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Recall

We discussed decision procedures based on Gröbner bases

• Gröbner basis gives canonical representation for sets of

equations

• It can be used to decide the UWP and the CVP over

ACFs

Most often, we need to decide formulas over the reals

Today: we show that the theory of real closed fields and

ACFs admit quantifier elimination
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Real-Closed Fields

Signature: ΣF = 〈0, 1, +,−, ∗, <〉

1. 〈F, 0, 1, +,−, ∗〉 is a field.

2. (a) (x 6< x)

(b) x < y ⇒ y < z ⇒ x < z

(c) x < y ⇒ x + z < y + z

(d) x, y > 0 ⇒ x ∗ y > 0

(e) x > 0 ∨ x = 0 ∨ 0 > x

3. every positive element of F has a square root in F and every odd

degree polynomial in F [x] has a root in F .

The set of reals, <, form a real-closed field.
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Quantifier Elimination Procedure for Reals

We only need to show how to eliminate one ∃ quantifier

from a conjunction of literals. Why?

In case of <, this is:

φ(~y) := ∃x.(p1 ∼1 0 ∧ p2 ∼2 0 ∧ · · · ∧ pl ∼l 0)

where ∼i is either <, =, or > and pi ∈ Z[~y][x]
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Geometric Intuition

Consider: x2 < 4 ∧ x3 > x

2−2 0

5

'

&

$

%

Geometric Intuition

The 1-D space <1 is partitioned into finitely many

sign-invariant regions:

(−∞,−2),−2, (−2,−1),−1, (−1, 0), 0, (0, 1), 1, (1, 2), 2, (2,∞)

The same happens in higher dimensions

This is because we only have polynomials

Inductively, if the <n−1 is sufficiently partitioned, then we

consider the cylinder above each region S;

And partition the space −∞ < xn < ∞ accordingly

To get a partition of the cylinder S × (−∞,∞)
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QE Procedure for Reals: Example

Consider: ax2 + b > 0

a > 0

b decreasing to 0

a < 0

b increasing to 0
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QE Procedure for Reals: Example

∃x.ax2 + b > 0

What are the relevant polynomials? Let p be ax2 + b

a : leading coefficient of p, LC(p)

b : remaining part of p, RP(p)

2ax : derivative of p, p′

b : pseudo-remainder of p divided by 2ax, PR(p, 2ax)

We guess a sign assignment for polynomials not containing

x

Say, we choose a to be negative and b to be positive
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QE Procedure for Reals: Example

Full cylinder over a < 0, b > 0:

|γ−∞ (γ−∞, γ∞) γ∞

a | − − −

b | + + +

2ax| + ? −

|γ−∞ (γ−∞, γ0) γ0 (γ0, γ∞) γ∞

a | − − − − −

b | + + + + +

2ax| + + 0 − −

9

'

&

$

%

QE Procedure for Reals: Example

|γ−∞ (γ−∞, γ0) γ0 (γ0, γ∞) γ∞

a | − − − − −

b | + + + + +

2ax | + + 0 − −

ax2 + b| − ? + ? −

Fully decomposed cylinder over a < 0, b > 0:

|γ−∞ .. γ−1 .. γ0 .. γ1 .. γ∞

a | − − − − − − − − −

b | + + + + + + + + +

2ax | + + + + 0 − − − −

ax2 + b| − − 0 + + + 0 − −
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QE Procedure for Reals: Example

Is there a column where ax2 + b > 0?

Yes, so the guess a < 0, b > 0 is “part of the solution”.

We consider the cylinder over the other 8 regions

In four cases, there is no column where ax2 + b > 0:

a < 0, b = 0; a < 0, b < 0; a = 0, b = 0; a = 0, b < 0.

Hence, ∃x.(ax2 + b > 0) is equivalent to

a > 0 ∨ (a = 0 ∧ b > 0) ∨ (a < 0 ∧ b > 0)
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Quantifier Elimination Procedure for Reals

Guess1
Γ′ ≡ Γ ∪ {p ∼ 0}

Γ′ ∪ {p′ > 0} | Γ′ ∪ {p′ = 0} | Γ′ ∪ {p′ < 0}

Guess2
Γ′ ≡ Γ ∪ {p ∼ 0}

Γ′ ∪ {LC(p) > 0} | Γ′ ∪ {LC(p) = 0} | Γ′ ∪ {LC(p) < 0}

Guess3
Γ′ ≡ Γ ∪ {p ∼ 0}

Γ′ ∪ {RP(p) > 0} | Γ′ ∪ {RP(p) = 0} | Γ′ ∪ {RP(p) < 0}

Guess4
Γ′ ≡ Γ ∪ {p1 ∼1 0, p2 ∼2 0}

Γ′ ∪ {PR(p1, p2) > 0} | . . . | Γ′ ∪ {PR(p1, p2) < 0}

where p′ = ∂p
∂x , LC(p) = leading coefficient of p,

p = LC(p)xi + RP(p), and LC(q)n−m+1p1 = qp2 + PR(p1, p2).
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QE in Reals: Phase 2

Verify1
Γ ∪ {p1 ∼1 0, LC(p1) = 0, RP(p1) ∼2 0}

⊥
if ∼1 6≡∼2

Verify2
Γ ∪ {p1 ∼1 0, p2 = 0, PR(p1, p2) ∼2 0, LC(p2) > 0}

⊥
if ∼1 6≡∼2

...
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QE in Reals: Phase 3

Assert1
Γ

Γ ∪ {γ−∞ < x, x < γ∞} ∪ Γ−∞ ∪ Γ∞

where Γ∞ = {p[x := γ∞] ∼′ 0 : p ∼ 0 ∈ Γ} and ∼′ is computed

correctly using continuity.

IVT
Γ ∪ {p ∼ 0, p(γi) < 0, p(γi+1) > 0, γi < x < γi+1}

Γ′ ∪ {γi < x < γ < γi+1, p(γ) = 0} ∪ Γ′
γ | Γ′

γ | . . .

IVT is applied to p only if it can not be applied to lower

degree polynomials
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Example

{x2 − 4 < 0, x3 − x > 0}

{x2 − 4 < 0, x3 − x > 0, 2x > 0} | . . .

{x2 − 4 < 0, x3 − x > 0, 2x > 0, 3x2 − 1 > 0} | . . .

γ2
−∞ − 4 > 0, γ3

−∞ − γ−∞ < 0, 2γ−∞ < 0, 3γ2
−∞ − 1 > 0

γ2
∞ − 4 > 0, γ3

∞ − γ∞ > 0, 2γ∞ > 0, 3γ2
∞ − 1 > 0, γ−∞ < x < γ∞

Using IVT, in order, we introduce

• γ0 s.t. 2γ0 = 0.

• γ2 and γ−2 s.t. γ−∞ < γ−2 < γ0 < γ2 < γ∞ and γ2
±2 − 4 = 0

• γ
1/

√
3

and γ−1/
√

3

• γ−1 and γ1 s.t. γ−2 < γ−1 < γ−1/
√

3
< γ0 < γ

1/
√

3
< γ1 < . . .

and γ3
±1 − γ±1 = 0
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Example Contd

x is a point/in an open interval, in different branches

Consider the IVT step that introduces γ2:

γ0 < x < γ∞,

x2 − 4<0, x3 − x>0, 2x > 0, 3x2 − 1>0

γ2
0 − 4 < 0, γ3

0 − γ0 = 0, 2γ0 = 0, 3γ2
0 − 1 < 0

γ2
∞ − 4 > 0, γ3

∞ − γ∞ > 0, 2γ∞ > 0, 3γ2
∞ − 1 > 0

. . . ,

γ2
2 − 4 = 0, γ3

2 − γ2>0, 2γ2>0, 3γ2
2 − 1>0

γ0 < x < γ2

Note how we deduced the blue operators
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Quantifier Elimination in Reals

Termination:

• Phase1 rules: Adding only lower degree polynomials

• Phase2 rules: Trivially terminate

• Phase3 rules: IVT can be applied only finitely many

times

Soundness: All inference rules are sound w.r.t the theory of

reals

Completeness: Can read off a model from an irreducible

non-⊥ state?
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Quantifier Elimination in Reals

For completeness, the inference rules have to be applied

recursively

But non-recursive procedure already gives a quantifier

elimination method:

• Let Γ0 be all literals in Γ that do not contain x (and

any of the γi’s)

• Let final state be Γ1 | Γ2 | . . . | Γm

• Then original formula ∃x.φ(~y)(x) is equivalent to

φΓ0
1
∨ . . . ∨ φΓ0

m

Qn. Why did we add derivatives in the Guess phase?
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Algebraically Closed Fields

There is no ordering relation > here

Polynomials of degree d have exactly d roots counted with

multiplicity

Literals: p = 0 or p 6= 0

Define p′, LC(p), RP(p), and PR(p1, p2) as before
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QE in Alg Closed Fields

Guess1
Γ′ ≡ Γ ∪ {p ∼ 0}

Γ′ ∪ {p′ 6= 0} | Γ′ ∪ {p′ = 0}

Guess2
Γ′ ≡ Γ ∪ {p ∼ 0}

Γ′ ∪ {LC(p) 6= 0} | Γ′ ∪ {LC(p) = 0}

Guess3
Γ′ ≡ Γ ∪ {p ∼ 0}

Γ′ ∪ {RP(p) 6= 0} | Γ′ ∪ {RP(p) = 0}

Guess4
Γ′ ≡ Γ ∪ {p1 ∼1 0, p2 ∼2 0}

Γ′ ∪ {PR(p1, p2) 6= 0} | Γ′ ∪ {PR(p1, p2) = 0}
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QE in Alg Closed Fields

Verify1
Γ ∪ {p1 ∼1 0, LC(p1) = 0, RP(p1) ∼2 0}

⊥
if ∼1 6≡∼2

Verify2
Γ ∪ {p1 ∼1 0, p2 = 0, PR(p1, p2) ∼2 0, LC(p2) 6= 0}

⊥
if ∼1 6≡∼2

Verify3
Γ ∪ {p1 = 0, p1 6= 0}

⊥
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QE in Alg Closed Fields

Instead of the Intermediate Value Theorem, we use the

Fundamental Theorem of Algebra

FTA
Γ ∪ {p ∼ 0, x 6= γ1, . . . , x 6= γk}

Γ′ ∪ {p 6= 0, x 6= γk+1} | Γ′
γk+1

| . . .

if deg(p) >
∑k

i=1
µi, where µi is the multiplicity of γi as a

root of p.

FTA is applied to p only after it has applied to all lower

degree polynomials

Check that side condition can be verified

The state Γ′
γk+1

can be computed
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QE in Alg Closed Fields

Termination, Soundness, and Correctness follow reasoning

similar to the case of real closed fields

As in the case of real closed fields, we get a quantifier

elimination procedure for ACFs
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Example

Consider ∃x.(xy = 0 ∧ xy 6= x)

Phase1 guess gives us 4 cases: y ∼1 0, y − 1 ∼2 0.

Consider the case y 6= 0, y − 1 6= 0:

yx = 0, (y − 1)x 6= 0, y 6= 0, y − 1 6= 0

⊥

because PR((y − 1)x, yx) = 0 (Verify2 rule)

Only the case y = 0, y − 1 6= 1 results in a consistent state.

Hence, ∃x.(xy = 0 ∧ xy 6= x) is equivalent to the QFF y = 0.
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Summary

The theory of real closed fields admits QE

The theory of algebraically closed fields admits QE

QE procedures decide satisfiability of the full FO theory

QE procedures for reals is simple to describe, but

computationally expensive

Lots of ongoing research in developing theoretically and

practically better algorithms and implementations
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