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Recall

We discussed procedures for testing satisfiability of linear

arithmetic equalities and inequalities over rationals

Signature: Q, +,−, <

Now we move on to nonlinear expressions

Signature: 0, 1, +,−, ∗

Today: Interpreted over algebraically closed fields

Tomorrow: Interpreted over real closed fields
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Why?

Algebraically closed fields have several nice computational

properties, as well as, beautiful connections to geometry.

• Algebraic geometry

• Gröbner basis

• Elimination ideal computation

• Zeroes of a system of polynomial equations

The theory of reals is used across many application

domains.

• Real algebraic geometry

• Areas: Dynamical systems, engineering, control,

geometry, motion planning
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Overview of Decision Problems

In theory T :

Word Problem (WP): |=T s = t, for two terms s and t

Uniform Word Problem (UWP): |=T

∧

i si = ti ⇒ s = t

Clausal Validity Problem (CVP): |=T

∨

i li, where li are

literals from T

Satisfiability of quantifier-free formuls (QFF): |=T ∃~x.φ(~x),

where φ is a QFF

Satisfiability of QFF reduces to the CVP

Satisfiability of the full first-order (FO) theory: |=T φ, where

φ is a FO formula

WP, UWP, and CVP are special instances of satisfiability in

the full FO theory
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Overview of Some Methods

In theory T :

Word Problem (WP): Canonizer

Uniform Word Problem (UWP): Solvers/ Solution sets /

Completion of ground equations in T

Clausal Validity Problem (CVP): For convex theories, this

reduces to UWP

Satisfiability of quantifier-free formuls (QFF): Convert to

DNF and use algorithm for CVP

Satisfiability of the full first-order (FO) theory: Quantifier

Elimination
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Quantifier Elimination in FO theories

A sentence in first-order logic can be arbitrarily quantified.

Some theories admit quantifier elimination: a quantified

formula can be shown to be equivalent to a quantifier-free

formula.

Example. In <, ∃x.(x ∗ y > 0) ⇔ y 6= 0

If T admits quantifier elimination and ground atomic

formulas can be evaluated in T , then the full FO theory of

T is decidable.

Ex: Prove the above claim.
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Algebraically-Closed Fields

Signature: ΣF = 〈0, 1, +,−, ∗〉

1. 〈F, 0, 1, +,−, ∗〉 is a field

2. every polynomial in F [x] has a root in F

The set of complex numbers form an ACF.

Before diving into ACFs, we first consider a special case:

the UWP for commutative semigroups
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Commutative Semigroup

Σ = {f, 1}
T : Axioms of equality + ACU axioms for f .

• ACU: Also assume unit element 1

• Example UWP in ACU: x2y = 1 ∧ xy2 = y ⇒ x = 1

• Treat f as variable arity, equivalent AC axioms:

f(. . . , f(. . .), . . .) = f(. . . , . . . , . . .) (F )

f(. . . , u, v, . . .) = f(. . . , v, u, . . .) (P )

• Idea: Flatten all equations and do completion modulo P
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UWP for Commutative Semigroups

State: Γ, set of equations

Form of equations: f(. . .) = f(. . .); f(. . .) = c; c = d

Eg: x2y = 1, xy2 = y (really, f(x, x, y) = 1, f(x, y, y) = y)

�: (total degree) lexicographic ordering on power-products

Orient
Γ, s = t

Γ, s→ t
if s � t

Superpose
Γ, f(X)→ s, f(Y )→ t

Γ′, f(s, Z) = f(t, Z ′)

for least Z, Z′ s.t. f(X, Z) = f(Y, Z′)

modulo FP , collapse inapplicable

Example.

x2y = 1, xy2 = y

x2y → 1, xy2 → y

x2y → 1, xy2 → y, y = xy
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UWP for Commutative Semigroup (Contd)

Collapse
Γ, f(X, Z)→ t, f(X)→ s

Γ, f(s, Z) = t, f(X)→ s

Delete
Γ, s = s

Γ

Example.

x2y → 1, xy2 → y, y = xy

x2y → 1, xy2 → y, xy → y

xy = 1, y2 = y, xy → y

xy → 1, y2 → y, xy → y

y = 1, y2 → y, xy → y

y → 1, y2 → y, xy → y

y → 1, 1 = y, x = y

y → 1, x→ y
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UWP for Commutative Semigroup

• Note we can decide if x = 1 is implied by the original

equations

• Termination: Guaranteed by Collapse via Dickson’s

lemma.

If s1, s2, . . . is an infinite sequence of power products,

then there exists i, j s.t. si divides sj.

• Soundness and Completeness: If R is a result obtained

by starting with E, then T ` E ⇒ s = t iff s→∗

R ◦ ←∗

R t

for all s, t

Equal terms (modulo E) have identical canonical forms

(w.r.t R)
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Combining Several AC and UIF symbols

Ground AC-theories:

Σ = ΣF ∪ ΣAC

T = Axioms of equality + AC axioms for each f ∈ ΣAC .

Using the Nelson-Oppen combination result:

• Use Extension inference rule to purify equations

• Use abstract congruence closure on Σ− ΣAC

• Use completion modulo AC on each {f}, f ∈ ΣAC

• Combine by sharing equations between constants

Time Complexity: O(n2 ∗ (TAC(n) + n log(n))).

Similarly, ACU-symbols can be added.
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Back to Algebraically Closed Fields

Σ = {Q, +,−, ∗}
T : Axioms for field + algebraic closure

• System of nonlinear equations: E ≡ {xy = x, x2 = x + 1}

• We want to “solve” them simultaneously

• Commutative semigroups: had no +

• Generalize: Transform E to R (Gröbner basis)
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Computing Gröbner Basis

State: Γ, set of equations

Form of equations: p = 0, p a polynomial in Q[x1, . . . , xn]

Eg: xy − x = 0, x2 − x− 1 = 0

�: lex ordering on power-products, extended to polynomials

Orient
Γ, cX + p = 0

Γ, cX → −p
if X � p0

Superpose
Γ, cX → p, dY → q

Γ′, d ∗ p ∗ Z = c ∗ q ∗ Z ′

for least Z, Z′ s.t. X ∗Z = Y ∗Z′,

collapse not applicable

Example.

xy − x = 0, x2 − x− 1 = 0

xy → x, x2 → x + 1

xy → x, x2 → x + 1, x ∗ x = y ∗ (x + 1)
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Computing Gröbner Basis: More Rules

Collapse
Γ, cXZ → p, dX → q

Γ, d ∗ p = c ∗ Z ∗ q, dX → q

Delete
Γ, s = s

Γ

Example.

xy → x, x2 → x + 1, x ∗ x = y ∗ (x + 1)

xy → x, x2 → x + 1, x2 → xy + y

xy → x, x2 → x + 1, x + 1 = xy + y

xy → x, x2 → x + 1, xy → x− y + 1

xy → x, x2 → x + 1, x = x− y + 1

xy → x, x2 → x + 1, y → 1

x = x, x2 → x + 1, y → 1

x2 → x + 1, y → 1
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Gröbner Basis: Correctness

Same as for commutative semigroups

• Termination: Same as before

• Soundness and Completeness: If R is a result obtained

by starting with E, then T ` E ⇒ s = t iff s→∗

R ◦ ←∗

R t

for all s, t; and T is the theory of polynomial rings

Equal terms (modulo E) have identical canonical forms

(w.r.t R)

Example. Note that y = 1 modulo {xy = x, x2 = x + 1}.
W.r.t {x2 → x + 1, y → 1}, y and 1 have the same canonical

form 1.
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GB: UWP in the theory of ACFs

GB decides the UWP for the theory T of polynomial rings

But what about UWP for ACFs? In ACFs,

∀x, y.(xy = x ∧ x2 = x + 2 ⇒ y = 1)

⇔ ¬∃x, y.(xy = x ∧ x2 = x + 2 ∧ y 6= 1)

⇔ ¬∃x, y, z.(xy = x ∧ x2 = x + 2 ∧ (y − 1)z = 1)

Thus, GB can be used to decide the UWP for ACFs.
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GB: Eliminating Variables

We can infer all equational consequences of an existentially

quantified conjunction of equations

Notice that

∃x.(xy = x ∧ x2 = x + 2) ⇒ y = 1

Elimination Ideal. If � is lex and xn � xn−1 � · · · � x1,

GB(E|Q[x1,...,xi]) ≡ GB(E) ∩Q[x1, . . . , xi]

The elimination ideal is a logical consequence of the

existential formula

But not logically equivalent to it
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GB: Eliminating Variable II

In the more general case,

∃x.(p1 = 0 ∧ . . . ∧ pn = 0 ∧ q1 6= 0 ∧ . . . ∧ qm 6= 0)

Over ACFs, this is equivalent to

∃x, z1, . . . , zm.(p1 = 0 ∧ . . . ∧ pn = 0 ∧ q1z1 = 1 ∧ . . . ∧ qmzm = 1)

And using the Elimination Ideal Theorem, we can eliminate

x, z1, . . . , zm simultaneously

Hence, we can compute equational consequences of any

conjunction.
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Algebraic Geometry I

There is a correspondence between algebra and geometry

Algebra : Geometry

Polynomial p : Zeroes(p)

Set S of polynomials : Zeroes(S) = V (S)

Ideal I gen by S : Variety V (I) = Zeroes(S)

I = (1) (alt. I 6= (1)) : V (I) = ∅ (alt. V (I) 6= ∅)
f ∈ I : V (I) ⊆ Zeroes(f)

Elimination ideal : projection

Id(I1 ∪ I2) : V (I1) ∩ V (I2)

I1 ∩ I2 : V (I1) ∪ V (I2)

This correspondence is valid only when the geometry is

interpreted over polynomial rings
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Algebraic Geometry II

Correspondence between algebra and geometry over ACFs

Algebra : Geometry

(Polynomial p : Zeroes(p))

Radical Ideal
√

I : Variety V (I) = Zeroes(I)

I = (1) (alt. I 6= (1)) : V (I) = ∅ (alt. V (I) 6= ∅)
fk ∈ I : V (I) ⊆ Zeroes(f) (Hilbert Nullstellensatz)
√

Id(
√

I1 ∪
√

I2) : V (I1) ∩ V (I2)
√

I1 ∩
√

I2 : V (I1) ∪ V (I2)

This correspondence is valid when the geometry is

interpreted over ACF
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Summary

• Gröbner basis is a canonical representation of a set of

nonlinear equations

• They decide the UWP for polynomial rings, and not for

the reals. They can be used to decide UWP for ACFs

using the negation trick.

• They have several nice properties, such as elimination

ideal computation

• All interesting behavior of GB computation is reflected

in the case of commutative semigroups (case of

binomial ideals)
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Examples (UWP over rings and ACFs)

∀x.x2 = 0⇒ x = 0 is true over ACFs, but not over rings

A GB for {x2 = 0} is R1 ≡ {x2 → 0}
x and 0 have different normal forms w.r.t R1

Hence, the given formula is not true over rings

A GB for {x2 = 0, xy = 1} is R2 ≡ {1→ 0}
Hence, the above formula is true over ACFs

Ex. Prove: ∃k.pk ∈ Id(S) iff GB(S ∪ {pz = 1}) is {1→ 0}
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Examples (CVP over ACFs)

∀x.x2 = 1⇒ (x = 1 ∨ x = −1) is true over ACFs

This can be deduced by checking the unsatisfiability of

x2 = 1 ∧ (x− 1)y = 1 ∧ (x + 1)z = 1

Ex. Show that a GB for these three equations is {1→ 0}.
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Examples (FO theory over ACFs)

For what “values” of c is it the case that

∃x.x2 + c = 0 ∧ x3 = x

Construct a GB for x2 + c = 0, x3 = x using lex ordering with

precedence x � c

Ex. Verify that you obtain

{x2 → −c, cx→ −x, c2 → −c}

Conclude that ∃x.x2 + c = 0 ∧ x3 = x implies

c2 = −c

over both rings and ACFs.

Over ACFs, this means that c is either 0 or −1.

Ex. Verify the last claim using GB computation.
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A Note on Termination

We have tried hard to ensure that inference rules terminate

But we have missed certain nontermination behaviors

{xy2 → y3, x2y → xy2}
{xy2 → y3, x2y → xy2, x2y2 = xy3}
{xy2 → y3, x2y → xy2, x2y2 → xy3}
{xy2 → y3, x2y → xy2, xy3 = xy3}

{xy2 → y3, x2y → xy2}
...

Assume side condition that prevents application of the same

inference again
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Termination of GB computation

Assume this extra side condition

• Any infinite derivation will have infinite Superposition

steps

• Let {li → ri, l
′

i → r′i} be the rules involved in i-th

superposition

• By Dickson’s lemma*, ∃i, j. li|lj and l′i|l′j
• By new assumption, either li → ri is different from

lj → rj or l′i → r′i is different from l′j → r′j

• W.l.o.g assume j > i and li → ri is different from lj → rj

• Side condition of j-th superposition is violated: if

li → ri is not present, then the rule that “collapsed” it

(recursively) will also collapse lj → rj
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