Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari
shankar@csl.sri.com
URL: http://www.csl.sri.com/“shankar/LEP.html

Computer Science Laboratory
SRI International
Menlo Park, CA

_

/ Programming Options

Scheme is a compact, easy-to-learn variant of Lisp. The
bigloo compiler is available at
http://www-sop.inria.fr/mimosa/fp/Bigloo/.

ML is a typed variant with type-inference, polymorphic
typing, references, and modules. oCaml is a popular

Many of the programs in the course can be easily
implemented with a rewriting engine such as Maude
(http://maude.cs.uiuc.edu).

PVS (http://pvs.csl.sri.com) is a
theorem-proving/proof-checking environment based on
higher-order logic. PVS could be used to generate
\executable code from verified descriptions.

implementation that is available at http://www.ocaml.org/.

/ A Propositional Proof System: LK, \
| \ Left Right |
AX -
VAR A A
I'-AA [AFA
h I-AFA I'--4,A
Y IAFA I,BFA I'-ABA
I'AVBFA I'-AvVB,A
R A BFA '-A,A T'+BA
ILAABFA I'-AABA
I'BFA TFAA A+ B,A
- A= BFA 'A= BA
Cut 'FAA T,AFA
r'-A

4)

Completeness

A sequent I' - A is just \/T VvV \/ A, where T is the result of
negating the formulas in I'.

If you drop the Cut rule, the LK, rules preserve equivalence
and transform the formula A to CNF form as a conjunction
of clauses.

The CNF form is unprovable when it contains a non-axiom
clause C.

Clause C vyields a satisfying truth assignment M for its
negation —C which also satisfies —A.

_ /

/ Completeness, Alternately \

contains A or —A.

r.

Let A; be the i'th
formulas. Define

Iy

L1

\Ex: Check that T’

A set of formulas is complete if for each formula A, it

Any consistent set of formulas I' can be made complete as

formula in some enumeration of PL

= T
1—‘7; U {Al}, if COTL(FZ' U {Az})
= T;U{-4;}, otherwise.

= T,=Jm

yields an interpretation /\/lf satisfying F./

-

¢

M[[f(al,...

Equational logic deals with terms 7 such that

flr,...,m), forn>0

Pl=¢| o1V |1t N2 |1 Doa| T =1

The meaning M[a] is an element of a domain D, and M(f)
is @ map from D" to D, where n is the arity of f.

Mla=b] = M[a] =M[t]

~

Equational Logic

yan)] M Mai]; ..., Man])

4)

Proof Rules for Equational Logic (FLg)

The following rules are added to LK, to obtain EL.

Reflexivity I'ta=aA
'Fa=0bA
Symmetry -
'Eb=a,A
I'ta=0A I'tb=c A
Transitivity
'Fa=c A
I'ta=b6,A...T'+a, =b,, A
Congruence .
FI—,f(al,...7an) :f(bl,...,bn),A

-

Soundness and Completeness

Ex: Demonstrate the soundness of ELy: - A implies = A.

A consistent set of formulas I' can be extended to a
complete and consistent set I.

From T it is possible to construct a term model consisting
of the equivalence classes [t] of terms ¢ in T

The interpretation Mf is given by
Mf‘(f)([tl]v R [tn]) = [f(tlv cee atn)]'
Ex: Prove that M; is a model of I.

_

-

First-order Logic
Variables and Quantifiers

The terms and formulas of FFOL are given by

T = X
| f(r,...,7), forn >0
¢ = | P11V |d1 NG| b1 D G2 | T =T

|V :¢| Tz 9| qlr,...,m), forn >0

Terms contain variables, and formulas contain atomic and
quantified formulas.

_ /

4)

Semantics for Variables and Quantifiers

M(q] is a map from D™ to {T, L}, where n is the arity of
predicate q.

Mlz]p = p(x)
Mlq(ay,...,an)]p = Mlgl(Mlai]p,..., Mla,]p)
Mz : Alp = T, if M[A]p[z:=d) for all d € D
1, otherwise
M[Ez: Alp = T, if M[A]plz :=d] for some d € D

1, otherwise

/

10

-

Proof Rules for Quantifiers (LK)

The following rules are added to EL, to obtain LK.

Left Right
v [Va: A Alt/z] F A I'F Ale/x],Vz : A A
I''Vx:AFA F'Evz: A A
. [3z: A Ale/z] - A FEA[t/z],3x: A A
I'dz: AFA 'E3dz: A A

Constant ¢ must be chosen to be new so that it does not
appear in the conclusion sequent.

_

/

-

EXxercises

1. Define operations for collecting the free variables in a
given formula, and substituting a term for a free
variable in a formula.

2. Prove Jz: (p(x) = Vy : p(y)).

3. Give at least two satisfying interpretations for the
statement (3z : p(x)) D (Vx : p(x)).

4. A sentence is a formula with no free variables. Find a
sentence A such that both A and —A are satisfiable.

5. Write a formula asserting the unique existence of an z«
such that p(x).

6. Show that any quantified formula is equivalent to one

in prenex normal form, i.e., where the only quantifiers
appear at the head of the formula.

~

/

11

12

/ Soundness and Completeness \

Unlike LKy and E Ly, the LK quantifier rules require copying.
Proof branches can be extended without bound.
Ex: Show that LK is sound: + A implies = A.

The Henkin closure H(T') is the smallest extension of a set
of sentences I' that is Henkin-closed, i.e., contains
B = A(cp) for every B € H(I') of the form Jxz : A.

Any consistent set of formulas I' has a consistent Henkin
closure H(T).

As before, any consistent, Henkin closed set of formulas I'
has a complete, Henkin-closed extension I.

Ex: Show that the resulting interpretation /\/lH/(?) is a model

\for H(D). /

4)

Herbrand’s Theorem

Every FOL sentence has a prenex equivalent.

In a cut-free sequent proof of a prenex formula, the
quantifier rules can be made to appear below all the other
rules.

Such proofs must have a quantifier-free mid-sequent above
which the proof is entirely equational/propositional.

Thus for any sentence A there is a quantifier-free sentence
Ap such that F A in LK iff H Ay in ELg.

_ /

13

14

4)

Computability

In the 1930s, Herbrand, Godel, Church, Turing, Post,
and Kleene clarified the nature of computability.

Turing proposed the notion of a machine with a finite state
controller with its head at a specific location on an infinite
tape, a sequence of discrete cells.

In each machine transition, the controller reads a symbol off
the tape, and writes a new symbol in its place, and moves
to a new controller state and a new tape location that is
adjacent to the previous one, until it reaches the halting
state.

_ /

4)

Turing Machines

For example, a constant function just writes out a constant
past the given input.

The identity function copies the contents of the input past
the end of the input.

Turing also constructed a universal Turing machine U such
that for every other Turing machine M and input z, it was
possible to code the machine as an input m so that
U(m,z) = M(x).

_ /

15

16

/ Computability \

In 1936, Church had shown that the validity problem for
predicate calculus was not solvable using the lambda
calculus as a computation model.

This was the first instance of an computationally unsolvable
problem.

Ex: Show that there is no machine H such that for any
given Turing machine M and input xz, M terminates on x iff
H(m,z) computes to 0.

Turing also showed the Turing-unsolvability of the validity
problem for predicate calculus.

Different computational models like Turing machines,
lambda calculus, and recursive definitions are equally

\expressive. /

/ Recursive Functions \

A function f is recursive if it can be defined by a collection
of definitions of the form

1. Constant functions: f(z1,...,2,) =k, for numeral k.

2. Projections: f(z1,...,2,) = x;.

3. Compositions
flz1,...ozn) =hg1(z1,. - 2n), - s gm(z1, ..., 2y)), TOr h, g
recursive.

4. Primitive recursion: f(0,...,z,) = g(x1,...,2,), and
fler+1,...,2,) = h(f(z1,...,20),21,%2,...,2y,), fOr g, h,
recursive.

5. Minimization: f(z1,...,2,) = px: gz, 21,...,2,) =0,
when FVzy, ... 2, : 3z : g(x,21,. .., 25) = 0.

17

18

/ Recursive and Enumerable Sets \

A set S is computable or recursive if it has a computable
characteristic function fg such that fs(z) =0 < z € S.

The set of well-formed formulas in most logics are recursive.

A set is S (recursively) enumerable if there is a recursive
predicate Pg such that z € S < 3i: Ps(z,1).

The set of theorems in most logics are recursively
enumerable (r.e.).

Every recursive set is also r.e.
The complement of a recursive set is recursive.

The complement of an r.e. set, i.e., a co-r.e. set may not
be r.e., but if it is, the set is recursive.

\There are r.e. sets that are not recursive. /

4)

Decidability

A logic L is decidable if the set of theorems is recursive.
Propositional logic is decidable.
Most modal propositional logics are decidable.

First-order logic is undecidable, but some fragments are
decidable.

Some first-order theories are decidable: Presburger
arithmetic (0,1, +).

Most first-order theories are not decidable: Peano
arithmetic (0,1, +,).

_ /

19

20

4)

Small Decidability Problems

Word problems (WP): i A for atomic A. Many word
problems are decidable.

Uniform word problems (UWP): A4, ..
A A, .. A,

., A, F A for atomic

Some theories do have undecidable UWPs: semigroups,
groups.

There are decidable UWPs: transitive closure, congruence
closure, partial orders, commutative semigroups.

_ /

/ Complexity Classes \

There is a hierarchy of complexity classes among the
problems that are computable.

The notion of bounded computability is given in terms of a
Turing machine with an input tape of length n, an output

tape, and a work tape of length S(n) and a bound T'(n) on

the number of steps.

A polynomially computable operation requires T(n) to be a
polynomial.

Decidability problems are often the canonical hard problems
in each complexity class.

E.g., Unification is P-complete, propositional satisfiability is
NP-complete, QBF validity is PSPACE-complete, the word problem for

Qammutative semigroups is EXPSPACE-complete. /

21

22

/ Refutation Decision Procedures \

A decision procedure determines if a collection of formulas
is satisfiable.

A decision procedure is given by a collection of reduction
rules on a logical state .

State ¢ is either 1 or of the form k4]...|s,, Where each x; is
a configuration.

The logical content of k is either L or is given by a finite
set of formulas of the form Aq,..., A,,.

A state ¢ of the form kq,...,k, is satisfiable if some
configuration k; is satisfiable.

A configuration x of the form A4,..., A, is satisfiable if
there is an interpretation M and an assignment p such that

\M,p|:Aifor1§i§m. /

/ Inference Systems for Decision Procedures \

A refutation procedure proves A by refuting —A through the
application of reduction rules.

An application of an reduction rule transforms a state ¢ to
a state ¢’ (written ¢ F¢).

The states ¢ and ¢/ must be equivalent: Any M, p such
that M, p = there is a p’ extending p such that M, p’ v/,
and conversely whenever M, p’ = ’, there is a p extending
p' such that M, p' = 1.

If relation + between states is well-founded and any non-_L
irreducible state is satisfiable, we say that the inference
system is a decision procedure.

Ex: Prove that a decision procedure as given above is

\sound and complete. /

23

24

-

An inference rule

An Example \

K
is shorthand for L
Y[k ... |Kn]

The inference rules for a sequent search procedure are

K1l ... |kn

A/\B,FAJF -(AAB),T

A,B,T -A,T|-B,T
ﬂ(AvB),Fv (Av B),T
-A,-B,T AT|B,T
-(A=B),T (A= B),T'

_— = _|_ A — —

A,-B,T -A,T|B,T
—-—A,T A, —-AT

- -1

AT 1

Ex: Prove soundness and completeness of the above
Qlference system.

