
'

&

$

%

Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

Programming Options

Scheme is a compact, easy-to-learn variant of Lisp. The

bigloo compiler is available at

http://www-sop.inria.fr/mimosa/fp/Bigloo/.

ML is a typed variant with type-inference, polymorphic

typing, references, and modules. oCaml is a popular

implementation that is available at http://www.ocaml.org/.

Many of the programs in the course can be easily

implemented with a rewriting engine such as Maude

(http://maude.cs.uiuc.edu).

PVS (http://pvs.csl.sri.com) is a

theorem-proving/proof-checking environment based on

higher-order logic. PVS could be used to generate

executable code from verified descriptions.

2

'

&

$

%

A Propositional Proof System: LK0

Left Right

Ax
Γ, A ` A, ∆

¬
Γ ` A,∆

Γ,¬A ` ∆

Γ, A ` ∆

Γ ` ¬A,∆

∨
Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨ B ` ∆

Γ ` A, B, ∆

Γ ` A ∨ B, ∆

∧
Γ, A, B ` ∆

Γ, A ∧ B ` ∆

Γ ` A, ∆ Γ ` B, ∆

Γ ` A ∧ B, ∆

⇒
Γ, B ` ∆ Γ ` A, ∆

Γ, A ⇒ B ` ∆

Γ, A ` B, ∆

Γ ` A ⇒ B, ∆

Cut
Γ ` A, ∆ Γ, A ` ∆

Γ ` ∆

3

'

&

$

%

Completeness

A sequent Γ ` ∆ is just
∨

Γ ∨
∨

∆, where Γ is the result of

negating the formulas in Γ.

If you drop the Cut rule, the LK0 rules preserve equivalence

and transform the formula A to CNF form as a conjunction

of clauses.

The CNF form is unprovable when it contains a non-axiom

clause C.

Clause C yields a satisfying truth assignment M for its

negation ¬C which also satisfies ¬A.

4

'

&

$

%

Completeness, Alternately

A set of formulas is complete if for each formula A, it

contains A or ¬A.

Any consistent set of formulas Γ can be made complete as

Γ̂.

Let Ai be the i’th formula in some enumeration of PL

formulas. Define

Γ0 = Γ

Γi+1 = Γi ∪ {Ai}, if Con(Γi ∪ {Ai})

= Γi ∪ {¬Ai}, otherwise.

Γ̂ = Γω =
⋃

i

Γi

Ex: Check that Γ̂ yields an interpretation MΓ̂ satisfying Γ.

5

'

&

$

%

Equational Logic

Equational logic deals with terms τ such that

τ := f(τ1, . . . , τn), for n ≥ 0

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⊃ φ2 | τ1 = τ2

The meaning M[[a]] is an element of a domain D, and M(f)

is a map from Dn to D, where n is the arity of f .

M[[a = b]] = M[[a]] = M[[b]]

M[[f(a1, . . . , an)]] = (M[[f]])(M[[a1]], . . . ,M[[an]])

6

'

&

$

%

Proof Rules for Equational Logic (EL0)

The following rules are added to LK0 to obtain EL0.

Reflexivity Γ ` a = a,∆

Symmetry
Γ ` a = b,∆

Γ ` b = a,∆

Transitivity
Γ ` a = b,∆ Γ ` b = c,∆

Γ ` a = c,∆

Congruence
Γ ` a1 = b1,∆ . . .Γ ` an = bn,∆

Γ ` f(a1, . . . , an) = f(b1, . . . , bn),∆

7

'

&

$

%

Soundness and Completeness

Ex: Demonstrate the soundness of EL0: ` A implies |= A.

A consistent set of formulas Γ can be extended to a

complete and consistent set Γ̂.

From Γ̂ it is possible to construct a term model consisting

of the equivalence classes [t] of terms t in Γ̂.

The interpretation MΓ̂ is given by

MΓ̂(f)([t1], . . . , [tn]) = [f(t1, . . . , tn)].

Ex: Prove that MΓ̂ is a model of Γ̂.

8

'

&

$

%

First-order Logic

Variables and Quantifiers

The terms and formulas of FOL are given by

τ := X

| f(τ1, . . . , τn), for n ≥ 0

φ := ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⊃ φ2 | τ1 = τ2

| ∀x : φ | ∃x : φ | q(τ1, . . . , τn), for n ≥ 0

Terms contain variables, and formulas contain atomic and

quantified formulas.

9

'

&

$

%

Semantics for Variables and Quantifiers

M[[q]] is a map from Dn to {>,⊥}, where n is the arity of

predicate q.

M[[x]]ρ = ρ(x)

M[[q(a1, . . . , an)]]ρ = M[[q]](M[[a1]]ρ, . . . ,M[[an]]ρ)

M[[∀x : A]]ρ =





>, if M[[A]]ρ[x := d] for all d ∈ D

⊥, otherwise

M[[∃x : A]]ρ =





>, if M[[A]]ρ[x := d] for some d ∈ D

⊥, otherwise

10

'

&

$

%

Proof Rules for Quantifiers (LK)

The following rules are added to EL0 to obtain LK.

Left Right

∀
Γ, ∀x : A,A[t/x] ` ∆

Γ, ∀x : A ` ∆

Γ ` A[c/x], ∀x : A,∆

Γ ` ∀x : A,∆

∃
Γ, ∃x : A,A[c/x] ` ∆

Γ, ∃x : A ` ∆

Γ ` A[t/x], ∃x : A,∆

Γ ` ∃x : A,∆

Constant c must be chosen to be new so that it does not

appear in the conclusion sequent.

11

'

&

$

%

Exercises

1. Define operations for collecting the free variables in a

given formula, and substituting a term for a free

variable in a formula.

2. Prove ∃x : (p(x) ⇒ ∀y : p(y)).

3. Give at least two satisfying interpretations for the

statement (∃x : p(x)) ⊃ (∀x : p(x)).

4. A sentence is a formula with no free variables. Find a

sentence A such that both A and ¬A are satisfiable.

5. Write a formula asserting the unique existence of an x

such that p(x).

6. Show that any quantified formula is equivalent to one

in prenex normal form, i.e., where the only quantifiers

appear at the head of the formula.

12

'

&

$

%

Soundness and Completeness

Unlike LK0 and EL0, the LK quantifier rules require copying.

Proof branches can be extended without bound.

Ex: Show that LK is sound: ` A implies |= A.

The Henkin closure H(Γ) is the smallest extension of a set

of sentences Γ that is Henkin-closed, i.e., contains

B ⇒ A(cB) for every B ∈ H(Γ) of the form ∃x : A.

Any consistent set of formulas Γ has a consistent Henkin

closure H(Γ).

As before, any consistent, Henkin closed set of formulas Γ

has a complete, Henkin-closed extension Γ̂.

Ex: Show that the resulting interpretation M
Ĥ(Γ)

is a model

for H(Γ).

13

'

&

$

%

Herbrand’s Theorem

Every FOL sentence has a prenex equivalent.

In a cut-free sequent proof of a prenex formula, the

quantifier rules can be made to appear below all the other

rules.

Such proofs must have a quantifier-free mid-sequent above

which the proof is entirely equational/propositional.

Thus for any sentence A there is a quantifier-free sentence

AH such that ` A in LK iff ` AH in EL0.

14

'

&

$

%

Computability

In the 1930s, Herbrand, Gödel, Church, Turing, Post,

and Kleene clarified the nature of computability.

Turing proposed the notion of a machine with a finite state

controller with its head at a specific location on an infinite

tape, a sequence of discrete cells.

In each machine transition, the controller reads a symbol off

the tape, and writes a new symbol in its place, and moves

to a new controller state and a new tape location that is

adjacent to the previous one, until it reaches the halting

state.

15

'

&

$

%

Turing Machines

For example, a constant function just writes out a constant

past the given input.

The identity function copies the contents of the input past

the end of the input.

Turing also constructed a universal Turing machine U such

that for every other Turing machine M and input x, it was

possible to code the machine as an input m so that

U(m,x) = M(x).

16

'

&

$

%

Computability

In 1936, Church had shown that the validity problem for

predicate calculus was not solvable using the lambda

calculus as a computation model.

This was the first instance of an computationally unsolvable

problem.

Ex: Show that there is no machine H such that for any

given Turing machine M and input x, M terminates on x iff

H(m,x) computes to 0.

Turing also showed the Turing-unsolvability of the validity

problem for predicate calculus.

Different computational models like Turing machines,

lambda calculus, and recursive definitions are equally

expressive.

17

'

&

$

%

Recursive Functions

A function f is recursive if it can be defined by a collection

of definitions of the form

1. Constant functions: f(x1, . . . , xn) = k, for numeral k.

2. Projections: f(x1, . . . , xn) = xi.

3. Compositions

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), for h, g

recursive.

4. Primitive recursion: f(0, . . . , xn) = g(x1, . . . , xn), and

f(x1 + 1, . . . , xn) = h(f(x1, . . . , xn), x1, x2, . . . , xn), for g, h,

recursive.

5. Minimization: f(x1, . . . , xn) = µx : g(x, x1, . . . , xn) = 0,

when ` ∀x1, . . . , xn : ∃x : g(x, x1, . . . , xn) = 0.

18

'

&

$

%

Recursive and Enumerable Sets

A set S is computable or recursive if it has a computable

characteristic function fS such that fS(x) = 0 ⇐⇒ x ∈ S.

The set of well-formed formulas in most logics are recursive.

A set is S (recursively) enumerable if there is a recursive

predicate PS such that x ∈ S ⇐⇒ ∃i : PS(x, i).

The set of theorems in most logics are recursively

enumerable (r.e.).

Every recursive set is also r.e.

The complement of a recursive set is recursive.

The complement of an r.e. set, i.e., a co-r.e. set may not

be r.e., but if it is, the set is recursive.

There are r.e. sets that are not recursive.

19

'

&

$

%

Decidability

A logic L is decidable if the set of theorems is recursive.

Propositional logic is decidable.

Most modal propositional logics are decidable.

First-order logic is undecidable, but some fragments are

decidable.

Some first-order theories are decidable: Presburger

arithmetic 〈0, 1,+〉.

Most first-order theories are not decidable: Peano

arithmetic 〈0, 1,+, ∗〉.

20

'

&

$

%

Small Decidability Problems

Word problems (WP): ` A for atomic A. Many word

problems are decidable.

Uniform word problems (UWP): A1, . . . , An ` A for atomic

A,A1, . . . , An.

Some theories do have undecidable UWPs: semigroups,

groups.

There are decidable UWPs: transitive closure, congruence

closure, partial orders, commutative semigroups.

21

'

&

$

%

Complexity Classes

There is a hierarchy of complexity classes among the

problems that are computable.

The notion of bounded computability is given in terms of a

Turing machine with an input tape of length n, an output

tape, and a work tape of length S(n) and a bound T (n) on

the number of steps.

A polynomially computable operation requires T (n) to be a

polynomial.

Decidability problems are often the canonical hard problems

in each complexity class.

E.g., Unification is P-complete, propositional satisfiability is

NP-complete, QBF validity is PSPACE-complete, the word problem for

commutative semigroups is EXPSPACE-complete.

22

'

&

$

%

Refutation Decision Procedures

A decision procedure determines if a collection of formulas

is satisfiable.

A decision procedure is given by a collection of reduction

rules on a logical state ψ.

State ψ is either ⊥ or of the form κ1| . . . |κn, where each κi is

a configuration.

The logical content of κ is either ⊥ or is given by a finite

set of formulas of the form A1, . . . , Am.

A state ψ of the form κ1, . . . , κn is satisfiable if some

configuration κi is satisfiable.

A configuration κ of the form A1, . . . , Am is satisfiable if

there is an interpretation M and an assignment ρ such that

M,ρ |= Ai for 1 ≤ i ≤ m.

23

'

&

$

%

Inference Systems for Decision Procedures

A refutation procedure proves A by refuting ¬A through the

application of reduction rules.

An application of an reduction rule transforms a state ψ to

a state ψ′ (written ψ ` ψ′).

The states ψ and ψ′ must be equivalent: Any M, ρ such

that M, ρ |= ψ there is a ρ′ extending ρ such that M, ρ′ |= ψ′,

and conversely whenever M, ρ′ |= ψ′, there is a ρ extending

ρ′ such that M, ρ′ |= ψ.

If relation ` between states is well-founded and any non-⊥

irreducible state is satisfiable, we say that the inference

system is a decision procedure.

Ex: Prove that a decision procedure as given above is

sound and complete.

24

'

&

$

%

An Example

An inference rule
κ

κ1| . . . |κn

is shorthand for
ψ[κ]

ψ[κ1| . . . |κn]
.

The inference rules for a sequent search procedure are

A ∧B,Γ

A,B,Γ
∧+

¬(A ∧B),Γ

¬A,Γ|¬B,Γ
∧−

¬(A ∨B),Γ

¬A,¬B,Γ
∨−

(A ∨B),Γ

A,Γ|B,Γ
∧+

¬(A⇒ B),Γ

A,¬B,Γ
⇒ +

(A⇒ B),Γ

¬A,Γ|B,Γ
⇒ −

¬¬A,Γ

A,Γ
¬

A,¬A,Γ

⊥
⊥

Ex: Prove soundness and completeness of the above

inference system.

25

