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Elim K, B S
KU{k1,k2}, Rlcar(z):= ki, cdr(z) := k2], RUS
if ky,ko ¢ K, car(z) OF cdr(xz) in E and R:= {xz = cons(ky, ko)}
Ext K, {cons(ai,b1) = cons(az,b2)}UE, S
X
K, {a1 =ag, by = bQ}UE, S
K, =ajUE, S
Ty | K de=alus §
K,E, S
K, =c}UE, S
Comp {z=c} x ¢ vars(c),x ¢ K,c a cons term
K, U,C,({I =c}[E]), So{z=c}
K, {z =c}UE, S
Bot fx € vars(c),c a cons term
K, {k=c}UE, S
Fuse k € K,k ¢ vars(c),c a cons term
K, {k =c}[E], S>{k = c}
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List solver
Configuration (E,S) with
e K a set of fresh variables (disjoint from X),
e F a set of X -equalities,
e S a functional solution set.

A cons term c is a ¥p-term not containing any car(.) or
cdr(.).
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In the solver rules, all terms are assumed to be canonical.
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Rules Subst, Bot, and Fuse are applied symmetrically.
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List Solver (Cont.)

Exercise. Show termination of the list solver rules.
Excercise. Show that all list solver rules are L-preserving.

For list equality a =b, let (0,{o,(a) = o,(b)},0) be a starting
configuration. An irreducible configuration is either L or of
the form (K, 0, S) with S a functional solution set with
dom(S) C vars(a =b).

In the first case, define solve,(a = b) to be L and otherwise
we arbitrarily choose (using Hilbert's e combinator) an
irreducible configuration of the form (K, 0, S) and define
solve p(a = b):=S.

This is a L-solver since S L-preserves a = b.
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Examples

(@, {z = cons(car(z),y)}, 0)
CarE  ~  ({k1,k2},
{cons(k1,k2) = cons(k1,y)},
{z = cons(k1, k2)})
Ext ({k1,k2}, {k1 = k1, k2 =y}, {z = cons(k1,k2)})
Triv. ~  ({k1,k2}, {k2 =y}, {z = cons(k1,k2)})
({k1,k2}, 0, {y =ka, x = cons(k1,k2)})

¢

Fuse

¢
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/ Finite Sequences

Have a length n associated with them. Content is indexed
from 0 to n — 1 from left to right.

o sel, ()
Selection of the j —i+ 1 elements ¢ through j
(0<i<j<n)

o concpml.,.)
Concatenation of two finite sequences of length n and
m.

e We usually omit parameters and write x,, xy,, for
concatenation and xz,[i : j| for selection.
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Canonizer for Finite Sequences

The equality theory F is given by:

zp0:n—1] = =z,
zli:jllk:l] = zlk+i:l+1]
zpli: g] if j<n
(@n *ym)[i: ] = Ym[i—n:j—n] if n<id
Zpfi:n— 1] *ym[0: 7 — 1] if i<n<j
zli:jlxz[j+1:k] = z[i:k]

and .x. is associative.

Canonizer. ox(a) is the unique normal form of the TRS
above. ox(a) is therefore a concatenation of extractions on
variables.
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Solver for Finite Sequences

Pn, ¢n range over terms not containing any concatenation.

a, is identified with z[0:n — 1].

We assume all terms and equalities to be well-formed (an
example for a non-well-formed equality is z[2 : 4] = y[7 : 10]).

Interesting subcase: solve z,[j : i] = z,[l : k] (wlog j <)
j=1li=k : valid
i<l 1 mp=bjakaijprkdii1%ai jy1¥en g1

. k—j+1
i>1 ¢ oz, =0bj_ *al_j]+ xdp_p_1

Fresh variables b, d, e are omitted if their respective lengths

evaluate to 0.
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/ Solver for Finite Sequences (Cont.) \ / \

Dec {pnxa=gqn*b} U E, S Encodings and Extensions
{pn =qn, a=b} U E, S
Dec {pn*a=gqgm=b} U E, S nem
< {pn =0r(gm[0:n—1]), a=0 (gm[n:m—1])*xb} U E, S Arrays.
D Pn*a=qmxb U E, S -
ec mn m —— . y .
Z lam=or(pn0:m—1]), or(pam:n—1)xa=0b} U E, S update; ,,(an,x1) = ap[0:i—1]xz1xapli+1:n—1]
" : . — U E’ S . Py— > e
Solve enli gl =a Tn ¢ subterms(a),b = u;* a*vy_j Sel€Ctz,n(an) = apli: ]
or({zn =b}E]), So{zn =0}
zpli i jl=anlk:l] U E, S ) . ) _
Chunks = o070y g < R (i D/(k =), fresh Exercise. State the finite sequence solver rules directly in
xplijl=anlk:1] U E, S terms of the functional arrays signature above.
ks e T = un # (o 2 won) /G0y U B, 5
’ Strings. Add character constants to finite sequence
with ¢ < k, not (I — i+ L)z /(k — i) X . i .
signature, and add canonization and solving rules
h=(—i+1)mod(k—i), h'/ =k —i— h, u, v, w fresh. .
accordingly.
. a=a U E, S
Triv _
E, S

\_ / \_ /
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Bitvectors

e Add bitvector constants, and add canonization and
Example solving rules accordingly.

e Many operators such as rotation and shifting can be

encoded.
({x16[0: 7] *xys = ys x 28}, 0)
~ ({160 : T = ys, ys = 28}, 0) e Add bitwise operators. Canonical forms include BDDs
~ ({216[0: 7] = 28}, {ys = zs}) with z,[i : j] in conditional part. Finite sequence solver
~s (@7 {ys =28, Tig = 28 *as}) extended with BDD solver.

e Adding finite arithmetic based on carry-lookahead
addition leads to bitwise splitting.
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/ Nonfixed-sized finite sequences \
Example.

1. xp*1ly %y, = 290x Lxws

2. ;%11 x0; =11 %01 %2y

Eagn 1 solvable iff if n=1, m =3 or m =1, n =3, whereas
egn 2 solvable iff [ is even.

Splitting based on side conditions, which can be decided
using the Diophantine problem for addition and divisibility:

i, T AT =T TN AT =T AN AT, =DA L

Solving word problems with concatenation and variables of
unknown size is also known as Lob’'s (west) or Markov's

\(east) problem. /
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EXxercises

Exercise. Is the solver for nonfixed-sized finite sequences
terminating?

Exercise. Show that there is no nonfixed-sized bitvector
solver for the bitvector theory including concatenation,
extraction, and bitwise logical operations.
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