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The expression of music, language and physical motor skills share the need to execute 
well-learned plans of sequential behavior.  We can think of each of these as governed by a set of 
syntactic principles that instantiate organizational rules.  From a computational perspective, it has 
been frequently observed that a fair amount of apparently rule-driven behavior can be captured 
by simple statistical learning models that identify sequential dependencies within frequently 
repeated sequences.  Across many paradigms, the basal ganglia has been a brain region closely 
associated with this type of learning, suggesting that a common computational mechanism in this 
region may be involved in many types of syntax.  Computational models that do statistical 
learning can be based on simple Bayesian statistical principles or simple recurrent connectionist 
networks.  Using set of recent experiments examining skill learning in a novel task (SISL; Serial 
Interception Sequence Learning), successes and failures of the models to capture key learning, 
transfer and interference effects will be used to identify candidate mechanisms for neutrally 
plausible models of sequential learning.  These mechanisms may eventually explain key 
challenges in the learning of syntax in language, music structure or sequential skills. 

 

1 Introduction 
Lashley (1951) proposed that the ability to sequence actions is a quintessential human 

cognitive ability.  Across all domains that follow sequential structure, there are constraints on 
effective ordering that amount to domain-specific versions of syntactic processing.  Syntax 
typically refers to the rule system that governs language processing, but we can think of 
constraints in other domains such as motor sequence planning or music as syntactic rules in those 
domains. 

Over the past 10-15 years, increasing attention has been paid to statistical learning 
mechanisms as possibly playing a major role in the early development of language.  Saffran et al 
(2003) reviewed findings that infants can extract the statistical structure of sound sequences and 
suggested that this ability was critical to language learning.  In parallel, a large number of studies 
have examined statistical learning in perceptual-motor sequences in adults (e.g., Cleeremans, 
1998) finding that statistical regularities are extracted incidentally and without awareness.  
Recently, Perruchet & Pacton (2006) reviewed both research areas and suggested that the 



commonalities in findings may very well reflect a common learning mechanism.  Thus, the 
ability to implicitly extract statistical regularities from a practiced motor task may depend on the 
same basic neural learning mechanism that supports the acquisition of language structure from 
the environment. 

From the perspective of the neural systems of the brain, a common mechanism for both 
language learning and motor learning might be surprising considering that the cortical areas 
supporting these tasks are distinct.  However, language and motor regions both have connections 
to the basal ganglia in reciprocal loops (Middleton & Strick, 2000) that could potentially serve a 
similar function for identifying statistical regularities among experienced elements.  In support of 
this idea, damage to the basal ganglia disrupts the ability to learn statistical structure in 
perceptual-motor sequence learning (Siegert et al., 2006) and also can disrupt rule-governed 
language use (Longworth et al., 2004). Studying the operating characteristics of the learning 
mechanism operating within the basal ganglia can therefore potentially indicate how syntax is 
learned across different cognitive domains. 

 

2 Sequence Learning 
We have recently reported a novel task for 

observing rapid, implicit sequence learning in the 
laboratory (Sanchez, Gobel & Reber, 2010). During 
the Serial Interception Sequence Learning (SISL) 
task, participants attempt to time a motor response to 
coincide with a cue moving into a target zone on the 
computer screen.  Participants are not told that the 
cues follow a repeating sequence that requires them 
to make a regular repeating sequence of motor 
responses.  However, participants exhibit knowledge 
of the covert repeating sequence by performing the 
task at higher levels of accuracy than when the cues 
follow a random order.  This improved performance 
ability occurs even when participants are unaware of 
the fact that the cues followed a repeating sequence at 
all. 

The SISL task provides an experimental 
technique for examining the process of statistical 
learning and identifying the operating characteristics of 
this process.  In a recent report (Sanchez & Reber, 
submitted) we examined whether this type of learning 
could be extended to much longer repeating sequences 
than had previously been studied.  Virtually all 
previous work on repeating perceptual-motor 
sequences had looked at repeating sequences with up to 12 elements, but not more.  While 
language is typically analyzed in sentences (which have relatively low numbers of constituent 

Figure 1. The Serial Interception 
Sequence Learning (SISL) task. Circular 
cues scroll vertically across a screen 
towards one of four target zones marked 
as rings. Participants press the 
corresponding key(s) (D, F, J, or K) on the 
keyboard and attempt to time their 
responses so that the key is pressed just as 
the cue moves through the target zone.  



element words), musical structures can be much longer.  If a common mechanism supports 
statistical learning across domains, this mechanism should be capable of learning longer 
sequences. 

Extending the paradigm to look at sequences that were 30, 40, 50 or 60 items long, we 
found robust learning of all but the 60-item sequences after a single hour-long training session.  
We hypothesized that one hour was insufficient practice with the longest sequences and in a 
second experiment examined learning of 60, 70, 80 and 90 item sequences over 2 sessions (2 
hours) of training.  In this second experiment, we found robust learning of 80-item sequences, 
although learning of 90-item sequences was only marginal (possibly reflecting insufficient time 
to practice the longer sequences even in 2 sessions). 

While these results suggested that there is no immediate length-based capacity 
constraint in the human statistical learning mechanism, the underlying statistics that need to be 
tracked were not extremely complex.  Although the training sequences were all balanced across 
the needed motor operators, participants could learn the sequence by acquiring first and second-
order conditional statistics among motor elements that require tracking on the order of 1000 types 
of occurrences.  While this is potentially a lot of information, it is much smaller than would be 
needed to track statistical relationships between language elements. 

In a third experiment, as a challenge to the statistical learning capability of the human 
basal ganglia, we increased the amount of irrelevant noise present during training.  This 
manipulation should dramatically reduce the learning rate of a simple statistical computational 
mechanism.  For example, when the repeating sequence contains the fragment “DJK” repeatedly, 
this can be learned statistically 
that there is a high probability 
that DJ is followed by K.  
However, increasing irrelevant 
noise increases the occurrences 
of fragments “DJF” and “DJD” 
making the repeating fragment 
less detectable.  This should lead 
to a lower learning rate, that is, 
less should be learned with each 
repetition of the sequence 
because as noise increases, there 
are a lot of irrelevant statistics to 
overcome (unlearn).  
Interestingly, we did not find 
that increasing the amount of 
irrelevant noise reduced the learning 
rate.  In fact, we found the learning 
rate to be log-linear with practice 
across all the conditions in all of our 
learning experiments (Figure 2) regardless of sequence length or irrelevant noise. 

While most previous sequence learning results suggested that a simple statistical 
learner could mimic human sequence learning (e.g., Cleeremans & McClelland, 1991, which 

Figure 2. Scatterplot of the sequence-specific learning by 
log10 of trained sequence repetitions. The three experiments 
and previous data are distinguished by different marker fills. 
The amount of sequence knowledge expressed at test is 
remarkably linear with the log of the number of training 
repetitions of the sequence experienced. 



used a Simple Recurrent Network to model human learning), this type of model should be slowed 
by experience with irrelevant statistical noise.  The fact that humans do not learn more slowly in 
this condition suggests that the human statistical learning mechanism is augmented beyond basic 
Bayesian statistics and a more complex computational model of sequence learning is needed to 
account for learning in the basal ganglia. 

A simple statistical learning model would also encounter difficulty with learning 
difference sequences in succession.  In a recent study (Sanchez, Fraser & Reber, in preparation) 
we examined learning of 3 distinct sequences over a 2 day period.  Participants first learned an 
‘A’ sequence in 25 minutes of practice.  The repeating sequence was changed to a ‘B’ sequence 
without any indication to the participants for the next 25 minutes of practice.  Participants 
returned the next day to train on a ‘C’ sequence and then took tests of sequence knowledge for all 
3 sequences.  A simple statistical learning mechanism will fail to learn in this design.  As shown 
in Figure 3, if one is just tracking the necessary statistical probabilities (Panels A & B), learning 
additional sequences is impaired by prior learning.  The previous statistics, e.g. from sequence A, 
create proactive interference in trying to learn the relevant statistics for sequence B (and C).  In 
Panel B, the effect of recency-weighting for more recent experience is shown.  Learning now 
proceeds more normally for the B and C sequences, but this learning creates retrograde 
interference for the previously learned sequences (essentially catastrophic interference).  Panel C 
shows the behavioral data and that participants acquire and retain information about all 3 

sequences equally well. 
These results suggest that a computational model that mimics learning of statistical 

structure in the basal ganglia needs to be more complex than just tracking minimal Bayesian 
statistics such as the SRN model of Cleeremans & McClelland (1991).  This type of model could 
be augmented to better match human performance data in several different ways.  The model 

Figure 3.  (Panels A, B) Proactive interference in statistical learning.  After learning sequence A 
(blue), sequences B and C are not learned (A) or retained at test (B). (Panels C, D).  Retrograde 
interference in statistical learning.  When the learning mechanism favors more recent information, all 
3 sequences appear to be learned (C) but sequences A and B are not retained to the test (D).  (Panel 
E) Performance of human participants. Human participants learn all 3 sequences and retain them to 
test, challenging simple Bayesian statistical learning models. 
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could be extended to learn higher-orders statistics than are strictly necessary to perform the task.  
Some chunking models (e.g., Graybiel, 1998) could function this way.  Another possibility is to 
use a hierarchical Bayesian model that allows for the possibility of detecting the switch to a novel 
sequence and changing the statistical representation to avoid interference.  An important question 
will be which of these mechanisms is incorporated in the basal ganglia and how these 
mechanisms are related to learning structure in language syntax and music. 

3 Abstraction 
An additional important challenge to the idea that statistical learning in the basal 

ganglia is related to rule-learning in language is the question about the flexibility and level of 
abstraction in the representation of the statistics.  Marcus et al. (1999) showed that infant 
statistical language learning extended to abstract sequences based on relational comparison 
among items.  This type of finding cannot easily be represented in a simple connectionist or 
Bayesian model of learning and has been proposed to be a flaw in that theoretical approach.  In 
our own work on sequence learning, we have found that the perceptual-motor sequence learning 
is extremely specific to the practiced sequence.  Sequence-specific performance gains did not 
transfer to sequences of the same actions with slightly modified inter-response timing (Gobel, 
Sanchez & Reber, in press). 

A crucial future direction for this area of research will be to explore the degree to 
which abstract, relational statistical learning can occur for motor sequences.  This type of 
processing is fundamental to language processing.  If abstract sequential information can be 
acquired by the same mechanisms that learn fixed repeating sequences (or fixed inter-item 
probabilities), then it is a viable hypothesis that there is a core syntax learning mechanism in the 
basal ganglia.  If motor sequence learning is restricted to statistical information among fixed 
items, then this element of statistical learning may overlap across the domains of motor, language 
and music.  However, language may be relatively unique in also depending on additional types of 
learning to support more abstract rules, e.g., about orders of syntactic categories. 

4 Conclusion 
The examination of learning of perceptual-motor sequences in the laboratory 

demonstrates some key operating characteristics of the brain’s sequence learning mechanism.  
The mechanism by which the basal ganglia extracts statistical information automatically and 
implicitly from the environment shows is robust to long sequences, noisy training conditions and 
proceeds in a manner that is resistant to interference from other learned structures.  This system 
may be sufficiently computationally complex to play a significant role in acquisition of syntactic 
structures in domains such as language and music.  Important remaining questions concern the 
specificity and ability for this system to learn more abstract relational rules that are required for 
language learning.   
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