/ Little Engines of Proof: Lecture 18 \

N. Shankar, L. de Moura, H. Ruess, A. Tiwari
shankar@csl.sri.com
URL: http://www.csl.sri.com/~shankar/LEP.html

(Based on lectures by Felix Klaedtke, Universitat Freiburg)

Computer Science Laboratory
SRI International
Menlo Park, CA

_ /

4)

The Logic-Automaton Connection

Correspondence discovered in 50s/60s

Automata Languages Logics
DFA, NFA Regular languages WS1S
Bilchi automata | w-regular languages S1S
Tree automata Regular tree languages | (W)S2S

Applications. Circuit Verification, integer and real
arithmetic, queues, model checking, pointer verification,
XML queries,

/ The Logic-Automaton Connection (cont.)

X(0) AVp(X(p) — Jq(succ(p,q) ANY (q)))

Logical descriptions of regular languages often more

_ /

\succinct than corresponding regular expressions.

~

/

-

Monadic 2nd-order logic of one successor (WS1S)
Variables.
e FO variables p,q,...

interpreted over integers

e MSO variables XY, ...
integers

interpreted over finite set of

Syntax.

@ 2= suce(p, q ’X ’—\go‘gp/\go‘flpcp’EIXap

_

~

/ WS1S semantics

Structure. Natural numbers N with successor relation
Interpretation.

e /[: p—mneN
e [: X — Ne3JF(N)

Truth value. (of a formula wrt interpretation I)

I EY(x) iff I(z) € I(Y)

I |= succe(x,y) iff I(z)+1=1I(y)

IE-y iff IHEp

IE=pny iff Ik=gandlfEv

I 3zp iff I[n/z] = ¢, for some n € N

I'E3IXe iff I[N/X] = ¢, for some N € F(N)
Validity.

\ Ee iff Ik, for all interpretations I

/ Syntactic Sugar (cont.)

Intersection.

XNY =27 = Ve(Z(x) < X(x) NY (2))

Subset.
YCX = Ve(Y(2) = X(x))
Set equality.
Y=X =YCXAXCY
Emptiness.
X=0:=W{ECX—-Y=X)
Singleton.

/ Syntactic sugar
Standard connectives and quantifiers

vy for = (—p A1)
Vxp for —3Jz-p

Some definitions (n € N fixed!)

z=0 = —3Jzsuce(z, x)

=y = VZ(Z(z) <—>Z(y))

r=y+n = 320..,32n(zo:y/\a::zn/\/\o<i<n SUCC(ZZ',ZZ'+1))
X(xz+n) = Hz(z:w—i—n/\X(z)) -

z<y = VU(U(y) /\Vz(U(z +1) — U(z)) — U(x))

<y = z<yA-ax=y

Sing(X) = X A0AVY (Y CX — (Y =X VY =0))

_

/

/ Minimal syntax
Syntax (and semantics): only MSO variables X,Y,...
Ppu=XCY } Suce(X,Y) | —) | VAP | X
e X CY says “X is a subset of Y

o Succ(X,Y) says “X ={n} and Y = {n + 1} for some
n e Nl’

Introduce for each FO variable = a fresh MSO variable =
Translate formulas inductively to “minimal” syntax, e.g.,

V:rEIy(succ(x, y) A Z(y)) —
vz (Sing(z) — 3y (Sing(y) A Suce(Z,9) Ny C Z))

_

~

/

/ Circuits in WS1S
Encode quantified Boolean logic in WS1S

Vody(z <) ~ VX3V (X(0) < Y(0))

Logical gates as Boolean relations

not xor

and or
5400 53> -0

a-{>0—0
not(a,0) = —a< o0 and(a,b,0) = aAb—o
or(a,b,0) = aVbeo zor(a,b,0) = aA-bV-aAbeoo

Combine circuits with A and 3

q| |l |s

C(x,y,q,7,8) := Fw(C1 (2, y,w,q) A Co(y,w,7,5))

_

/

Modeling with Boolean logic: a full adder

spec(a, b, cin, o, cout) :=
(o<—> (—|a/\b/\cin)\/4..)/\
(cout — (ﬂa/\—|b/\cin)v...)

full_adder(a, b, cin, o, cout) :=

and(a,b,w2) A and(cin, w1, ws)A

or(ws, wa, cout))

Correctness
\ spec(a, b, cin, o, cout) « full_adder(a,b, cin, o, cout)

a b cin o cout

0O 0 0 0 0

o0 1[0 1 a iy

01 0|0 1 b §> }>7 o

0 1 1 |1 o0 an ? W,

1 0 0 0 1 ﬁ)— cout
1 0 1 |1 0 j:) %

1 1 0 1 0

1 1 1 1 1

JwqJweJws (avor(a, b, w1) A zor(wi, cin, o)A

~

/

10

-

Family of adders: structural model
cin

An-1 By A B A B
G . | | G 1|
/1 .« ? [full_adder] [full_adder
E |
cout Sh1 S

!
S

e General case (n-bit ripple-carry adder):

1. wire together n full adders where ith carry-out is
(i + 1)st carry-in

2. first carry is cin and last carry is cout
e In WS1S:

adder(n, A, B, S, cin, cout) :=
ac (Vw(:c < n — full_adder(A(z), B(z),C(z), S(x),C(z + 1))) A

(C’(O) — cz'n) A (C(n) — cout))

_

~

-

Behavioral Specification
val(n, S) + 2" * vl(cout) = vl(cin) + val(n, A) + val(n, B)
Encode functions as relations

Addition in WS1S

mod2(a,b,c,d) =
atLeast2(a,b,c,d) :=

a—beoced

d— (anb)V(bAc)V(aAc)

add(A,B,S) = 3C(=C(0) AVp(mod2(A(p), B(p), C(p), S(p))A
atLeast2(A(p), B(p), C(p), C(p +1))))
val(n, X,Y) := Vp(Y(p) —p<nA X(p))

powof2(n,b, X) = Vp(X(p)Hp:n/\b)

Encode behavioral specification

adder_beh(n, A, B, S, cin, cout) := 3S’3CO3CIFA’IB'IX3IYIZ
(Ual(n,, S,8") A powof2(n, cout, CO) A add(S’, CO, X)A
powof2(0, cin, CI) A val(n, A, A") A val(n, B, B')A

add(CI, A',Y) A add(Y, B', Z) N X = Z)

_

11

12

-

Equivalence of structural model and behavioral model

Verification

VnVAVBYSYciVco (adder(n, A, B, S, ci, co) <
adder_beh(n, A, B, S, ci, co))

Functional behavior
VYnVAVBYci <V1: (A(:c) —x < n) AV (B(x) —x < n) —
3S3co (Vw(S(ax) —x< n) A adder(n, A, B, S, ci, co)\
VS’VCO’(Vac (S’(:v) —x < n) A adder(n, A, B,S’, ci,co’) —
S=5"A(co co'))))
Algebraic properties, e.g., commutativity

VnVAVBYSYciVco (adder(n, A, B, S, ci, co) < adder(n, B, A, S, ci, co))

\Notice. Induction built in! /

/ Presburger Arithmetic \

PA is first-order logic over the language (N, <,+,0,1).
Example. Vz. Jy. y+y=zVy+y+1l==
PA decidable (at least nondeterministic 22°").

Quantifier elimination procedures due to Presburger,

cxn

Skolem, and Cooper (deterministic 22°).
All relations and functions of PA definable in WS1S.

Encoding in WS1S by replacing PA variables with MSO
variables and replacing = + y with existentially-bound Z
together with constraint add(X,Y, Z).

Experimental results show that automata-based decision
procedures compete with other decision procedures. Often
they are faster. ..

Qlthough the known upper bound is worse. . . /

13

14

/ EXxercise \

Exercise. Decide PA over (Z,<,+,0,1) using a WS1S
encoding.

Exercise. Demonstrate that, in the language of PA, there
is no quantifier-free formula with variables in {y} equivalent
to dz. 2% x =y. ~ PA does not admit quantifier elimination.

Skolem’s QE procedure particularly simple. Works relative
to the augmented language containing rational multipliers

gx for all ¢ € @ and the floor function [.]. Its main step is to
eliminate bound variables in the scope of [.]; e.g.
2.1 1 1
Jz. (=]= - - 1
x (3[5+(2$+4)] > 15)

Exercise. Spell out the details of Skolem’'s QE procedure.

\Exercise. Is times(X,Y, Z) expressible in WS1S7? /

/ Words as Interpretations \

Word w € {0,1}* induces interpretation for a variable

01 ~ I(X)={1} 0101 ~ I(X)={1,3}

Word w € ({0,1}")* induces interpretation I,, for n variables

(D) (8 - e
0 0 0 0 0 0 T (X3) 0

- Xn)

Language of formula ¥ (X1, ..

L) :=={we ({0,1}")" [In F ¢}

\Notice: w € L(w) iff wo™...0" € L(¥). /

15

16

/ Automata-Based Decision Procedure for WS1S \
Theorem. (Biichi, Elgot, Trakhtenbrot)

For every formula ¥(X,...,X,), we can construct
a DFA Ay with L(Ay) = L(v)

Decision Procecure. For ¢(x1,...,%Tm, X1,---,Xn)
1. Eliminate FO variables in ¢ ~ ¥(Z1,...,Zm,X1,...,Xn)

2. Construct DFA Ay, accepting w iff I, =
3. Output
o *“valid” if L(A) = ({0,1}m*n)*

) =0

Smg(/m\l)/\A../\Sing (/z\m)—>w

o ‘‘unsatisfiable” if L(Asz'ng(QI)A.../\smg@m)/\w

o otherwise: words w,w’ € ({0,1}™*7?)* with

L ~ ~ and w’' ¢ L ~ ~
w e (ASing(zl)/\.4./\Sing(zm)~>'¢)) w e (ASirLg(asl)/\4../\S’ing(z.,n)/\w

\ satisfying models counter models/

/ Proof of the theorem \

Construct Ay, recursively with L(Ay) = L(v))
Base case. ¢ = Succ(X,Y):

S0t
To prove: L(Agyce(x,y) = L(Suce(X,Y))

Base case. y =X CY:

X= 0
Y= 0

_ /

17

18

_

_

-

Negation

—1p: complementing Ay

Correctness:

L(=¢) = L(¢)) = L(Ay) = L(A-y)
Complexity: linear
e By induction hypothesis, A, is deterministic

e Complementing Aw can by done by flipping final and
non-final states (assuming that A, is complete)

/

-

Conjunction

Step case. ¢ A: product construction of A, and Ay

Correctness:

w.l.0.g. assume that the free variables of ¢ and ¢ are X1,...,X,
L{g Ap) = L(p) N L(¥) = L(Ap) N L(Ay) = L(Apnry)

Complexity: O(m-n)

where m is the size of A, and n is the size of A,

~

19

20

-

Intuition: automaton guesses the interpretation for X

~

Existential quantification 3Xv

Try projection of the X-track in Ay

ST I Lo
gl gl g'

ax Suce(X,Y)

Projection of the X-track in A4, does not do the job!

° ()
~-O0—=—0—0

does not accept A, 0, and 1

01
g1 1070
—~O—=—0—0
Pp=XA)AY CX
Projection & “making states accepting if reachable by

Qpaddings” /

-

Right quotient of L C X* with L' C X*

~

Existential quantification (cont.)

L/L’ = {we X" |there is a u e L' with wue L}

Correctness:
e Assume that the formula is 3X1¢(Xy, ..., X,)
e 7™ means ‘“delete X;-track” in a word
AN
w1 ({0,1}") — ({0,1}" " H*given byx(| 7 |):=] :
b, bn
LEX1v) = 7(L(w)) [({0} = =(L(Ay) /({0}")"

= L(Asx,y)

\Complexity: exponential (result has to be deterministic) /

21

22

-

Quantifier alternation yields exponential blow-ups!

Complexity of the decision procedure

vX3Y . —3X-3Yp

If | Ay |l = n then || A3yl < 2" and A_3x -3y, < 22"

Is the worst case really that bad? Yes

There is a family of formulas (¢,)n>1 wWith A,
needs at least

omn

[Ap, || > 2% } tower of height n —1
states.

Is there a better decision procedure than the
automata-based one? No

\ since WS1S is only non-elementary decidable.

-

Any WS1S formula describes a regular language

Regular languages and WS1S

Does the converse also hold?

272 there is a formula ¢(X1,...

s Xn
L C{0,1}" regular =)
with L(p) =L

For a WS1S formula ¢(X) it holds

weL(lp) = w0...0€ L(p)
e Reason: w and w0...0 encode the same interpretation

e Make encoding unique by a parameter for |w|.

Theorem. For a regular language L C ({0,1}")* there is a

\formula ©0($,X1,...,X,) with w € L iff I,[|w|/$] = ¢.

/

23

24

/ Regular languages and WS1S (Cont.)

Idea: describe functioning of an NFA as WS1S formula
For NFA A= (Q,{0,1}",q1,6, F) with Q = {1,...,s}, let
va($,X1,...,X,) be the formula
3y, ... 3Y, (qu (0) A
Ve(r <$ — (vqu Yo(2))) A
Ni<peges Vo(e <8 — = (Yp(2) A Yy(2))) A
Npeo V(2 < SAY,(2) — Ap) A

Apea (Y(8) = 47))

Altogether:

_

$>0— oa($,X1,..., X)) A$=0— (—~Jzz = 1)

-

Regular languages and WS1S (Cont.)

A makes a transition at z < $ from state p

A, o (CXi@) A A X (z) =V o\ Yalz+1))
acsp,| |
0
VANV
(X1(2) Ao A X() =V \ Yalz+1)
qc€d(p,|)

25

26

/A can make a transition at $ from p to some final state \

0
Vex =x if §(p, NF #
A; = X (AL ASXL(S) A ()
0
dxx #x otherwise
V...V
1
Vex =z if §(p, NE#(
X1($) AN ... AXL(S) A ()
1
Jxx #x otherwise
Corollary. Every WS1S formula is equivalent to a WS1S

\formula with top-level existential quantification only. /

/ Summary \

Automata-theoretic decision procedure for WS1S.
Nonelementary worst-case complexity.

Mona uses BDDs for representing DFA transition relations.
~» Often "good"” run times in practice.

Direct automata-theoretic constructions often yield better
worst-case complexities for certain subproblems.

Open: triple exponential automata-theoretic procedure for
Presburger arithmetic

Logic-automaton connection extends to other classes of
automaton (e.g. Biichi automata, Tree automata)

Characterization of complexity classes (e.g. a language is in

\NP iff definable in existential second-order logic). /

27

28

