
'

&

$

%

Little Engines of Proof: Arithmetic

Inequalities

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

Overview

We examine the Dantzig’s Simplex method as the basis for

solving linear inequalities.

Simplex is typically used as an optimization method for

linear programming, but it can be easily adapted to theorem

proving.

Though simplex is, in principle, an exponential algorithm, it

rarely exhibits super-polynomial behavior in practice.

The treatment here is based on Vanderbei’s Linear

Programming: Foundations and Extensions, and the work

of Nelson, Badros and Borning, and Rueß and Shankar

(forthcoming).

2

'

&

$

%

Linear Programming

A factory with m machines makes n products. The unit

profit margin on item j is cj and its manufacture requires aij

units of resource (machine) i per unit of product j. There is

a limit of bi units of resource i. Maximize the profit margin.

3

'

&

$

%

LP: Example

A factory produces shirts, shorts, and skirts, with unit profits of $5, $3,

and $4, respectively, are produced using sewing machines, embroidery,

and button stitching machines. There are 20 sewing machines, and each

can do 4 shirts/hour, or 6 shorts/hour, or 3 skirts/hour. There are 10

embroidery machines, and each can do 5 shirts/hour, 8 shorts/hour, and

6 skirts/hour. There are 12 button-stitching machines, and each can do

8 shirts/hour, 5 shorts/hour, and 10 skirts/hour. Maximize profit.

Maximize 5x + 3y + 4z, given

(1/4)x + (1/6)y + (1/3)z ≤ 20

(1/5)x + (1/8)y + (1/6)z ≤ 10

(1/8)x + (1/5)y + (1/10)z ≤ 12

4

'

&

$

%

Linear Programming

Primal form: Maximize ~cT ~x given A~x ≤ ~b, where ~b and ~c are

m-vectors, A is an m × n matrix, and ~x ≥ 0.

Equivalent dual form: Minimize ~uT b given ~uT A = ~cT and

~u ≥ 0.

Note that ~cT ~x ≤ d iff for some ~u, ~u ≥ 0,

~cT ~x = ~uT A~x ≤ ~uT~b ≤ d (Farkas Lemma).

The maximal primal solution ~x yields a ~u such that

~cT ~x = ~uT~b which is the minimal dual solution.

So, if primal form has a feasible solution ~x, then this yields

a minimal feasible solution ~u to the dual form.

5

'

&

$

%

Simplex [Dantzig]

Introduce slack variables through m-vector ~k so that
~k = ~b−A~x, with the restriction that in the solution ~k ≥ 0 and

~x ≥ 0.

The equality ~k = ~b − A~x is the simplex tableau S.

Each ki is a dependent variable (in the tableau) and each xj

is an independent variable (out of the tableau).

If ~b ≥ 0, then S is manifestly feasible (i.e., satisfiable), and

has a basic feasible solution: Let ~x = 0.

A dependent variable ki is maximized (minimized) at bi if

ki = bi − aT
i x in S where all the entries in ai are non-negative

(non-positive).

An independent variable xj is unbounded if for each i, aij is

non-positive in the tableau.

6

'

&

$

%

Obtaining Optimality

Given objective function ~cT ~x and simplex tableau S of the

form ~k = ~b − A~x, we need to

1. Convert S into an equivalent feasible tableau S0,

otherwise, there are no solutions, optimal or otherwise.

2. Starting with C0 = ~cT ~x and feasible tableau S0,

transform C0; S0 to an equivalent form C ′; S′ where C ′ is

maximized or unbounded.

An expression C of the form c0 + Σn
i=1

cixi is maximized when

all coefficients ci are non-positive, and unbounded if for

some i, ci ≥ 0 and xi is unbounded in S.

7

'

&

$

%

Pivoting

Pivoting is the operation of swapping a dependent variable

with an independent variable, so that the latter enters the

tableau while the former leaves it.

Given

k1 = −2 + 3x1 − 2x2

k2 = 1 − 2x1 + 4x2

If we pivot x1 with k2, we get

k1 = −1/2 − (3/2)k2 + 4x2

x1 = 1/2 − (1/2)k2 + 2x2

8

'

&

$

%

Pivoting

Define solve(x)(s = s′) to return a solution of the form x = t,

when x occurs with distinct coefficients in s and s′.

If S is a solution set containing k = s, then pivoting x with

k, pivot(x, k)(S), is just the operation S ◦ solve(x)(k = s).

Note that S ⇐⇒ pivot(x, k)(S).

For example pivot(x, k)(S), where k = d − a ∗ x + s ∈ S is

S ◦ {x = d/a − (1/a)k + (1/a)s}.

The gain for the pivot g(x, k)(S) is then d/a.

If ki is such that for all i′, g(xj , ki′)(S) ≥ g(xj , ki)(S), then we

say that pivotable(xj , ki)(S) holds.

9

'

&

$

%

Pivoting

Given an expression C of the form c0 + c1x1 + . . . cnxn where

|C| = c0, and a feasible simplex tableau S, we can pivot up

to increase |C| while preserving the feasibility of S.

To pivot up: Find an xj such cj is positive and

pivotable(xj , ki)(S) holds. (If there is no such xj, C is

maximized.)

Let S′ = pivot(xj , ki)(S) and C ′ = S′[C].

Note that c′

0
= c0 + cj ∗ g(xj , ki) so |C ′| ≥ |C|.

Check that S′ is also feasible.

10

'

&

$

%

Simplex Inference

The state consists of an objective function C and a feasible

simplex tableau S.

C; S

C ′; S′

C not maximized or unbounded

cj > 0, pivotable(xj , ki)(S)

S′ = pivot(xj , ki)(S), C ′ = S′[C]

Check that S′ ⇐⇒ S and S[C ′] = C.

But does it terminate? Depends. Pivoting cycles are

possible, but also avoidable.

Note the nondeterminism in the choice of xj and ki.

11

'

&

$

%

Incremental Inequality Solving with Simplex

Input inequalities contain unrestricted variables.

The state consists of G; S, where G is the set of input

inequalities, and the solution state S is further divided as

SR; ST , where SR is the solution set for unrestricted variables

and ST is the simplex tableau for restricted (≥ 0) variables.

Canonization S[e] is as before: substitute solutions from S

and put the result in canonical form.

We assume that there is a infinite supply of slack variables

k0, k1,

12

'

&

$

%

Adding an Inequality Incrementally

Given a feasible m × n tableau S of the form ~k = ~b − A~x, let

m′ = m + 1, we can add a new inequality e ≥ 0 as follows.

e ≥ 0, G; S

G; S′
if S′ = addineq(km′ = S[e]; S)

addineq(km′ = S[e]; S) is implemented in the following

(deterministic) inference system.

13

'

&

$

%

k = C; S

⊥
if C is maximized, |C| < 0

k = C; S

S
if C is minimized, |C| ≥ 0

k = C; S

S ◦ R

if solve(y)(k = C) = R

for some unrestricted y ∈ C

k = C; S

S ◦ {k = C}

if |C| ≥ 0,

C is not minimized

k = C; S

S ◦ R

if |C| < 0,

k′ ∈ C, k′ is unbounded in S

solve(k′)(k = C) = R

k = C; S

k = S′[C]; S′

|C| < 0, C is not unbounded in S

cj > 0, pivotable(xj , ki)(S)

S′ = pivot(xj , ki)(S)

14

'

&

$

%

Example

{x1 ≥ 0, x2 ≥ 0, 2 − x1 − x2 ≥ 0,−9 + 2x1 + 2x2 ≥ 0}; (∅; ∅)

{x2 ≥ 0, 2 − x1 − x2 ≥ 0,−9 + 2x1 + 2x2 ≥ 0}; ({x1 = k1}; ∅)

{2 − x1 − x2 ≥ 0,−9 + 2x1 + 2x2 ≥ 0}; ({x1 = k1, x2 = k2}; ∅)

{−9 + 2x1 + 2x2 ≥ 0}; ({x1 = k1, x2 = k2}; {k3 = 2 − k1 − k2})

k4 = −9 + 2k1 + 2k2; ({x1 = k1, x2 = k2}; {k3 = 2 − k1 − k2})

k4 = −5 − 2k3; ({x1 = k1, x2 = k2}; {k1 = 2 − k2 − k3})

⊥

⊥

15

'

&

$

%

Correctness

Termination: We have already noted that nontermination is

possible, but there are terminating pivoting strategies.

Each non-⊥ state is of the form k = C; S or ∅; S, where S is

feasible and C is canonical with respect to S.

Each step is model-preserving: both pivoting and

canonization are.

A feasible tableau is trivially satisfiable.

16

'

&

$

%

Adding Equalities

There are two choices for adding equality s = t: either add

s − t ≥ 0 and t − s ≥ 0, or process as follows.

s = t, G; S

G; S ◦ R

if y ∈ S[t − s], y unrestricted

solve(y)(S[s = t]) = R

s = t, G; S

G; S′
if S′ = addineq(k0

m′ = C; S), C = S[t − s], |C| ≤ 0

C contains no unrestricted variables.

addineq(k0

m′ = C; S) is given by the following (deterministic)

inference system.

k0

m′ is a 0-slack variable that is restricted to being equal to 0.

17

'

&

$

%

Addeq

k0

m′ = C; S

⊥
if |C| < 0, C is maximized

k0

m′ = C; S

⊥
if |C| > 0, C is minimized

k0

m′ = C; S

S ◦ R . {k0

m′ = 0}

if k′ unbounded in C

|C| < 0, R = solve(k′)(k0

m′
= C)

k0

m′ = C; S

k0

m′ = S′[C];S′

if |C| < 0, cj > 0, pivotable(xj , ki)(S),

S′ = pivot(xj , ki)(S)

k0

m′ = C; S

k0

m′ = S′[C];S′

if |C| > 0, cj < 0, pivotable(xj , ki)(S),

g(xj , ki)(S) < g(xj , k0

m′
)({k0

m′
= C})

S′ = pivot(xj , ki)(S)

k0

m′ = C; S

S ◦ R . {k0

m′ = 0}

if |C| > 0, cj < 0, pivotable(xj , ki)(S),

g(xj , ki)(S) ≥ g(xj , k0

m′
)({k0

m′
= C})

R = pivot(xj , k0

m′
)({k0

m′
= C})

18

'

&

$

%

Example

{x ≥ 0, y ≥ 0, 2 − 2x − y ≥ 0, y = −3 + 3x}; (∅; ∅)

{y ≥ 0, 2 − 2x − y ≥ 0, y = −3 + 3x}; ({x = k1}; ∅)

{2 − 2x − y ≥ 0, y = −3 + 3x}; ({x = k1, y = k2}; ∅)

{y = −3 + 3x}; ({x = k1, y = k2}; {k3 = 2 − 2k1 − k2})

k0

4
= −3 + 3k1 − k2; ({x = k1, y = k2}; {k3 = 2 − 2k1 − k2})

k0

4
= −(5/2)k2 − (3/2)k3; ({x = k1, y = k2}; {k1 = 1 − (1/2)k2 − (1/2)k3})

∅; ({x = k1, y = k2}; {k1 = 1 − (1/2)k2 − (1/2)k3, k2 = −(3/5)k3})

({x = k1, y = k2}; {k1 = 1 − (1/2)k2 − (1/2)k3, k2 = −(3/5)k3})

It is easy to see that y = k2 = k3 = 0 and x = k1 = 1.

19

