Little Engines of Proof: Lecture 18

N. Shankar, L. de Moura, H. Ruess, A. Tiwari shankar@csl.sri.com

URL: http://www.csl.sri.com/~shankar/LEP.html

(Based on lectures by Felix Klaedtke, Universität Freiburg)

Computer Science Laboratory SRI International Menlo Park, CA The Logic-Automaton Connection (cont.)

$$X(0) \land \forall p (X(p) \rightarrow \exists q (succ(p,q) \land Y(q)))$$

$$\Leftrightarrow \quad \left\{ \left(\begin{array}{c} 1\\0 \end{array}\right) \left(\begin{array}{c} 0\\1 \end{array}\right), \left(\begin{array}{c} 1\\1 \end{array}\right) \left(\begin{array}{c} 0\\1 \end{array}\right), \left(\begin{array}{c} 1\\0 \end{array}\right) \left(\begin{array}{c} 0\\1 \end{array}\right) \left(\begin{array}{c} 0\\0 \end{array}\right), \ldots \right\}$$

Logical descriptions of regular languages often more succinct than corresponding regular expressions.

The Logic-Automaton Connection

Correspondence discovered in 50s/60s

Automata	Languages	Logics
DFA, NFA	Regular languages	WS1S
Büchi automata	ω -regular languages	S1S
Tree automata	Regular tree languages	(W)S2S

Applications. Circuit Verification, integer and real arithmetic, queues, model checking, pointer verification, XML queries, . . .

Monadic 2nd-order logic of one successor (WS1S)

Variables.

- ullet FO variables p,q,\ldots interpreted over integers
- MSO variables X, Y,... interpreted over finite set of integers

Syntax.

$$\varphi ::= succ(p,q) \mid X(p) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists p\varphi \mid \exists X\varphi$$

2

2

WS1S semantics

Structure. Natural numbers N with successor relation **Interpretation.**

- $I: p \longmapsto n \in N$
- $I: X \longmapsto N \in \mathfrak{F}(N)$

Truth value. (of a formula wrt interpretation *I*)

$$\begin{split} I &\models Y(x) & \text{iff} & I(x) \in I(Y) \\ I &\models succ(x,y) & \text{iff} & I(x)+1=I(y) \\ I &\models \neg \varphi & \text{iff} & I \not\models \varphi \\ I &\models \varphi \wedge \psi & \text{iff} & I \models \varphi \text{ and } I \models \psi \\ I &\models \exists x \varphi & \text{iff} & I[n/x] \models \varphi, \text{ for some } n \in N \\ I &\models \exists X \varphi & \text{iff} & I[N/X] \models \varphi, \text{ for some } N \in \mathcal{F}(N) \end{split}$$

Validity.

$$\models \varphi$$
 iff $I \models \varphi$, for all interpretations I

Syntactic Sugar (cont.)

Intersection.

$$X \cap Y = Z := \forall x (Z(x) \leftrightarrow X(x) \land Y(x))$$

Subset.

$$Y \subseteq X := \forall x (Y(x) \to X(x))$$

Set equality.

$$Y = X := Y \subset X \land X \subset Y$$

Emptiness.

$$X = \emptyset := \forall Y (Y \subseteq X \rightarrow Y = X)$$

Singleton.

$$Sing(X) := X \neq \emptyset \land \forall Y(Y \subseteq X \rightarrow (Y = X \lor Y = \emptyset))$$

Syntactic sugar

Standard connectives and quantifiers

$$\varphi \lor \psi$$
 for $\neg (\neg \varphi \land \neg \psi)$
 $\forall x \varphi$ for $\neg \exists x \neg \varphi$
 \vdots \vdots

Some definitions $(n \in N \text{ fixed!})$

$$\begin{array}{lll} x=0 & := & \neg \exists z succ(z,x) \\ x=y & := & \forall Z \Big(Z(x) \leftrightarrow Z(y) \Big) \\ x=y+n & := & \exists z_0 \ldots \exists z_n \Big(z_0 = y \land x = z_n \land \bigwedge_{0 \leq i < n} succ(z_i,z_{i+1}) \Big) \\ X(x+n) & := & \exists z \Big(z=x+n \land X(z) \Big) \\ x \leq y & := & \forall U \Big(U(y) \land \forall z \Big(U(z+1) \rightarrow U(z) \Big) \rightarrow U(x) \Big) \\ x < y & := & x \leq y \land \neg x = y \\ \vdots & \vdots & \vdots \end{array}$$

Minimal syntax

Syntax (and semantics): only MSO variables X, Y, \dots

$$\psi ::= X \subseteq Y \mid Succ(X,Y) \mid \neg \psi \mid \psi \land \psi \mid \exists X \psi$$

- \bullet $X \subseteq Y$ says "X is a subset of Y"
- Succ(X,Y) says " $X=\{n\}$ and $Y=\{n+1\}$ for some $n\in N$ "

Introduce for each FO variable x a fresh MSO variable \widehat{x}

Translate formulas inductively to "minimal" syntax, e.g.,

$$\forall x \exists y \big(succ(x, y) \land Z(y) \big) \longmapsto \\ \forall \widehat{x} \big(Sing(\widehat{x}) \to \exists \widehat{y} \big(Sing(\widehat{y}) \land Succ(\widehat{x}, \widehat{y}) \land \widehat{y} \subseteq Z \big) \big)$$

7

Circuits in WS1S

Encode quantified Boolean logic in WS1S

$$\forall x \exists y (x \leftrightarrow y) \qquad \rightsquigarrow \qquad \forall X \exists Y (X(0) \leftrightarrow Y(0))$$

Logical gates as Boolean relations

not and or xor
$$a - b - c$$
 $b - c$ $b - c$ $b - c$ $b - c$

Combine circuits with \wedge and \exists

$$C(x, y, q, r, s) := \exists w \Big(C_1(x, y, w, q) \land C_2(y, w, r, s) \Big)$$

Family of adders: structural model

- General case (*n*-bit ripple-carry adder):
 - 1. wire together n full adders where ith carry-out is (i+1)st carry-in
 - 2. first carry is cin and last carry is cout
- In WS1S:

$$\begin{split} adder(n,A,B,S,cin,cout) := \\ &\exists C \Big(\forall x \Big(x < n \rightarrow full_adder(A(x),B(x),C(x),S(x),C(x+1)) \Big) \land \\ & \Big(C(0) \leftrightarrow cin \Big) \land \Big(C(n) \leftrightarrow cout \Big) \Big) \end{split}$$

Modeling with Boolean logic: a full adder

a	b	cin	0	cout
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$spec(a, b, cin, o, cout) := full_adder(a, b, cin, o, cout) := \\ (o \leftrightarrow (\neg a \land b \land cin) \lor \dots) \land \exists w_1 \exists w_2 \exists w_3 \big(xor(a, b, w_1) \land xor(w_1, cin, o) \land \\ (cout \leftrightarrow (\neg a \land \neg b \land cin) \lor \dots) \\ and(a, b, w_2) \land and(cin, w_1, w_3) \land \\ or(w_3, w_2, cout) \big)$$

Correctness

 $spec(a, b, cin, o, cout) \leftrightarrow full_adder(a, b, cin, o, cout)$

Addition in WS1S

Behavioral Specification

$$val(n, S) + 2^n * vl(cout) = vl(cin) + val(n, A) + val(n, B)$$

Encode functions as relations

$$\begin{array}{lcl} mod2(a,b,c,d) &:= & a \leftrightarrow b \leftrightarrow c \leftrightarrow d \\ atLeast2(a,b,c,d) &:= & d \leftrightarrow (a \land b) \lor (b \land c) \lor (a \land c) \\ add(A,B,S) &:= & \exists C \Big(\neg C(0) \land \forall p \Big(mod2(A(p),B(p),C(p),S(p)) \land \\ & & atLeast2(A(p),B(p),C(p),C(p+1)) \Big) \Big) \\ val(n,X,Y) &:= & \forall p \Big(Y(p) \leftrightarrow p < n \land X(p) \Big) \\ powof2(n,b,X) &:= & \forall p \Big(X(p) \leftrightarrow p = n \land b \Big) \end{array}$$

Encode behavioral specification

```
\begin{split} adder\_beh(n,A,B,S,cin,cout) &:= \exists S' \exists CO \exists CI \exists A' \exists B' \exists X \exists Y \exists Z \\ & \left(val(n,S,S') \land powof2(n,cout,CO) \land add(S',CO,X) \land \\ & powof2(0,cin,CI) \land val(n,A,A') \land val(n,B,B') \land \\ & add(CI,A',Y) \land add(Y,B',Z) \land X = Z \right) \end{split}
```

Verification

Equivalence of structural model and behavioral model

$$\forall n \forall A \forall B \forall S \forall ci \forall co \left(adder(n, A, B, S, ci, co) \leftrightarrow adder_beh(n, A, B, S, ci, co) \right)$$

Functional behavior

$$\begin{split} \forall n \forall A \forall B \forall c i \Big(\forall x \Big(A(x) \to x < n \Big) \land \forall x \Big(B(x) \to x < n \Big) \to \\ \exists S \exists c o \Big(\forall x \Big(S(x) \to x < n \Big) \land adder(n, A, B, S, ci, co) \land \\ \forall S' \forall c o' \Big(\forall x \Big(S'(x) \to x < n \Big) \land adder(n, A, B, S', ci, co') \to \\ S = S' \land \big(co \leftrightarrow co' \big) \Big) \Big) \Big) \end{split}$$

Algebraic properties, e.g., commutativity

$$\forall n \forall A \forall B \forall S \forall ci \forall co \left(adder(n, A, B, S, ci, co) \leftrightarrow adder(n, B, A, S, ci, co) \right)$$

Notice. Induction built in!

Exercise

Exercise. Decide PA over (Z,<,+,0,1) using a WS1S encoding.

Exercise. Demonstrate that, in the language of PA, there is no quantifier-free formula with variables in $\{y\}$ equivalent to $\exists x. \ 2 * x = y. \ \rightarrow$ PA does not admit quantifier elimination.

Skolem's QE procedure particularly simple. Works relative to the augmented language containing rational multipliers q* for all $q \in Q$ and the floor function [.]. Its main step is to eliminate bound variables in the scope of [.]; e.g.

$$\exists x. \ (\frac{2}{3}[\frac{1}{5} + (\frac{1}{2}x + \frac{1}{4})] > 15)$$

Exercise. Spell out the details of Skolem's QE procedure.

Exercise. Is times(X, Y, Z) expressible in WS1S?

Presburger Arithmetic

PA is first-order logic over the language (N, <, +, 0, 1).

Example. $\forall x. \exists y. \ y+y=x \lor y+y+1=x$

PA decidable (at least nondeterministic $2^{2^{cn}}$).

Quantifier elimination procedures due to Presburger. Skolem, and Cooper (deterministic $2^{2^{2^{c*n}}}$).

All relations and functions of PA definable in WS1S.

Encoding in WS1S by replacing PA variables with MSO variables and replacing x + y with existentially-bound Z together with constraint add(X, Y, Z).

Experimental results show that automata-based decision procedures compete with other decision procedures. Often they are faster...

Although the known upper bound is worse...

Words as Interpretations

Word $w \in \{0,1\}^*$ induces interpretation for a variable

01
$$\rightsquigarrow$$
 $I(X) = \{1\}$ 0101 \rightsquigarrow $I(X) = \{1,3\}$

Word $w \in (\{0,1\}^n)^*$ induces interpretation I_w for n variables

$$w = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \dots \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \dots \begin{pmatrix} I_w(X_1) & = \{1\} \\ I_w(X_2) & = \{1, 3\} \\ I_w(X_3) & = \emptyset \end{pmatrix}$$

Language of formula $\psi(X_1,\ldots,X_n)$

$$L(\psi) := \{ w \in (\{0,1\}^n)^* \mid I_w \models \psi \}$$

Notice: $w \in L(\psi)$ iff $w0^n \dots 0^n \in L(\psi)$.

13

Automata-Based Decision Procedure for WS1S

Theorem. (Büchi, Elgot, Trakhtenbrot)

For every formula $\psi(X_1,\ldots,X_n)$, we can construct a DFA \mathcal{A}_{ψ} with $L(\mathcal{A}_{\psi})=L(\psi)$

Decision Procecure. For $\varphi(x_1,\ldots,x_m,X_1,\ldots,X_n)$

- 1. Eliminate FO variables in $\varphi \rightsquigarrow \psi(\widehat{x}_1,\ldots,\widehat{x}_m,X_1,\ldots,X_n)$
- 2. Construct DFA \mathcal{A}_{ψ} accepting w iff $I_w \models \psi$
- 3. Output
 - $\circ \text{ "valid" if } L(\mathcal{A}_{Sing(\widehat{x}_1)\wedge...\wedge Sing(\widehat{x}_m)\rightarrow \psi}) = (\{0,1\}^{m+n})^*$
 - \circ "unsatisfiable" if $L(\mathcal{A}_{Sing(\widehat{x}_1)\wedge...\wedge Sing(\widehat{x}_m)\wedge\psi})=\emptyset$
 - o otherwise: words $w, w' \in (\{0, 1\}^{m+n})^*$ with

$$w \in \underbrace{L(\mathcal{A}_{Sing(\widehat{x}_1) \wedge ... \wedge Sing(\widehat{x}_m) \to \psi})}_{\text{satisfying models}} \text{ and } w' \not\in \underbrace{L(\mathcal{A}_{Sing(\widehat{x}_1) \wedge ... \wedge Sing(\widehat{x}_m) \wedge \psi})}_{\text{counter models}}$$

Negation

 $\neg \psi$: complementing \mathcal{A}_{ψ}

Correctness:

$$L(\neg \psi) = \overline{L(\psi)} = \overline{L(\mathcal{A}_{\psi})} = L(\mathcal{A}_{\neg \psi})$$

Complexity: linear

- ullet By induction hypothesis, ${\cal A}_{\psi}$ is deterministic
- Complementing \mathcal{A}_{ψ} can by done by flipping final and non-final states (assuming that \mathcal{A}_{ψ} is complete)

Proof of the theorem

Construct \mathcal{A}_{ψ} recursively with $L(\mathcal{A}_{\psi}) = L(\psi)$

Base case. $\psi = Succ(X, Y)$:

To prove: $L(\mathcal{A}_{Succ(X,Y)}) = L(Succ(X,Y))$

Base case. $\psi = X \subseteq Y$:

 $\stackrel{X=}{Y=} \begin{array}{c} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array}$

Conjunction

Step case. $\varphi \wedge \psi$: product construction of \mathcal{A}_{φ} and \mathcal{A}_{ψ}

Correctness:

w.l.o.g. assume that the free variables of φ and ψ are X_1,\dots,X_n

$$L(\varphi \wedge \psi) = L(\varphi) \cap L(\psi) = L(\mathcal{A}_{\varphi}) \cap L(\mathcal{A}_{\psi}) = L(\mathcal{A}_{\varphi \wedge \psi})$$

Complexity: $\mathcal{O}(m \cdot n)$

where m is the size of \mathcal{A}_{arphi} and n is the size of \mathcal{A}_{ψ}

17

Existential quantification $\exists X \psi$

Intuition: automaton guesses the interpretation for \boldsymbol{X}

Try projection of the X-track in \mathcal{A}_{ψ}

$$\exists X \qquad Succ(X,Y)$$

Projection of the X-track in \mathcal{A}_{ψ} does not do the job!

$$\psi = X(1) \land Y \subseteq X$$

does not accept λ , 0, and 1

Projection & "making states accepting if reachable by 0-paddings"

Complexity of the decision procedure

Quantifier alternation yields exponential blow-ups!

$$\forall X \exists Y \varphi \qquad \sim \qquad \neg \exists X \neg \exists Y \varphi$$

If
$$\|\mathcal{A}_{\varphi}\| = n$$
 then $\|\mathcal{A}_{\neg \exists Y \varphi}\| \leq 2^n$ and $\|\mathcal{A}_{\neg \exists X \neg \exists Y \varphi}\| \leq 2^{2^n}$

Is the worst case really that bad? Yes

There is a family of formulas $(\varphi_n)_{n\geq 1}$ with \mathcal{A}_{φ_n} needs at least

$$\|\mathcal{A}_{\varphi_n}\| \geq 2^{2^{\cdot^{\cdot^{2^n}}}} \qquad \bigg\} \ \ \text{tower of height } n-1$$
 states.

Is there a better decision procedure than the automata-based one? No

since WS1S is only non-elementary decidable.

Existential quantification (cont.)

Right quotient of $L\subseteq \varSigma^*$ with $L'\subseteq \varSigma^*$

$$L / L' := \{ w \in \Sigma^* \mid \text{there is a } u \in L' \text{ with } wu \in L \}$$

Correctness:

- Assume that the formula is $\exists X_1 \psi(X_1, \dots, X_n)$
- ullet π means "delete X_1 -track" in a word

$$\pi: (\{0,1\}^n)^* \to (\{0,1\}^{n-1})^* \text{ given by } \pi(\left(\begin{array}{c}b_1\\b_2\\\vdots\\b_n\end{array}\right)) := \left(\begin{array}{c}b_2\\\vdots\\b_n\end{array}\right)$$

$$L(\exists X_1 \psi) = \pi(L(\psi)) / (\{0\}^{n-1})^* = \pi(L(\mathcal{A}_{\psi})) / (\{0\}^{n-1})^*$$
$$= L(\mathcal{A}_{\exists X_1 \psi})$$

Complexity: exponential (result has to be deterministic)

Regular languages and WS1S

Any WS1S formula describes a regular language Does the converse also hold?

$$L\subseteq\{0,1\}^n \text{ regular } \stackrel{\ref{lem:property}}{\Rightarrow} \text{ there is a formula } \varphi(X_1,\dots,X_n)$$
 with $L(\varphi)=L$

For a WS1S formula $\varphi(X)$ it holds

$$w \in L(\varphi) \implies w0 \dots 0 \in L(\varphi)$$

- ullet Reason: w and $w0\ldots 0$ encode the same interpretation
- Make encoding unique by a parameter for |w|.

Theorem. For a regular language $L \subseteq (\{0,1\}^n)^*$ there is a formula $\varphi(\$, X_1, \dots, X_n)$ with $w \in L$ iff $I_w[|w|/\$] \models \varphi$.

23

Regular languages and WS1S (Cont.)

Idea: describe functioning of an NFA as WS1S formula For NFA $\mathcal{A}=(Q,\{0,1\}^n,q_{\mathrm{I}},\delta,F)$ with $Q=\{1,\ldots,s\}$, let $\varphi_{\mathcal{A}}(\$,X_1,\ldots,X_n)$ be the formula

$$\exists Y_1 \dots \exists Y_s \Big(Y_{q_1}(0) \land \\ \forall x (x \leq \$ \to \big(\bigvee_{q \in Q} Y_q(x) \big) \big) \land \\ \bigwedge_{1 \leq p < q \leq s} \forall x (x \leq \$ \to \neg \big(Y_p(x) \land Y_q(x) \big) \big) \land \\ \bigwedge_{p \in Q} \forall x \big(x < \$ \land Y_p(x) \to \Delta_p \big) \land \\ \bigwedge_{p \in Q} \big(Y_p(\$) \to \Delta_p' \big) \Big)$$

Altogether:

$$\$ > 0 \to \varphi_{\mathcal{A}}(\$, X_1, \dots, X_n) \land \$ = 0 \to (\neg \exists xx = x)$$

Regular languages and WS1S (Cont.)

 ${\mathcal A}$ makes a transition at x<\$ from state p

$$\Delta_{p} : \leftrightarrow \left(\neg X_{1}(x) \land \dots \land \neg X_{n}(x) \rightarrow \bigvee_{q \in \delta(p, \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix})} Y_{q}(x+1) \right)$$

$$\wedge \dots \land (X_{1}(x) \land \dots \land X_{n}(x) \rightarrow \bigvee_{q \in \delta(p, \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix})} Y_{q}(x+1) \right)$$

 ${\mathcal A}$ can make a transition at \$ from p to some final state

$$\Delta_p' : \leftrightarrow \neg X_1(\$) \land \ldots \land \neg X_n(\$) \land \forall xx = x \quad \text{if } \delta(p, \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}) \cap F \neq \emptyset$$

$$\exists xx \neq x \quad \text{otherwise}$$

$$\forall \dots \forall$$

$$X_1(\$) \wedge \dots \wedge X_n(\$) \wedge \forall xx = x \quad \text{if } \delta(p, \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}) \cap F \neq \emptyset$$

 $\exists xx \neq x$ otherwise

Corollary. Every WS1S formula is equivalent to a WS1S formula with top-level existential quantification only.

25 27

Summary

Automata-theoretic decision procedure for WS1S.

Nonelementary worst-case complexity.

Mona uses BDDs for representing DFA transition relations.

 \sim Often "good" run times in practice.

Direct automata-theoretic constructions often yield better worst-case complexities for certain subproblems.

Open: triple exponential automata-theoretic procedure for Presburger arithmetic

Logic-automaton connection extends to other classes of automaton (e.g. Büchi automata, Tree automata)

Characterization of complexity classes (e.g. a language is in NP iff definable in existential second-order logic).

28