Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari
shankar@csl.sri.com
URL: http://www.csl.sri.com/“shankar/LEP.html

Computer Science Laboratory
SRI International
Menlo Park, CA

_ /

4)

Overview

Model checkers are used to verify/refute properties of
transition systems.

Transition systems are used to model hardware and
software.

Bounded Model Checking is a special kind of model checker.

The decision procedures described on previous lectures are
used to implement this kind of model checker.

/ Transition Systems

Transition system M = (S,I,T)
S: set of states.

I C S: set of initial states. Example:

I(s) = sax=0Aspc=10

T C S x S: transition relation. Example:

T(s,s') = (spc=lANsz=sx+2Nspc=1)V
(spc=laNsx>0Nsz=s52—-2Nspc=1)V

(spc=lANs'.z=sxNs.pc=1)

_ /

_

Transition Systems (cont.)

7(80,...,8,) is @ path iff I(sg) and T(s;, s;4+1) for 0 <i < n.
Example:

(ll;o) - (1272) - (lla2) - (l274) - (l272) - (1270) - (11,0)

_

/ Invariants & Model Checkers \
A state s is reachable iff there is a path w(sg,...,sk)-

Invariants characterize properties that are true of all
reachable states in a system.

Any superset of the set of reachable states is an invariant.
Example: s.xz > 0.

A counterexample for an invariant ¢ is a path w(sq,...,sk)
such that —p(sg).

Model Checkers can verify/refute invariants.
There are different kinds of model checkers:
e EXxplicit State
e Symbolic (based on BDDs)

\ e Bounded (based on DP) /

/ Bounded Model Checking: Invariants \
Given.
e Transition system M = (S,1,7T)
e Invariant ¢
e Natural number k
Problem.

Is there a counterexample of length k for the
invariant (7

There is a counterexample for the invariant ¢ if the
following formula is satisfiable:

4)

Bounded Model Checking (cont.)

BMC is mainly used for refutation.

Users want counterexamples. The decision procedure (DP)
must be able to generate models for satisfiable formulas.

BMC is a complete method for finite systems when the
diameter (longest shortest path) of the system is known.

The diameter is usually to expensive to be computed.

The recurrence diameter (longest loop-free path) is usually
used as a completeness threshold.

The recurrence diameter can be much longer than the
diameter.

I(s1) AT (s1,82) A v o AT (Sp—1,88) A (mp(s1) V...V —p(sk))

_ /

4)

Recurrence Diameter

A system M contains a loop-free path of length n iff

T(S0y .-y 8n) A /\ 8; # 85

0<i<j<n
The recurrence diameter is the smallest n such that the
formula above is unsatisfiable.

The diameter of infinite systems (i.e., infinite state space)
may be infinite.

_ /

-

Verifying Invariants: Induction
An invariant is inductive if:
e I(s) — ¢(s) (base step)
o o(s)ANT(s,s") — ¢(s') (inductive step)
Invariants are not usually inductive.
The inductive step is violated.

Example: (I2,1) — (I3, —1)

_

-

Verifying Invariants: k-Induction
An invariant ¢ is k-inductive if:
o I(s1)AT(s1,52) A... ANT(sk—1,5%) — @(s1) A ... A p(sk)
o o(s1)A... Ap(sk) AT(s1,82) A ... AT (Sk, Skg1) — ©(Skt1)

It is harder to violate the inductive step.

The base case is BMC.

_

If ¢ is ki-inductive then it is also ko-inductive for ko > k.

10

/ Verifying Invariants: k-Induction (cont.)

Can be used to verify finite and infinite systems.

Not complete even for finite systems: Self-loops in
unreachable states.

Example:

Bad state s,

Counterexamples s3 ~» s3~> ... ~> 3~ Sy

\ k

~

/

-

Verifying Invariants: k-Induction (cont.)

Completeness for finite systems: consider only loop-free
paths.

Not complete for infinite systems. Example:

(I2,1) = (I3, —1)

(l273) - (l27 1) - ([27 71)

(l2a5) - (l273) - (l271) - (Z27_1>

~

11

12

-

Failed k-induction for ¢ yields

Invariant Strengthening

Explicit counterexample

Sn ™ Sn+1 ™ Sn+k ™ Sn4k+1
Assume s, to be unreachable and strengthen ¢ A —(s,)

Symbolic counterexample described by a conjunction of
constraints

P(Sna Sn+1y++ 5 Sn+k, 5n+k+l)

e Projection

Q(Sn) = 38n+17 <o Skl P(S'ru Sn+1ly .-y Sntks Sn+k+l>

e Strengthening

\ 2 A _'qe({snv Sn+1, 3n+k}v P(Sna <oy Sn+ky 5n+k+1))

/

-

Given. Propositional formula with constraints as literals.

~

Satisfiability for Boolean Constraint Formulas

Assumption. DP decides the satisfiability problem for
conjunctions of constraints.

Problem. Efficient satisfiability for Boolean combinations
of constraints.

Experiment. Using a combination of BDDs with linear
arithmetic decision procedures in PVS2.4 for finding
counterexamples in a modified train-gate controller example

k=2 70s
k = 3 | 8500s

Q new techniques required

/

13

14

-

Let ¢ be a Boolean constraint formulas (Bool(C')) with
constraints c;.

Reduction to SAT

Translations.

e « replaces constraints with (fresh) propositional
variables.

e ~ substitutes constraints for corresponding variables.
Example.
alx=yA flx)=f(y) ~ pAq

A Boolean assignment v induces a set of constraints (v)

ifv=[p—0,g— 1] then y(v) ={z#vy, f(z)=f(y)}

_

/

-

Inconsistencies. (I; € Lits(y))

Boolean Reduction Theorem

{li,..., .} € I(p)
iff
Y1) A ... Avy(l,) is C-inconsistent

Theorem.
e € Bool(C) and
o a(@) N Apy,yer (Tl VeV aly))

are equisatisfiable

Usually, an exponential number of inconsistency tests is
required.

Qre there “good” enumeration strategies?

~

/

15

16

/ Lazy Theorem Proving

procedure lazy-th(p)
p = o(p);
loop
v:=SAT(p);
if v=_1 then return L
if v(v) £ L then return ~(v)
else I := \/ —a(c); pr=pAI1

cey(v)
endloop;

return L

\Optimizations. don't cares, and DP explanations.

/

-

Eager Theorem Proving

Converts a ¢ Boolean constraint formulas (Bool(C)) in a
equisatisfiable boolean formula.

Uses a SAT solver (or BDD package) to check the
satisfiability of the formula.

Uses techniques described on previous lectures.
e Small domain instantiation.
e Ackermann’s trick.

e Separation constraints.

_

~

17

18

/ Lazy vs. Eager Theorem Proving
Eager:
e Modular implementation (it is easy to replace the SAT solver).
e Does not support richer theories (e.g., linear arithmetic).
e Translation to SAT can consume a lot of time and memory.
e Useless “information” is included in the boolean formula.
e Can use the best SAT solver.

Lazy:

replace the SAT solver).

e Commonly used SAT heuristics are inefficient in the lazy
integration.

\ e Supports richer theories.

e Non-modular implementation to obtain efficiency (it is not easy to

/

/ Lazy Quantifier Elimination

procedure ge(vars,)

1 = false

loop
¢ = lazy-th(yp)
if ¢ = false then return v
c = C-qe(vars,c)
Y=YV
©:=pA-d

Lazy convertion to DNF.
Avoids the generation of infeasible conjunctions of literals.

Uses lemma genaration capabilities found in SAT solvers

\and Lazy theorem provers.

~

/

19

20

/ Lazy Quantifier Elimination (cont.) \

Example:
dz1,y1.
(o =1Vao=3Vyo>1) Az =z9— 1Ay =yo +1)
V((xg=—-1Vao=-3)Az1 =20+ 2Ay1 =30 — 1)]
ANz <0

First solution: c:=yg > 1Azy =290 —1Ay1 =y + 1Az <O0.
Eliminating 1 and y; yields: ¢ :=y9 > 1Az —1<0.

Next solution: c:=z9g=—-3Ax1 =20+ 2Ay1 =90 — 1 Ax1 <O.
Eliminating 1 and y; yields: ¢ ;=290 = —-3Az9+2 < 0.
There are no further solutions, the result is:

\(yo>1/\.’130*1<0)\/((L’0:*3/\Jfo+2<0). /

/ Conclusion \

BMC: depth < 100 in practice.

BMC usually consumes less memory than a symbolic model
checker (BDD-based).

BMC is usually very efficient for shallow bugs.

BMC is usually not affected by “irrelevant” parts (garbage)
of the specification.

BMC can be ‘“defeated” by simple examples where there is
a lot of interdependency between state variables.

BMC is used also for test case generation.

Open problem: The Lazy and Eager theorem proving are
not “stable” as the state-of-the-art SAT solvers. For
instance, they are too sensitive to how the transition

&elation is specified. /

21

22

