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Overview

So far, we have examined decision procedures for the

satisfiability of conjunctions of equality and disequality

literals in individual theories.

Equalities over uninterpreted constants and function

symbols were treated using union-find and congruence

closure.

For the case of interpreted symbols, decision procedures for

a number of canonizable and solvable (Shostak) theories

such as linear arithmetic, lists, finite sequences, and

bit-vectors were presented through a generalized Gaussian

elimination method.

Many applications involve symbols from several theories.
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Combining Theories

Typical examples of theory combinations include linear

arithmetic, arrays, lists, pure equality,

car(x) = cdr(x) − 4 ∧ x = cons(y, 7) ∧ y 6= 3

A[i := j][j] = A[i] ∧A[i] 6= A[j] ∧ i 6= j

A[j − 3] = i+ 4 ∧A[(i+ 2) := j − 1][j − 3] 6= i+ 4

i+ 3 = j − 2 ∧A[(i+ 2) := j − i][j − 3] 6= 5

i− 1 = j + 2 ∧ f(i+ 3) 6= f(j + 6)

f(f(i− j)) = j ∧ i = 2 ∗ j ∧ f(f(f(f(A[2 ∗ j := j][i])))) 6= j
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Nelson–Oppen Combination

Given two theories: T1 over signature Σ1, and T2 over Σ2,

with Σ1 ∩ Σ2 = ∅, to decide satisfiability of Γ over T1 ∪ T2:

Γ

Γ1; Γ2

Purification

Γ1; Γ2

A; Γ1; Γ2

for some arrangement A

A; Γ1; Γ2

⊥
if Ti |= A,Γi ⇒ ⊥, i = 1, 2

If ' the equivalence relation generated by some partition P

of the shared constants, then AP is
∧

{i,j:ki'kj}
ki = kj ∧

∧
{i,j:ki 6'kj}

ki 6= kj.
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Examples

i− 1 = j + 2 ∧ f(i+ 3) 6= f(j + 6)

k1 = i− 1, k2 = j + 2, k3 = i+ 3, k4 = j + 6, k1 = k2, k5 6= k6;

k5 = f(k3), k + 6 = f(k4)

. . . | {k1 = k2, k3 = k4, k5 6= k6, . . . | . . .}

⊥ | . . . | ⊥ | . . . | ⊥

i− 1 = j + 2 ∧ f(i+ 3) 6= f(j + 4)

k1 = i− 1, k2 = j + 2, k3 = i+ 3, k4 = j + 4, k1 = k2, k5 6= k6;

k5 = f(k3), k + 6 = f(k4)

. . . | {k1 = k2, k3 = k4, k5 6= k6, k2 6= k3, k3 6= k5, . . .} | . . .
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An Abstract Component Inference System (AC)

The inference system AC consists of

1. The input equalities/disequalities G;

2. The equalities/disequalities on shared constants V ;

3. The set of shared constants K;

4. The theory-specific equalities and disequalities E.

The inference state will be represented as [K : G;V ] : E to

indicate that [K : G;V ] is shared.

We assume oracles |= V ⇒ ki = kj on constants, and

T |= V ;E ⇒ ki = kj for the theory T .
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An Abstract Component Inference System (AC)

[K : G; V ] : E

⊥
if |= V, E ⇒ ⊥

[K : k1 = k2, G; V ] : E

[K : G; V, k1 = k2] : E

[K : k1 6= k2, G; V ] : E

[K : G; V, k1 6= k2] : E

[K : G{a}; V ] : E

[K : G{k}; V ] : E
if T |= E, V ⇒ k = a for pure Σ-term a, k ∈ K

[K : G{a}; V ] : E

[K, k : G{k}; V ] : E, k = a
for pure Σ-term a, and fresh k

[K : G; V ] : E

[K : G; V, k1 = k2], E | [K : G; V, k1 6= k2], E

if 6|= V ⇒ k1 = k2

and 6|= V ⇒ k1 6= k2
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Correctness

Check that the inference rules are well-founded.

Check that the inference rules are model-preserving.

Check that if [K : G;V ] : E is irreducible, then each formula

in G contains non-Σ symbols, and V ;E is satisfiable.
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Congruence Closure as a Component

A pure term has the form f(c1, . . . , cn) for an uninterpreted

function f and constants c1, . . . , cn.

The inference system from Lecture 11 can be recast as an

instance of an abstract component.

This component can be formally proved to be a refinement

of an abstract component, as defined later.
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Congruence Closure Component (CC)

c = d, G; U ; V

G; U ; V
if V (c) ≡ V (d)

c = d, G; U ; V

G; (U ; V ) ◦ {V (c) = V (d)}
if V (c) 6≡ V (d)

s 6= t, G; U ;V

⊥
if S[s] ≡ S[t] for S = U ; V

(s = t){f(c1, . . . , cn)}, G; U ; V

(s = t){c}, G; U ;V
if c = f(c′

1
, . . . , c′

n
) ∈ U, c′

i
= V (ci)

(s = t){f(c1, . . . , cn)}, G; U ; V

(s = t){c}, G; U ∪ {c = f(c′

1
, . . . , c′

n
)}; V

if c = f(c′

1
, . . . , c′

n
) 6∈ U,

c fresh, c′

i
= V (ci) for 1 ≤ i ≤ n

G; U ; V

G; (U ; V ) ◦ {c = d}
if U(c) ≡ U(d) for V (c) 6≡ V (d)
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Refining Inference Systems

Given an abstract inference system `I and a concrete one

`J (known to be well-founded), we say that J refines I iff

1. There is a total refinement relation α between concrete

states φ, and abstract states ψ, such that φ and ψ are

equisatisfiable when α(φ, ψ).

2. Each concrete inference step φ `J φ
′ can be simulated

by zero or more abstract steps so that for any ψ such

that α(φ, ψ), there exists a ψ′ such that ψ `∗
I ψ

′ and

α(φ′, ψ′).

3. If φ is irreducible in J, then for all ψ such that α(φ, ψ),

there is an irreducible ψ′ with ψ `∗
I ψ

′ in I.

Exercise: Prove that J is sound and complete if I is. Show

that CC refines AC(Eq), where Eq is the theory of equality.
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Composition of Inference Components

Given two theories T1 and T2 with disjoint signatures Σ1 and

Σ2, and inference systems I1 and I2, respectively.

The composition I1 ⊗ I2 of two abstract inference

components I1 given by [K : G;V ] : E1 and I2 given by

[K;G;V ] : E1 is the union of the inference rules with respect

to the combined state [K : G;V ] : E1;E2.

The inference rules for Ii leave Ej unchanged for i 6= j.
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Branching on Equality/Disequality

Branching on equalities/disequalities over shared constants

is essential.

For example, if theory T1 requires ∀x : x = f(x) ∨ x = f(f(x)),

and E1 contains k2 = f(k1), k3 = f(f(k1)), the theory T2

requires ∀x : x 6= g(x), and E2 contains k2 = g(k1).

We will fail to deduce that k1 = k3.
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Stable-Infiniteness

The resulting procedure is still incomplete.

The theory T1 with ∀x, y, z : x = y ∨ y = z ∨ x = z has a 1 or

2-element model, while theory T2 requires that f(x) 6= x for

each x.

Now, if we process k 6= f(f(k)), then this yields a state that

is satisfiable in both theories, but needs at least a 3-element

model in T2.

The unsatisfiability is not detected.

The combination algorithm works only for stably infinite

theories, i.e., theories where any satisfiable formula has a

model of cardinality ℵ0.
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Correctness: Amalgamation

If theories T1 and T2 are stably infinite and the state

[K : G;V ] : E1, E2 is irreducible, then any satisfying

assignment of values to the shared constants can map

distinct equivalence classes in V to distinct domain

elements.

We therefore have a satisfying interpretation M1 respecting

T1 for V ;E1 over the domain D1, and M2 respecting T2 for

V ;E2 over the domain D2.

Both domains can be placed in bijective correspondence (β1

and β2) with ω.

Let D be ω, and interpretation

M(f)(a1, . . . , an) = βi(Mi(f)(β−1

i (a1), . . . , β
−1

i (an)).
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Adding Uninterpreted Equality

The composition CC ⊗ I of the theory of uninterpreted

equality, with an abstract inference component I is a sound

and complete decision procedure for the union of the two

theories.

Even without stable-infiniteness.

A non-⊥ irreducible state yields a partition V that must be

satisfiable in each component.

Now the term model construction will not work for CC, but

we can assign M(f)(a1, . . . , an) to a if there is some

k = f(k1, . . . , kn) in U such that MI(ki) = ai for 1 ≤ i ≤ n, and

MI(k) = a.

Otherwise, let M(f)(a1, . . . , an) = a for some a ∈ DI.
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Lazy Branching

The branching rule can be modified as

[K : G; V ] : E

[K : G; V, l1 = k1] : E| . . . | [K : G; V, ln = kn] : E

if T |= V ; E ⇒
∨

n

i=1
li = ki

but 6|= V ⇒ li = ki,

for 1 ≤ i ≤ n

Ex: Show that branching simulates lazy branching.

Ex: Show that irreducibility under lazy branching can be

simulated with branching.
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Convexity

A theory T is convex if for any conjunction of literals A and

equalities A1, . . . An, T |= A⇒ A1 ∨ . . . ∨An iff T |= Ai for

some i, 1 ≤ i ≤ n.

For a first-order theory with nontrivial models, convexity

implies stable-infiniteness.

If not, there is a formula A that is only satisfiable in a

model with at most m elements where m > 1. Then, for

some variables xi, 0 ≤ i ≤ m not occurring in A,

A⇒
∨

0≤i,j≤m xi = xj. By convexity, A⇒ xi = xj for some

i, j, so A is satisfiable only in the trivial one-element model.

A contradiction.

By compactness, if A is satisfiable in an m-element model

for each m > 1, then it is satisfiable in an infinite model.
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Combining Convex Theories

Branching can be eliminated when dealing with convex

theories.

[K : G; V ] : E

[K : G; V, l = k] : E
if T |= V ; E ⇒ l = k, but 6|= V ⇒ l = k

Ex: Show that the propagation rule above can be simulated

with lazy branching.
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