
'

&

$

%

Little Engines of Proof: Lecture 10

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

List solver

Configuration (E, S) with

• K a set of fresh variables (disjoint from X),

• E a set of ΣL-equalities,

• S a functional solution set.

A cons term c is a ΣL-term not containing any car(.) or

cdr(.).

In the solver rules, all terms are assumed to be canonical.

2

'

&

$

%

Elim
K, E, S

K∪{k1, k2}, R[car(x) := k1, cdr(x) := k2], R∪S

if k1, k2 /∈ K, car(x) or cdr(x) in E and R := {x = cons(k1, k2)}

Ext
K, {cons(a1, b1) = cons(a2, b2)}∪E, S

K, {a1 = a2, b1 = b2}∪E, S

Triv
K, {a = a}∪E, S

K, E, S

Comp
K, {x = c}∪E, S

K, σL({x = c}[E]), S ◦ {x = c}
x /∈ vars(c), x /∈ K, c a cons term

Bot
K, {x = c}∪E, S

⊥
x ∈ vars(c), c a cons term

Fuse
K, {k = c}∪E, S

K, {k = c}[E], S . {k = c}
k ∈ K, k /∈ vars(c), c a cons term

Rules Subst, Bot, and Fuse are applied symmetrically.

3

'

&

$

%

List Solver (Cont.)

Exercise. Show termination of the list solver rules.

Excercise. Show that all list solver rules are L-preserving.

For list equality a = b, let (∅, {σL(a) = σL(b)}, ∅) be a starting

configuration. An irreducible configuration is either ⊥ or of

the form (K, ∅, S) with S a functional solution set with

dom(S) ⊆ vars(a = b).

In the first case, define solveL(a = b) to be ⊥ and otherwise

we arbitrarily choose (using Hilbert’s ε combinator) an

irreducible configuration of the form (K, ∅, S) and define

solveL(a = b) :=S.

This is a L-solver since S L-preserves a = b.

4



'

&

$

%

Examples

(∅, {x = cons(car(x), y)}, ∅)

CarE ; ({k1, k2},

{cons(k1, k2) = cons(k1, y)},

{x = cons(k1, k2)})

Ext ; ({k1, k2}, {k1 = k1, k2 = y}, {x = cons(k1, k2)})

Triv ; ({k1, k2}, {k2 = y}, {x = cons(k1, k2)})

Fuse ; ({k1, k2}, ∅, {y = k2, x = cons(k1, k2)})

5

'

&

$

%

Finite Sequences

Have a length n associated with them. Content is indexed

from 0 to n − 1 from left to right.

• seln,i,j(.)

Selection of the j − i + 1 elements i through j

(0 ≤ i ≤ j < n)

• concn,m(., .)

Concatenation of two finite sequences of length n and

m.

• We usually omit parameters and write xn ∗ ym for

concatenation and xn[i : j] for selection.

6

'

&

$

%

Canonizer for Finite Sequences

The equality theory F is given by:

xn[0 : n − 1] = xn

x[i : j][k : l] = x[k + i : l + i]

(xn ∗ ym)[i : j] =











xn[i : j] if j < n

ym[i − n : j − n] if n ≤ i

xn[i : n − 1] ∗ ym[0 : j − 1] if i < n ≤ j

x[i : j] ∗ x[j + 1 : k] = x[i : k]

and . ∗ . is associative.

Canonizer. σF (a) is the unique normal form of the TRS

above. σF (a) is therefore a concatenation of extractions on

variables.

7

'

&

$

%

Solver for Finite Sequences

pn, qn range over terms not containing any concatenation.

xn is identified with x[0 : n − 1].

We assume all terms and equalities to be well-formed (an

example for a non-well-formed equality is x[2 : 4] = y[7 : 10]).

Interesting subcase: solve xn[j : i] = xn[l : k] (wlog j ≤ l)

j = l, i = k : valid

i < l : xn = bj−1 ∗ ai−j+1 ∗ dl−i−1 ∗ ai−j+1 ∗ en−k−1

i ≥ l : xn = bj−1 ∗ a
k−j+1

l−j ∗ dn−k−1

Fresh variables b, d, e are omitted if their respective lengths

evaluate to 0.

8



'

&

$

%

Solver for Finite Sequences (Cont.)

Dec=
{pn ∗ a = qn ∗ b} ∪ E, S

{pn = qn, a = b} ∪ E, S

Dec<
{pn ∗ a = qm ∗ b} ∪ E, S

{pn = σF (qm[0 : n − 1]), a = σF (qm[n : m − 1]) ∗ b} ∪ E, S
n < m

Dec>
pn ∗ a = qm ∗ b ∪ E, S

{qm = σF (pn[0 : m − 1]), σF (pn[m : n − 1]) ∗ a = b} ∪ E, S
n > m

Solve
xn[i : j] = a ∪ E, S

σF ({xn = b}[E]), S ◦ {xn = b}
xn /∈ subterms(a), b = ui ∗ a ∗ vn−j

Chunk1
xn[i : j] = xn[k : l] ∪ E, S

{xn[i : l] = u((l−i+1)/k−i)} ∪ E, S
i < k, (l − i + 1)/(k − i), u fresh

Chunk2
xn[i : j] = xn[k : l] ∪ E, S

{xn[i : l] = uh ∗ (vh′ ∗wh)(l−i−h+1)/(k−i)} ∪ E, S

with i < k, not (l − i + 1)x/(k − i)

h = (l − i + 1) mod (k − i), h′ = k − i − h, u, v, w fresh.

Triv
a = a ∪ E, S

E, S

9

'

&

$

%

Example

({x16[0 : 7] ∗ y8 = y8 ∗ z8}, ∅)

; ({x16[0 : 7] = y8, y8 = z8}, ∅)

; ({x16[0 : 7] = z8}, {y8 = z8})

; (∅, {y8 = z8, x16 = z8 ∗ a8})

10

'

&

$

%

Encodings and Extensions

Arrays.

updatei,n(an, x1) := an[0 : i − 1] ∗x1 ∗ an[i + 1 : n − 1]

select i,n(an) := an[i : i]

Exercise. State the finite sequence solver rules directly in

terms of the functional arrays signature above.

Strings. Add character constants to finite sequence

signature, and add canonization and solving rules

accordingly.

11

'

&

$

%

Bitvectors

• Add bitvector constants, and add canonization and

solving rules accordingly.

• Many operators such as rotation and shifting can be

encoded.

• Add bitwise operators. Canonical forms include BDDs

with xn[i : j] in conditional part. Finite sequence solver

extended with BDD solver.

• Adding finite arithmetic based on carry-lookahead

addition leads to bitwise splitting.

12



'

&

$

%

Nonfixed-sized finite sequences

Example.

1. xn ∗ 11 ∗ ym = z2 ∗ 1 ∗w2

2. xl ∗ 11 ∗ 01 = 11 ∗ 01 ∗xl

Eqn 1 solvable iff if n = 1, m = 3 or m = 1, n = 3, whereas

eqn 2 solvable iff l is even.

Splitting based on side conditions, which can be decided

using the Diophantine problem for addition and divisibility:

∃x1, . . . , xn : . . .∧ xm = xj + xk ∧ . . . ∧ xm = xj ∧ . . . ∧ xm = p ∧ . . .

Solving word problems with concatenation and variables of

unknown size is also known as Löb’s (west) or Markov’s

(east) problem.

13

'

&

$

%

Exercises

Exercise. Is the solver for nonfixed-sized finite sequences

terminating?

Exercise. Show that there is no nonfixed-sized bitvector

solver for the bitvector theory including concatenation,

extraction, and bitwise logical operations.

14


