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List solver

Configuration (E, S) with

• K a set of fresh variables (disjoint from X),

• E a set of ΣL-equalities,

• S a functional solution set.

A cons term c is a ΣL-term not containing any car(.) or

cdr(.).

In the solver rules, all terms are assumed to be canonical.
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Elim
K, E, S

K∪{k1, k2}, R[car(x) := k1, cdr(x) := k2], R∪S

if k1, k2 /∈ K, car(x) or cdr(x) in E and R := {x = cons(k1, k2)}

Ext
K, {cons(a1, b1) = cons(a2, b2)}∪E, S

K, {a1 = a2, b1 = b2}∪E, S

Triv
K, {a = a}∪E, S

K, E, S

Comp
K, {x = c}∪E, S

K, σL({x = c}[E]), S ◦ {x = c}
x /∈ vars(c), x /∈ K, c a cons term

Bot
K, {x = c}∪E, S

⊥
x ∈ vars(c), c a cons term

Fuse
K, {k = c}∪E, S

K, {k = c}[E], S . {k = c}
k ∈ K, k /∈ vars(c), c a cons term

Rules Subst, Bot, and Fuse are applied symmetrically.
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List Solver (Cont.)

Exercise. Show termination of the list solver rules.

Excercise. Show that all list solver rules are L-preserving.

For list equality a = b, let (∅, {σL(a) = σL(b)}, ∅) be a starting

configuration. An irreducible configuration is either ⊥ or of

the form (K, ∅, S) with S a functional solution set with

dom(S) ⊆ vars(a = b).

In the first case, define solveL(a = b) to be ⊥ and otherwise

we arbitrarily choose (using Hilbert’s ε combinator) an

irreducible configuration of the form (K, ∅, S) and define

solveL(a = b) :=S.

This is a L-solver since S L-preserves a = b.
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Examples

(∅, {x = cons(car(x), y)}, ∅)

CarE ; ({k1, k2},

{cons(k1, k2) = cons(k1, y)},

{x = cons(k1, k2)})

Ext ; ({k1, k2}, {k1 = k1, k2 = y}, {x = cons(k1, k2)})

Triv ; ({k1, k2}, {k2 = y}, {x = cons(k1, k2)})

Fuse ; ({k1, k2}, ∅, {y = k2, x = cons(k1, k2)})
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Finite Sequences

Have a length n associated with them. Content is indexed

from 0 to n − 1 from left to right.

• seln,i,j(.)

Selection of the j − i + 1 elements i through j

(0 ≤ i ≤ j < n)

• concn,m(., .)

Concatenation of two finite sequences of length n and

m.

• We usually omit parameters and write xn ∗ ym for

concatenation and xn[i : j] for selection.

6

'

&

$

%

Canonizer for Finite Sequences

The equality theory F is given by:

xn[0 : n − 1] = xn

x[i : j][k : l] = x[k + i : l + i]

(xn ∗ ym)[i : j] =











xn[i : j] if j < n

ym[i − n : j − n] if n ≤ i

xn[i : n − 1] ∗ ym[0 : j − 1] if i < n ≤ j

x[i : j] ∗ x[j + 1 : k] = x[i : k]

and . ∗ . is associative.

Canonizer. σF (a) is the unique normal form of the TRS

above. σF (a) is therefore a concatenation of extractions on

variables.
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Solver for Finite Sequences

pn, qn range over terms not containing any concatenation.

xn is identified with x[0 : n − 1].

We assume all terms and equalities to be well-formed (an

example for a non-well-formed equality is x[2 : 4] = y[7 : 10]).

Interesting subcase: solve xn[j : i] = xn[l : k] (wlog j ≤ l)

j = l, i = k : valid

i < l : xn = bj−1 ∗ ai−j+1 ∗ dl−i−1 ∗ ai−j+1 ∗ en−k−1

i ≥ l : xn = bj−1 ∗ a
k−j+1

l−j ∗ dn−k−1

Fresh variables b, d, e are omitted if their respective lengths

evaluate to 0.
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Solver for Finite Sequences (Cont.)

Dec=
{pn ∗ a = qn ∗ b} ∪ E, S

{pn = qn, a = b} ∪ E, S

Dec<
{pn ∗ a = qm ∗ b} ∪ E, S

{pn = σF (qm[0 : n − 1]), a = σF (qm[n : m − 1]) ∗ b} ∪ E, S
n < m

Dec>
pn ∗ a = qm ∗ b ∪ E, S

{qm = σF (pn[0 : m − 1]), σF (pn[m : n − 1]) ∗ a = b} ∪ E, S
n > m

Solve
xn[i : j] = a ∪ E, S

σF ({xn = b}[E]), S ◦ {xn = b}
xn /∈ subterms(a), b = ui ∗ a ∗ vn−j

Chunk1
xn[i : j] = xn[k : l] ∪ E, S

{xn[i : l] = u((l−i+1)/k−i)} ∪ E, S
i < k, (l − i + 1)/(k − i), u fresh

Chunk2
xn[i : j] = xn[k : l] ∪ E, S

{xn[i : l] = uh ∗ (vh′ ∗wh)(l−i−h+1)/(k−i)} ∪ E, S

with i < k, not (l − i + 1)x/(k − i)

h = (l − i + 1) mod (k − i), h′ = k − i − h, u, v, w fresh.

Triv
a = a ∪ E, S

E, S
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Example

({x16[0 : 7] ∗ y8 = y8 ∗ z8}, ∅)

; ({x16[0 : 7] = y8, y8 = z8}, ∅)

; ({x16[0 : 7] = z8}, {y8 = z8})

; (∅, {y8 = z8, x16 = z8 ∗ a8})
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Encodings and Extensions

Arrays.

updatei,n(an, x1) := an[0 : i − 1] ∗x1 ∗ an[i + 1 : n − 1]

select i,n(an) := an[i : i]

Exercise. State the finite sequence solver rules directly in

terms of the functional arrays signature above.

Strings. Add character constants to finite sequence

signature, and add canonization and solving rules

accordingly.
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Bitvectors

• Add bitvector constants, and add canonization and

solving rules accordingly.

• Many operators such as rotation and shifting can be

encoded.

• Add bitwise operators. Canonical forms include BDDs

with xn[i : j] in conditional part. Finite sequence solver

extended with BDD solver.

• Adding finite arithmetic based on carry-lookahead

addition leads to bitwise splitting.
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Nonfixed-sized finite sequences

Example.

1. xn ∗ 11 ∗ ym = z2 ∗ 1 ∗w2

2. xl ∗ 11 ∗ 01 = 11 ∗ 01 ∗xl

Eqn 1 solvable iff if n = 1, m = 3 or m = 1, n = 3, whereas

eqn 2 solvable iff l is even.

Splitting based on side conditions, which can be decided

using the Diophantine problem for addition and divisibility:

∃x1, . . . , xn : . . .∧ xm = xj + xk ∧ . . . ∧ xm = xj ∧ . . . ∧ xm = p ∧ . . .

Solving word problems with concatenation and variables of

unknown size is also known as Löb’s (west) or Markov’s

(east) problem.
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Exercises

Exercise. Is the solver for nonfixed-sized finite sequences

terminating?

Exercise. Show that there is no nonfixed-sized bitvector

solver for the bitvector theory including concatenation,

extraction, and bitwise logical operations.
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