
'

&

$

%

Little Engines of Proof: Mid-Term Summary

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

Overview

Automated deduction is a form of scientific computing that

infers the consequences of a collection of statements.

The field of automated deduction has a rich collection of

fundamental ideas, algorithms, proof methods,

implementation techniques, and applications in engineering

and artificial intelligence.

This course explores the foundations of automated

deduction through a series of algorithms and their

correctness proofs.

Our emphasis is on simplicity and uniformity in the

presentations of the algorithms and their proofs.

This simplicity also has an impact on the ease of

implementation, integration, and optimization.

2

'

&

$

%

Logic

Logic consists of a trinity between language, meaning

(semantics), and method (proof).

Language is used to define concepts and make statements

about these concepts.

Meaning distinguishes the valid statements from refutable

ones.

Method is used to effectively demonstrate the validity of a

statement through valid syntactic inference steps.

A proof method is sound if all provable statements are

valid, and complete if all valid statements are provable.

3

'

&

$

%

Example: Propositional Logic

Formulas: φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⇒ φ2.

Semantics: Truth value of a formula is calculated with

respect to an interpretation M, an assignment of > or ⊥ to

the propositional atoms.

A formula is satisfiable if it evaluates to > under some

interpretation, otherwise, it is unsatisfiable.

A formula is valid if it evaluates to > under every

interpretation, and is invalid or refutable, otherwise.

A formula is valid iff its negation is unsatisfiable.

As examples, p ∨ ¬p is valid, p ∧ ¬p is unsatisfiable, p ∨ ¬q is

satisfiable and refutable.

4

'

&

$

%

Proof Methods

Propositional logic has a number of different proof methods

given by Hilbert-style calculi, and Gentzen-style natural

deduction and sequent calculi.

These logics consist of proof rules that assert the

provability of a conclusion formula from those of some

premise formulas.

A proof method is sound if whenever the premises to a

proof rule are valid, then so are the conclusions.

A set of formulas is consistent if they cannot derive both a

formula and its negation.

For example, {p ∧ ¬q, p,¬q} is consistent, but {p ∧ ¬q, p, q} is

not.

5

'

&

$

%

Completeness

Completeness shows that whenever a formula is valid, it is

provable.

Alternately, if a formula is not provable, then its negation

must be satisfiable.

Alternately, any consistent set of formulas is satisfiable.

A consistent set of formulas Γ can be extended to a

complete and consistent set of formulas Γ̂

The satisfying interpretation M
Γ̂

for Γ̂ (and hence, Γ) can

be read off from Γ̂.

For example {p ∧ ¬q, p ∨ q} is consistent and can be extended

to a complete set {p ∧ ¬q, p ∨ q, p,¬q, . . .}.

The assignment {p← >, q ← ⊥} can be read off.

6

'

&

$

%

Completeness for Equality

We now add constants c0, c1, . . . to the logic and let

propositional atoms include simple equalities ci = cj.

The interpretation M now includes a domain D over which

the constants are interpreted so that M(ci) ∈ D.

The proof rules include reflexivity, transitivity, and

symmetry for equality.

Completeness: A consistent set of formulas Γ can be

completed to Γ̂. The domain D
Γ̂

can be taken as the

equivalence class of constants in Γ̂ so that

[ci] = {cj |ci = cj ∈ Γ̂}, and M
Γ̂
(ci) = [ci].

Check that M
Γ̂
|= Γ.

7

'

&

$

%

Equality with Terms

We now add n-ary function symbols f to construct terms of

the form f(t1, . . . , tn) for n-ary function f , and n terms

t1, . . . , tn.

The interpretation M(f) is a function from Dn to D.

The congruence rule is added to the set of proof rules.

Completeness: As before, a consistent set of formulas is

completed to yield Γ̂ and the domain D
Γ̂

is the equivalence

class of terms in Γ̂, and M
Γ̂
(f)([t1], . . . , [tn]) = [f(t1, . . . , tn)].

Check that M
Γ̂
|= Γ.

8

'

&

$

%

Inference Rules

Automated Deduction is just an operationalization of the

completeness proof.

An inference system consists of inference states, and

inference rules that transform a premise inference state into

a conclusion one.

Inference rules preserve satisfiability.

An inference state is reducible if it can be the premise of an

inference rule.

⊥ is a special irreducible inference state denoting a

contradiction.

Any non-⊥ irreducible inference state must be satisfiable.

An inference state is a disjunction of configurations, where

each configuration is a conjunction of formulas.

9

'

&

$

%

Semantic Tableaux

The inference rules for the Semantic Tableaux procedure
are:

A ∧ B, Γ

A, B, Γ
∧+

¬(A ∧ B), Γ

¬A,Γ | ¬B, Γ
∧−

¬(A ∨ B), Γ

¬A,¬B, Γ
∨−

(A ∨ B), Γ

A,Γ | B, Γ
∨+

¬(A ⇒ B), Γ

A,¬B, Γ
⇒ −

(A ⇒ B), Γ

¬A,Γ | B, Γ
⇒ +

¬¬A,Γ

A, Γ
¬

A,¬A,Γ

⊥
⊥

Conclusion states are smaller than premise states, but

equisatisfiable.

An irreducible non-⊥ state is a collection of literals with no

clashes, and is therefore satisfiable.

10

'

&

$

%

Clausal (CNF) Satisfiability

A clause is a disjunction of literals (atoms or negated

atoms). Let literal l be the negation of literal l.

A set of clauses Γ can be shown satisfiable by ordered

resolution.

Assume an ordering on the literals in Γ.

Remove duplication literals l ∨ l ∨ C =⇒ l ∨ C.

Eliminate tautology clauses of the form l ∨ l ∨ C.

Γ, l ∨ C1, l ∨ C2

Γ, l ∨ C1, l ∨ C2, C1 ∨ C2

Res

The resolution rule Res is applicable only when l is maximal

in l ∨ C1, and l is maximal in l ∨ C2, and C1 ∨ C2 is not a

tautology.

11

'

&

$

%

Correctness

Each state has only a single configuration.

Check that the premise and conclusion configurations are

equisatisfiable.

Check that the conclusion configuration is smaller than the

premise.

Completeness: Given an irreducible non-⊥ configuration Γ,

build a series of partial interpretations Mi as follows:

1. Let M0 = ∅

2. If l ∨ C is the minimal clause unassigned in Mi with

maximal literal l, then if l ∨D occurs in Γ, then clearly

Mi |= C ∨D. If Mi |= C, then let Mi+1 =Mi{l← >},

else Mi+1 =Mi{l← >}.

If there are n distinct atoms in Γ, check that Mn |= Γ.

12

'

&

$

%

Equality

Let E contain equality between constants.

Assume an order ≤ between constants.

Let V be an oriented, idempotent, functional equality set

such that V (V (c)) = V (c) and if c = d ∈ V , then c ≤ d.

V . V ′ = {c = V ′(d)|c = d ∈ V } and V ◦ V ′ = (V . V ′) ∪ V ′.

c = d, E; V

E; V
if V (c) ≡ V (d)

c = d, E; V

E; V ◦ {orient(V (c) = V (d))}
if V (c) 6≡ V (d)

To check if E ` c = d, transform E; ∅ to ∅; V and check if

V (c) ≡ V (d).

13

'

&

$

%

Correctness

Check that

1. c = d and orient(c = d) are equisatisfiable.

2. c = d; V and V (c) = V (d); V are equisatisfiable.

3. V, V ′ and V ◦ V ′ are equisatisfiable.

4. If functional equality sets V and V ′ have disjoint

domains are oriented, then V ◦ V ′ is an oriented

functional equality set.

5. If V is an oriented functional equality set, V |= c = d iff

V (c) = V (d).

14

'

&

$

%

Term Equality

We are given as input a set of equalities E of the form s = t

where s and t are terms built from uninterpreted constants

and function symbols.

Inference state is a triple E; U ; V .

V is as before. U is a functional equality set with equalities

of the form c = f(c1, . . . , cn) with U . V = U .

If S = U ; V , define S[a] as

S[c] = V (c)

S[f(t1, . . . , tn)] = V (c), where

S[ti] = t′i, for 1 ≤ i ≤ n

c = f(t′1, . . . , t
′

n) ∈ U

S[f(t1, . . . , tn)] = f(t′1, . . . , t
′

n), otherwise.

15

'

&

$

%

The Inference Steps

(U ; V) ◦ {c = d} = (U . {c′ = d′}); (V ◦ {c′ = d′}), where

c′ = d′ ≡ orient(c = d).

c = d, E; U ; V

E; U ; V
if V (c) ≡ V (d)

c = d, E; U ; V

E; (U ;V) ◦ {V (c) = V (d)}
if V (c) 6≡ V (d)

(s = t){f(c1, . . . , cn)}, E; U ; V

(s = t){c}, E; U ; V
if c = f(c′

1
, . . . , c′

n
) ∈ U, c′

i
= V (ci)

(s = t){f(c1, . . . , cn)}; U ; V

(s = t){c}, E; U ∪ {c = f(c′
1
, . . . , c′n)}; V

if c = f(c′
1
, . . . , c′n) 6∈ U,

c fresh, c′
i
= V (ci) for 1 ≤ i ≤ n

E; U ;V

E; (U ;V) ◦ {c = d}
if U(c) ≡ U(d)forV (c) 6≡ V (d)

16

'

&

$

%

Correctness

To verify E |= s = t: Transform E; ∅; ∅ to irreducible ∅; U ; V ,

and check if S[s] ≡ S[t] for S = U ; V .

Termination: Either size(E) decreases, or the number of

equivalence classes in V decreases.

Check that if E; U ; V ` E′; U ′; V ′, then E; U ; V and E′; U ′; V ′

are equisatisfiable.

Completeness: Need to show that if S = U ; V is irreducible,

then S |= s = t iff S[s] ≡ S[t].

Term model construction: Check that MS(s) ≡ S[s].

MS(c) = V (c)

MS(f)(a1, . . . , an) = V (c), if c = f(a1, . . . , an) ∈ U

MS(f)(a1, . . . , an) = f(a1, . . . , an), otherwise.

17

