Little Engines of Proof

N. Shankar, L. de Moura, H. Ruess, A. Tiwari shankar@csl.sri.com URL: http://www.csl.sri.com/~shankar/LEP.html

> Computer Science Laboratory SRI International Menlo Park, CA

Transition Systems

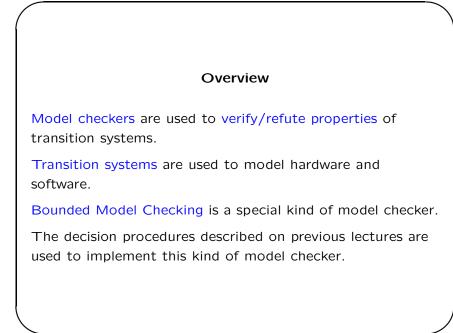
- Transition system M = (S, I, T)
- S: set of states.
- $I \subseteq S$: set of initial states. Example:

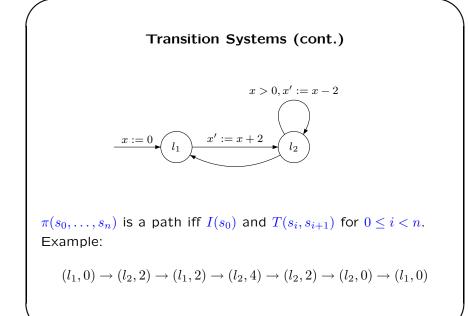
$$I(s) = s.x = 0 \land s.pc = l_1$$

 $T \subseteq S \times S$: transition relation. Example:

$$T(s,s') = (s.pc = l_1 \land s'.x = s.x + 2 \land s'.pc = l_2) \lor$$
$$(s.pc = l_2 \land s.x > 0 \land s'.x = s.x - 2 \land s'.pc = l_2) \lor$$
$$(s.pc = l_2 \land s'.x = s.x \land s'.pc = l_1)$$

1





3

Invariants & Model Checkers

A state s_k is reachable iff there is a path $\pi(s_0, \ldots, s_k)$. Invariants characterize properties that are true of all reachable states in a system.

Any superset of the set of reachable states is an invariant.

Example: $s.x \ge 0$.

A counterexample for an invariant φ is a path $\pi(s_0, \ldots, s_k)$ such that $\neg \varphi(s_k)$.

Model Checkers can verify/refute invariants.

There are different kinds of model checkers:

- Explicit State
- Symbolic (based on BDDs)
- Bounded (based on DP)

Bounded Model Checking (cont.)

BMC is mainly used for refutation.

Users want counterexamples. The decision procedure (DP) must be able to generate models for satisfiable formulas.

BMC is a complete method for finite systems when the diameter (longest shortest path) of the system is known.

The diameter is usually to expensive to be computed.

The recurrence diameter (longest loop-free path) is usually used as a completeness threshold.

The recurrence diameter can be much longer than the diameter.

5

Bounded Model Checking: Invariants

Given.

- Transition system M = (S, I, T)
- Invariant φ
- Natural number k

Problem.

Is there a counterexample of length k for the invariant $\varphi?$

There is a counterexample for the invariant φ if the following formula is satisfiable:

$$I(s_1) \wedge T(s_1, s_2) \wedge \ldots \wedge T(s_{k-1}, s_k) \wedge (\neg \varphi(s_1) \vee \ldots \vee \neg \varphi(s_k))$$

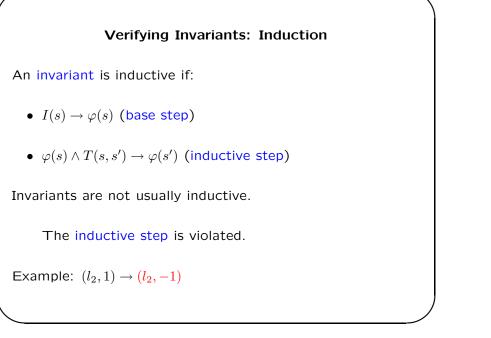
Recurrence Diameter

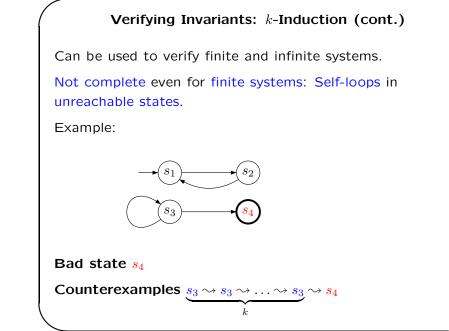
A system M contains a loop-free path of length \boldsymbol{n} iff

$$\pi(s_0,\ldots,s_n) \wedge \bigwedge_{0 \le i < j \le n} s_i \ne s_j$$

The recurrence diameter is the smallest n such that the formula above is unsatisfiable.

The diameter of infinite systems (i.e., infinite state space) may be infinite.





9

An invariant φ is *k*-inductive if:

- $I(s_1) \wedge T(s_1, s_2) \wedge \ldots \wedge T(s_{k-1}, s_k) \to \varphi(s_1) \wedge \ldots \wedge \varphi(s_k)$
- $\varphi(s_1) \wedge \ldots \wedge \varphi(s_k) \wedge T(s_1, s_2) \wedge \ldots \wedge T(s_k, s_{k+1}) \to \varphi(s_{k+1})$

It is harder to violate the inductive step.

The base case is BMC.

If φ is k_1 -inductive then it is also k_2 -inductive for $k_2 \ge k_1$.

Verifying Invariants: *k*-Induction (cont.)

Completeness for finite systems: consider only loop-free paths.

Not complete for infinite systems. Example:

- $(l_2,1) \rightarrow (l_2,-1)$
- $(l_2,3) \to (l_2,1) \to (l_2,-1)$
- $(l_2, 5) \to (l_2, 3) \to (l_2, 1) \to (l_2, -1)$
- ...

11

Invariant Strengthening

Failed k-induction for φ yields

Explicit counterexample

 $s_n \rightsquigarrow s_{n+1} \rightsquigarrow s_{n+k} \rightsquigarrow s_{n+k+1}$

Assume s_n to be unreachable and strengthen $\varphi \wedge \neg(s_n)$

Symbolic counterexample described by a conjunction of constraints

 $P(s_n, s_{n+1}, \ldots, s_{n+k}, s_{n+k+1})$

• Projection

 $Q(s_n) := \exists s_{n+1}, \dots, s_{n+k+1}, P(s_n, s_{n+1}, \dots, s_{n+k}, s_{n+k+1})$

• Strengthening

 $\varphi \wedge \neg qe(\{s_n, s_{n+1}, s_{n+k}\}, P(s_n, \dots, s_{n+k}, s_{n+k+1}))$

13

Satisfiability for Boolean Constraint Formulas

Given. Propositional formula with constraints as literals.

Assumption. *DP* decides the satisfiability problem for conjunctions of constraints.

Problem. Efficient satisfiability for Boolean combinations of constraints.

Experiment. Using a combination of BDDs with linear arithmetic decision procedures in PVS2.4 for finding counterexamples in a modified train-gate controller example

 $\begin{array}{c|c}
k = 2 & 70s \\
k = 3 & 8500s
\end{array}$

 \rightarrow new techniques required

Reduction to SAT

Let φ be a Boolean constraint formulas (Bool(*C*)) with constraints c_i .

Translations.

- α replaces constraints with (fresh) propositional variables.
- γ substitutes constraints for corresponding variables.

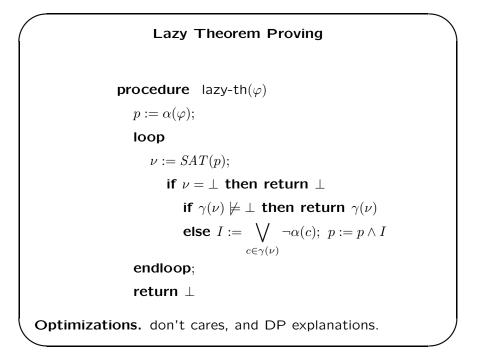
Example.

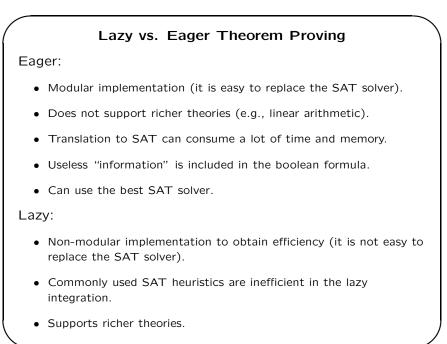
$$\alpha(x = y \land f(x) = f(y)) ~~ \rightsquigarrow ~~ p \land q$$

A Boolean assignment ν induces a set of constraints $\gamma(\nu)$

if $\nu = [p \mapsto 0, q \mapsto 1]$ then $\gamma(\nu) = \{x \neq y, f(x) = f(y)\}$

	Boolean Reduction Theorem
Inconsiste	ncies. ($l_i \in Lits(arphi)$)
	$\{l_1,\ldots,l_n\}\in I(arphi)$ iff
	$\gamma(l_1) \wedge \ldots \wedge \gamma(l_n)$ is C -inconsistent
Theorem.	
• $\varphi \in Boo$	bl(C) and
• $\alpha(\varphi) \wedge \phi$	$(\bigwedge_{\{l_1,\ldots,l_n\}\in I(\varphi)}(\neg l_1\vee\ldots\vee\neg l_n))$
are equisat	isfiable
Usually, an required.	exponential number of inconsistency tests is
Are there '	'good" enumeration strategies?





17

Eager Theorem Proving

Converts a φ Boolean constraint formulas (Bool(*C*)) in a equisatisfiable boolean formula.

Uses a SAT solver (or BDD package) to check the satisfiability of the formula.

Uses techniques described on previous lectures.

- Small domain instantiation.
- Ackermann's trick.
- Separation constraints.

Lazy Quantifier Elimination procedure $qe(vars, \varphi)$ $\psi := false$ loop $c := lazy-th(\varphi)$ if c = false then return ψ c' := C-qe(vars, c) $\psi := \psi \lor c'$ $\varphi := \varphi \land \neg c'$

Lazy convertion to DNF.

Avoids the generation of infeasible conjunctions of literals.

Uses lemma genaration capabilities found in SAT solvers and Lazy theorem provers.

19

Lazy Quantifier Elimination (cont.)

Example:	
$\exists x_1, y_1.$	
$[((x_0 = 1 \lor x_0 = 3 \lor y_0 > 1) \land x_1 = x_0 - 1 \land y_1 = y_0 + 1)]$	
$\lor ((x_0 = -1 \lor x_0 = -3) \land x_1 = x_0 + 2 \land y_1 = y_0 - 1)]$	
$\wedge x_1 < 0$	
First solution: $c := y_0 > 1 \land x_1 = x_0 - 1 \land y_1 = y_0 + 1 \land x_1 < 0.$	
Eliminating x_1 and y_1 yields: $c':=y_0>1\wedge x_0-1<0.$	
Next solution: $c := x_0 = -3 \wedge x_1 = x_0 + 2 \wedge y_1 = y_0 - 1 \wedge x_1 < 0.$	
Eliminating x_1 and y_1 yields: $c':=x_0=-3\wedge x_0+2<0.$	
There are no further solutions, the result is: $(y_0 > 1 \land x_0 - 1 < 0) \lor (x_0 = -3 \land x_0 + 2 < 0).$	

21

Conclusion

BMC: $depth \leq 100$ in practice.

BMC usually consumes less memory than a symbolic model checker (BDD-based).

BMC is usually very efficient for shallow bugs.

BMC is usually not affected by "irrelevant" parts (garbage) of the specification.

BMC can be "defeated" by simple examples where there is a lot of interdependency between state variables.

BMC is used also for test case generation.

Open problem: The Lazy and Eager theorem proving are not "stable" as the state-of-the-art SAT solvers. For instance, they are too sensitive to how the transition relation is specified.