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Recall

We discussed procedures for testing satisfiability of linear
arithmetic equalities and inequalities over rationals

Signature: Q,+,—, <

Now we move on to nonlinear expressions

Signature: 0,1,4, —, %

Today: Interpreted over algebraically closed fields

Tomorrow: Interpreted over real closed fields
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/ Why? \

Algebraically closed fields have several nice computational
properties, as well as, beautiful connections to geometry.

e Algebraic geometry

e Grobner basis

e Elimination ideal computation

e Zeroes of a system of polynomial equations

The theory of reals is used across many application
domains.

e Real algebraic geometry

e Areas: Dynamical systems, engineering, control,

\ geometry, motion planning /

/ Overview of Decision Problems \

In theory T
Word Problem (WP): =1 s =t, for two terms s and ¢
Uniform Word Problem (UWP): Er A\, si=t; = s=t

Clausal Validity Problem (CVP): =1 V., l;, where [; are
literals from T

Satisfiability of quantifier-free formuls (QFF): =1 3Z.¢(%),
where ¢ is a QFF

Satisfiability of QFF reduces to the CVP

Satisfiability of the full first-order (FO) theory: =1 ¢, where
¢ is a FO formula

WP, UWP, and CVP are special instances of satisfiability in

\the full FO theory /
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Overview of Some Methods

In theory T
Word Problem (WP): Canonizer

Uniform Word Problem (UWP): Solvers/ Solution sets /
Completion of ground equations in T

Clausal Validity Problem (CVP): For convex theories, this
reduces to UWP

Satisfiability of quantifier-free formuls (QFF): Convert to
DNF and use algorithm for CVP

Satisfiability of the full first-order (FO) theory: Quantifier
Elimination
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Quantifier Elimination in FO theories

A sentence in first-order logic can be arbitrarily quantified.

Some theories admit quantifier elimination: a quantified
formula can be shown to be equivalent to a quantifier-free
formula.

Example. In ®, Jz.(z*xy >0) & y#0

If T admits quantifier elimination and ground atomic
formulas can be evaluated in T, then the full FO theory of
T is decidable.

Ex: Prove the above claim.
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Algebraically-Closed Fields
Signature: Yp = (0,1,+, —, %)
1. (F,0,1,4+,—,x) is a field

2. every polynomial in F[z] has a root in F

The set of complex numbers form an ACF.

Before diving into ACFs, we first consider a special case:
the UWP for commutative semigroups
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/ Commutative Semigroup

¥ = {ry
T Axioms of equality + ACU axioms for f.

e ACU: Also assume unit element 1
e Example UWP in ACU: 22y =1 A 2y’ =y = =1

e Treat f as variable arity, equivalent AC axioms:

\_

e Idea: Flatten all equations and do completion modulo P
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/ UWP for Commutative Semigroups \
State: T', set of equations

Form of equations: f(...)= f(...); f(...)=¢ c=d
Eg: 2%y = 1,2y” =y (really, f(z,z,y) =1, f(z,y,9) = y)

~: (total degree) lexicographic ordering on power-products

I's=t

Orient ifs>1
, 8 —t

L, f(X) — s, f(Y) — tfor least 7,2’ s.t. f(X,Z) = f(Y,2')
1’"7]@(5’ Z) = f(t, Z’) modulo F'P, collapse inapplicable

Superpose

Example.
Py=1,azy* =y

iy —1, zy® -y

\ 2y — 1, zy® —y,y = ay /

/ UWP for Commutative Semigroup (Contd) \

DX, Z) =t [(X)—s
I f(s, Z) =t f(X) = s
I''s=s

Collapse

Delete

Example.

*y — 1, xy* —y, y=uay

2y —1, a2y —y, ay—y
wy=1,9"=y ay—y
zy—1, 92—y, ay—y
y=19"—y ay—y

y— 1 4> >y ay—y
y— 1L, 1=y, z=y

y—1lLz—y
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/ UWP for Commutative Semigroup \

e Note we can decide if x =1 is implied by the original
equations

e Termination: Guaranteed by Collapse via Dickson’s
lemma.

If s1,s2,... IS an infinite sequence of power products,
then there exists i,j s.t. s; divides s;.

e Soundness and Completeness: If R is a result obtained
by starting with E, then TFE = s=1¢t iff s = 0o «xt
for all s,t
Equal terms (modulo E) have identical canonical forms
(w.r.t R)
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/ Combining Several AC and UIF symbols \

Ground AC-theories:
Y =
T =

YrUXac
Axioms of equality + AC axioms for each f € ¥ 4¢.

Using the Nelson-Oppen combination result:
e Use Extension inference rule to purify equations
e Use abstract congruence closure on X — X 4¢
e Use completion modulo AC on each {f}, f € Xac
e Combine by sharing equations between constants

Time Complexity: O(n? x (Tac(n) + nlog(n))).

\Similarly, ACU-symbols can be added. /
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Back to Algebraically Closed Fields

by = {Q7+’7’*}

T Axioms for field + algebraic closure

System of nonlinear equations: E = {zy = x,2? = v + 1}

We want to “solve” them simultaneously

e Commutative semigroups: had no +

Generalize: Transform E to R (Grdbner basis)
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/ Computing Grobner Basis \
State: T, set of equations
Form of equations: p =0, p a polynomial in Q[z1,...,%,]
Eg: zy—2=0,22—2—-1=0

>~ lex ordering on power-products, extended to polynomials

I'NeX+p=0
I'eX — —p

IyeX —p,dY —q forleast 2,2 st. X+Z =Y 2/,
F/,d*p % 7 = ¢ % q * 7’ collapse not applicable

Orient it X > po

Superpose

Example.

ry—x=0,22-2-1=0

ry —x, 22— +1
2

xy —x, 2 —r+1l, zxr=yx(x+1)
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I'eXZ —p,dX —q
Idxp=cxZxq,dX —q

Collapse

Example.

vy —x, 22 s+, xxr=yx*(z+1)

2

TY — T, T

xy —x, 22—+, c+l=ay+y
2

—z+1, 22 > ay+y

zy—x, 2 —r+1, 2y -r—y+1

2y —x, 2 —sr+1l, x=c—y+1

2

TY — T, T

T =, 1‘2—>$—|—1,y—>1

—-x+1, y—1

22 —r+1,y—1

\_ /

-

Same as for commutative semigroups
e Termination: Same as before

e Soundness and Completeness: If R is a result obtained
by starting with F, then TFE = s=1tiff s = 0«51t
for all s,t; and T is the theory of polynomial rings

Equal terms (modulo E) have identical canonical forms
(w.r.t R)

Example. Note that y =1 modulo {zy = z,2? = 2 + 1}.

W.r.t {#2 - x+1, y — 1}, y and 1 have the same canonical

Grobner Basis: Correctness \

/ Computing Grobner Basis: More Rules \
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GB: UWP in the theory of ACFs

GB decides the UWP for the theory T of polynomial rings
But what about UWP for ACFs? In ACFs,

Vo,yley=a A 22 =2+2 = y=1)
S -dry(zy=a2 A2’ =x+2 AN y#1)
S -dr,y,z(zy=2 A2’ =2+2 A (y—1)z=1)

Thus, GB can be used to decide the UWP for ACFs.

\_ /
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GB: Eliminating Variables

We can infer all equational consequences of an existentially
quantified conjunction of equations

Notice that
Jr(zy=a A2 =2+2) = y=1

Elimination Ideal. If = is lex and z,, > zp,_1 > - > 1,

GB(E|@[1|11]) = GB(E)QQ[Ile]

The elimination ideal is a logical consequence of the
existential formula

But not logically equivalent to it

17

18

4 )

GB: Eliminating Variable II

In the more general case,

Jr.p1=0A ... ADPr=0Aq@#0A ... A g #0)

Over ACFs, this is equivalent to

Az, 21, 2m-P1=0A ... ADL=0A @21 =1 A ... A @mzm = 1)
And using the Elimination Ideal Theorem, we can eliminate

r,z1,...,%m Simultaneously

Hence, we can compute equational consequences of any
conjunction.
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/ Algebraic Geometry I \

There is a correspondence between algebra and geometry

Algebra Geometry

Polynomial p Zeroes(p)
Zeroes(S) = V(S)
Variety V(I) = Zeroes(S)

V(I)=0 (alt. V(I)#0)

Set S of polynomials
Ideal I gen by S

I=(1) (alt. T4 (1)

fel V(I) C Zeroes(f)
Elimination ideal projection

Id(I, U I5) V() NV ()
ILinI, V(1) UV (Iy)

This correspondence is valid only when the geometry is

Q\terpreted over polynomial rings /
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Algebraic Geometry II

Correspondence between algebra and geometry over ACFs

Algebra Geometry
Zeroes(p))
Variety V(I) = Zeroes(I)

V(I) =0 (alt. V(I) #0)

(Polynomial p

Radical Ideal /T

I=(1) (alt. T#(1)

fferl . V(I) C Zeroes(f) (Hilbert Nullstellensatz
ld(vI UVD) D V(L) NV(I2)

Vhnvh L V() U V(D)

This correspondence is valid when the geometry is
interpreted over ACF
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Summary

e Grobner basis is a canonical representation of a set of
nonlinear equations

e They decide the UWP for polynomial rings, and not for
the reals. They can be used to decide UWP for ACFs
using the negation trick.

e They have several nice properties, such as elimination
ideal computation

e All interesting behavior of GB computation is reflected
in the case of commutative semigroups (case of

binomial ideals)

/
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Examples (UWP over rings and ACFs)

Vz.z?2 =0= 2 =0 is true over ACFs, but not over rings

A GB for {22 =0} is Ry = {2? — 0}
z and 0 have different normal forms w.r.t R;

Hence, the given formula is not true over rings

A GB for {22 = 0,2y =1} is Ry = {1 — 0}

Hence, the above formula is true over ACFs

Ex. Prove: Jk.p* € 1d(9) iff GB(S U {pz =1}) is {1 — 0}

\_
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Examples (CVP over ACFs)

Vz.a?=1= (x=1V z=—1) is true over ACFs

This can be deduced by checking the unsatisfiability of

2=1A(z-Dy=1A (z+1)z=1

Ex. Show that a GB for these three equations is {1 — 0}.

\_
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/ Examples (FO theory over ACFSs) \

For what “values” of ¢ is it the case that
Jxal4+ce=0 AN 23 =2z

Construct a GB for 22 4+ ¢ =0, 2° = z using lex ordering with
precedence x > ¢

Ex. Verify that you obtain

{22 = —¢, cx — —x, ¢ — —¢c}

Conclude that 3z.22 +¢=0 A z® =z implies
cC = —C

over both rings and ACFs.
Over ACFs, this means that ¢ is either 0 or —1.

%x. Verify the last claim using GB computation. /

/ A Note on Termination \

We have tried hard to ensure that inference rules terminate

But we have missed certain nontermination behaviors

{zy? — o, 2%y — zy?}

{zy? — 3, 2%y — xy?, 2%y = 2y3}

{zy? — o, 2%y — y?, 2%y — xy®}

{zy? — o, 2%y — xy?, oy’ = 2y®}

{zy? — o3, 2%y — zy?}

Assume side condition that prevents application of the same

Qlference again /
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/ Termination of GB computation \

\ (recursively) will also collapse [; — r; /

Assume this extra side condition

e Any infinite derivation will have infinite Superposition
steps

e Let {l; — r,l, — r.} be the rules involved in i-th
superposition

e By Dickson's lemma*, 3i, j. ;|l; and [}[l}

e By new assumption, either [; — r; is different from
lj — rj or li — r{ is different from I} — 1}

e W.l.o.g assume j > and l; — r; is different from [; — r;

e Side condition of j-th superposition is violated: if
l; — r; is not present, then the rule that “collapsed” it
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