeled as a

combination of

• discrete transition systems and

• continuous dynamical systems (differential equations)

Example. A thermostat.

x = −kx
.

x = M − kx
.

68 < x

x < 82

q = off

q = on

x < 70

x > 80

10

'

&

$

%

Hybrid Automata

Formal model of a hybrid system is a hybrid automaton:

A tuple (Q,X,S0, F, Inv , R):

• Q: finite set of discrete variables

• X: finite set of continuous variables

• X = R|X|, Q = set of all valuations for Q

• S = Q×X

• S0 ⊆ S is the set of initial states

• F : Q 7→ (X 7→ R|X|) specifies the rate of flow,

ẋ = F (q)(x)

• Inv : Q 7→ 2R|X|
gives the invariant set

• R ⊆ Q× 2X 7→ Q× 2X captures discontinuous state

changes

11

'

&

$

%

Semantics of Hybrid Systems

s1 s2 s3 s4 s5 s6 s6

s1 s2 s3 s4 s5 s6 s7

• s1 ∈ S0 is an initial state

• Discrete Evolution: si→si+1 iff R(si, si+1)

• Continuous Evolution: si = (l, xi)→si+1 = (l, xi+1) iff

there exists a f : R|X| 7→ R|X| and δ > 0 such that

xi+1 = f(δ) xi = f(0)

ḟ = F (l) f(t) ∈ Inv(l) for 0 ≤ t ≤ δ

12

'

&

$

%

Semantics Example

A possible trace for the thermostat

(q = off , x = 75) → (q = off , x = 70) → (q = off , x = 69) →
(q = on, x = 69) → (q = on, x = 75) → (q = on, x = 81) →
(q = off , x = 81) → . . .

13

'

&

$

%

Qualitative Abstraction

Abstracting the hybrid automaton:

• Abstract domain: Q× {pos,neg , zero}m

• Mapping: α is given by choosing m polynomials from

Q[x1, . . . , xn]
s.t. α((q, v1, . . . , vn)) = (q, sign(p1(~v)), . . . , sign(pm(~v)))

• Abstract the initialization states:
√

• Abstract the discrete transitions:
√

• Abstract the continuous flow: How?

14

'

&

$

%

Abstraction Algorithm: 1

Consider a continuous dynamical system with two state

variables. Concrete state space: R2

x1

x2

p1

p2

Partitioned w.r.t signs of four linear forms x1, x2, p1, and p2.

15

'

&

$

%

Abstraction Algorithm: 2

Abstract states correspond to sets of concrete states.

x1

x2

p1

p2

p1 = neg, x1 = pos;

p2 = pos; x2 = neg

Total number of abstract states = 34 = 81, but feasible

abstract states = 11 + 16 + 6 = 33

16

'

&

$

%

Abstraction Algorithm: 3

Abstract transitions overapproximate concrete transitions.

���
�

���
� ����

x2 = 0

x1 = 0

p1 = 0

p2 = 0

How to abstract the continuous transitions?.

17

'

&

$

%

Abstraction Mapping: Example

In the thermostat example:

0 68 70 80 82 100

0 68 70 80 82 100

0 68 70 80 82 100

0 68 70 80 82 100

x − 68, x − 82

x − 70, x − 80

xdot = −Kx

xdot = K(100 − x)

18

'

&

$

%

Abstracting the Continuous Dynamics

Concrete state space : Q× Rn

Abstract state space : Q× 3m

Question: Fix a mode. Given

1. an abstract state f1
>
<
=

0, f2
>
<
=

0, . . . , fm
>
<
=

0

2. mode dynamics, ẋ1 = g1, . . . , ẋn = gn

determine all new abstract states f1 ? 0, f2 ? 0, . . . , fm ? 0
reachable from the given abstract state.

19

'

&

$

%

Abstracting Cont. Dynamics: the dual question

What is the sign of fi in the next state?

Our approach is based on qualitative reasoning. If

f1
>
<
=

0 ∧ f2
>
<
=

0 ∧ · · · ∧ fm
>
<
=

0 ∧ state-invariant

⇒ ḟi > 0

then, sign of fi in the next state is

• {pos} if fi > 0 now,

• {neg , zero} if fi < 0 now,

• {pos} if fi = 0 now.

20

'

&

$

%

Decision Procedure

We need a decision procedure to prove

f1
>
<
=

0 ∧ f2
>
<
=

0 ∧ · · · ∧ fm
>
<
=

0 ∧ state-invariant ⇒ ḟi > 0

If fi’s, ḟi are polynomials, and state-invariant also only

consists of polynomials, then we can use a decision

procedure for the QF-theory of reals.

Failure-tolerant Theorem Proving: sound, but incomplete,

procedure suffices.

Implementation optimization: (i) Do a clever 3m

enumeration; (ii) Use witness generation capability of

decision procedure.

21

'

&

$

%

Abstract Thermostat System

70 < x < 80

q = off

68 < x < 70

q = on

q = off

70 < x < 80

 x = 70

q = on

q = on

 x = 80

80 < x < 82

q = off

68 < x < 70

q = on

q = onq = off

 x = 70

80 < x < 82 x = 80

q = off

22

'

&

$

%

Hybrid Models

Hybrid automata is a powerful modeling formalism

Recently it has been used to create “simpler” models of

processes traditionally viewed as continuous dynamical

systems

Prominent example is genetic regulatory networks

Where discrete transitions model transcription regulation

And continuous transitions model metabolism processes

Qualitative abstraction, and hence decision procedures and

theorem proving, can be used to analyze biological processes

23

