Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari shankar@csl.sri.com URL: http://www.csl.sri.com/~shankar/LEP.html

> Computer Science Laboratory SRI International Menlo Park, CA

A Propositional Proof System: LK_0

	Left	Right	
Ax	$\overline{\Gamma, A \vdash A, \Delta}$		
٦	$\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta}$	$\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta}$	
\vee	$ \begin{array}{c c} \Gamma, A \vdash \Delta & \Gamma, B \vdash \Delta \\ \hline \Gamma, A \lor B \vdash \Delta \end{array} $	$\frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta}$	
Λ	$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta}$	$\begin{tabular}{ccc} \hline \Gamma \vdash A, \Delta & \Gamma \vdash B, \Delta \\ \hline & \\ \hline \Gamma \vdash A \land B, \Delta \end{tabular}$	
\Rightarrow	$ \begin{array}{c c} \Gamma, B \vdash \Delta \Gamma \vdash A, \Delta \\ \hline \Gamma, A \Rightarrow B \vdash \Delta \end{array} $	$\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \Rightarrow B, \Delta}$	
Cut	$\frac{\Gamma \vdash A, \Delta}{\Gamma \vdash}$	$\frac{\Gamma, A \vdash \Delta}{\neg \Delta}$	

1

Programming Options

Scheme is a compact, easy-to-learn variant of Lisp. The bigloo compiler is available at

http://www-sop.inria.fr/mimosa/fp/Bigloo/.

ML is a typed variant with type-inference, polymorphic typing, references, and modules. oCaml is a popular implementation that is available at http://www.ocaml.org/.

Many of the programs in the course can be easily implemented with a rewriting engine such as Maude (http://maude.cs.uiuc.edu).

PVS (http://pvs.csl.sri.com) is a theorem-proving/proof-checking environment based on higher-order logic. PVS could be used to generate executable code from verified descriptions.

Completeness

A sequent $\Gamma \vdash \Delta$ is just $\bigvee \overline{\Gamma} \lor \bigvee \Delta$, where $\overline{\Gamma}$ is the result of negating the formulas in Γ .

If you drop the Cut rule, the LK_0 rules preserve equivalence and transform the formula A to CNF form as a conjunction of *clauses*.

The CNF form is unprovable when it contains a non-axiom clause C.

Clause *C* yields a satisfying truth assignment \mathcal{M} for its negation $\neg C$ which also satisfies $\neg A$.

Completeness, Alternately

A set of formulas is *complete* if for each formula A, it contains A or $\neg A$.

Any consistent set of formulas Γ can be made complete as $\hat{\Gamma}.$

Let A_i be the $i{\rm 'th}$ formula in some enumeration of PL formulas. Define

$$\begin{split} \Gamma_0 &= & \Gamma \\ \Gamma_{i+1} &= & \Gamma_i \cup \{A_i\}, \text{ if } Con(\Gamma_i \cup \{A_i\}) \\ &= & \Gamma_i \cup \{\neg A_i\}, \text{ otherwise.} \\ \hat{\Gamma} &= & \Gamma_\omega = \bigcup_i \Gamma_i \end{split}$$

Ex: Check that $\hat{\Gamma}$ yields an interpretation $\mathcal{M}_{\hat{\Gamma}}$ satisfying Γ .

Proof Rules for Equational Logic (EL_0 **)**

The following rules are added to LK_0 to obtain EL_0 .

Reflexivity	$\Gamma \vdash a = a, \Delta$		
Symmetry	$\frac{\Gamma \vdash a = b, \Delta}{\Gamma \vdash b = a, \Delta}$		
Transitivity	$\frac{\Gamma \vdash a = b, \Delta \qquad \Gamma \vdash b = c, \Delta}{\Gamma \vdash a = c, \Delta}$		
Congruence	$\boxed{\frac{\Gamma \vdash a_1 = b_1, \Delta \dots \Gamma \vdash a_n = b_n, \Delta}{\Gamma \vdash f(a_1, \dots, a_n) = f(b_1, \dots, b_n), \Delta}}$		

Equational Logic

Equational logic deals with terms τ such that

$$\begin{split} \tau &:= f(\tau_1, \dots, \tau_n), \text{ for } n \ge 0 \\ \phi &:= P \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \supset \phi_2 \mid \tau_1 = \tau_2 \end{split}$$

The meaning $\mathcal{M}[\![a]\!]$ is an element of a *domain* D, and $\mathcal{M}(f)$ is a map from D^n to D, where n is the arity of f.

$$\begin{aligned} \mathcal{M}\llbracket a = b \rrbracket &= \mathcal{M}\llbracket a \rrbracket = \mathcal{M}\llbracket b \rrbracket \\ \mathcal{M}\llbracket f(a_1, \dots, a_n) \rrbracket &= (\mathcal{M}\llbracket f \rrbracket)(\mathcal{M}\llbracket a_1 \rrbracket, \dots, \mathcal{M}\llbracket a_n \rrbracket) \end{aligned}$$

Soundness and Completeness

Ex: Demonstrate the soundness of EL_0 : $\vdash A$ implies $\models A$.

A consistent set of formulas Γ can be extended to a complete and consistent set $\hat{\Gamma}.$

From $\hat{\Gamma}$ it is possible to construct a *term model* consisting of the equivalence classes [t] of terms t in $\hat{\Gamma}$.

The interpretation $\mathcal{M}_{\hat{\Gamma}}$ is given by $\mathcal{M}_{\hat{\Gamma}}(f)([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)].$

Ex: Prove that $\mathcal{M}_{\hat{\Gamma}}$ is a model of $\hat{\Gamma}$.

First-order Logic Variables and Quantifiers

The terms and formulas of FOL are given by

$$\begin{aligned} \tau &:= X \\ & \mid f(\tau_1, \dots, \tau_n), \text{ for } n \ge 0 \\ \phi &:= \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \supset \phi_2 \mid \tau_1 = \tau_2 \\ & \mid \forall x : \phi \mid \exists x : \phi \mid q(\tau_1, \dots, \tau_n), \text{ for } n \ge 0 \end{aligned}$$

Terms contain variables, and formulas contain atomic and quantified formulas.

Proof Rules for Quantifiers (*LK***)**

The following rules are added to EL_0 to obtain LK.

	Left	Right
\forall	$\frac{\Gamma, \forall x: A, A[t/x] \vdash \Delta}{\Gamma}$	$\frac{\Gamma \vdash A[c/x], \forall x: A, \Delta}{\Gamma \vdash A[c/x], \forall x: A, \Delta}$
	$\Gamma, \forall x : A \vdash \Delta$	$\Gamma \vdash \forall x : A, \Delta$
	$\Gamma, \exists x: A, A[c/x] \vdash \Delta$	$\Gamma \vdash A[t/x], \exists x: A, \Delta$
	$\Gamma, \exists x: A \vdash \Delta$	$\Gamma \vdash \exists x: A, \Delta$

Constant \boldsymbol{c} must be chosen to be new so that it does not appear in the conclusion sequent.

9

Semantics for Variables and Quantifiers

 $\mathcal{M}[\![q]\!]$ is a map from D^n to $\{\top, \bot\},$ where n is the arity of predicate q.

$$\begin{split} \mathcal{M}[\![x]\!]\rho &= \rho(x) \\ \mathcal{M}[\![q(a_1,\ldots,a_n)]\!]\rho &= \mathcal{M}[\![q]\!](\mathcal{M}[\![a_1]\!]\rho,\ldots,\mathcal{M}[\![a_n]\!]\rho) \\ \mathcal{M}[\![\forall x:A]\!]\rho &= \begin{cases} \top, & \text{if } \mathcal{M}[\![A]\!]\rho[x:=d] \text{ for all } d \in D \\ \bot, & \text{otherwise} \end{cases} \\ \mathcal{M}[\![\exists x:A]\!]\rho &= \begin{cases} \top, & \text{if } \mathcal{M}[\![A]\!]\rho[x:=d] \text{ for some } d \in D \\ \bot, & \text{otherwise} \end{cases} \end{split}$$

Exercises

- 1. Define operations for collecting the free variables in a given formula, and substituting a term for a free variable in a formula.
- 2. Prove $\exists x : (p(x) \Rightarrow \forall y : p(y)).$
- 3. Give at least two satisfying interpretations for the statement $(\exists x : p(x)) \supset (\forall x : p(x))$.
- 4. A sentence is a formula with no free variables. Find a sentence A such that both A and $\neg A$ are satisfiable.
- 5. Write a formula asserting the unique existence of an x such that p(x).
- 6. Show that any quantified formula is equivalent to one in *prenex normal form*, i.e., where the only quantifiers appear at the head of the formula.

Soundness and Completeness

Unlike LK_0 and EL_0 , the LK quantifier rules require copying.

Proof branches can be extended without bound.

Ex: Show that LK is sound: $\vdash A$ implies $\models A$.

The Henkin closure $H(\Gamma)$ is the smallest extension of a set of sentences Γ that is Henkin-closed, i.e., contains $B \Rightarrow A(c_B)$ for every $B \in H(\Gamma)$ of the form $\exists x : A$.

Any consistent set of formulas Γ has a consistent Henkin closure $H(\Gamma).$

As before, any consistent, Henkin closed set of formulas Γ has a complete, Henkin-closed extension $\hat{\Gamma}.$

Ex: Show that the resulting interpretation $\mathcal{M}_{\widehat{H(\Gamma)}}$ is a model for $H(\Gamma).$

Computability

In the 1930s, **Herbrand**, **Gödel**, **Church**, **Turing**, **Post**, and **Kleene** clarified the nature of computability.

Turing proposed the notion of a machine with a finite state controller with its head at a specific location on an infinite tape, a sequence of discrete cells.

In each machine transition, the controller reads a symbol off the tape, and writes a new symbol in its place, and moves to a new controller state and a new tape location that is adjacent to the previous one, until it reaches the halting state.

13

Herbrand's Theorem

Every FOL sentence has a prenex equivalent.

In a cut-free sequent proof of a prenex formula, the quantifier rules can be made to appear below all the other rules.

Such proofs must have a quantifier-free mid-sequent above which the proof is entirely equational/propositional.

Thus for any sentence A there is a quantifier-free sentence A_H such that $\vdash A$ in LK iff $\vdash A_H$ in EL_0 .

Turing Machines

For example, a constant function just writes out a constant past the given input.

The identity function copies the contents of the input past the end of the input.

Turing also constructed a universal Turing machine U such that for every other Turing machine M and input x, it was possible to code the machine as an input m so that U(m, x) = M(x).

Computability

In 1936, **Church** had shown that the validity problem for predicate calculus was not solvable using the lambda calculus as a computation model.

This was the first instance of an computationally unsolvable problem.

Ex: Show that there is no machine H such that for any given Turing machine M and input x, M terminates on x iff H(m, x) computes to 0.

Turing also showed the Turing-unsolvability of the validity problem for predicate calculus.

Different computational models like Turing machines, lambda calculus, and recursive definitions are equally expressive.

Recursive and Enumerable Sets

A set S is computable or recursive if it has a computable characteristic function f_S such that $f_S(x) = 0 \iff x \in S$.

The set of well-formed formulas in most logics are recursive.

A set is S (recursively) enumerable if there is a recursive predicate P_S such that $x \in S \iff \exists i : P_S(x, i)$.

The set of theorems in most logics are recursively enumerable (r.e.).

Every recursive set is also r.e.

The complement of a recursive set is recursive.

The complement of an r.e. set, i.e., a co-r.e. set may not be r.e., but if it is, the set is recursive.

There are r.e. sets that are not recursive.

17

Recursive Functions

A function f is recursive if it can be defined by a collection of definitions of the form

- 1. Constant functions: $f(x_1, \ldots, x_n) = k$, for numeral k.
- 2. Projections: $f(x_1, \ldots, x_n) = x_i$.
- 3. Compositions

 $f(x_1,\ldots,x_n)=h(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n))$, for h,g recursive.

- 4. Primitive recursion: $f(0, \ldots, x_n) = g(x_1, \ldots, x_n)$, and $f(x_1 + 1, \ldots, x_n) = h(f(x_1, \ldots, x_n), x_1, x_2, \ldots, x_n)$, for g, h, recursive.
- 5. Minimization: $f(x_1, \ldots, x_n) = \mu x : g(x, x_1, \ldots, x_n) = 0$, when $\vdash \forall x_1, \ldots, x_n : \exists x : g(x, x_1, \ldots, x_n) = 0$.

Decidability

A logic *L* is *decidable* if the set of theorems is recursive.

Propositional logic is decidable.

Most modal propositional logics are decidable.

First-order logic is undecidable, but some fragments are decidable.

Some first-order theories are decidable: Presburger arithmetic $\langle 0,1,+\rangle.$

Most first-order theories are not decidable: Peano arithmetic $\langle 0,1,+,*\rangle.$

Refutation Decision Procedures

A decision procedure determines if a collection of formulas is satisfiable.

A decision procedure is given by a collection of reduction rules on a *logical state* ψ .

State ψ is either \perp or of the form $\kappa_1 | \dots | \kappa_n$, where each κ_i is a *configuration*.

The logical content of κ is either \perp or is given by a finite set of formulas of the form A_1, \ldots, A_m .

A state ψ of the form $\kappa_1, \ldots, \kappa_n$ is satisfiable if some configuration κ_i is satisfiable.

A configuration κ of the form A_1, \ldots, A_m is satisfiable if there is an interpretation M and an assignment ρ such that $M, \rho \models A_i$ for $1 \le i \le m$.

21

Complexity Classes

Small Decidability Problems

Uniform word problems (UWP): $A_1, \ldots, A_n \vdash A$ for atomic

Some theories do have undecidable UWPs: semigroups,

There are decidable UWPs: transitive closure, congruence

closure, partial orders, commutative semigroups.

Word problems (WP): $\vdash A$ for atomic A. Many word

problems are decidable.

 A, A_1, \ldots, A_n .

groups.

There is a hierarchy of complexity classes among the problems that are computable.

The notion of bounded computability is given in terms of a Turing machine with an input tape of length n, an output tape, and a work tape of length S(n) and a bound T(n) on the number of steps.

A polynomially computable operation requires T(n) to be a polynomial.

Decidability problems are often the canonical hard problems in each complexity class.

E.g., Unification is P-complete, propositional satisfiability is NP-complete, QBF validity is PSPACE-complete, the word problem for commutative semigroups is EXPSPACE-complete.

Inference Systems for Decision Procedures

A refutation procedure proves A by refuting $\neg A$ through the application of reduction rules.

An application of an reduction rule transforms a state ψ to a state ψ' (written $\psi \vdash \psi'$).

The states ψ and ψ' must be *equivalent*: Any \mathcal{M}, ρ such that $\mathcal{M}, \rho \models \psi$ there is a ρ' extending ρ such that $\mathcal{M}, \rho' \models \psi'$, and conversely whenever $\mathcal{M}, \rho' \models \psi'$, there is a ρ extending ρ' such that $\mathcal{M}, \rho' \models \psi$.

If relation \vdash between states is well-founded and any non- \perp irreducible state is satisfiable, we say that the inference system is a decision procedure.

Ex: Prove that a decision procedure as given above is sound and complete.

An Example					
An inference rul	$e - \frac{\kappa}{\kappa_1 \dots \kappa_n}$ is	shorthand for –	$\frac{\psi[\kappa]}{\psi[\kappa_1 \dots \kappa_n]}.$		
The inference rules for a sequent search procedure are					
	$\frac{A \wedge B, \Gamma}{A, B, \Gamma} \wedge +$	$\frac{\neg (A \land B), \Gamma}{\neg A, \Gamma \neg B, \Gamma} \land -$			
-	$\frac{(A \lor B), \Gamma}{\neg A, \neg B, \Gamma} \lor -$	$\frac{(A \vee B), \Gamma}{A, \Gamma B, \Gamma} \wedge +$	_		
	$\frac{A \Rightarrow B), \Gamma}{A, \neg B, \Gamma} \Rightarrow +$	$\frac{(A \Rightarrow B), \Gamma}{\neg A, \Gamma B, \Gamma} \Rightarrow -$	_		
	$\frac{\neg \neg A, \Gamma}{A, \Gamma} \neg$	$\frac{A, \neg A, \Gamma}{\bot} \bot$	_		
Ex: Prove sound	dness and com	pleteness of the	above		

inference system.