
'

&

$

%

Little Engines of Proof: Lecture 1

N. Shankar, L. de Moura, H. Ruess, A. Tiwari

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/LEP.html

Computer Science Laboratory

SRI International

Menlo Park, CA

1

'

&

$

%

Why Automate Proof?

Computers can calculate numerical results as well as

symbolic ones.

From very early on, philosophers have dreamt of machines
that can reason. Leibniz spoke thus of the consequence of
a reasoning machine:

What must be achieved is in fact this: that every paralogism

be recognized as an error of calculation, and every sophism

when expressed in this new kind of notation, appear as a

solecism or barbarism, to be corrected easily by the laws of

this philosophical grammar.

Once this is done, then when a controversy arises,

disputation will no more be needed between two philosophers

than between two computers. It will suffice that, pen in

hand, they sit down to their abacus and (calling in a friend, if

they so wish) say to each other: let us calculate.

2

'

&

$

%

Why Automate Proof?

In more recent times, Vannevar Bush
(http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm) in a
penetratingly prescient 1945 article entitled As We May
Think wrote:

Logic can become enormously difficult, and it would

undoubtedly be well to produce more assurance in its use.

. . . We may some day click off arguments on a machine with

the same assurance that we now enter sales on a cash

register.

Or hear Alfred, Lord Tennyson declaim:

O purblind race of miserable men,

How many among us at this very hour

Do forge a lifelong trouble for ourselves,

By taking true for false, and false for true!

3

'

&

$

%

Calculating Proofs

A big surprise of the modern world is everybody needs proof.

In some areas of mathematics, proofs might require more

creativity than labor to when constructed by hand, but

most applications of proof construction require automation.

Within computing, application areas include program

analysis, logic and constraint programming, hardware

verification, databases, and the semantic web.

In science, deduction makes it possible to calculate the

consequences of mathematical models through deduction

rather than simulation.

4

'

&

$

%

Historical Background

Logic itself dates back to 4th century BC with Aristotle’s

attempt to analyze sound reasoning.

Leibniz in the 17th century had great ambitions for a

symbolic logic but the subject only blossomed out of the

19th century work of Boole, de Morgan, Dedekind,

Frege, Peano, and Pierce.

The idea of thinking engine is a long-held romantic fancy,

but serious efforts at automated deduction had their origin

in the 1950s with the work of Davis, Newell/Shaw/Simon

Gilmore, Wang, Prawitz, and Kanger.

The more modest endeavor of automated proof checking

had its origin in the work of McCarthy, de Bruijn, and

Bledsoe in the 1960s, and Milner in the 1970s.

5

'

&

$

%

Early History of Automated Reasoning

1954: Martin Davis programs a Presburger Arithmetic

decision procedure.

Its great triumph was to prove that the sum of two even

numbers is even. Martin Davis

1957: Newell, Shaw, and Simon’s logic theorist (LT):

Introduced subgoaling, substitution, replacement, and

forward and backward chaining, with human-oriented

heuristics. Applied to theorems from Russell &

Whitehead’s Principia Mathematica.

Many early papers are collected in Automated Reasoning: Vols. 1 & 2,

edited by Siekmann and Wrightson.

The Handbook of Automated Reasoning, edited by Robinson and

Voronkov, is a good modern summary.

6

'

&

$

%

Wang versus Newell–Shaw–Simon

1958-60: Hao Wang showed that many LT proofs (and

others from Russell/Whitehead) were in easily decidable

fragments: propositional logic, Bernays–Schönfinkel.

Hundreds of these theorems could be proved in minutes.

The most interesting lesson from these results is perhaps

that even in a fairly rich domain, the theorems actually

proved are mostly ones which call on a very small portion of

the available resources of the domain. —Hao Wang

7

'

&

$

%

Wang versus Newell–Shaw–Simon

The controversy referred to may be succinctly characterized

as being between the two slogans: “Simulate people” and

“Use mathematical logic”. . . . Thus as early as 1961 Minsky

remarked

. . . it seems clear that a program to solve real

mathematical problems will have to combine the

mathematical sophistication of Wang with the

heuristic sophistication of Newell, Shaw, and Simon.

—Martin Davis

8

'

&

$

%

Hao Wang’s Programme: Inferential Analysis

In contrast with pure logic, the chief emphasis of inferential

analysis is on the efficiency of algorithms, which is usually

obtained by paying a great deal of attention to the detailed

structure of problems and their solutions, to take advantage

of possible systematic short cuts.

.

.

.

That proof procedures for elementary logic can be

mechanized is familiar. In practice, however, were we slavishly

to follow these procedures without further refinements, we

should encounter a prohibitively expansive element. . . . In this

way we are led to a closer study of reduction procedures and

of decision procedures for special domains, as well as of proof

procedures of more complex sorts. —Hao Wang

9

'

&

$

%

Big Engines versus Little Engines

Much of the focus in automated deduction has been on

finding uniform procedures for large classes of theorems.

For example, the resolution method is a simple, sound and

complete inference procedure for first-order logic.

Resolution-based methods have had significant successes

solving open problems in diverse branches of mathematics.

However, big engines are not always predictable enough for

serious applications — they do a poor job of exploiting

domain knowledge.

The little engines ideology is based on composing small

theory-specific engines.

10

'

&

$

%

Some Little Engines

• Propositional satisfiability solvers

• Binary Decision Diagrams

• Congruence Closure for Equality Propagation

• Real and Integer linear arithmetic solvers

• Decision procedures for lists, arrays, bit-vectors.

• Presburger arithmetic

• Monadic Second Order Logic

11

'

&

$

%

Applications of Automated Deduction

The aggregate of all applications of logic will not compare with the

treasure of the pure theory itself. For when one has surveyed the whole

subject, one will see that the theory of logic insofar as we attain to it, is

the vision and the attainment of that Reasonableness for the sake of

which the Heavens and the Earth have been created. C. S. Peirce

Already, in the 1970s, advances in deduction led to the

introduction of the logic programming paradigm.

In the last fifteen years, as proof engines have become more

powerful, there have been a growing number of applications

of automated deduction in hardware and software

verification, and in solving planning and search problems.

We want to focus on embedded applications of deduction.

12

'

&

$

%

Course Outline

• Programming prerequisites

• Background in Logic and Recursion Theory

• Propositional Logic

• Ground Decision Procedures for Equality and

Arithmetic Inequality

• Combination Decision Procedures for the union of

theories

• Quantifier Elimination

• Rewriting

• Proof search in quantificational logic

• Applications

13

'

&

$

%

What is Cruel and Unusual?

• Focus on little engines that are theory-specific, and

their various combinations.

• Develop theoretical foundations emphasizing simplicity,

modularity, and ease of implementation.

• Survey innovative applications of embedded deduction.

• Most of the material is based on recent research, and

many open research problems/areas remain.

14

'

&

$

%

Sample Conjectures

1. ¬p ∧ (q ∨ p) ⇒ q

2. f(x) = f(f(f(x))) ⇒ f(f(f(f(f(x))))) = f(x)

3. x + y = 19 ∧ x − y = 7 ⇒ (x = 13 ∧ y = 6)

4. x + 7 = 2 ∗ y + 3 ∗ z ⇒ f(2 ∗ x − 6 ∗ z) = f(4 ∗ y − 14)

5. 2 ∗ x ≤ 3 ∗ y + 1 ∧ 2 ∗ z ≤ 3 ∗ x − 1 ⇒ 4 ∗ z ≤ 9 ∗ y + 5

6. car(x) = cdr(x) − 4 ∧ x = cons(y, 7) ⇒ y = 3

7. (∃x, y : x 6= y) ⇒ (∀x : ∃y : x 6= y)

8. ∀i, j : (∃i′ : 2∗ i′ = i)∧ (∃j′ : 2∗ j′ = j) ⇒ (∃k : 2∗k− i− j = 0)

for integers i, j, k, i′, j′.

15

'

&

$

%

What is Logic?

• Logic is the art and science of effective reasoning.

• How can we draw general and reliable conclusions from

a collection of facts?

• Formal logic: Precise, syntactic characterizations of

well-formed expressions and valid deductions.

• Formal logic makes it possible to calculate

consequences at the symbolic level.

• Computers can be used to automate such symbolic

calculations.

16

'

&

$

%

What is Logic?

Logic studies the relationship between language, meaning,

and (proof) method.

A logic consists of a language in which (well-formed)

sentences are expressed.

A semantics that distinguishes the valid sentences from the

refutable ones.

A proof system for constructing arguments justifying valid

sentences.

Examples of logics include propositional logic, equational

logic, first-order logic, higher-order logic, and modal logics.

17

'

&

$

%

What is a Logical Language?

A language consists of logical symbols whose interpretations

are fixed, and non-logical ones whose interpretations vary.

These symbols are combined together to form well-formed

formulas.

Thus, in propositional logic PL, the connectives ∧, ¬, and ∨

have a fixed interpretation, whereas the constants p, q, r

may be interpreted at will.

18

'

&

$

%

Propositional Logic

Formulas: φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⇒ φ2.

P is a class of propositional variables: p0, p1,

Examples: p0, ¬p0, p0 ∨ ¬p1, p0 ∨ p1 ⇒ (¬p3 ∧ p4).

Exercise 1 Using a programming language, define a

representation for propositional formulas and a checker for

well-formed propositional formulas.

19

'

&

$

%

Interpretation

An interpretation M assigns truth values {>,⊥} to

propositional variables.

Let A and B range over PL formulas.

M[[φ]] is the meaning of φ in M and is computed using truth

tables:

φ A B ¬A A ∨ B A ∧ ¬A A ⇒ B A ⇒ (B ∨ A)

M1(φ) ⊥ ⊥ > ⊥ ⊥ > >

M2(φ) ⊥ > > > ⊥ > >

M3(φ) > ⊥ ⊥ > ⊥ ⊥ >

M4(φ) > > ⊥ > ⊥ > >

20

'

&

$

%

Satisfiability and Validity

A formula A is satisfiable if it has a model, i.e., an

interpretation M under which the formula is logically true.

We write M |= A when this is the case. E.g., M1 |= ¬A.

For example, A ∧ ¬A is unsatisfiable, but all the other

formulas are satisfiable.

A formula A is valid if it is logically true under any

interpretation, written as |= A.

For example, A ⇒ (B ∨ A) is valid, but the other formulas

are not.

A propositional formula is valid if and only if its negation is

unsatisfiable. Otherwise, the formula is invalid, i.e., its

negation is satisfiable.

21

'

&

$

%

Equivalence

Two formulas A and B are equivalent, A ⇐⇒ B, if their

truth values agree in each interpretation.

Exercise 2 Prove that the following are equivalent

(TFAE):

1. ¬¬A ⇐⇒ A

2. A ⇒ B ⇐⇒ ¬A ∨ B

3. ¬(A ∧ B) ⇐⇒ ¬A ∨ ¬B

4. ¬(A ∨ B) ⇐⇒ ¬A ∧ ¬B

5. ¬A ⇒ B ⇐⇒ ¬B ⇒ A

22

'

&

$

%

Normal Forms

A formula where negation is applied only to propositional

atoms is said to be in negation normal form (NNF).

A literal is either a propositional atom or its negation.

A formula that is a multiary conjunction of multiary

disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary

conjunctions of literals is in disjunctive normal form (DNF).

Exercise 3 Show that every propositional formula is

equivalent to one in NNF, CNF, and DNF.

Exercise 4 Show that every n-ary Boolean function can be

expressed using just ¬ and ∨.

23

'

&

$

%

Proofs and Theorems

For propositional formulas, it is possible to do this by

exhaustive evaluation, but this is impossible when the

domains involved are infinite.

Proofs provide a finitary means for demonstrating validity.

Proofs are constructed starting from axiom formulas using

inference rules.

A proof system is an inductive definition of a provability

judgement that asserts that

1. Axioms are provable.

2. The conclusion of the application of an inference rule

to provable premises, is provable.

3. Only formulas that are derived according to rules 1 and

2 are provable.

24

'

&

$

%

A Propositional Proof System

A sequent has the form Γ ` ∆.

Γ is the set of antecedent formulas.

∆ is the set of consequent formulas.

A sequent Γ ` ∆ captures the judgement:
∧

Γ ⇒
∨

∆ is

provable.

A formula A is provable if the judgement ` A can be derived

in the proof system.

25

'

&

$

%

A Propositional Proof System: LK0

Left Right

Ax
Γ, A ` A, ∆

¬
Γ ` A,∆

Γ,¬A ` ∆

Γ, A ` ∆

Γ ` ¬A,∆

∨
Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨ B ` ∆

Γ ` A, B, ∆

Γ ` A ∨ B, ∆

∧
Γ, A, B ` ∆

Γ, A ∧ B ` ∆

Γ ` A, ∆ Γ ` B, ∆

Γ ` A ∧ B, ∆

⇒
Γ, B ` ∆ Γ ` A, ∆

Γ, A ⇒ B ` ∆

Γ, A ` B, ∆

Γ ` A ⇒ B, ∆

Cut
Γ ` A, ∆ Γ, A ` ∆

Γ ` ∆

26

'

&

$

%

Soundness and Completeness

A proof system is sound if all provable formulas are valid,

i.e., ` A implies |= A.

Exercise 5 Demonstrate the soundness of LK0.

A proof system is complete if all valid formulas are

provable, i.e., |= A implies ` A. In other words, any

unprovable formula must be satisfiable.

Exercise 6 Demonstrate the completeness of LK0.

A set of formulas Γ is consistent iff there is no formula A in

Γ such that Γ ` ¬A.

A logic is compact if any set of sentences Γ is satisfiable if

all finite subsets of it are.

Exercise 7 Demonstrate the compactness of PL.

27

