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The Story So Far

We are interested in deciding

1. Word problems (WP) |= s = t.

2. Uniform word problems (UWP) |=
∧

Γ ⇒ s = t, where Γ

is a set of equations.

3. Clausal validity problems (CVP) |=
∨

Γ, where Γ is a set

of equations and disequations.

Many natural decision problems involve combinations of

decidable theories.
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Nelson–Oppen Combination

The Nelson–Oppen method combines decision procedures

for disjoint theories by communicating equalities and

disequalities between variables.

A high-level version of the method consists of three phases:

1. Purification of Γ into the conjunction of Γ1 in T1 and Γ2

in T2

2. Guessing, an arrangement A as a consistent conjunction

of equalities and disequalities between shared constants

3. Checking the individual satisfiability of A; Γi in Ti.

This high-level method was refined to be an online

procedure in terms of abstract components and refinements

of these components to achieve more efficient branching

rules than guessing an arrangement.
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Nelson–Oppen Refinements

We presented the Nelson–Oppen combination in terms of

an abstract component AC(T ) for a theory T operating over

a state [K : G; V ]; E.

We presented a three levels of refinement:

1. AC(T ) has a general splitting rule on constant

equalities/disequalities.

2. ACb(T ) has a branching rule on implied disjuncts of

equalities.

3. ACc(T ) has a propagation rule for implied equalities.

We saw the refinement ordering ACc(T ) v ACb(T ) v AC(T ).
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An Abstract Component Inference System (AC(T))

[K : G; V ];E

⊥
if |= V, E ⇒ ⊥

[K : k1 = k2, G; V ] : E

[K : G; V, k1 = k2];E

[K : k1 6= k2, G; V ] : E

[K : G; V, k1 6= k2];E

[K : G{a}; V ]; E

[K : G{k}; V ]; E
if T |= E, V ⇒ k = a for pure Σ-term a, k ∈ K

[K : G{a}; V ]; E

[K, k : G{k}; V ]; E, k = a
for pure Σ-term a, and fresh k

[K : G; V ]; E

[K : G; V, k1 = k2], E | [K : G; V, k1 6= k2], E

if 6|= V ⇒ k1 = k2

and 6|= V ⇒ k1 6= k2
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Abstract Components with Branching and Propagation

ACb(T ):

[K : G; V ]; E

[K : G; V, l1 = k1]; E| . . . | [K : G; V, ln = kn]; E

if T |= V ; E ⇒
∨

n

i=1
li = ki

but 6|= V ⇒ li = ki,

for 1 ≤ i ≤ n

ACc(T ):

[K : G; V ]; E

[K : G; V, l = k];E
if T |= V ; E ⇒ l = k, but 6|= V ⇒ l = k
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Complexity

The number of partitions of a set of n elements is given by

Bell’s number B(n) which is computed in terms of Stirling

numbers (of the second kind) as follows: where

B(n) = Σn
k=0S

(k)
n

S
(k+1)
n+1 = S(k)

n + (k + 1) ∗ S(k+1)
n , for k < n

Sn
n = 1

S0
n = 1

Each partition is representable in n literals.

Complexity for AC(T1) ⊗ AC(T2): O(B(n) ∗ (C1(n) + C2(n))),

where Ci is the complexity of procedure i. Note that

B(n) ≤ 2n2
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Further Exercises

Prove that the union of disjoint, stably infinite, consistent

theories is consistent and stably infinite.

Prove that the union of disjoint convex theories is convex.

Prove that the worst-case complexity of ACc(T1)⊗ACc(T2) is

O(n4 ∗ (C1(n) + C2(n))).
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Combining Shostak Theories

We already saw that several interesting theories possess

canonizers and solvers, and can be captured within a

schematic decision procedure.

Shostak presented an algorithm the union of disjoint

Shostak theories based on combining solvers and canonizers.

Unfortunately, this does not work. The union of disjoint

Shostak theories may not be Shostak. Canonizers can

usually be combined but solvers, rarely.

We present a combination method for Shostak theories as a

refinement of the Nelson–Oppen combination for convex

theories.
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Canonizers

The canonizer σ for a theory T solves the word problem for

the theory, i.e., T |= s = t iff σ(s) ≡ σ(t)

A term s is canonical if σ(s) = s.

Additionally, σ must satisfy the conditions

1. free(σ(s)) ⊆ free(s)

2. Every subterm of σ(s) is canonical.

Example canonizers: ordered sum-of-products form for

linear and nonlinear polynomials, simplification axioms for

lists, arrays.
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Solvers

Canonizers solve the word problem (WP) T |= s = t, but the

interesting problem is the uniform word problem

T |=
∧

Γ ⇒ s = t.

A solver processes an equality s′ = t′ in Γ (that can be

assumed to be canonical form) into a solved form

S = solve(s′ = t′).

Given a Σ-solution set S Define

S[k] = S(k)

S[f(s1, . . . , sn)] = σ(f(S[s1], . . . , S[sn]))
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Solvers

In some cases, like 0 = 1 or x = x − 1, the given equality

might be unsolvable, and solve returns ⊥.

Otherwise, the solved form S returned by solve(s′ = t′) must

be a solution set of the form {k1 = u1, . . . , km = um} where

each ki is in free(s′ = t′) and does not occur in free(uj) for

any i, j, 1 ≤ i, j ≤ m.

The right-hand side terms uj must be canonical and might

contain “fresh” constants that don’t appear in the input

equality.

S and s′ = t′ must be equivalent.

Ex: Show that if solve(s′ = t′) = S 6= ⊥, then S[s′] ≡ S[t′].
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Example Solvers

Linear Arithmetic: solve(c0 ∗ x0 + . . . + cn ∗ xn = 0) with c0 6= 0

return x0 = (−c1/c0) ∗ x1 + . . . + (−cn/c0) ∗ xn.

Lists: S ◦K R = (S . R) ∪ R/K, where R/K is R
domain-restricted to K. ddEee is the set of subterms of E.
Initially, K : E; ∅ where K = free(E).

K : E; S

K : σ(R[E]);S ◦ R

if car(k) ∈ ddEee or cdr(k) ∈ ddEee,

R = {k = cons(k1, k2)}, k1, k2 fresh

K : cons(r, s) = cons(r′, s′), E; S

K : r = r′, s = s′, E; S

K : k = s, E; S

K : σ({k = s}(E));S ◦K {k = s}
if s is non-atomic k 6∈ free(s)

K : k = k, E; S

K : E; S

K : k = s, Γ; S

⊥

if s a constructor term

s 6≡ k, k ∈ free(s)
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Inference System for a Shostak Theory (Sh(T))

Given Shostak theory T over signature Σ with canonizer σ
and solver solve:

[K : k = k′, G; V ]; S

[K : G; V ]; S
if |= V ⇒ k = k′

[K : k 6= k′, G; V ]; S

⊥
if |= V ⇒ k = k′

[K : G{s}; V ]; S

[K : G{k}; V ]; S

if k′ = S[s] ∈ S, |= V ⇒ k = k′,

for Σ-term s

[K : G{s}; V ];S

[K, k : G{k}; V ]; S ◦ {k = S[s]}

if k′ = S[s] 6∈ S for any k′,

for fresh k, Σ-term s

[K : G; V ];S

[K : G; l = k, V ]; S
if 6|= V ⇒ l = k, but S(l) ≡ S(k) for l, k ∈ K

[K : G; V ]; S

[K : G; V ]; S ◦ R

if |= V ⇒ l = k, but S(l) 6≡ S(k)

R = solve(S(l) = S(k)) 6= ⊥, for l, k ∈ K

[K : G; V ];S

⊥

if V (l) ≡ V (k), but S(l) 6≡ S(k)

solve(S[l] = S[k]) = ⊥, for l, k ∈ K
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Shostak and Convexity

Shostak’s method is complete only for UWP or, equivalently

for CVP over convex theories.

There are non-convex Shostak theories: A 2-element theory

with constant a1, a2, with axioms a1 6= a2 and

(∀x : x = a1 ∨ x = a2), has a trivial canonizer and solver, but

Shostak’s method cannot establish the unsatisfiability of

k1 6= k2 ∧ k2 6= k3 ∧ k3 6= k1.

What about Boolean algebra? It is actually convex. Any

disequality s 6= t can be converted into an equality s = ¬t so

that the CVP can be turned into UWP.
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Correctness for Convex Shostak Theories

The inference steps are terminating and model-preserving,

since solve is model-preserving.

Note that solved forms S are easily satisfiable: Pick an

arbitrary assignment M(k) for right-hand side uninterpreted

constants k, and for left-hand side constants l, let

M(l) = M[[S(l)]].

For an irreducible configuration [K : G, V ]; S, the conjunction

of l 6= k; V ; S is satisfiable, for each disequality l 6= k ∈ G.

Since the theory is convex, this ensures completeness.

16



'

&

$

%

Canonical Term Models

Notice that if a Shostak theory is convex, then an

irreducible configuration is satisfiable in a canonical term

model where DS = {s|σ(s) = s}, MS(k) = S(k), and

MS(f)(a1, . . . , an) = σ(f(a1, . . . , an)).

Conversely, if a Shostak theory admits canonical term

models, it is convex.
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Combinations

Since Sh(T ) refines ACc(T ), combining a Shostak theory

with uninterpreted function symbols is simply Sh(T ) ⊗ CC.

Similarly, combining multiple Shostak theories is just

Sh(T1) ⊗ Sh(T2).

Correctness proof for combinations is easy since it has

already been shown for the combination of abstract

components.
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