
'

&

$

%

Little Engines of Proof: Arithmetic

Inequalities

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

Overview

We have studied decision procedures for equality on

constants, pure terms, interpreted terms, and combinations

of these.

Next to equality, inequalities constitute the most common

kind of constraint.

Inequalities have applications in scheduling, optimization,

resource allocation, extended typechecking, compilers,

constraint programming, timed/hybrid systems.

Solving arithmetic inequalities is a vast topic that has been

heavily studied. We restrict ourselves to a few basic

inference procedures for inequality.

2

'

&

$

%

Simple Orderings

We already saw that the uniform word problem for

transitive and reflexive ordering relations could be captured

by computing the transitive closure or the

reflexive-transitive closure.

For example, |= a < b, a < c, b < d, d < c ⇒ b < c.

The following rules constitute an inference system for

reflexive/transitive orderings.

Γ, a < b, b < c

Γ, a < b, b < c, a < c
if a < c 6∈ Γ

Γ, a < b, a 6< b

⊥

Γ, a 6< a

⊥

3

'

&

$

%

Partial Orders

If we add anti-symmetry to obtain partial orders, then we

also have to detect cycles in order to obtain equalities.

Then in addition to the union-find rules for constants, we

have

Γ, a ≤ b, b ≤ a

Γ, a ≤ b, b ≤ a, a = b
if a = b 6∈ Γ

Γ, a ≤ b, b = c

Γ, a ≤ b, b = c, a ≤ c
if a ≤ c 6∈ Γ

Γ, a ≤ b, a = c

Γ, a ≤ b, a = c, c ≤ b
if c ≤ b 6∈ Γ

4

'

&

$

%

Arithmetic Inequalities

Inequalities get quite a bit more interesting as an arithmetic

ordering relation between numerical quantities.

These can be axiomatized by the ordered field axioms:

1. + yields a commutative group with identity 0 and inverse −x.

2. ∗ yields a commutative group with identity 1, inverse x−1 for x 6= 0.

∗ distributes over +.

3. (a) (x 6< x)

(b) x < y ⇒ y < z ⇒ x < z

(c) x < y ⇒ x + z < y + z

(d) x, y > 0 ⇒ x ∗ y > 0

(e) x > 0 ∨ x = 0 ∨ 0 > x

5

'

&

$

%

Linear Inequalities

Drop multiplication and allow constants ranging over

rational numbers.

Ex: Show that all equalities have the form

cn ∗ xn + . . . c1 ∗ x1 + c0 = 0, where ci range over the rationals.

Show that such an equation always admits rational

solutions.

Ex: Show that all inequalities a > b can be expressed as

cn ∗ xn + . . . c1 ∗ x1 + c0 > 0, where ci range over rationals.

cn ∗ xn + . . . c1 ∗ x1 + c0 is a linear polynomial.

A linear equality over one variable represents a rational

magnitude.

A linear equality (inequality) in two variables is a line

(half-space) in 2-space.

6

'

&

$

%

Interval Predicates

We will restrict ourselves to lax inequalities (a ≤ b). The

algorithms can be easily extended to strict inequalities

(a > b).

The simplest case of inequalities in one variable: upper

bounds x ≤ c and lower bounds −x ≤ c.

Deciding this fragment is simply a matter of checking if for
each variable x, the lower bound is below the upper bound.

Γ, x ≤ c1, x ≤ c2

Γ, x ≤ c1
if c1 < c2

Γ, x ≤ c1,−x ≤ c2

⊥
if c1 + c2 < 0

7

'

&

$

%

Separation Predicates

These are inequalities of the form x − y ≤ c.

There is a special variable x0 representing 0 so interval

constraints are written as x − x0 ≤ c or x0 − x ≤ c.

Difference Bounded Matrices (DBMs) are a popular

representation for separation constraints with many

applications.

For n variables, a DBM A is an n × n matrix such that Aij is

the best bound on the separation xi − xj.

Ex: If the constants are integers, then a conjunction of

separation literals is satisfiable in the integers if it is

satisfiable in the rationals.

8

'

&

$

%

Inference System for Separation Predicates [Pratt]

Γ, x − y ≤ c1, y − x ≤ c2

⊥
if c1 + c2 < 0

(Γ′ ≡)Γ, x − y ≤ c1, y − z ≤ c2

Γ′, x − z ≤ c1 + c2

x 6≡ z

for all x − y ≤ c′
1
∈ Γ, c′

1
> c1

for all y − z ≤ c′
2
∈ Γ, c′

2
> c2

Ex: Prove correctness.

Ex: Show that the above system simulates the transitive

closure computation on DBMs.

9

'

&

$

%

Shostak’s Loop Residue Method

As before, the variable x0 represents 0.

Two-variable inequality constraints have the form

a ∗ x + b ∗ y ≤ c, where x � y in the variable ordering, or of

the form a ∗ x0 ≤ c, with a 6= 0, b 6= 0.

A one-variable inequality a ∗ x ≤ c for x 6≡ x0 is expressed as

a ∗ x + x0 ≤ c.

(Γ′ ≡)Γ, a ∗ x + b ∗ y ≤ c,−a′ ∗ x + b′ ∗ z ≤ c′

Γ′, a′ ∗ b ∗ y + a ∗ b′ ∗ z ≤ a′ ∗ c + a ∗ c′
if x � y, and a, a′ > 0

(Γ′ ≡)Γ, a ∗ x + b ∗ y ≤ c,−a′ ∗ x + b′ ∗ y ≤ c′

Γ′, (a′ ∗ b + a ∗ b′) ∗ y + x0 ≤ a′ ∗ c + a ∗ c′
if a, a′ > 0

Γ, a ∗ x0 ≤ c

⊥
if c < 0

10

'

&

$

%

Loop Residue Example

x + y ≤ 5,−x ≤ −2,−z ≤ −1,−y + z ≤ −3

x + y ≤ 5,−x ≤ −2,−z ≤ −1,−y + z ≤ −3, y ≤ 3

x + y ≤ 5,−x ≤ −2,−z ≤ −1,−y + z ≤ −3, y ≤ 3, z ≤ 0

x + y ≤ 5,−x ≤ −2,−z ≤ −1,−y + z ≤ −3, y ≤ 3, z ≤ 0, x0 ≤ −1

⊥

x + y ≤ 5,−x ≤ −2,−z ≤ −1,−y + z ≤ −2

x + y ≤ 5,−x ≤ −2,−z ≤ −1,−y + z ≤ −2, y ≤ 3

x + y ≤ 5,−x ≤ −2,−z ≤ −1,−y + z ≤ −2, y ≤ 3, z ≤ 1

x + y ≤ 5,−x ≤ −2,−z ≤ −1,−y + z ≤ −2, y ≤ 3, z ≤ 1, x0 ≤ 0

x0 = 0, z = 1, y = 3, x = 2

11

'

&

$

%

Correctness

Termination: Number of inference steps is bounded by 2|Γ|.

Model Preservation: Easy exercise.

Completeness: Construct M iteratively so that

M0(x0) = 0. Pick the minimum unassigned variable xi+1.

The constraints a ∗ xi+1 + b ∗ y ≤ c where xi+1 is maximal are

evaluated under Mi to yield a ∗ xi+1 ≤ c′ in xi+1. If a < 0, we

get the lower bound xi+1 ≥ c′/a. Otherwise, we get upper

bound xi+1 ≤ c′/a. Pick any arbitrary value Mi+1(xi+1) that

satisfies all the bounds. If there is no satisfying choice, then

there is an upper bound that is below the lower bound.

Resolving the corresponding inequalities yields an inequality

that should already be falsified in Mi. A contradiction.

12

'

&

$

%

Extending Loop Residue

1. Ex: Extend the loop residue inference system to include

strict inequalities.

2. Ex: Extend the loop residue inference system to allow

arbitrary inequalities beyond the 2-variable case.

3. Ex: Extend the loop residue method to detect

equalities.

4. Ex: Show an example of exponential behavior for loop

residue.

5. Ex: Construct a polynomial algorithm for the 2-variable

case.

13

'

&

$

%

Lemma Generation

When combining SAT solving with inequality solving, loop

residue can be used to generate lemmas for the SAT solver.

Given a CNF formula φ, build a graph consisting of all the

inequalities in φ.

Collect all the inequalities A1, . . . , Am in negative weight

cycle and add a lemma clause L of the form ¬A1 ∨ . . .∨¬Am.

Let φ′ be φ ∧
∧

i Li for lemmas L1, . . . , Ln.

Replace each inequality atom Ai in φ′ by a fresh

propositional constant qi to get φ′.

Check the satisfiability of φ′ with a SAT solver.

14

'

&

$

%

Fourier Elimination

Inequalities are represented in the form x ≤ u or x ≥ l where
x is the maximal variable in the inequality.

(Γ′ ≡)Γ, x ≥ l, x ≤ u

Γ′, u ≥ l

Γ, x0 ≤ c

⊥
if c < 0

Ex: Prove correctness.

Ex: Given m × n matrix A and n-vector ~b, prove that either

∃~x : A~x ≤ ~b ∨ ∃~u ≥ 0 : ~uT A = 0, ~uT~b < 0.

Ex: Show that any quantified formula whose atomic

propositions are linear inequalities, can be reduced to a

quantifier-free form.

15

