
Thesis for the degree of Doctor of Philosophy

On the Fundamentals of Analysis and Detection
of Computer Misuse

Ulf Lindqvist

Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden 1999

ii

On the Fundamentals of Analysis and Detection of Computer Misuse
Ulf Lindqvist
ISBN 91-7197-832-1

Copyright c 1999 by Ulf Lindqvist. All rights reserved.
Papers A, C, D, and G: Copyrightc 1996–1999 by IEEE. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 1530
ISSN 0346-718X

School of Electrical and Computer Engineering
Chalmers University of Technology, Göteborg, Sweden
Technical report 370
ISSN 0282-5406

Department of Computer Engineering
Chalmers University of Technology
SE-412 96 G̈oteborg
Sweden
Telephone: +46 (0)31–772 10 00
www.ce.chalmers.se

The author can be reached at Ulf.Lindqvist@computer.org

Cover:
Some categories of security threats. Photo by the author.

Chalmers Reproservice
Göteborg, Sweden 1999

iii

On the Fundamentals of Analysis and Detection
of Computer Misuse

Ulf Lindqvist
Department of Computer Engineering
Chalmers University of Technology

Abstract

Most computerized information systems we use in our everyday lives provide
very little protection against hostile manipulation. At the same time, there is a
rapidly increasing dependence on services provided by these computer systems and
networks, and security is thus not only an interesting and challenging research dis-
cipline but has indeed developed into a critical issue for society.

This thesis presents research focused on the fundamental technical issues of com-
puter misuse, aimed at manual analysis and automatic detection. The objective is to
analyze and understand the technical nature of security threats and, on the basis of
this, develop efficient generic methods that can improve the security of existing and
future systems. The work is performed from the perspective of system and informa-
tion owners, a different approach compared to the many previous studies that focus
on system developers only. The analysis is based mainly on empirical data from
student experiments but also uses data from a security analysis, data recorded from
a network server and data produced for an intrusion detection evaluation project.
Throughout this work, systematic categorization of data has been used as the main
method for data analysis.

The results of this work include new findings about the behavior of so-called in-
sider attackers, a dangerous but sometimes neglected security threat. For systems
that include commercial off-the-shelf components, underlying causes of system vul-
nerabilities are identified and discussed, a systematic procedure for vulnerability
remediation is developed and a risk management strategy is proposed. Further-
more, the aspects of computer misuse that are fundamental for automatic detection
are identified and analyzed in detail. The efficiency and usability of a generic ex-
pert system tool for automatic misuse detection is verified empirically. A general
database format for documenting attack types and for automatically updating de-
tection tools is outlined.

Keywords: computer security, network security, taxonomy, intrusion,
vulnerability, risk, intrusion detection.

iv

This page is intentionally left blank.

v

List of publications

This thesis is based on work reported in the following appended papers, referred
to by capital letters in the text:

Part I: Analysis of the nature of security threats

A Ulf Lindqvist, Tomas Olovsson, and Erland Jonsson. An analysis of a se-
cure system based on trusted components. InProceedings of the Eleventh
Annual Conference on Computer Assurance (COMPASS ’96), pp. 213–223,
Gaithersburg, Maryland, June 17–21, 1996.

B Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. Analysis of selected com-
puter security intrusions: In search of the vulnerability. Technical Report 275,
Department of Computer Engineering, Chalmers University of Technology,
Göteborg, Sweden, 1996. Presented at NORDSEC – First Nordic Workshop
on Secure Computer Systems, Göteborg, Sweden, Nov. 7–8, 1996.

C Ulf Lindqvist and Erland Jonsson. How to systematically classify computer
security intrusions. InProceedings of the 1997 IEEE Symposium on Security
and Privacy, pp. 154–163, Oakland, California, May 4–7, 1997.

D Ulf Lindqvist and Erland Jonsson. A map of security risks associated with
using COTS.Computer, Vol. 31, No. 6, pp. 60–66, June 1998.

Part II: Methods to improve system security

E Ulf Lindqvist, Per Kaijser, and Erland Jonsson. The remedy dimension of
vulnerability analysis. InProceedings of the 21st National Information Sys-
tems Security Conference, pp. 91–98, Arlington, Virginia, Oct. 5–8, 1998.

F Stefan Axelsson, Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. An ap-
proach to UNIX security logging. InProceedings of the 21st National Infor-
mation Systems Security Conference, pp. 62–75, Arlington, Virginia, Oct. 5–
8, 1998.

G Ulf Lindqvist and Phillip A Porras. Detecting computer and network misuse
through the production-based expert system toolset (P-BEST). InProceed-
ings of the 1999 IEEE Symposium on Security and Privacy, pp. 146–161,
Oakland, California, May 9–12, 1999.

H Ulf Lindqvist, Douglas Moran, Phillip A Porras, and Mabry Tyson. De-
signing IDLE: The intrusion data library enterprise. Abstract presented at
RAID ’98 (First International Workshop on the Recent Advances in Intrusion
Detection), Louvain-la-Neuve, Belgium, Sept. 14–16, 1998.

vi

This page is intentionally left blank.

vii

Contents

Abstract . iii
List of publications . v
Preface . viii

Introductory summary 1
1 Introduction . 3
2 Thesis objective and scope . 4
3 Background and frame of reference 5

3.1 Defining security . 5
3.2 Intrusion detection: The basics 6
3.3 Detection versus prevention 10

4 Related work . 12
4.1 Seminal work . 12
4.2 Recent doctoral dissertations 12

5 Research methodology . 17
5.1 Data collection . 17
5.2 Categorization as a method for data analysis 19

6 Summary of papers . 22
6.1 Part I: Analysis of the nature of security threats 22
6.2 Part II: Methods to improve system security 23

7 Reflections . 25
7.1 Identified hard problems 25
7.2 On the validity and accuracy of data and results 28
7.3 Ethical aspects . 30
7.4 Contributions in perspective 32

8 Conclusions and directions for future work 35
References . 36

I Analysis of the nature of security threats 43
Paper A . 45
Paper B . 65
Paper C . 81
Paper D . 101

II Methods to improve system security 117
Paper E . 119
Paper F . 135
Paper G . 159
Paper H . 191

viii

Preface

The voyage of discovery is not in looking for new landscapes but in
looking with new eyes.

ANONYMOUS

Children are born true scientists. They spontaneously experiment and
experience and reexperience again. They select, combine, and test,
seeking to find order in their experiences: “Which is the mostest?
Which is the leastest?” They smell, taste, bite, and touch-test for hard-
ness, softness, springiness, roughness, smoothness, coldness, warm-
ness: they heft, shake, punch, squeeze, push, crush, rub, and try to pull
things apart.

RICHARD BUCKMINSTER FULLER (1895–1983)

When you have worked intensively and for a long time on a project, and you
have finally finished, then you have gained something known as experience. This
means that if you had known in the beginning of the project what you know at the
end of it the result would have been much better. So, from a perfectionist’s point of
view, you should actually do it all over again and get it right the second time. On
the other hand, it’s good to know when it’s time to wrap it up and move on to new
challenges. Experience must be shared with others, however, to give them a chance
to avoid the mistakes you made and to repeat and develop your successful actions.
I chose not to do my research studies all over again, but I did choose to publish my
experience in the thesis you are now reading. Along the way, I have received help
and support from many persons and organizations, to whom I would now like to
express my sincere gratitude.

The first person I thank is my thesis advisor, Erland Jonsson. His wise guidance
and dedicated support—from the day he encouraged me to join his group as a PhD
student to the day I defend this thesis—has been of immense value to me. Erland’s
great sense of humor makes it fun to work with him, and it has probably also helped
him to put up with me for almost five years.

Next, I thank the other co-authors of my publications in this thesis (in order of
appearance): Tomas Olovsson, Ulf Gustafson, Per Kaijser, Stefan Axelsson, Phil
Porras, Doug Moran and Mabry Tyson. We have had some times of hard work to-
gether, but also great fun when we have prepared our papers. It has been a privilege
to work with you all, and I hope that we will write more papers together in the
future.

Thanks to the other PhD students in the security research group at Chalmers—
Helén Svensson, Emilie Lundin, Dan Andersson, Hans Hedbom, Håkan Kvarn-
ström, Stefan Lindskog, Florian-Daniel Ot¸el and Lars Str̈omberg—for many stimu-
lating discussions and other, less work-related, good fun. I look forward to reading
your theses in due course and wish you the best of luck with your research studies.
I also thank other past and present colleagues at the Department of Computer En-
gineering at Chalmers for their dedicated efforts in education and research and for
contributing to a friendly working atmosphere.

The summer I spent as a visitor at the Computer Science Laboratory of SRI
International in California was a wonderful experience and of great value, both in

ix

terms of the research I could participate in during the visit as well as the avenues it
opened for the future. I thank all the people who gave me and my family help and
support and ultimately made the visit possible, especially my hosts Phil Porras and
Peter Neumann for all their help with practical matters, great and small. Phil is a
rare combination of a visionary in security research who also does hard work down
in the programming trenches, and it is very inspiring and fun to work with him and
his team. Peter has given me great inspiration, firm support and good advice, not
least for the completion of this thesis.

I am grateful to all the anonymous reviewers whose comments on the manuscripts
I submitted to conferences and journals greatly helped to improve the quality of my
publications. I also thank all the students who participated in our various experi-
ments and thereby provided us with valuable research data.

Many thanks to Janet Vesterlund for prompt and reliable help with the English
language editing and last-minute proofreading of many of my manuscripts through
the years, including this text. Any remaining typos or style-breaking sentences
are the ones I did not finish in time for Janet to read and correct. I also thank Lora
Sharp-McQueen and Michael D Evans for their language editing of Papers C and D,
respectively.

Because I actually started my professional life as a typesetter, I can be very nit-
picking about typographical details that most other people never even notice. There-
fore, I am very grateful to the wonderful people who also have this particular trait
and, in addition, were kind enough to write TEX, LATEX, BIBTEX, and numerous
extensions to those, and made all this software public. Before I saw the light, I
produced some publications using other (commercial) software packages, so I had
to convert those texts before including them in this thesis. There is of course a risk
that errors were introduced in the process, and I take full responsibility for those
and for any other remaining errors in this thesis, although I hope that they are few.

Research usually requires financial support, and the work presented in this thesis
is no exception. My main sponsors have been Chalmers University of Technol-
ogy and The Swedish National Board for Industrial and Technical Development
(NUTEK). In addition, several other organizations have made various contribu-
tions through grants, stipends, funds, or cooperation. These include SRI Interna-
tional, SKF, Ericsson, Telia and IBM. I am grateful for all the financial support that
my research projects have received through the years.

Last, but not least, I dedicate this work to my family. At the time when I started
my PhD studies, my wife and I had no children. Now, some five years later, we
have three wonderful children. It would not have been possible to combine my
two roles—a father and a PhD student—without the rock solid support from my
beloved wife Lottha. Sweet Lottha, I thank you for making my dreams come true.
Dear children, this thesis hopefully shows that I was successful in one of my roles,
and I hope that none of you will ever need to tell a therapist that I failed in the other
role. Thank you Erik, Gilbert and Bianca, for all the happiness you give us. Finally,
I thank my parents Rigmor and Bertil Lindqvist, not only for breeding and feeding
me, but for letting me grow.

Ulf Lindqvist, Göteborg in August 1999

x

This page is intentionally left blank.

1

Introductory summary

2

This page is intentionally left blank.

On the Fundamentals of Analysis and Detection of Computer Misuse 3

1 Introduction

Computer and network security is no longer a concern only for traditionally
security-conscious organizations, such as military and financial institutions, but for
everyorganization and individual who uses computers. This is due to the rapidly
increasing trend in today’s society to depend on computers for more and more of
our professional (and leisure) activities and to connect these computers to networks
such as the global Internet. Today, when more and more of the valuable assets of
an organization are in the form of information stored in computerized information
systems, the security of the systems has become a critical issue. However, it is
remarkable how little attention was paid to security issues in the design of most
systems that are in use today. As a matter of fact, people who should have cared
about computer security issues have chosen to ignore the problem. The problem
has not simply gone away, but has rather led to the dangerous situation we are in
today: systems designed with little or no security are trusted with our most valu-
able information and are relied upon in critical situations. This has motivated the
Department of Computer Engineering at Chalmers to conduct research with the
overall aim of increasing security in existing as well as future information systems.
This thesis presents thorough analyses of the fundamental technical aspects of the
security problem and of some partial solutions.

There are many reasons why a computer system can behave in an undesired way.
For a problem to be categorized as a security problem, it must in some way involve
the fact or possibility that a human being does something that is not permissible. It
is normally the person or organization who owns the system and/or the information
who decides what is allowed and what is not. Wrongdoers can be categorized as
insidersor outsiders. Insiders are persons related to the owner organization who try
to misuse or extend their privileges. Outsiders are attackers who are unrelated to the
owner organization. Within the community of security officers and researchers, the
insider threat is considered much more dangerous than the threat from outsiders,
but the media have conveyed the opposite picture to the general public.

Throughout this work, it has been an objective to have a holistic perspective on
security and to consider as many different aspects as possible. However, to reach the
desired technical depth, it was necessary to exclude some areas. For example, this
thesis addresses many technical aspects of computer misuse but is not concerned
with offenders as human beings—this should be treated in other disciplines such
as criminology and psychology. Also, at the time of this writing, the so called
“millennium bug” or “Y2K problem” is a topic of great concern because it is feared
that many computer systems will not correctly handle the transition from the year
1999 to the year 2000. Of course, this widespread logical equivalent of a time bomb
is a risk to many organizations and nations and may have security implications as
well, but it is not in itself a security problem, strictly speaking, and is therefore not
addressedper sein this thesis. However, let us hope that the experience gained from
the large inventory projects currently conducted in many organizations will not be
wasted when the Y2K problem has been settled. That knowledge gives us a golden
opportunity to take adequate security measures for the systems that we will depend
upon in the coming millennium.

4 Thesis objective and scope

2 Thesis objective and scope

Traditionally, research on computer security has focused on helping developers
of systems to prevent security vulnerabilities in the systems they produce before
the systems are released to customers. Also, in most studies on network security,
only outsiders are considered to be potential attackers. All of these areas are im-
portant but need to be complemented with research supporting owners, developing
detection and recovery mechanisms, and studying the insider threat.

In most cases, it is the owners of systems and information who risk a loss (of
money, goodwill, competitive advantage etc.) when security is violated. It is also
the owners who are responsible for keeping the systems secure, and they must be
supported in this difficult mission. Many owners cannot (or are not willing to) dedi-
cate large resources to security, even though their business can be severely damaged
by misusers. Also, owners typically have a mix of systems in their organizations
and do not have personnel who are expert in security for all these kinds of systems.
Therefore, methods for improving security must begenericwith respect to applica-
bility to different systems as well asefficientwith respect to demands on computing
power and human involvement.

The overall objective of security research at the Department of Computer En-
gineering is to find efficient generic methods to improve the security of existing
and future systems. This problem can naturally be divided into the following four
research problems, of whichi and ii have been studied in the two previous doc-
toral dissertations published by our group [25, 52], while problemsiii andiv are the
subject of the present thesis:

i) What do we mean by ‘security’? How is it related to other objectives such as
‘dependability’?

ii) How can security be quantitatively measured in order to verify whether the
security of a system has been improved?

iii) What characterizes threats to security?

iv) What methods can be used to counteract threats and thereby improve security?
How should these methods be designed in order to be efficient and generic?

Part I of this thesis presents studies of problemiii . Some early results on the
subject were also presented in a licentiate thesis by the present author [40]. After
detailed studies of threats, it was natural also to start work on problemiv, that is,
methods for improving security. That work, presented in Part II of this thesis, is
not focused on traditional prevention of security violations but rather on develop-
ing mechanisms that come into play after an attacker has initiated some action (see
Section 3.3 for a discussion on the relationship between prevention and detection)
or after a vulnerability is discovered in a system in operation. Specifically, we have
chosen to study logging and detection of intrusions and remediation of vulnerabili-
ties.

On the Fundamentals of Analysis and Detection of Computer Misuse 5

3 Background and frame of reference

3.1 Defining security

One commonly used definition is that computer, network and information secu-
rity (sometimes referred to as IT security but, henceforth in this text,securityfor
short) concerns the protection of computer systems, the networks interconnecting
such systems and the information stored, processed and transmitted within the sys-
tems and networks againstintentionalattacks. The discipline is relatively young,1

and the terminology is still subject to much discussion and confusion. One of the
few matters on which the community is close to consensus is the definition of the
following three aspects (or objectives) of security:

Confidentiality: prevention of unauthorized disclosure of information

Integrity: prevention of unauthorized modification of information

Availability: prevention of unauthorized withholding of information or resources

The definitions above are quoted verbatim from ITSEC [51] but are basically the
same in the Common Criteria [11] and in the British “code of practice” [9]. These
three aspects cover much of what security is about, but not everything. For example,
we might wish to addauthenticity, meaning verification of the identity of a com-
municating party, andnon-repudiation, meaning prevention of the possibility for a
communicating party to deny transmission or receipt of a message. There is also
debate over in which of the three aspects, if any, prevention of unauthorized use of
computer and network resources should be included (see for example Paper C).

It should also be noted that there are superordinate concepts in which security
is included, such asdependability[37] and the more recently suggestedsurviv-
ability [49]. In summary, there are several properties that we expect from good2

systems—security is but one of those properties—and it is still subject to research
how security interacts and may be integrated with other such properties such as
safety and reliability [26, 56]. However, this problem is beyond the scope of this
thesis, in which we treat security as the root of our terminology tree3.

An alternative to the definition of security as protection against intentional attacks
is the following:

Security concerns the preservation of confidentiality, integrity and availability (and
possibly additional aspects), regardless of whether the threats are intentional
attacks or accidental mistakes or mishaps.

1In the first published collection of seminal papers from the UC Davis “History of Computer
Security” project [8], the oldest paper is from 1970 [66]. This suggests that the discipline is the
same age as the present author, hence “relatively young”. However, studies of computer security
problems were initiated in the 1960s and influenced the design of Multics [57], for example.

2Here, I deliberately use an as all-encompassing and general a term as possible in an attempt to
be unbiased.

3This tree, like most trees in computer science and engineering, but unlike most real wooden
trees, has its root at the top.

6 Background and frame of reference

This definition does not make security much harder, it simply extends the responsi-
bilities of the field, as observed by Peter G Neumann [48, p. 130]:

There are no essential functional differences between accidental and
intentional threats, with respect to their potential effects; the conse-
quences may be similar—or indeed the same. However, there are some
differences in the techniques for addressing the different threats. The
obvious conclusion is that we must anticipate both accidental and in-
tentional types of user and system behavior; neither can be ignored.

The termsintrusionandvulnerabilityare used very often in this thesis, and I now
present the definitions that I have used in my papers:

Intrusion is a successful event from the attacker’s point of view and consists of

1) anattackin which avulnerability is exploited, resulting in

2) abreachwhich is a violation of the explicit or implicitsecurity policy
of the system.

Vulnerability is a condition in a system, or in the procedures affecting the oper-
ation of the system, that makes it possible to to perform an operation that
violates the explicit or implicit security policy of the system.

Security policy is some statement about what kind of events are allowed or not al-
lowed in the system. An explicit policy consists of rules that are documented
(but not necessarily correctly enforced), while an implicit policy encompasses
the undocumented and assumed rules which exist for many systems.

The definitions above have some interesting implications. If we do not have a
security policy, then we cannot determine whether a certain event constitutes an
intrusion or not—if there is no law, then no act can be illegal. It is also implied that
the existence of a vulnerability is dependent on the security policy. For example,
if we have two systems, A and B, that are technically identical but have different
security policies, then an operation which is possible to perform in both systems,
but forbidden according to the policy of A and allowed according to the policy of B,
would be an intrusion in system A but not in system B. Consequently, the condition
allowing the operation would be considered a vulnerability in system A but not in
system B. It should also be noted that, if the configuration of an access control
system does not fully conform to the security policy as intended by the information
owner, then that condition is also considered a vulnerability. Finally, the definition
of intrusion makes the established term “intrusion detection” somewhat too specific,
because it is often desirable to detect not only successful attacks but also failed
attack attempts and other suspicious behavior, as discussed in Section 3.2.

3.2 Intrusion detection: The basics

This section presents a brief introduction to the basic concepts of intrusion de-
tection. The reader interested in an in-depth treatment of the subject is referred to
other work, for example [1, 7, 14, 45].

On the Fundamentals of Analysis and Detection of Computer Misuse 7

Intrusion detection is the established name for a category of security mechanisms
that may be viewed as the equivalent of a burglar alarm for the logical world of com-
puters and networks. A component that implements such mechanisms is called an
intrusion detection system (IDS). If we picture traditional preventive mechanisms
as a wall that protects our resources from attackers, we would like an IDS to respond
when any of the events illustrated in Figure 1 occur.

a) Probing/
provocation

d) Insiderb) Circumvention c) Penetration

Figure 1. Events that should trigger IDS response.

A model for IDS architecture that has gained widespread acceptance is the view
of an IDS as a collection of components specialized in performing their respective
tasks and which communicates via message passing. An elegant categorization of
IDS components was formulated by the Common Intrusion Detection Framework
(CIDF) working group [64]:

E-boxes are event generators that sample events in the particular environment they
are specialized for and immediately produce messages describing their obser-
vations. E-boxes do not consume or store messages.

A-boxes are event analyzers that take in messages and analyze them to produce
conclusions. They send messages to R-boxes and/or other A-boxes.

D-boxes are event databases that provide persistent storage of messages for later
retrieval.

R-boxes are response units that consume messages directing them to carry out
some action on the behalf of other CIDF components. R-boxes also carry
out the requested response actions.

The tasks assigned to each of these types of boxes all require careful design con-
siderations and trade-offs for the IDS to be efficient and effective in large modern
computer networks. For example, what events should an E-box report and in what
detail? How should an A-box perform its analysis to correctly identify intrusive be-
havior? How should it be designed not to run out of memory in the long run? How
can we ensure that its processing rate is at least as high as the arrival rate of new
incoming messages? For how long should a D-box store messages? What response

8 Background and frame of reference

is it appropriate for an R-box to carry out? Should it restrict its actions to report-
ing to a human operator or should the IDS autonomously shut down connections,
terminate processes or even launch counterattacks?

Although some of these problems have been the subject of extensive research (in
particular, issues related to data analysis), much research still remains before we
have solutions for them. In the remainder of this section, we focus on the data anal-
ysis components of an IDS (the A-boxes) and present a categorization of analysis
principles.

On some level of abstraction, an IDS (or an A-box) can be seen as a detector
similar to a signal detector, as observed by Helman and Liepins [23]. The detector
may bebinary, providing an absolute categorization of its input as either normal
(0) or intrusive (1), or it may begraded, ranking its input on a continuous scale
from 0 to 1. Helman and Liepins point out that, to every graded misuse detector
MDg, a family of binary detectors(MDb;τ) can be associated simply by introducing
a threshold parameter 0� τ� 1 and definingMDb;τ as:

MDb;τ(x) =

�
0 if MDg(x)< τ
1 otherwise

In practice, the output of a graded detector is typically passed on to another
decisionmaker—a human operator or, for example, a higher level detector (binary
or graded) that correlates the output of several lower level detectors. Henceforth
in this text, we will view an IDS as a binary detector to keep the discussion from
becoming unecessarily complicated.

If the IDS erroneously categorizes a normal event as intrusive, it is called afalse
positive(or false alarm), and the erroneous categorization of an intrusive event as
normal is called afalse negative. Ideally, all intrusive behavior would be catego-
rized as such (true positive), while the majority of events that are normal should not
lead to any response from the IDS (true negative).

What principles can an IDS utilize when analyzing events in order to separate
normal events from intrusions? Table 1 shows a categorization of IDS data anal-
ysis principles in two dimensions. The policy dimension has the two categories
of default permitanddefault deny. Default permit means that the system has an
encoded knowledge of the kind of behavior it should report as intrusive and will
quietly accept all other behavior. The opposite is default deny, which means that
the system has knowledge about what kind of behavior is allowed and will report
all other behavior as intrusive. The knowledge dimension has the categoriesstatic
anddynamic, which denote whether the knowledge (of what constitutes intrusive
or allowed behavior) changes automatically and depends on previously observed
behavior (dynamic) or must be changed manually (static). Before we examine each
principle in detail, it should be noted that it is generally agreed among IDS research-
ers that a combination of analysis principles is often needed to achieve effective
detection.

In box 1 of Table 1, we find the commonly used principle known as signature-
based misuse detection. The principle, its possibilities and limitations are further
described in Paper G. In summary, it means that the IDS is equipped with knowl-
edge in the form of production rules, state machines, string patterns or some other

On the Fundamentals of Analysis and Detection of Computer Misuse 9

Table 1. A categorization of IDS data analysis principles.

Policy
Default Signature-based
permit misuse detection 1 2

< ?>

Default Specification-based 3 4 Profile-based
deny misuse detection anomaly detection

Static Dynamic Knowledge

encoding of what constitutes undesired behavior and how it should be reported.
When the knowledge of the IDS should be changed—typically extended when a
new type of intrusion becomes known—the change is made through a special up-
date operation. The update is typically performed manually but could also be made
automatic, for example, based on a subscription mechanism. The work described
in Paper H is an effort aimed at supporting such automatic update procedures by
creating a standard open format for the information. The advantages of this prin-
ciple are typically a low false alarm rate and a low performance overhead, while a
disadvantage is the limited ability to detect unprecedented violations (limited but
existing, see the discussion in Section 7.4.4).

In box 4, we find the other major analysis principle, profile-based anomaly de-
tection. The principle was first outlined in Anderson’s seminal paper on intrusion
detection [4] and further developed and implemented in IDES [15, 16]. The idea
is to continuously build profiles of normal behavior for particular principals (users,
processes, devices, etc.) and to report when the behavior of a principal deviates
(much) from its normal profile. The main advantage of this principle is that the
IDS does not need to have any knowledge about particular intrusion types, vul-
nerabilities or security mechanisms and is consequently able to detect previously
unknown intrusion types. The main disadvantage of anomaly detection is that it
detects anomalies only. Anomalies are not necessarily security violations and, in an
environment with fluctuating behavior, the false alarm rate could be overwhelming.
Also, all security violations are not necessarily anomalous4.

In box 3, we find a principle not widely used in practice but fundamentally dif-
ferent from those described above. Instead of specifying the undesired behavior
(as in box 1), we specify the permitted behavior and report everything else. This
principle, called specification-based misuse detection, was proposed and applied to
privileged programs by Koet al. [30–32]. The advantage of this approach is the
same as for box 4, namely, the possibility of detecting previously unknown intru-
sions. The main disadvantage is that it is usually difficult to specify all permitted
behavior correctly, especially when trying to write a specification for an already
existing program. The connection to access control is not very far-fetched because,

4For example, let us say that I am a user who regularly works with sensitive information. An
attacker who has stolen my password or authentication device logs in to the system from my usual
terminal at a time when I usually log in and accesses the files I usually work with. The granularity
required by a profiling IDS to consider this security violation anomalous would probably produce
too many false alarms to be useful.

10 Background and frame of reference

if we can specify the permitted behavior correctly, we can in fact place a ‘guard’
in a strategic place that examines every attempted operation before it is executed.
Thus, we would be able not only to report violations but actually deny them to pre-
vent damage, as implemented in Janus [21] and TIS Wrappers [19], for example.
One could argue that this is nothing but a reference monitor, a fundamental con-
cept in computer security [3]. However, it should be kept in mind that intrusion
detection and other retrofit security mechanisms try to cover cases in which the
reference monitor is lacking, flawed or otherwise inadequate (see the discussion in
Section 3.3).

Finally, what should be placed in box 2? Dynamic knowledge and default permit
policy suggests that an IDS using such a principle would automatically learn what
constitutes undesired behavior by studying past events. What would be the benefits
of such a system? One could think of a semi-automatic approach where we train
the IDS by telling it that “here comes an attack” and then carry out the attack.
The IDS would then draw its own conclusions as to what signs are significant for
the detection of that type of attack. This would relieve us of writing traditional
detection rules, such as the rules examplified in Paper G. A step in this direction
may be the approach by Leeet al. [38], in which data mining techniques are used
to find the features that characterize intrusions in a large data set.

3.3 Detection versus prevention

Security for computers and networks has much to learn from security in the phys-
ical world. We are human beings, trying to protect our systems against the hostile
actions of other human beings. Thus, we must study how humans during all time
have protected their physical assets against other humans. The fact that our assets,
threats and mechanisms are in the logical world of computers and networks makes
our mission sometimes harder and sometimes easier, but not very different.

Specifically, intrusion detection is not a new idea nor is it unique to computer
systems. The sentinel guarding the perimeter of a Roman military camp, the watch-
man in the tower of a medieval castle and the electronic burglar alarm active at
night in the local grocery store are all examples of intrusion detection mechanisms.
One thing that these and other examples of intrusion detection in the physical world
all have in common is that they complement intrusion prevention mechanisms, for
example a physically strong perimeter protection. Neither the prevention nor the
detection mechanisms are infallible, but together they make it harder for the intrud-
ers to reach their goal. This is an important observation; just because a prevention
mechanism (or detection mechanism, for that matter) is not perfect, does not nec-
essarily mean that it is useless. We expect it to function correctly most of the time
but, when it fails, we must be prepared and have other cards to play.

In fact, this is true not only for protection against intentional attacks but also
for protection against accidents and other inadvertent failures. For example, we
must accept that all materials in buildings cannot be made fireproof; we therefore
have smoke detectors and heat detectors connected to alarm bells, sprinklers and
fire department dispatchers. There are sensors that detect whether the temperature
in a supermarket freezer rises over a certain threshold, sensors that measure the

On the Fundamentals of Analysis and Detection of Computer Misuse 11

radiation around a nuclear power plant and so forth. Prevention, detection and re-
sponse mechanisms go hand in hand in all areas of society where we wish to protect
ourselves against undesired events. It is my firm belief that the field of computer
security intrusion detection would benefit from studying the successes and failures
of detection and response mechanisms in other fields. This is especially true for
the more non-technical aspects, for example the interface between the system and
the human operators, including alarm correlation and presentation, tolerable false
alarm rates etc.

If we accept that prevention and detection mechanisms should complement rather
than replace one another, we realize that they may very well be different parts of
the same security package where the existence of one mechanism does not imply
that the other is useless. For example, an IDS can be bundled with an operating
system, a database system or a firewall product, just as other security mechanisms
often are (such as access control and logging). However, this does not mean that
the IDS should always be closely integrated with the preventive mechanisms—that
would create a single point of failure. Again, we can turn to the physical world
and see that monitoring functions are often kept separate and independent from the
monitored activity.

A common objection to intrusion detection, especially misuse detection, is: “If
you know of a security hole, why can’t you just fix it instead of trying to detect when
someone exploits it?”. The immediate answer is that it is true that a “fix” would be
more appropriate in cases where that would be possible, but it is not always possi-
ble to “fix” a hole without making fundamental changes to a system architecture.
In addition, the configuration of a system is rarely static. New components are in-
stalled, new users are added and so forth. There is always a risk that a vulnerability
is introduced when changes are made. Finally, both when designing and operating
intrusion detection mechanisms, it is important to remember that the IDS is there
to warn us when the preventive mechanisms are being provoked, circumvented or
penetrated (see Figure 1).

12 Related work

4 Related work

Each of the papers included in this thesis include references to previous work
related to the problems addressed in that particular paper. I have thus chosen to
restrict this presentation of related work to a brief summary of seminal work in
the field, followed by a more lengthy discussion on related doctoral dissertations
published during the course of my work. By analyzing and commenting upon recent
dissertations from the perspective of my own work, I would like to show where my
dissertation fits into the large picture of contemporary research in the field.

4.1 Seminal work

Although the field of computer security seems to evolve very rapidly, it is wrong
to believe that everything worth reading was published no more than a couple of
years ago. Systems have changed radically, but many fundamental principles re-
main the same, see for example Saltzer and Schroeder [58].

Several discussions on the nature of security threats, based on security evalua-
tion and penetration analysis, were published in the 1970s. Lackey presented an
interesting taxonomy of penetration techniques, although with an unusual termi-
nology [35]. Linde presented the Flaw Hypothesis Methodology [39], Attanasioet
al. described a typical penetration analysis [6], and Neumann categorized security
flaws and discussed how such flaws may be avoided [47].

With the 1980s came intrusion detection. Anderson’s analysis of the nature of
attackers in terms of the difficulty associated with detecting them [4] is considered
fundamental and is cited in almost every published work on intrusion detection. The
first IDS prototypes, with names such as IDES [16], MIDAS [59], Haystack [60]
and Wisdom & Sense [65], have greatly influenced later research on intrusion de-
tection.

4.2 Recent doctoral dissertations

4.2.1 Jonsson 1995 [25] and Olovsson 1995 [52]Two doctoral dissertations
have been published by members of our research group before the present one,
namely, “A Quantitative Approach to Computer Security from a Dependability Per-
spective” by Erland Jonsson and “Practical Experimentation as a Tool for Vulner-
ability Analysis and Security Evaluation” by Tomas Olovsson. These two theses
describe work on defining the security concept in relation to dependability and sim-
ilar concepts and on the theory and practical realization of experiments for mea-
surement of operational security. The student intrusion experiments, which were
planned and initiated by Jonsson and Olovsson as described in their theses, pro-
duced data that was useful for other studies than just the original one on measure-
ment of security, for example work presented in the present thesis. The results of
Olovsson’s and Jonsson’s work include a quantitative model of the intrusion pro-
cess [27] and a proposed framework for integration of the concepts of security and
dependability [26].

On the Fundamentals of Analysis and Detection of Computer Misuse 13

4.2.2 Kumar 1995 [34] In his thesis entitled “Classification and Detection of
Computer Intrusions”, Sandeep Kumar from Purdue University presents a scheme
for categorization of intrusions based on the pattern specifications that can be used
to match signatures left in a system by an intrusion, typically found in an audit
trail. The four categories in Kumar’s scheme, arranged in a hierarchy where the
representability of intrusion signatures increases as we go from left to right, are

Existence� Sequence� RE patterns�Other Patterns,

where RE patterns are extended regular expressions allowing the use of an AND
primitive. The existence category is different from the others in that its patterns
match an existing condition in a system (for example, the presence of a certain file)
rather than an event signature.

Kumar claims that pattern matching is very suitable for misuse detection in that it
can be made very efficient and generic with respect to audit trail syntax. He presents
a model of matching, based on Colored Petri Nets, which uses the proposed classi-
fication. The thesis contains a thorough description of the theoretical possibilities
and limitations of the proposed model. However, the difficulty for a user to en-
code knowledge of an intrusion signature in the proposed matching model is not
analyzed; Kumar simply states that the task is “nontrivial”. For example, the sim-
ple intrusion scenario exploiting asetuidshell script (further described in Paper F),
consisting of the commands

1) ln setuid shell script -i

2) -i

would be encoded as [34, p. 90]:

FILE1 = this[SRC_FILE] && FILE2 = this[DEST_FILE] &&
SHELL_SCRIPT(FILE1) = 1 && OWNER(FILE1) != this[EUID] &&
basename(FILE2) = "-*" &&
(FPERM(FILE1) & XGRP = 1 || FPERM(FILE1) & XOTH = 1)

It is left to the reader to judge whether this is easy to read and use or not, but it
should be noted that it is indeed difficult to design a signature description language
that is both sufficiently powerful to capture all details of any intrusion scenario
and at the same time easy to use for non-experts. An alternative to Kumar’s pattern
matching approach is the expert system approach described in Paper G in this thesis.
Kumar’s model was later implemented in an IDS prototype at Purdue University
with the somewhat provocative name IDIOT [12].

4.2.3 Ko 1996 [30] Calvin Ko from the University of California at Davis
presents his work on a novel approach to intrusion detection, called specification-
based monitoring, in his thesis entitled “Execution Monitoring of Security-Critical
Programs in a Distributed System: A Specification-Based Approach”. See Sec-
tion 3.2 for a description of the specification-based analysis principle (box 3 in
Table 1) in comparison with other principles.

Ko begins with a detailed description of five known security vulnerabilities in
UNIX programs and how they can be exploited. Next, he presents a model for

14 Related work

reasoning about system traces and identifies four aspects of program behavior as
security-relevant: accesses, sequencing, synchronization and race conditions. Ko
developed a special type of grammar, called parallel environment grammars (PE
grammars) for specifying trace policies of concurrent processes. A trace policy
for a program (the allowed behavior) is specified as a grammar, and it is stated
that an execution trace of a process satisfies the policy if it is a sentence of the
language specified by the grammar. Example trace policies that can be used to
detect the previously presented exploits are written using PE grammars. The design
and implementation of a system monitoring the execution of selected programs in
a distributed system are presented.

The basic reason for developing the specification-based approach is the possibil-
ity of detecting attacks exploiting previously unknown vulnerabilities in programs.
However, this assumes that we specify in our policyall allowed behavior for each
program—a difficult, tedious and sometimes outright impossible task. Ko has ob-
served this problem and suggested two alternative approaches:

1) We can focus on some important properties of a program—such as synchroni-
zation—and specify the desirable behavior with respect to these properties only.

2) We can base the trace policy on some suspected or existing weaknesses of the
program.

A criticism that can be made about Ko’s presentation of his work is that he has only
shown examples of the latter approach, which isnot fundamentally different from
traditional misuse detection. It is then simply a question of which subset of the set
of all possible events is the smallest and easiest to specify, the set of all allowed
events,A, or the set of all prohibited events,:A. However, Ko has made some
significant contributions to our understanding of the possible methods for intrusion
detection and, if he had used examples in which previously unknown intrusions
were indeed detected, he would have made it clearer to the reader that his work is
more than just a negation of misuse detection.

4.2.4 Howard 1997 [24] In his thesis entitled “An Analysis of Security Inci-
dents On The Internet 1989–1995”, John D Howard of Carnegie Mellon University
presents an extensive analysis of Internet security incidents handled by the CERT
Coordination Center (CERT/CC). The CERT/CC database is kept confidential and
is consequently not available for independent evaluation and research.

Howard starts by forming a taxonomy for categorization of attacks based on the
dimensions attackers, tools, access, results and objectives. The taxonomy, shown in
Table 2, and the related discussion and motiviation are in some respects strikingly
similar to the taxonomy proposed in Paper C. For example, both schemes attempt to
address the previous lack of a category for unauthorized use of a system, although
in slightly different ways. Howard’s thesis and Paper C were published almost
simultaneously, and neither author was aware of the other’s work.

Next, Howard applies his attack taxonomy to 4,299 security incidents from the
CERT/CC database, pointing out that an incident typically consists of several at-
tacks. The analysis, presented in a large number of statistical graphs and charts is
interesting reading, especially as security researchers usually do not have access to

On the Fundamentals of Analysis and Detection of Computer Misuse 15

this kind of material (see Section 5.1). In some cases, the description of selected
examples of incidents is more anecdotal than strict in a technical sense, perhaps be-
cause the author is with CMU’s Department of Engineering and Public Policy and
not with a traditional computer science or computer engineering department.

The thesis concludes with a discussion of the usability of the taxonomy and some
recommendations for CERT/CC and Internet users. Howard actually recommends
the CERT/CC to start disclosing incident data based on a taxonomy, without re-
vealing the names of the involved sites. Howard also points out that the CERT/CC
database describes almost exclusively attacks performed by outsiders. This is an
interesting difference between the data used in his thesis and the data used in Pa-
per C, as the attackers in the student experiment—upon which the latter work is
based—all acted as insiders.

Table 2. Computer and network attack taxonomy [24, p. 73].

Attackers Tools Results Objectives

Hackers
User

Command
Corruption of
Information

Challenge,
Status

Spies
Script or
Program

Disclosure of
Information

Political
Gain

Terrorists ➧ Autonomous
Agent

➧ � � � ➧ Theft of
Service

➧ Financial
Gain

Corporate
Raiders

Toolkit
...

Denial-of-
service

Damage

Professional
Criminals

Distributed
Tool

...

Vandals Data Tap
...
...

Access
Implementation
Vulnerability

Unauthorized
Access

Files

Design
Vulnerability

➧ Unauthorized
Use

➧ Processes ➧ Data in
Transit

Configuration
Vulnerability

4.2.5 Mounji 1997 [44] Abdelaziz Mounji from the University of Namur in
Belgium presents work on misuse detection through rule-based analysis of audit
trails in his thesis entitled “Languages and Tools for Rule-Based Distributed Intru-
sion Detection”. Three acronyms are central to this thesis: RUSSEL (Rule Based
Sequence Evaluation Language), ASAX (Advanced Security and Audit Trail Anal-
ysis on UNIX) and NADF (Normalized Audit Data Format). The main part of the
thesis presents the design of the rule-based language RUSSEL, which is specifically
crafted for the analysis of audit trails in NADF format, and how it was implemented
in an IDS project called ASAX. A summary of the ideas underlying ASAX, RUS-

16 Related work

SEL and NADF can be found in [22]. The thesis also presents a format adaptor
generator for easier conversion of different audit trail formats into NADF. Mounji
proposes an integration of intrusion detection and static configuration analysis (also
known as vulnerability scanning) and, finally, shows how RUSSEL can be used in
a distributed environment.

The objectives of RUSSEL are indeed similar to those of P-BEST, presented in
Paper G. Mounji states that power and convenicence, reusability, efficiency and
adaptability should be required by an IDS in general and a description language
for misuse detection in particular. Like P-BEST, RUSSEL has a versatile inter-
face to the C language, enabling the user to call arbitrary routines when the rule-
based language is insufficient. However, while P-BEST tries to adhere strictly to
the declarative programming paradigm, RUSSEL deliberately uses imperative pro-
gramming. Also, P-BEST is a general expert system that can be adapted to any type
of input data (for example, recorded network traffic), while RUSSEL is specifically
targeteted to audit trail analysis.

4.2.6 Krsul 1998 [33] In his thesis entitled “Software Vulnerability Analysis”,
Ivan Krsul of Purdue University presents a categorization of software vulnerabil-
ities applied to collected samples stored in a database. When defining a software
vulnerability, he observes that a vulnerability depends on policy and defines apolicy
as rules that are actually enforced whileexpected policyare rules that users expect
a system to enforce. This is similar—but not identical—to our notion of explicit
policy and implicit policy (see Section 3.1). In fact, the most significant aspect of
Krsul’s work, in my opinion, is that he identifies users’ exepectations of program
behavior and programmers’ assumptions about the program execution environment
as underlying causes of software vulnerabilities.

Krsul attempts to show that all previously presented taxonomies in the security
field5 fail to meet basic requirements on objectivity and generality, according to the
classical categorization theory, and claims that this is one of the main contributions
of his thesis. It is true that many attempted categorizations of security phenomena
are of limited value because of their apparentlyad hocnature, but Krsul’s dis-
missal of many taxonomies based on the risk of subjective categorization appears
somewhat Utopian in the light of prototype theory and the concept of embodied
categories, as dicussed in Section 5.2.

Features for categorizing vulnerabilities and a database of collected vulnerabil-
ity samples categorized with respect to these features are presented. The database
structure shows some similarities with the structure proposed in Paper H, although
the former is focused on vulnerabilities and includes some exploit information
while the latter is focused on intrusion signatures and includes some information
about the exploited vulnerability. Actually, each vulnerability entry in the database
can include an IDIOT pattern [12] for detecting an exploitation of the vulnerability.
Results of applying several data analysis and visualization tools to the database are
discussed and, finally, Krsul presents a predictive categorization of vulnerabilies
with respect to programmers’ (incorrect) assumptions about the execution environ-
ment of the program.

5With the notable exception of Paper C, which Krsul does not cite.

On the Fundamentals of Analysis and Detection of Computer Misuse 17

5 Research methodology

Categorization is not a matter to be taken lightly. There is nothing
more basic than categorization to our thought, perception, action, and
speech.

GEORGE LAKOFF [36, p. 5]

The process of forming meaningful classifications of observed entities
is a difficult intellectual task, and usually precedes the development of
a theory about the entities.

ROBERT E STEPP and RYSZARD S MICHALSKI [62]

My most frequently applied research method has been one of data collection
and analysis throughobservation and categorization. In this section I describe and
discuss my research methodology, but first a note on the terminology: The term
classificationis often considered synonymous with categorization, and I have used
it as such myself, for example in Paper C. However, as Dr. Per Kaijser so kindly
pointed out to me, people working in the security field tend to interpret ‘classified’
as meaning ‘secret’, rather than ‘labeled’ in a general sense. Therefore, I now use
‘category’ and ‘categorization’ instead of ‘class’ and ‘classification’.

5.1 Data collection

Empirical data is essential for the observing researcher. In the security field,
it can be very difficult to obtain intrusion-related data of the desired quality, for
several reasons:

� Intrusion-related data may reveal sensitive information about the victim site
that in turn may be used to further threaten its security. For example, it could
tell potential attackers what types of attacks the site is not protected against,
what logging and other security mechanisms that are applied, details about
the internal network structure, confidential messages and so forth.

� Many sites do not publicly admit that they have had security incidents because
they are afraid that doing so would hurt their public image. Consequently,
they cannot give away any data about such incidents.

� There can be details about an incident that are known only to the attackers,
for example, how long they spent planning the attack. Unfortunately, real
attackers are not very willing to share this information with researchers and,
if they were, their credibility could certainly be challenged.

The resulting lack of empirical data forced us to start collecting most of our research
data ourselves, as described below.

5.1.1 Student intrusion experiments With the primary objective of collecting
data for finding measurements of operational security, our group has conducted
intrusion experiments in which students were encouraged to attack a certain system

18 Research methodology

for a limited period of time, under careful supervision and with the requirement that
all their activities be reported and documented.

Since 1993, the Department of Computer Engineering has given an annual elec-
tive course entitled “Applied Computer Security” for final year students of the Mas-
ter’s program in Computer Science and Engineering at Chalmers. We performed
one pilot experiment as a feasibility study before the course was first started, as
well as three full-scale experiments on a Unix system (1993, 1995, 1996) and one
full-scale experiment on a Novell NetWare system (1994). A summary of all our
student experiments conducted to date can be found in [41].

We chose to use ordinary students as attackers and to provide them with standard
user accounts. In this way, we would model the insider threat, that is, when legiti-
mate users of a system for some reason decide to extend or misuse their privileges.
We also ensured that each test environment represented a standard installation of
a common computing system based on commercial off-the-shelf components. A
successful intrusion was defined as “anything you would not normally be allowed
to do on the system”, and the sole restriction was that the attackers should not dis-
rupt service to ordinary system users (other students doing lab exercises in other
courses).

The data produced in these intrusion experiments has served as an essential basis
for most of our research, including Papers B, C, D and F in this thesis. In other
research efforts where the experiments were not the primary data source, they still
provided valuable inspiration. The extensive data bank is far from completely ana-
lyzed and will most likely serve as valuable research material in future studies.

5.1.2 FTP server monitoring To be able to conduct research on how an IDS
should be constructed to monitor a server for Internet file transfers (FTP), the
EMERALD team at the Computer Science Laboratory of SRI International has
recorded network traffic going to and from their FTP serverftp.csl.sri.com. The
recording was performed on a computer connected to the same broadcast Ether-
net network as the monitored server, using thesnooptool from Sun Microsystems
to collect all packets going to and from network port 21 on the server (that is, all
FTP control connections, but no data transfers, were recorded). The verbose out-
put fromsnoopwas later post-processed through filter programs which selected the
relevant data fields and combined each client command with the resulting server
reply to form transactions and associated transactions with FTP sessions. Data was
collected continuously for a period of almost five months, resulting in more than
60,000 recorded FTP transactions from 4,800 sessions.

The FTP data recorded contained real attack attempts against the FTP server
from apparently hostile Internet users and, for the sake of completeness, a small
number of synthetic successful attacks arranged by the EMERALD team. During
my participation in the EMERALD project as as summer visitor, the FTP data was
frequently used both in the research on rule-based misuse detection (in which I
participated) and in the statistical anomaly detection research. The data was also
used in the student IDS lab exercise performed at Chalmers, described in Paper G.

On the Fundamentals of Analysis and Detection of Computer Misuse 19

5.1.3 The 1998 DARPA Intrusion Detection Evaluation The US Defense Ad-
vanced Research Projects Agency (DARPA), which sponsors EMERALD and sev-
eral other intrusion detection research projects in the US, also sponsors a project
whose objective is to evaluate DARPA-sponsored IDS prototypes. In this evalua-
tion project, the Information Systems Technology Group of MIT Lincoln Labora-
tory has produced and distributed a large collection of data for training and testing
IDSs [13].

The data consists of audit logs (Solaris BSM) and recorded network traffic, pro-
duced by a completely synthetic simulation representing the normal computer ac-
tivity of a military base. A number of attacks were inserted into the simulation, with
a relatively small intensity. Among the benefits of using simulation are the exact
knowledge of what operations were performed (“ground truth”) and the fact that no
sensitive data would leak into the collection. The large size and high quality of this
data collection make it a valuable source for IDS researchers. This data was used in
the performance tests presented in Paper G and in related research activities in the
EMERALD project at SRI International.

5.2 Categorization as a method for data analysis

The step that followed naturally after data collection was categorization of data
samples. We first attempted to apply categorization schemes that had been pub-
lished by other security researchers but soon discovered that these schemes were
not applicable to the type of data we had collected or were not designed for our
purposes. Therefore, we started to develop our own categorization schemes.

At first glance, categorization may seem like a natural and simple task that does
not require much thought or theory. Although categorization is indeed natural in
the sense that it is an integral part of the human thought process, it is seldom simple
and there are—perhaps surprisingly—different theories on categorization. Below,
I briefly present the classical Aristotelian view of categorization and its suggested
successor known as prototype theory and then describe how and why I have used
categorization as a method.

5.2.1 Classical categorization Taxonomic categorization has been part of the
scientist’s toolbox since the days of Plato and Aristotle. Perhaps the most momen-
tous taxonomy in the history of science is the categorization of plants and animals
by the Swedish botanist Linnaeus (Carl von Linné, 1707–1778). The traditionally
unquestioned theory of categories can be defined as [36, p. 161]:

All the entities that have a given property or collection of properties in
common form a category. Such properties are necessary and sufficient
to definethe category. All categories are of this kind.

The properties that should be chosen as a basis for a categorization depend on the
purpose of the categorization. Of course, some choices of properties serve particular
purposes better than do other choices, but one should not expect to find a universal
answer that is correct in all situations.

20 Research methodology

5.2.2 Prototype theory In later years, a field called cognitive science has devel-
oped, in which the classical theory of categories has been challenged as described
by linguist George Lakoff in [36]. According to Lakoff, the classical theory was first
questioned by Ludwig Wittgenstein, but the major pioneer in the field was Eleanor
Rosch, who focused on the following two implications of classical categorization:

� If categories are defined only by properties that all members share, then no
certain members should be better examples of the category than any other
members.

� If categories are defined only by properties inherent in the members, then
categories should be independent of the peculiarities of any beings doing the
categorizing.

By analyzing studies done by herself and others, Rosch could observe that cate-
gories, in general, have best examples calledprototypesand that human capacities
do play a role in categorization. On the basis of Rosch’s findings, a new theory of
categorization, called theprototype theory, has emerged. Some of the basic results
of prototype theory are [36, p. 56]:

� Some categories are graded; that is, they have inherent degrees of member-
ship, fuzzy boundaries and central members whose degree of membership
(on a scale from zero to one) is one. Examples of such categories are ‘small
bird’ and ‘green’.

� Other categories have clear boundaries; however, within those boundaries,
there are graded prototype effects—some category members are better exam-
ples of the category than others. An example of such a category is ‘bird’, and
sparrows and robins are often considered better examples of the bird category
than are owls, eagles, ostriches and penguins.

� Categories are not organized only in terms of simple taxonomic hierarchies.
Instead, categories “in the middle” of a hierarchy are the most basic, relative
to a variety of psychological criteria. For example, ‘bird’ is at the basic level,
while ‘animal’ is above and ‘sparrow’ is below the basic level.

� At least some categories areembodied, that is, not entirely external to human
beings but rather dependent upon human perception, experience of a physical
and social character etc.

The degrees of membership are something that protoype theory has in common
with fuzzy sets [68]. Zadeh, who founded the theory of fuzzy sets, even claims that
an adequate theory of prototypes requires the explicit use of fuzzy sets [69].

There is also an approach to categorization calledconceptual clustering, consid-
ered by some a third theory between the classical theory and prototype theory. The
idea is that entities should be arranged into categories that represent simple con-
cepts rather than categories based solely on a predefined measure of similarity [62].
Conceptual clustering is strongly directed towards automatic categorization and ma-
chine learning.

On the Fundamentals of Analysis and Detection of Computer Misuse 21

5.2.3 Categorization in security research Categorization is not a goal in itself;
it must bring some benefits to a field if it is to be meaningful. We believe that
systematic categorization is important because

� the formation and application of a taxonomy enforces a structured analysis of
the field,

� a taxonomy facilitates education and further research because categories play
a major role in the human cognitive process,

� categories which have no members but exist by virtue of symmetries or other
patterns may point out white spots on the map of the field and

� if problems can be grouped in categories in which the same solutions apply,
we can achieve more efficient problem solving than if every problem must be
given a unique solution.

Even if the meta-level discussion of categorization occupies the minds of lin-
guists and logicians, most security taxonomies presented have shown a worrisome
lack of insight even in classical categorization. When surveying existing catego-
rizations of security threats, we noticed that very few clearly define the property
on which a categorization is based. Therefore, in our categorization of intrusion
techniques and results presented in Paper C, we suggested that the termdimension
should be used for the property upon which categorization is based when we cate-
gorize abstract entities such as intrusions or vulnerabilities. For example, the cate-
gorization of identified security problems in Paper A uses the dimension of ‘cause’,
while the categorization of security risks in Paper D is based on the dimension of
‘phases in the establishment of a system’.

Paper E presents a taxonomy of remedies. The fine-grained dimensions are fault
location, remedy location, remedy provider and remedy impact. It is recognized
that the categorization of a particular remedy will and should be site-specific rather
than universal.

In Paper F, 30 types of intrusions are divided into 10 classes according to the
dimension ‘traces left in different types of logs’. For the sake of brevity, we chose
to describe only one member of each category in detail; the other members are
only outlined. This conforms with prototype theory, because the category member
described in detail was chosen because it is—in some sense—a better example of
the category than were the other members.

22 Summary of papers

6 Summary of papers

6.1 Part I: Analysis of the nature of security threats

6.1.1 Paper A: An analysis of a secure system based on trusted components
This paper presents a practical security analysis of a beta implementation of a com-
mercial system based on existing trusted hardware components, such as advanced
cryptographic building blocks. The system was designed to securely store and han-
dle both sensitive and insensitive data records on individuals in such a way that it
would be impossible for unauthorized parties to link sensitive records to the corre-
sponding individuals. The analysis was performed by means of document reviews,
interviews and some practical tests with the intention of finding and listing potential
vulnerabilities for the knowledge of the design team. The vulnerabilities revealed
are classified with respect to their cause, and possible remedies are discussed. The
classification shows that the most important problem was that some system compo-
nents were incorrectly handled as trusted. Finally, we observed that the problems
were to a surprisingly high degree non-technical, reflecting organizational and man-
agement issues and human insufficiencies.

6.1.2 Paper B: Analysis of selected computer security intrusions: In search
of the vulnerability This paper presents an in-depth analysis of some selected
computer security intrusions we have encountered during intrusion experiments and
security analyses. The intrusions presented here illustrate the wide range of threats
that owners and users of modern distributed computing systems must face. Several
different dimensions of the intrusions are considered and discussed in detail, such
as the flaw exploited in the intrusion, the cause of the presence of the flaw in the
system, the method of attack, the initial result of the penetration, the possible im-
plications and recommended remedies. It is argued that an intrusion is not feasible
solely because of a single flaw, but is rather a function of a number of different flaws
and characteristics of the system. This makes the job of detecting and preventing
intrusions much more complicated.

6.1.3 Paper C: How to systematically classify computer security intrusions
This paper presents a classification of intrusions with respect to technique as well
as to result. The taxonomy is intended to be a step on the road to an established
taxonomy of intrusions for use in incident reporting, statistics, warning bulletins,
intrusion detection systems etc. Unlike previous schemes, it takes the viewpoint
of the system owner and should therefore be suitable for a wider community than
that of system developers and vendors only. It is based on data from a realistic
intrusion experiment, a fact that supports the practical applicability of the scheme.
The paper also discusses general aspects of classification and introduces a concept
called dimension. After having made a broad survey of previous work in the field,
we decided to base our classification of intrusion techniques on a scheme proposed
by Neumann and Parker in 1989 [50] and to further refine relevant parts of their
scheme. Our classification of intrusion results is derived from the traditional three
aspects of computer security: confidentiality, availability and integrity.

On the Fundamentals of Analysis and Detection of Computer Misuse 23

6.1.4 Paper D: A map of security risks associated with using COTS The
widespread use of commercial off-the-shelf (COTS) products in combination with
increased internetworking calls for an analysis of the associated security risks. This
paper presents a taxonomy of potential problem areas, illustrated by several exam-
ples. It can be used to aid the analysis of security risks when using systems that
to some extent contain COTS components. Problems related to the integration of
COTS components into a secure system are discussed using the privacy-oriented
database system in Paper A as an example. The combination of Internet connectiv-
ity and COTS-based systems results in particular security problems, and we explain
why not only the external threat but also the internal threat increases on the basis of
experience from experiments that we have conducted. We also present an outline
of a risk management philosophy addressing the problems presented in this article.
In a separate sidebar, the so-called confinement problem and possible solutions are
discussed.

6.2 Part II: Methods to improve system security

6.2.1 Paper E: The remedy dimension of vulnerability analysis This work
is aimed at supporting system and information owners in their mission to apply a
proper remedy when a security flaw is discovered during system operation. A broad
analysis of the different aspects of flaw remediation has resulted in a structured
taxonomy that will guide the system and information owners through the remedy
identification process. The information produced in the process will help in making
decisions about changes to the system or procedures. A selected vulnerability that
was able to be removed using three different remedies is used as an example.

6.2.2 Paper F: An approach to UNIX security logging Off-line intrusion de-
tection systems rely on logged data. However, the logging mechanism may be com-
plicated and time-consuming, and the amount of logged data tends to be very large.
To counter these problems, we suggest a very simple and cheap logging method,
‘light-weight logging’. It can be easily implemented on a Unix system, particularly
on the Solaris operating system from Sun. It is based on logging every invocation
of theexec(2)system call together with its arguments. We use data from realistic
intrusion experiments to show the benefits of the proposed logging and in particular
that this logging method consumes as few system resources as comparable methods
while still being more effective.

6.2.3 Paper G: Detecting computer and network misuse through the pro-
duction-based expert system toolset (P-BEST)This paper describes an expert
system development toolset called the Production-Based Expert System Toolset
(P-BEST) and how it is employed in the development of a modern generic sig-
nature-analysis engine for computer and network misuse detection. For more than
a decade, earlier versions of P-BEST have been used in intrusion detection research
and in the development of some of the most well-known intrusion detection sys-
tems, but this is the first time the principles and language of P-BEST are described
to a wide audience. We present rule sets for detecting subversion methods against

24 Summary of papers

which there are few defenses—specifically, SYN flooding and buffer overruns—
and provide performance measurements. Together, these examples and measure-
ments indicate that P-BEST-based expert systems are well suited for real-time mis-
use detection in contemporary computing environments. In addition, the simplicity
of the P-BEST language and its close integration with the C programming language
makes it easy to use while it is still very powerful and flexible.

6.2.4 Paper H: Designing IDLE: The intrusion data library enterprise
High quality, timely information on intrusions is crucial in the development, testing,
tuning, and updating of intrusion detection systems (IDSs) and intrusion recovery
systems. We present the Intrusion Data Library Enterprise (IDLE), a design and ini-
tial compilation of an extensible library of intrusion data that is efficiently parseable
in both human-readable and platform-independent machine-readable forms. The
IDLE format will be made available as a resource specifically for the intrusion de-
tection community. IDLE will provide IDS developers and users with accurate field
data for testing and tuning and, as new intrusion types are discovered, it will enable
tools to automatically update rule sets and parameters.

On the Fundamentals of Analysis and Detection of Computer Misuse 25

7 Reflections

7.1 Identified hard problems

During the work presented in this thesis, I have seen the same type of basic
security problems occur again and again. In this section, I take the opportunity
to discuss my views on what I have identified as the most important problems to
address in future security research.

7.1.1 The problem of highest privilege In a seminal paper from 1975, Saltzer
and Schroeder presented eight primary and two secondary design principles for
secure computer systems [58]. The principles are fundamental and should be com-
pulsory reading for any computer professional, not only security people. It is histor-
ically interesting that the paper talks about firewalls and intrusion detection (‘com-
promise recording’) several years before any of these became fields of research and
development. One of Saltzer and Schroeder’s principles is the following [58]:

Least privilege: Every program and every user of the system should
operate using the least set of privileges necessary to complete the job.
Primarily, this principle limits the damage that can result from an acci-
dent or error. It also reduces the number of potential interactions among
privileged programs to the minimum for correct operation, so that un-
intentional, unwanted, or improper uses of privilege are less likely to
occur.

Unfortunately, the principle of least privilege is rarely applied in the systems we
use today, and this is the cause of many security problems. We often find the in-
verse of the principle, which I have chosen to callthe problem of highest privilege.
It means that programs and users tend to have the highest set of privileges possible
in the system, probably because it means that their operations will not be obstructed
by any annoying security mechanisms. This is a little like fishing with explosives
instead of traditional fishing tackle—it is efficient but dangerous (not only to the
fish) and can have undesired side effects. There are several examples of this prob-
lem:

I Example 7.1.1 In 1993, it was discovered that the X Window System terminal
programxtermhad a security flaw known as the ‘xterm logging vulnerability’ [10].
I have described this particular problem from different perspectives in Papers B, C,
E and F. In summary,xterm is a large program, and the flawed version ran with
constant administrator privileges, although such powers were necessary only for a
small fraction of its duties. An attacker could trick the logging facility ofxterminto
creating an arbitrary new file or modify any existing file (for example, the system
password file) by appending an arbitrary set of data to it. The problem of highest
privilege is a direct cause of this vulnerability.

I Example 7.1.2 Many network server programs, such as e-mail servers or Web
servers, run with administrator privileges, although they often do not require such
privileges except for very specific operations. Typical privileged operations include

26 Reflections

the use of network port numbers lower than 1024, writing in certain directories
etc. The problem is that the server programs listen for network connections and
carry out instructions sent to them on those connections. An attacker who can con-
nect to the program and is able to trick it into performing certain illegal operations
will effectively perform those operations with administrator privileges on the victim
system.

I Example 7.1.3 In the Microsoft Windows NT File System, user access to local
system files and folders can be restricted to read-only permission to prevent acci-
dental or intentional modification. However, many programs (including Microsoft
Office 97) are written for Windows 95 or 98, which lack access control features, and
the programs therefore assume that they can write to all local files and folders and
do not work properly when the write operations are denied. Consequently, system
files and folders must be opened for writing by the user or the user must be given
administrative privileges for these programs to work. In both cases, we end up with
the problem of highest privilege, and the security benefits of having access control
features are effectively eliminated.

7.1.2 The problem of weakest link The statement that “a chain is only as
strong as its weakest link” is particularly true in computer security. The attack-
ers need only one traversable path through a protection barrier to reach their goal,
while the defenders must make sure that no such path exists. This would be less of
a problem if protection mechanisms were built in layers, resembling onions or Rus-
sian dolls, where the attackers would need to penetrate several independent layers
to gain access to the protected resources. However, many systems have a ‘security
philosophy like an egg or a coconut, with a single-layer outer hard barrier protecting
a soft, squishy core. A single weak point in that barrier will make it possible for at-
tackers to penetrate the system, and attackers can be expected to search for and find
such weak points. Designers who concentrate on their clever security mechanisms
often find it “unfair” that someone attacks a much weaker part of the system. It is
important to remember the nature of villains; by definition they do not play fair!

A basic design rule addressing this problem is to make sure that all links have
the same strength. In fact, lopsided security is a dangerous waste of resources. For
example, if passwords are protected by strong encryption when stored on disk, but
are transmitted unencrypted on the network when used for remote access, only an
unusually deranged attacker would try to break the encryption algorithm—all others
would eavesdrop on the network and simply record cleartext passwords.

In the design of fault-tolerant systems, a number of techniques are used to avoid
so-calledsingle points of failure. Some efforts have been made to utilize such
techniques to address this problem in security [17, 28], but there is probably much
more that can be done in this area.

7.1.3 The denial of service problem If we again compare security to the reli-
ability or fault tolerance disciplines, they all strive to uphold theavailability of a
system. The difference is that the availability aspect of security is about protecting
the system from someone who actively tries to prevent the system from delivering

On the Fundamentals of Analysis and Detection of Computer Misuse 27

the required service, while the others deal with random threats such as component
failure. So-called denial of service attacks range from the very unsophisticated,
such as cutting off the electric power or physically damaging the system, to the
fairly advanced, such as utilizing flaws in communications protocols or operating
systems to crash or anonymously overload the system. Availability is clearly the
forgotten aspect of security, and only a few studies have been presented, for exam-
ple [20, 43, 46]. By not giving the subject the attention it deserves, we are now in a
dangerous situation:

� Systems do not usually have resource allocation procedures that can act fairly
when misused. For example, an attacker masquerading as a number of users
can easily occupy all resources.

� Security mechanisms are often designed to be fail-safe, that is, if the mech-
anism does not work properly, it will deny all access in order to guarantee
integrity and confidentiality. It should be noted that, in the case of denial of
service, this is exactly what the attacker wants.

� Designers of open services have no tradition of making their systems robust
against denial of service attacks. There is no widespread knowledge in the
world of “best effort” Internet services about how this should be done6.

In applications in which strong authentication is required by users, denial of ser-
vice is less of a problem, but there will always be applications in which the users
are previously unknown or even forever anonymous to the service provider (current
popular examples are anonymous FTP and the World Wide Web). Substantial effort
must be expended to make sure that misusers cannot deny a service to benign users
simply by overloading it with fraudulent accesses. Techniques used in the design of
mission-critical real-time systems could probably inspire solutions to this problem.
For example, an IDS could use watchdog timers and heartbeat messages to discover
when a target or IDS component is unavailable or responds too slowly.

7.1.4 The Trojan horse problem: Trusting the untrustworthy

Too late-breaking news: The malicious code escaped from confinement
and was immediately executed by the macroprocessor.

Basically, a computer processes, produces, stores, transfers and deletes data ac-
cording to the instructions (the program) it is given. It is not far-fetched to state that
you have a security problem if your data is valuable and the instructions you give
your computer are untrustworthy, that is, they could have been authored or altered
by a person with malicious intent. How do you know that every single instruction
executed on your computer—whether the code is part of an application program,
device drivers, the operating system, the firmware etc.—is trustworthy? The reader
who has not yet realized the full implications of this problem is encouraged to stop
reading for a moment and think about it.

6In fact, most services do not specify any quality of service, such as a maximum waiting time,
and, as observed by Gligor [20], by definition, denial of service cannot take place under such cir-
cumstances because no service is promised. See also the discussion on security policy in Section 3.1.

28 Reflections

The combination of insecure client hosts (typically personal computers running
common commercial operating systems with disabled or missing access control
mechanisms, suffering from the problem of highest privilege), internetworking and
untrustworthy code is indeed very dangerous. Security researchers, including my-
self (see for example Paper D), have tried to warn the computer business and the
public about this problem. Recently, there have been more tangible demonstrations,
where potentially or directly malicious software has been released via the Internet.
Program beasts with names such as “Melissa”, “Back Orifice” and “NetBus” haunt
the networks of large organizations and individual home computers.

Open distribution of source code could make it easier to discover Trojan horses,
but the problem would still exist. The majority of ordinary users are happy if they
know enough about the system touse it and will never look at the source code.
Even devoted experts have difficulties, owing to the size and complexity of many
systems. The flip side of open source code distribution is that it could in fact make
it easier to inject malicious code into software packages—the process would be
simply to download the source code, modify whatever is desired and redistribute the
modified package as source code or compiled executables to victims. The hollow
wooden horse is yours; all you have to do is fill it with Greek warriors7.

To address this problem, users must be provided reasonable technical defense
measures against the threat of malicious code. The current argument from some
major software manufacturers that it is the users’ own fault if they run untrustwor-
thy code is very similar to the defense argument of the major car manufacturers
when they were first accused of making unsafe cars: accidents are the drivers’ fault.
Later, car manufacturers were convinced by regulations and market demand that
cars should be made safer. Computer users have a certain responsibility, just like
car drivers have a certain responsibility, but, in both cases, humans need technical
support to achieve reasonable levels of security and safety. Should there be security
regulations for software products? Will there be a market demand for IT products
with better security?

In Paper D, we recommend a risk management approach consisting of several
steps to counter the problem of untrustworthy components and related threats. The
bottom line is that intrusion prevention must be made better but will never be good
enough on its own and should be accompanied by intrusion detection and other
damage-reducing mechanisms and procedures.

7.2 On the validity and accuracy of data and results

There are several concerns regarding the validity and accuracy of the data ob-
tained from the student experiments. The first question is whether the students in
our experiments constitute a good approximation of real attackers. In reasoning
about security, the discussion often quickly reaches the point where the goal is to
protect the system against the most skilled and powerful attacker in the world. The
term “übercracker” [18] has been used for this picture of a diabolic, omnipotent ad-
versary. We did not wish to investigate theübercracker, partly because most people

7I am indeed in favor of open source code distribution, but the described danger should be ob-
served.

On the Fundamentals of Analysis and Detection of Computer Misuse 29

in the security community are already doing that. We wanted to see how ordinary
computer users with academic training in computer science and engineering but no
previous attacker experience would operate when they suddenly had a reason to at-
tack the system on which they were working. For example, we found that unskilled
attackers can indeed perform technically advanced attacks, thanks to so calledex-
ploit scriptswhich they download from the Internet (see Paper D).

The second question is how well the students’ reports correspond to reality. The
set of actions actually carried out by the attackers in our experiments is largely
in agreement with the set of actions documented by the attackers in their reports,
but the two are not identical. There are indeed actions reported that we seriously
doubt were ever performed on the system, for example types of intrusions to which
we know that the system was not vulnerable. This became painfully clear to the
students who later tried to confirm the reports in the intrusion analysis exercise. It
is also likely that there are actions that the attackers performed but never reported
to us. Why is there not a perfect match between the two sets? For the first case, we
do not really know what reason the students have for exaggerating their results. The
grading of the reports was not based on their successes but on their efforts and their
analysis of their work. We had also made it clear that their reports would be used
as research material, and it is therefore disappointing and worrisome that some of
them tried to polish their results. For the second case, we can only hope that actions
possibly left out of the reports were not reported because the students considered
them insignificant and not because they wanted to hide something from us.

Finally, there is the problem of using a relatively large group of humans as
“guinea pigs” at an engineering department. Our expertise is in technology, not
in the behavioral sciences. Factors not related to technology can greatly affect the
results, for example of how instructions are interpreted, what motivation the par-
ticipants have, whether they obey the rules of the experiment, whether they tell
the truth etc. This is probably an area in which we could benefit from consulting
external expertise.

As for the recorded FTP data, it is of high validity in the sense that it is “real”.
The disadvantage is that we have little or no conception of the true actions and
intentions producing the data. For example, we would not know about attacks that
for some reason were not recorded.

The DARPA evaluation data is definitely accurate because it is produced artifi-
cially with an exact knowledge about the events producing the data. However, it can
be argued that, because it is based on the normal traffic of a military base, it might
be difficult to generalize to other environments such as corporate or academic sites.

Figure 2 depicts a relative grading of our three different data sources in two di-
mensions: how well the data is believed to represent real security threats in general
(validity) and how well the data can be trusted to be a true representation of the
actual events that took place (accuracy). We can see that the use of supervised
students as a data source is a compromise both in terms of validity and accuracy
compared to the use of real attackers or pure simulation.

Validity or generalization of data and results is a general problem for the observ-
ing researcher. It is difficult to determine to what degree data produced under very
specific circumstances represents the general case. For example, do real insiders

30 Reflections

Degree of trustworthiness
(accuracy)

Degree of realism (validity)

low high

low

high real attackers

supervised students

pure simulation

Figure 2. Relative validity and accuracy of intrusion data sources.

in general typically behave like our students, or is it only insiders who recently
graduated from university who have thismodus operandi, or are there in fact no
real attackers who behave like our supervised students? The solution is typically to
make extensive studies of “the real thing”, but then we have the accuracy problem
when dealing with real intruders. Like Heisenberg, we must focus on one dimen-
sion at a time.

7.3 Ethical aspects

In this section, we take an external view and discuss our research methods and
their consequences as they are seen outside the security research community. This
discussion first appeared in [41].

7.3.1 The hacker school One concern that was voiced by several sources when
our student intrusion experiments came to public knowledge was that we were train-
ing university students to become computer criminals. This was amplified by some
reports in newspapers and television. A message that reached the public, and still
haunts us several years later, was that Chalmers had attacked hospital computers.
The journalistic logic behind this conclusion was that, because we had performed
our first experiment on a UNIX system and the hospital administration in a nearby
county had this type of system, hospitals could probably be attacked in a similar
way and,ergo, Chalmers had trained students to attack hospitals.

What are the facts in this case? In the intrusion experiments, we refrained en-
tirely from training students in attacking the system, which was necessary to ensure
that the data collected was valid for security modeling. In fact, some students com-
plained about the lack of any hints or instructions. We simply gave them access to
a computer network which they were allowed to attack for a limited period of time.
We also gave them access to the Internet, where they could seek information. In
1993, this was not something that students could normally arrange on their own.
Today, any student can afford to set up a computer network in his or her home, con-
sisting for example of a number of “old” PCs with an Intel 486 processor running
Linux, and Internet access is something that most people take for granted today.

On the Fundamentals of Analysis and Detection of Computer Misuse 31

All along, we have informed the students about what constitutes computer crime
according to national laws and why certain behavior is inappropriate or illegal.

7.3.2 Informed consent An important concept in research ethics isinformed
consent, which means that experiment participants should be informed of all pos-
sible consequences and risks of the experiment, that they should understand that
information and that they should be given the possibility to refuse participation.
In the intrusion experiments, the students who played the role of attacker were of
course informed about the experiment but were not informed that they could refuse
and be given another assignment instead, simply because we assumed that they all
wanted to participate.

The situation was different for the students who were ordinary users of the sys-
tem. They were not informed about the experiments because we did not want them
to be more concerned about security than they normally are. Unknowingly, they
played the role of victims. Some were deceived by forged e-mail to send the attack-
ers their passwords, others had their passwords revealed in other ways and, worst
of all, some passwords to other systems were monitored by the attackers when lab
computers were used as terminals for remote access. This is perhaps the most ques-
tionable part of the experiment, with a trade-off between realism and ethical con-
cerns. The users were not as easily fooled in the later experiments because they had
heard about our previous activities. In fact, any computer malfunction was blamed
on the security experimenters.

In the intrusion detection exercise described in Paper G, we wanted primarily to
use real, recorded data to make the students feel the realism and relevance of their
assignment. Users accessing the monitored FTP server had been warned through
a login banner message that their activities were monitored, and the passwords for
non-anonymous users were never recorded. Still, there can be innocent users whose
transactions appear suspicious in the log file or other privacy concerns. Again, there
is a trade-off between realism and ethics.

7.3.3 Related discussions on ethicsIn a discussion of the ethical aspects of
spreading information on methods for computer crime, Parker claims that the intent
of the publisher is what matters [53]. This view is shared by Spafford [61]. If the
intent is to raise awareness and protect systems, then it is ethical (and legal). If the
intent is to encourage people to attack systems, then it is unethical and probably
illegal.

At the 21st National Information Systems Security Conference in Arlington, Vir-
ginia in October of 1998, there was a panel discussion entitled “Do attack/defend
exercises belong in the classroom?”. It is interesting to note that all panelists from
academia were in favor of such exercises as a part of security education, and it
was difficult for the organizers to find a panelist with the opposite opinion. One
concern brought up in the discussion was that students could use skills acquired
in the exercise for evil purposes. This is however a general concern that is not re-
stricted to computer security; any tool or skill can be used for evil purposes. A
similar view is presented by White and Nordstrom [67], who claim that it would be
more dangerousnot to educate future system administrators in the details of attack-

32 Reflections

ing techniques because they would otherwise be “sitting ducks” for attackers who
possess these skills.

7.4 Contributions in perspective

This section summarizes the main contributions of the work presented in this
thesis. Our results are discussed in the light of other research in the field.

7.4.1 Intrusion analysis We have conducted extensive analyses of the charac-
teristics of the phenomenon known as intrusions. The specific dimensions of in-
trusions that we have focused on are those that are fundamental for detection and
diagnosis: intrusion technique and result (Paper C) and observable traces (Paper F).
To perform manual or automatic detection and/or diagnosis of a phenomenon, a
prerequisite for success is that you know what to look for, and it is likely that
you will be more successful the more knowledge you have of your target. In the
first published textbook on intrusion detection from a research perspective, Edward
Amoroso quotes our taxonomy from Paper C and states that “The reason that in-
trusion taxonomies and refinements such as [the one presented in Paper C] are so
valuable to intrusion detection system designers and users is that they provide in-
sight into the target objects being detected by these systems, particularly in the area
of indicators of intrusion” [1, p. 107]. In Paper H, we propose how intrusions may
be documented in a database format for the rapid sharing and archival filing of
knowledge produced in intrusion analysis aimed at detection and diagnosis.

7.4.2 Studies of insider techniques In the student intrusion experiments, the
students acted as insider attackers. Insiders typically have other motives and skills
than do specialized outsider crackers, and we have observed that insiders are very
much helped by so-called exploit scripts which are attack tools published on the
Internet (see Paper D). Technically speaking, it can be argued that an outsider be-
comes an insider as soon as he or she has gained remote access to an account on
the system, but there are also issues of social interaction and physical presence. For
example, the attack based on manipulating the boot process described in Paper C
requires physical access to the workstation console. An insider can make real-world
‘out of band’ observations that can be helpful in guessing passwords or selecting ac-
counts that are likely to have extraordinary privileges, for example. Even if vendors
of commercial IDSs often refer to the outsider threat in their advertising, the diffi-
culty associated with the prevention of insider attacks is one of the major traditional
motivations behind IDS research [15] and, consequently, studies of insider behavior
are at least as important as studies of outsiders. Many of the attacks suggested in
Paper A represent the insider threat, and all our results based on the student exper-
iments (see Papers B, C, D and F) apply primarily to insiders, although several of
the attacks are also typical for outsiders as observed in other studies [24, 63].

7.4.3 Risk management techniques: accepting the inevitableIn our work on
analyzing security vulnerabilities presented in Papers A and B, we show that vul-
nerabilities are typically caused by a combination of technical and “soft” issues

On the Fundamentals of Analysis and Detection of Computer Misuse 33

such as human-computer interaction and organizational concerns. We also confirm
observations made by other researchers [5, 29] that vulnerabilities are inevitable in
systems in operation. Therefore, we propose risk analysis (Paper D) and vulnerabil-
ity remediation (Paper E) strategies. We recommend system owners to apply such
risk management methods when relying on systems based on commercial compo-
nents for security-critical applications. In fact, today, it is difficult to find systems
that arenot based on commercial components, even in military applications. Risk
management techniques have thus become an essential complement to traditional
risk avoidance methods, and we see it as our mission to transfer this knowledge
from the research community to system owners in industry and other organizations.

7.4.4 Intrusion result detection Common objections to misuse detection are
that it requires detailed and specifica priori knowledge about every type of intrusion
it is capable of detecting and that previously unknown attacks and variations of
known attacks will go undetected. This is true if we only consider attacktechniques,
but if we can step up one level on the abstraction scale and look instead at theresult
of the attack (the breach), these objections become less valid (see Paper C for an
analysis of intrusion techniques and results). In addition, rules detecting results will
not reveal methods that can be used to design an attack tool, because such rules do
not specify how the detected result may be achieved. Let us illustrate the above
points with some examples:

I Example 7.4.1 Let us assume that we have a misuse detection system that ana-
lyzes network traffic going to and from a server for anonymous file transfer (FTP).
This IDS could be configured to warn us whenever an anonymous user issues a
destructive command, for example a command to delete a file. If the warning indi-
cates that the command was unsuccessful, we might be under attack but the system
may still be undamaged. However, if the destructive command was successful, our
IDS will tell us that the preventive mechanisms were penetrated (or perhaps cir-
cumvented) although we need not knowhow it was done.

I Example 7.4.2 If we have an IDS that monitors a host audit trail, the IDS may be
set to detect the execution of commands with administrator privileges by a normally
unprivileged user. Alternatively, it could detect that the privileged state was not
reached by using an appropriate procedure. Again, the misuse detection system
detects the result of the intrusion and does not need to know the method used to
reach the result.

The Information Systems Technology Group of MIT Lincoln Laboratory have
developed an IDS method called “bottleneck verification” [13], which detects when
a transition from an unprivileged state to a privileged state occurs and an approved
procedure is not used for the transition. Bottleneck verification would typically
detect the situation described in Example 7.4.2 above. If we picture an intrusion as
an attack which causes a transition from system states1 to s2, wheres2 represents
a breach or compromised state, then traditional misuse detection detects the attack,
bottleneck verification detects that an approved state transition mechanism was not
used while result detection detects that the system has reached the illegal states2.

34 Reflections

Result detection, in summary, has the following benefits compared with tradi-
tional methods for misuse detection:

� Rules can be independent of vulnerabilities.

� Rules can be independent of attack methods.

� Rules can to a certain extent be independent of the characteristics of specific
operating systems.

The disadvantage of result detection is that it detects only completed intrusions and
does not allow the opportunity to act before any damage is done, which for example
state transition analysis can do [54].

7.4.5 Verified usability for IDS tool In Paper G, we studied the usability of
a tool for building IDS analysis components, in terms of performance, ease of
use, expressive power and adaptability to different event data streams and intru-
sion types. The expert system tool P-BEST was used to build analysis components
in the MIDAS [59], IDES [42] and NIDES [2] systems and is currently being used
in EMERALD [55]. By letting students use P-BEST for an IDS lab assignment, we
were able to verify that the system was easy for non-experts to use. Furthermore,
in the EMERALD project, we designed P-BEST detection rules for different types
of intrusions, requiring analysis of both host audit trails and recorded network traf-
fic, applied these rules to large data sets and measured the resulting performance.
We thereby showed that P-BEST is well suited for constructing real-time misuse
detection components of IDSs that are targeted for contemporary computing envi-
ronments.

On the Fundamentals of Analysis and Detection of Computer Misuse 35

8 Conclusions and directions for future work

The knowledge acquired and presented in this thesis contributes to our under-
standing of the fundamental technical aspects of computer misuse, both in terms of
manifestation of misuse and possible countermeasures, and is a step on the road to
improved security in the systems we depend on today and those we will depend on
in the future. Our analyses of vulnerabilities in systems based on commercial com-
ponents show that security problems have intricate causes and that it is extremely
difficult, if not impossible, to build systems that are free from vulnerabilities. It is
concluded that risk management techniques are necessary when risk avoidance is
insufficient, and we have specifically studied vulnerability remediation and intru-
sion detection as examples of such techniques. Our systematic analysis of intrusion
techniques and results, together with our studies on collection and documentation
of observable intrusion traces, pave the way for efficient and effective intrusion
detection systems.

We can and should always collect more data on intrusions and vulnerabilities,
provided that we respect ethical and privacy issues. As shown in this thesis, al-
though it is not obvious how we should best catalogue such data, the data can be
of immense value to those who develop security protection mechanisms. It is often
necessary also to collect data on normal system events together with the intrusion
data to be able to analyze the relative frequency of intrusions etc. It would indeed
be interesting to continue development on a common format for documentation and
distribution of attack signatures.

How should intrusion detection systems be designed and implemented to be truly
useful in large integrated networks? There are a number of concerns that must
be kept in mind, including ease of use, scalability, results correlation, false alarm
suppression, survivability and interoperability. Research has only just been initiated
for some of these issues, and there is much work to be done.

The remaining difficult problems that were identified in this thesis—highest pri-
vilege, weakest link, denial of service and Trojan horses—are all important to ad-
dress in future research. The market requires technical solutions that solve these
problems without adding cost to products or adding to the workloads of users or
administrators. This is indeed challenging.

36 References

References

[1] Edward Amoroso.Intrusion Detection: An Introduction to Internet Surveil-
lance, Correlation, Traps, Trace Back, and Response. Intrusion.Net Books,
Sparta, New Jersey, 1999.

[2] D Anderson, T Frivold, and A Valdes. Next-generation intrusion-detection
expert system (NIDES). Technical Report SRI-CSL-95-07, Computer Science
Laboratory, SRI International, Menlo Park, CA 94025-3493, USA, May 1995.

[3] James P Anderson. Computer security technology planning study. Technical
Report ESD-TR-73-51, Vol. II, U.S. Air Force Systems Command, Electronic
Systems Division, October 1972. In [8].

[4] James P Anderson. Computer security threat monitoring and surveillance.
Technical report, James P Anderson Co., Box 42, Fort Washington, PA 19034,
USA, April 15, 1980. In [8].

[5] Ross J Anderson. Why cryptosystems fail.Communications of the ACM,
37(11):32–40, November 1994.

[6] C R Attanasio, P W Markstein, and R J Philips. Penetrating an operating
system: a study of VM/370 integrity.IBM Systems Journal, 15(1):102–116,
1976.

[7] Stefan Axelsson. Research in intrusion-detection systems: A survey. Techni-
cal Report 98-17, Department of Computer Engineering, Chalmers University
of Technology, G̈oteborg, Sweden, December 15, 1998.

[8] Matt Bishop, editor.History of Computer Security Project CD-ROM. Num-
ber 1. Department of Computer Science, University of California at Davis,
Davis, CA 95616-8562, USA, October 1998. Available fromhttp://seclab.cs.
ucdavis.edu/projects/history.

[9] British Standards Institution.Code of Practice for Information Security Man-
agement, 1995. BS 7799.

[10] CERT Coordination Center, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 15213-3890, USA.xterm Logging Vulnerability,
November 11, 1993. CERT Advisory CA-93:17.

[11] Common Criteria Implementation Board.Common Criteria for Information
Technology Security Evaluation, May 1998. Version 2.0. See also ISO/IEC
15408.

[12] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Krsul, and Eugene Spafford.
IDIOT users guide. Technical Report TR-96-050, COAST Laboratory, De-
partment of Computer Sciences, Purdue University, West Lafayette, Indiana,
September 4, 1996.

On the Fundamentals of Analysis and Detection of Computer Misuse 37

[13] Robert Cunningham et al. Intrusion detection research at Lincoln Laboratory.
In Proceedings of the UC Davis Intrusion Detection and Response Data Shar-
ing Workshop. Department of Computer Science, University of California at
Davis, Davis, CA 95616-8562, USA, July 15, 1998.

[14] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of
intrusion-detection systems.Computer Networks, 31(8):805–822, April 1999.

[15] Dorothy E Denning. An intrusion-detection model.IEEE Transactions on
Software Engineering, SE-13(2):222–232, February 1987.

[16] Dorothy E Denning and Peter G Neumann. Requirements and model for
IDES—a real-time intrusion detection expert system. Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, CA 94025-3493,
USA, 1985.

[17] Yves Deswarte, Laurent Blain, and Jean-Charles Fabre. Intrusion tolerance in
distributed computing systems. InProceedings of the 1991 IEEE Symposium
on Security and Privacy, pages 110–121. IEEE Computer Society Press, Los
Alamitos, California, May 20–22, 1991.

[18] Dan Farmer and Wietse Venema. Improving the security of your site by break-
ing into it. Posted oncomp.security.unixand several other Usenet newsgroups,
December 1993.

[19] Timothy Fraser, Lee Badger, and Mark Feldman. Hardening COTS software
with generic software wrappers. InProceedings of the 1999 IEEE Symposium
on Security and Privacy, pages 2–16, Oakland, California, May 9–12, 1999.
IEEE Computer Society Press, Los Alamitos, California.

[20] Virgil D Gligor. A note on denial-of-service in operating systems.IEEE
Transactions on Software Engineering, SE-10(3):320–324, May 1984.

[21] Ian Goldberg, David Wagner, Randi Thomas, and Eric Brewer. A secure en-
vironment for untrusted helper applications (confining the wily hacker). In
Proceedings of the 6th USENIX UNIX Security Symposium, San Jose, Califor-
nia, July 22–25, 1996. USENIX Association.

[22] Jani Habra, Baudouin Le Charlier, Abdelaziz Mounji, and Isabelle Mathieu.
ASAX: Software architecture and rule-based language for universal audit trail
analysis. In Yves Deswarte et al., editors,Computer Security – Proceedings
of ESORICS 92, volume 648 ofLNCS, pages 435–450, Toulouse, France,
November 23–25, 1992. Springer-Verlag.

[23] Paul Helman and Gunar Liepins. Statistical foundations of audit trail anal-
ysis for the detection of computer misuse.IEEE Transactions on Software
Engineering, 19(9):886–901, September 1993.

[24] John D Howard. An Analysis of Security Incidents On The Internet 1989–
1995. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania,
April 7, 1997.

38 References

[25] Erland Jonsson.A Quantitative Approach to Computer Security from a De-
pendability Perspective. PhD thesis, School of Electrical and Computer Engi-
neering, Chalmers University of Technology, Göteborg, Sweden, 1995.

[26] Erland Jonsson. An integrated framework for security and dependability. In
Proceedings of the New Security Paradigms Workshop, pages 22–29, Char-
lottsville, Virginia, September 22–25, 1998. ACM Press, New York.

[27] Erland Jonsson and Tomas Olovsson. A quantitative model of the security
intrusion process based on attacker behavior.IEEE Transactions on Software
Engineering, 23(4):235–245, April 1997.

[28] Mark K Joseph and Algirdas Avižienis. A fault tolerance approach to com-
puter viruses. InProceedings of the 1988 IEEE Symposium on Security and
Privacy, pages 52–58, Oakland, California, April 18–21, 1988. IEEE Com-
puter Society Press, Los Alamitos, California.

[29] Jay J Kahn and Marshall D Abrams. Contingency planning: What to do
when bad things happen to good systems. InProceedings of the 18th Na-
tional Information Systems Security Conference, pages 470–479, Baltimore,
Maryland, October 10–13, 1995. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[30] Calvin Ko. Execution Monitoring of Security-Critical Programs in a Dis-
tributed System: A Specification-Based Approach. PhD thesis, University of
California at Davis, 1996.

[31] Calvin Ko, George Fink, and Karl Levitt. Automated detection of vulnerabil-
ities in privileged programs by execution monitoring. InProceedings of the
Tenth Annual Computer Security Applications Conference, pages 134–144,
Orlando, Florida, December 5–9, 1994. IEEE Computer Society Press, Los
Alamitos, California.

[32] Calvin Ko, Manfred Ruschitzka, and Karl Levitt. Execution monitoring of
security-critical programs in distributed systems: A specification-based ap-
proach. InProceedings of the 1997 IEEE Symposium on Security and Privacy,
pages 175–187, Oakland, California, May 4–7, 1997. IEEE Computer Society
Press, Los Alamitos, California.

[33] Ivan V Krsul. Software Vulnerability Analysis. PhD thesis, Purdue University,
West Lafayette, Indiana, May 1998.

[34] Sandeep Kumar.Classification and Detection of Computer Intrusions. PhD
thesis, Purdue University, West Lafayette, Indiana, August 1995.

[35] R D Lackey. Penetration of computer systems an overview.Honeywell Com-
puter Journal, 8(2):81–85, 1974.

[36] George Lakoff.Women, Fire, and Dangerous Things: What Categories Reveal
about the Mind. The University of Chicago Press, Chicago, 1987.

On the Fundamentals of Analysis and Detection of Computer Misuse 39

[37] Jean-Claude Laprie, editor.Dependability: Basic Concepts and Terminology,
volume 5 ofDependable Computing and Fault-Tolerant Systems. Springer-
Verlag, Vienna, 1992.

[38] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A data mining framework
for building intrusion detection models. InProceedings of the 1999 IEEE
Symposium on Security and Privacy, pages 120–132, Oakland, California,
May 9–12, 1999. IEEE Computer Society Press, Los Alamitos, California.

[39] Richard R Linde. Operating system penetration. InProceedings of the Na-
tional Computer Conference, volume 44 ofAFIPS Conference Proceedings,
pages 361–368, Anaheim, California, May 19–22, 1975. AFIPS Press, Mont-
vale, New Jersey.

[40] Ulf Lindqvist. Observations on the Nature of Computer Security Intrusions.
Licentiate thesis, School of Electrical and Computer Engineering, Chalmers
University of Technology, G̈oteborg, Sweden, December 1996.

[41] Stefan Lindskog, Ulf Lindqvist, and Erland Jonsson. IT security research and
education in synergy. In Louise Yngström and Simone Fischer-Ḧubner, edi-
tors,Proceedings of the IFIP TC11 WG 11.8 First World Conference on Infor-
mation Security Education (WISE 1), number 99-008 in DSV Report Series,
pages 147–162, Kista, Sweden, June 17–19, 1999. Department of Computer
and System Sciences, Stockholm University/Royal Institute of Technology,
Sweden.

[42] Teresa F Lunt, R Jagannathan, Rosanna Lee, Alan Whitehurst, and Sherry
Listgarten. Knowledge-based intrusion detection. InProceedings of the An-
nual AI Systems in Government Conference, pages 102–107, Washington,
D.C., March 27–31, 1989. IEEE Computer Society Press, Los Alamitos, Cal-
ifornia.

[43] Jonathan K Millen. A resource allocation model for denial of service. In
Proceedings of the 1992 IEEE Symposium on Security and Privacy, pages
137–147, Oakland, California, May 4–6, 1992. IEEE Computer Society Press,
Los Alamitos, California.

[44] Abdelaziz Mounji.Languages and Tools for Rule-Based Distributed Intrusion
Detection. PhD thesis, Institut d’Informatique, University of Namur, Belgium,
September 1997.

[45] Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. Network intru-
sion detection.IEEE Network, 8(3):26–41, May/June 1994.

[46] Roger M Needham. Denial of service: An example.Communications of the
ACM, 37(11):42–46, November 1994.

[47] Peter G Neumann. Computer system security evaluation. InProceedings of
the National Computer Conference, volume 47 ofAFIPS Conference Proceed-
ings, pages 1087–1095, Anaheim, California, June 5–8, 1978. AFIPS Press,
Montvale, New Jersey.

40 References

[48] Peter G Neumann.Computer-Related Risks. ACM Press and Addison-Wesley,
New York, 1995.

[49] Peter G Neumann. Practical architectures for survivable systems and net-
works: Phase-one final report. Technical report, Computer Science Labora-
tory, SRI International, Menlo Park, CA 94025-3493, USA, January 28, 1999.

[50] Peter G Neumann and Donn B Parker. A summary of computer misuse tech-
niques. InProceedings of the 12th National Computer Security Conference,
pages 396–407, Baltimore, Maryland, October 10–13, 1989. National Institute
of Standards and Technology/National Computer Security Center.

[51] Office for Official Publications of the European Communities.Information
Technology Security Evaluation Criteria, June 1991. Version 1.2.

[52] Tomas Olovsson.Practical Experimentation as a Tool for Vulnerability Anal-
ysis and Security Evaluation. PhD thesis, School of Electrical and Computer
Engineering, Chalmers University of Technology, Göteborg, Sweden, 1995.

[53] Donn B Parker. Colleagues debate Denning’s comments.Communications
of the ACM, 34(3):33–41, March 1991. Reprinted inEthics and Computing
by K. W. Bowyer, IEEE Computer Society Press, Los Alamitos, California,
1996.

[54] Phillip A Porras and Richard A Kemmerer. Penetration state transition analy-
sis: A rule-based intrusion detection approach. InProceedings of the Eighth
Annual Computer Security Applications Conference, pages 220–229, San An-
tonio, Texas, November 30–December 4, 1992. IEEE Computer Society Press,
Los Alamitos, California.

[55] Phillip A Porras and Peter G Neumann. EMERALD: Event monitoring en-
abling responses to anomalous live disturbances. InProceedings of the 20th
National Information Systems Security Conference, pages 353–365, Balti-
more, Maryland, October 7–10 1997. National Institute of Standards and
Technology/National Computer Security Center.

[56] John Rushby. Critical system properties: Survey and taxonomy. Technical
Report CSL-93-01, Computer Science Laboratory, SRI International, Menlo
Park, CA 94025-3493, USA, May 1993. Revised February 1994.

[57] Jerome H Saltzer. Protection and the control of information sharing in Multics.
Communications of the ACM, 17(7):388–402, July 1974.

[58] Jerome H Saltzer and Michael D Schroeder. The protection of information
in computer systems.Proceedings of the IEEE, 63(9):1278–1308, September
1975.

[59] Michael M Sebring, Eric Shellhouse, Mary E Hanna, and R Alan White-
hurst. Expert systems in intrusion detection: A case study. InProceedings
of the 11th National Computer Security Conference, pages 74–81, Baltimore,

On the Fundamentals of Analysis and Detection of Computer Misuse 41

Maryland, October 17–20, 1988. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[60] Stephen E Smaha. Haystack: An intrusion detection system. InProceedings
of the Fourth Aerospace Computer Security Applications Conference, pages
37–44, Orlando, Florida, December 12–16, 1988. IEEE Computer Society
Press, Los Alamitos, California.

[61] Eugene H Spafford. Are computer hacker break-ins ethical? In Deborah G
Johnson and Helen Nissenbaum, editors,Computers, Ethics & Social Values,
pages 125–135. Prentice-Hall, Englewood Cliffs, New Jersey, 1995.

[62] Robert E Stepp and Ryszard S Michalski. Conceptual clustering of structured
objects: A goal-oriented approach.Artificial Intelligence, 28(1):43–69, 1986.

[63] Clifford Stoll. Stalking the wily hacker. Communications of the ACM,
31(5):484–497, May 1988.

[64] Brian Tung. The Common Intrusion Detection Framework (CIDF), June 22,
1999.http://gost.isi.edu/cidf/.

[65] H S Vaccaro and G E Liepins. Detection of anomalous computer session
activity. InProceedings of the 1989 IEEE Symposium on Security and Privacy,
pages 280–289, Oakland, California, May 1–3, 1989. IEEE Computer Society
Press, Los Alamitos, California.

[66] Willis H Ware. Security controls for computer systems (U): Report of De-
fense Science Board Task Force on Computer Security. Technical report, The
RAND Corporation, Santa Monica, California, February 11, 1970. In [8].

[67] Gregory White and Gregory Nordstrom. Security across the curriculum: Us-
ing computer security to teach computer science principles. InProceedings of
the 19th National Information Systems Security Conference, pages 483–488,
Baltimore, Maryland, October 22–25, 1996. National Institute of Standards
and Technology/National Computer Security Center.

[68] Lotfi A Zadeh. Fuzzy sets.Information and Control, 8(3):338–353, June
1965.

[69] Lotfi A Zadeh. A note on prototype theory and fuzzy sets.Cognition, 12:291–
297, 1982.

42

This page is intentionally left blank.

43

Part I

Analysis of the nature of security
threats

44

This page is intentionally left blank.

45

Paper A

An Analysis of a Secure System Based on Trusted Components

In Proceedings of the Eleventh Annual Conference on Computer Assurance
(COMPASS ’96), pp. 213–223, Gaithersburg, Maryland, June 17–21, 1996.

46

This page is intentionally left blank.

47

An Analysis of a Secure System
Based on Trusted Components

Ulf Lindqvist Tomas Olovsson� Erland Jonsson

Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden
fulfl, erland.jonssong@ce.chalmers.se

Abstract

This paper presents a practical security analysis of a beta implementa-
tion of a commercial system based on existing trusted hardware com-
ponents, such as advanced cryptographic building blocks. The system
was designed to securely store and handle both sensitive and insensitive
data records on individuals in such a way that it would be impossible
for unauthorized parties to link sensitive records to the correspond-
ing individuals. The analysis was performed by means of document
reviews, interviews and some practical tests with the intention of find-
ing and listing potential vulnerabilities for the knowledge of the de-
sign team. The vulnerabilities revealed are classified with respect to
their cause, and possible remedies are discussed. The classification
shows that the most important problem was that some system compo-
nents were incorrectly handled as trusted. Finally, we observed that
the problems were to a surprisingly high degree non-technical, reflect-
ing organisational and management issues and human insufficiencies.

1 Introduction

The target system of this study was a beta implementation of a database appli-
cation designed to deliver high-assurance security services in order to protect the
privacy of the recorded individuals. It was developed by a subsidiary of a major
computer manufacturer in cooperation with a small local enterprise, and its design
is based on trusted components and particularly on a patent [26]. The system is in-
tended to be used for personal registers, such as government or municipal services,
offices in health care, social care and other public services, which have a need to
record data on individuals. Indeed, the developers claim the system to be suitable

�Author’s present address: Carlstedt Research & Technology AB, Stora Badhusgatan 18-20,
SE-411 21 G̈oteborg, Sweden, tomas@carlstedt.se

48 Paper A

for most non-military environments. The major design goal was to make it virtu-
ally impossible to link a sensitive record in the database to an individual without
being properly authorized. Similar systems with this purpose have been presented
previously, see for example Brandtet al. [6].

We were contacted in an early phase of the development process and were asked
by the system developers to analyse the security of the system, both by scrutinizing
the design documents and by attempting to perform intrusions—or “attacks”—on a
beta installation of the system using our earlier experience of such experiments [7,
11, 22]. Our objective was to seek answers to the following questions:

� Is it possible to build a secure application based on PC workstations con-
nected to one or more database servers, with the help of commercially avail-
able security components? If not, what are the major obstacles?

� In what areas are vulnerabilities most likely to be found and what are the
underlying causes of the vulnerabilities present in the system?

Our approach is similar to a Tiger Team analysis [5, 10, 13], but has been devel-
oped further by means of classifying and analysing the results with the intention
of drawing some general conclusions. Thus, Section 2 presents a system overview,
and Section 3 briefly describes our analysis approach. In Section 4, a taxonomy of
security problems is first defined, and the design flaws and implementation prob-
lems we found are then presented in detail and classified according to the previously
defined taxonomy. Section 5 discusses the results obtained from the analysis, and
our conclusions are presented in Section 6.

We would like to point out that the system is presented in this report as it was
presented to us, and that we do not necessarily advocate the design trade-offs made
by the designers. Our task was merely to find problems and to present them to the
developers, so that proper improvements could be considered.

2 System overview

2.1 Logical structure

In many countries, individuals are assigned a unique number, a “personal num-
ber”, or “Social Security number”, which is used as a universal record identifier in
various registers as well as in this application. To provide a database system with
two different levels of security, the system utilizes separation, both by partitioning
and by encryption. The basic idea is to keep two separate databases, as shown in
Figure 1. The two databases can reside on the same or separate servers.

� The open databasecontains publicly available data such as name, address
etc., with plaintext personal numbers as record identification fields.

� Thesecret databasecontains sensitive data withencryptedpersonal numbers
as record identifiers. This DB is used by authorized officials to read and
update records on individuals. Since some record fields may be sensitive in
the sense that they might give enough information to reveal the individual
behind the record, such fields will be encrypted in the database.

An Analysis of a Secure System Based on Trusted Components 49

Open
database

Identification
No.

5912285565

6102121016

Name

Alice Bar

Bob Foo

Secret
database

Grant

$7,000

$9,000

Encrypted identification
 No.

ãA<#- zIJ^` ?ˆ

^

ˆAyS 2n1ºiI–a` ? ˜

Figure 1. The two databases with simple examples of records.

Server with
IBM 4755
Cryptographic Adapter
installed

IBM 4754
Security Interface
Unit connected to
the 4755

IBM Personal Security Card

Figure 2. Server configuration.

IBM 4754
Security Interface
Unit connected to
the serial port of the
client

IBM Personal
Security Card

Figure 3. Client configuration.

2.2 System platform

The target system of the present analysis was a very specific system implemen-
tation, calledthe beta installation, running an example application, calledthe pilot
register application. The beta installation consists of one client and one server, both
IBM PS/2 personal computers running OS/2 2.11, where OS/2 LAN Server is used
for network communication. The system is based on IBM’s Transaction Security
System (TSS) [1] for cryptographic functionality.

The server is equipped with an IBM 4755 Cryptographic Adapter (CA, a card
installed in the host and connected to the system bus) to which an IBM 4754 Se-
curity Interface Unit (SIU) is connected. The SIU is an external device used for
insertion of an IBM Personal Security Card which is a credit-card-sized smartcard
with memory and encryption functions. See Figure 2.

The client has an SIU connected to its serial port. There is no other special secu-
rity hardware installed in the client. The SIU is used in all cryptographic operations
such as user authentication and encryption of messages. To protect clients against
theft, no information is stored on client hard disks by the system. See Figure 3.

The databases are implemented in DB2/2 with SQL language extensions. All
cryptographic routines use the API bundled with the TSS [14, 15]. Examples of
API services include data encryption and decryption of record fields, message au-
thentication code (MAC) generation and verification, key management functions

50 Paper A

etc. The intention is for all these mechanisms and precautions to be sufficient to
protect the clients, the network and the databases, and thereby maintain the stipu-
lated high degree of security.

3 Approach

3.1 Security policy and threat assessment

The developers’ intention was to make the system resistant to many different
kinds of attackers, ranging from dishonest or disgruntled current or former employ-
ees to other organisations and even foreign governments. The developers summa-
rized the comprehensive security policy of the system in two statements:

i) Confidentiality. Only authorized users should be able to link records in the
Secret DB to a single individual.

ii) Integrity. Only authorized users should be able to modify records in a mean-
ingful way.

In addition, this identification and modification of records should be possible
only by using the services provided by the system, and not for example by having
physical access to the databases or the communications network. The area where
the client machines and the network are located should be considered as totally
insecure. Servers can be protected against manipulation with burglar alarms, even
though they can not be completely protected against theft.

3.2 Modus operandi

A popular approach in penetration analysis is the Flaw Hypothesis Methodology
(FHM), which is recommended in the Orange Book [27]. The FHM consists of four
main stages [18]:

i) Knowledge of system control structure

ii) Flaw hypothesis generation

iii) Flaw hypothesis confirmation

iv) Flaw generalization

Because of the limitations described in Section 3.3 below, we could not carry out
the FHM completely. Instead, we used anad hocapproach very similar to the FHM
and its four stages.

To gain a knowledge of the system and its control structure, we performed docu-
ment reviews, interviews with members of the development team and some practical
tests in the beta installation environment. As this part of the analysis went on, we
tried to think of all kinds of security problems in the system, that is we generated
flaw hypotheses. We discussed the hypotheses among the members of the analysis

An Analysis of a Secure System Based on Trusted Components 51

team and interviewed the design team when things were unclear. We did not ac-
tually try to exploit any of the problems we found, but were content when we had
convinced ourselves and the design team that what we found was really security
problems. For every problem, we tried to see whether it could be generalized, for
example if a problem found in a client was also present in the server.

3.3 Limitations

We did not have access to the source code of the system. Our specific questions
on source code level were answered by the developers, although an in-depth anal-
ysis of the source code is of course necessary for a complete security evaluation of
the system. The personnel resources and the time at our disposal were limited, as
was the possibility to perform realistic attacks on the system.

4 Security analysis

4.1 Introduction

For every problem found, we were interested in identifying three characteristics:
First, possiblepoints of attack, that is to identify certain system components that
seem to be more vulnerable than other components; second, to find out how the at-
tack would be performed, that is the correspondingmeans of attack, which includes
a description of the necessary methods and resources needed to perform a specific
attack; and, third, to find thecauseof the exploited problem.

We have classified the problems into four classes so that all problems in the same
class have the same generic cause. The classes are:

A: Misdirected trust. The assumption that some system components need not be
trusted was discovered to be false.

B: Misuse of security mechanisms. Cryptographic and other security functions are
not used in the intended way or are used without considering implementation
constraints.

C: Implementation deviations from specification. The actual implementation of the
system does not follow the intentions of the original system specification.

D: Oversights and bugs. Important issues with influence on the overall system
security have been overlooked in the design work.

4.2 Cause A: Misdirected trust

According to the system specification, some units, such as the clients and the in-
terconnection network, were allowed to be “insecure” and did not need to be trusted,
that is no specific security mechanisms were foreseen for them. The assumption was
that the specified degree of security for the full system could be enforced by means
of the tools and mechanisms present in other units. The following examples show
that this assumption was incorrect.

52 Paper A

4.2.1 Descriptions of problems

Problem A1 In the clients, it is relatively easy to install a Trojan horse which will
monitor all records that a legal user sends or receives from the servers. The Trojan
horse can do this either by scanning the memory, intercepting the network interface
or taking repeated snapshots of the screen. All retrieved information can be sent
to another user on the network or stored somewhere for delivery at a later point in
time.

Problem A2 To further refine the attack described in Problem A1, an attacker
can install a Trojan horse which will send its own requests to the server to retrieve
information. From the server’s point of view, this Trojan horse will act on behalf of
the authorized user; it will use the user’s smartcard and talk to the database server
as if it were authorized. The system relies on the client software integrity check of
the DBMS, but that mechanism is very simple and easy to bypass (the mechanism
is designed to help the system administrator make sure that all clients use the same
version of the application program, not to prevent Trojan horses).

Problem A3 Since smartcard readers (SIUs) are connected to the PC through
a serial port, it is possible to connect a second cable to the reader and to use an
authorized user’s card from another computer. This arrangement would give the
attacker the same possibilities as in Problem A2, but from another computer located
elsewhere.

Problem A4 It is possible to install any kind of software and/or hardware in a
client (or server) to bypass the use of encryption hardware, for example in favour
of simpler algorithms. This could be done in a number of ways. For example, if
the cryptographic API is dynamically linked to the application, the runtime linker
could be tricked into linking a library provided by the attacker instead of the proper
one.

Problem A5 The virtual memory swap file of OS/2 may contain sensitive infor-
mation. The application has no control over what information is transferred to this
file. It is possible for an attacker to collect information by searching this file, which
can be done long after the authorized user has finished working.

Problem A6 An attacker with physical access to a server can make arbitrary
changes to existing records in the data base after breaking the relatively simple
protection system of the database management system (DBMS). The hardware se-
curity devices are not involved in this operation.

Problem A7 The log files of the DBMS must be treated with care. They contain,
among other things, information about the origin of records, which could be used
to correlate records in different databases. Again, a program could collect such
information and store it somewhere else or send it over the network. It is also worth

An Analysis of a Secure System Based on Trusted Components 53

noting that, with special equipment, it is possible to recover information on disks
several generations back.

Problem A8 During the process of initialization the CA, and at registration and
initialization of users’ smartcards, floppy disks with files containing unencrypted
encryption keys are inserted. A Trojan horse can capture these keys during the
initialization session. The captured information could be used for example to create
new user identities or copies of existing smartcards. The designers intended to use
a dedicated host for the administration of users’ cards but, in the beta installation,
the database server was used for this task.

Problem A9 An eavesdropping attacker can read all data fields (except for the
record identifier, which is contained in the encrypted transaction header) in a trans-
action message sent between a client and a server. This is because the encryption
of data fields takes place in the server just before fields are written to the database,
and decryption is also done in the server immediately after fields are read. In both
cases,plaintext data is sent across the network. Since the reason for performing
such encryption is to hide sensitive data in records, this could be used to capture
such data and possibly also to link the data to a single individual.

Problem A10 When a transaction message is sent from a client to the server hold-
ing the Secret DB, the encrypted transaction header begins with a timestamp as a
defence against replay attacks. Since distributed clocks in a network usually cannot
be perfectly synchronized, the use of timestamps must allow for a window of time.
An attacker could use this window for a replay attack, in which the record identifi-
cation field is replayed without alteration, but where the data field is altered or new
fields are added. Since the timestamp is within the window, the transaction will be
granted by the server.

Data sent from the server to the client can probably not be altered in this way,
since the client will disregard answers without corresponding requests. Only if the
attacker’s message arrives before the correct one, will it be accepted by the client.

Problem A11 If an attacker can partition the network and place a bridge between
a server and a client, all unprotected data sent between the client and the server can
be modified on the way. The attacker can for example encrypt all data going to the
server and decrypt the data going back to the client. When this function for some
reason stops, it leaves the database and all backups unreadable to the system owner.
A more subtle attack would be to change the values of selected fields into erroneous
data, but send the original values when certain users request those records, in order
to prevent detection. The purpose of this attack could for example be to improve
the grades or salaries of friends or to slander enemies.

A summary of the problems caused by misdirected trust is given in Table 1.

4.2.2 Discussion It is an attractive characteristic of a secure system if it could be
implemented in such a way that not all units need to be trusted, and many specifica-
tions do indeed require a system layout in which some units are insecure. However,

54 Paper A

the multitude and severity of the problems listed above indicate that it is not evident
how such a design should be carried through.

There are two possible approaches to circumvent this problem. One obvious
way would be to waive the original requirement of untrusted units and secure them,
physically for example. However, this may not be easy to accomplish, and in many
cases the requirement of having untrusted units is based on a well-founded need.
The other way requires that the security mechanisms that the trusted parts provide
be sufficiently robust to preserve the security policies of the system, even if all the
untrusted parts are controlled by an attacker. The techniques needed to accomplish
this differ between different units.

Table 1. Problems caused by misdirected trust.

Problem Point of Means of
No. Description attack attack
A1 Trojan horses can monitor all user commands. Client TH
A2 Trojan horses can ask server for arbitrary

information.
Client TH

A3 SIU connected to the serial port can be used by
external system through extra cable.

Client HW

A4 Software or hardware can be added that
(invisibly) bypasses encryption hardware or
weakens encryption algorithms/keys.

Client +
Server

TH
(HW +
SW)

A5 OS/2 swap file may contain information. Client +
Server

R disk

A6 Given physical access to the server, it is easy to
modify or remove existing records.

Server W DB

A7 DBMS log files could reveal information. Server R disk
A8 A Trojan horse could capture the keys used for

initialization of the installed hardware and users’
smartcards.

Server +
Adm.
host

TH

A9 A network eavesdropper can read all encrypted
fields, since encryption and decryption are done
in server, and with that possibly identify records.

Network Passive

A10 Replays are possible with modified data by
re-using headers.

Network Active

A11 Network partitioning can invisibly modify data,
for example by encryption or subtle alteration.

Network Active

‘+’ denotes logical OR.
Means of attack: TH = Trojan horse, SW =software, HW = hardware,
R disk = read the local hard disk of the PC, W DB = write to the database,
Passive = a passive network attack (interception), Active = an active network
attack (interruption, modification or fabrication)

An Analysis of a Secure System Based on Trusted Components 55

Network security could probably be tightened up by a more extensive and careful
use of the cryptographic functions, at the cost of lower performance when more data
needs to be encrypted. A careful selection of the cryptographic protocols would also
improve the situation, but that selection is a non-trivial task [24].

The way in which clients should be secured against manipulation depends on
the situation at the customer site. If the PCs are used almost exclusively for this
application, a solution in which the PCs are unusable without an authorized user’s
smartcard being inserted in the reader (for example by cryptographic protection of
the disks) will be appropriate. On the other hand, if the PCs are used for many other
applications, and the users want to install various software freely, it is difficult to
secure clients against malicious manipulation. Another approach may be to boot
the system securely and to prevent subsequent manipulation. In this case, the boot
must be from a secure unit, such as a server [19]. Still another possibility that may
be discussed is to boot the system with the help of the smartcard.

4.3 Cause B: Misuse of security mechanisms

The target system makes use of good, well-tested security mechanisms, in parti-
cular cryptographic functions provided by the trusted hardware components. How-
ever, even if the building blocks are of a high quality, they may be used in such
a way that the security improvement is inadequate or even non-existent. In other
words, there are normally important constraints, for example with respect to ini-
tialization and integration of the mechanisms, which must be observed in order to
achieve the full security impact. The problems below are examples of failures to
observe such constraints.

4.3.1 Descriptions of problems

Problem B1 It must be simple for users to suspend their work temporarily and to
take short breaks without having to restart the application or go through a complex
authentication procedure. All users must feel that it is worth the trouble to remove
their smartcards even for very short breaks. This is not the case in the system
analysed. The user must quit the entire application to be able to remove the card.
Thus, it is unlikely that a user removes the card when leaving for a short while, and
consequently an attacker has a good chance of finding an unattended client that is
ready for use.

Problem B2 Encryption of data is used to conceal the contents of fields in the
database that can be used to identify the individual about whom a record concerns,
and to conceal the record identifiers sent in transactions from a client to the server.
The encryption algorithm used is CDMF [16], which is basically DES [21] but with
an effective key length of 40 bits.

However, a key length of 40 bits is clearly insufficient for a system introduced
today. This is the obvious conclusion from two observations:

1) Since the product is designed with the purpose of being exempted from U.S.
export limitations [16], it is designed to be weak (easy to break).

56 Paper A

2) The 56-bit key length of DES has been criticized for more than fifteen years [12].
Meanwhile, the cost of computing power has rapidly decreased.

The key-space exhaustion can be divided into many small processing parts, each
executing on an otherwise idle computer. It has been shown that the computing
power needed to find a 40-bit key in a matter of weeks, when using this method, is
well within the hands of a large number of people in the computer community [9].

Problem B3 Encryption is performed in a block mode where the same plaintext
value yields the same ciphertext for all records, and where partial changes to the
plaintext make partial changes to the ciphertext. This can be used to make conclu-
sions about the plaintext simply by looking at the ciphertexts of different records
and comparing these. If the attackers know the plaintext of the field of one record,
they can also identify all other records having the same value. This is a kind of
known plaintext attack.

Problem B4 Attackers who can insert data into the database (such as authorized
users with access to some, but not all records, who try to extend their privileges) can
try different values and compare the resulting ciphertexts with those of the desired
records. Since encryption is done in blocks of 8 bytes, it should be possible to apply
dictionary attacks against some records where parts of such a block is known. For
example, if 14 bytes are known and 2 bytes are being sought, an attacker has only
to try 65,000 combinations, which can be done in less than a second. In fact, it is
easy to do an exhaustive search for anything less than 5 bytes (40 bits) and, in all
other cases, it is easier to attack the encryption key (40 bits) instead. Even worse, if
the data being sought is not completely randomized, the numbers of combinations
that must be tried are far fewer. As opposed to Problem B3, this is a kind ofchosen
plaintext attack.

Problem B5 When a transaction message is sent from a client to the server hold-
ing the Secret DB, the encrypted transaction header begins with a timestamp, as
discussed in Problem A10. The encryption mode used is cipher block chaining
(CBC) mode [20] with an initialization vector (IV) of binary zeroes. The timestamp
is of the form (year, month, day, hour, minute, second) and is stored as a string of
14 digit characters, for example “19950428142439” denoting the time 14:24:39 of
April 28, 1995. However, this means that the first eight characters (64 bits) are the
same for all messages sent in a day. Consequently, an eavesdropping attacker is
always provided with a pair of corresponding 64-bit ciphertext and plaintext blocks
(since the attacker knows what day the message was captured), which is all that
is needed to start an exhaustive key search since the attacker already knows the
algorithm and the IV. This information is also sufficient for an exhaustive table at-
tack [28], although such an attack is probably less cost-effective than an exhaustive
key search.

A summary of the problems caused by misuse of security mechanisms is given
in Table 2.

An Analysis of a Secure System Based on Trusted Components 57

Table 2. Problems caused by misuse of security mechanisms.

Problem Point of Means of
No. Description attack attack
B1 Difficulty in leaving system for short breaks

allows possibility to find unattended clients.
Client Misuse

of app.
B2 DES/CDMF with a 40-bit key is too weak. Server +

Network
R DB +
Passive

B3 Identical fields from different records are identical
after encryption (known plaintext attack).

Server R DB

B4 Dictionary attacks against parts of the ciphertext
may be possible (chosen plaintext attack).

Client &
Server

Misuse
of app. &

R DB
B5 An eavesdropping attacker knows the first

plaintext block and IV of every captured
ciphertext message.

Network Passive

‘+’ denotes logical OR, ‘&’ denotes logical AND.
Means of attack: Misuse of app. = misuse of the legal application (as
opposed to a Trojan horse), R DB = reading the database (from disk or
backups), Passive = a passive network attack (interception)

4.3.2 Discussion It is obvious from the examples above that the use of encryp-
tion, tamperproof hardware devices etc., does notnecessarilyincrease the security
of a system. This owes to the fact that the application and integration of these prod-
ucts are not without difficulty [23], and that certain requirements must be respected.
Also, vendors of cryptographic products tend to overestimate their customers’ level
of cryptologic and security design expertise [2]. Still, these requirements are often
quite fundamental: use keys of appropriate length, do not encrypt plaintext that is
known to the attacker, etc.

The problem with export restrictions for cryptography shows that security is re-
ally a multifaceted area. There are alternatives to DES/CDMF for customers out-
side the United States, for example the International Data Encryption Algorithm
(IDEA) [17], but those are currently not supported by the hardware used in the
target system.

Secure handling of secret IVs in message and field encryption is necessary for
security, but might decrease system performance and increase the complexity of the
security mechanisms.

The problem with users leaving the workstation without their card once more
supports the human and user-related aspect of security. It is probably possible to
devise a procedure for short breaks, so that the user does not need to quit the ap-
plication to be able to remove the card and can thus make a fast re-authentication
when returning to the workstation. However, great care must be taken in designing
procedures involving direct human interaction. There are many examples in which
such procedures have turned out to be useless as a result of the reluctance of the
users to respect the constraints of the procedure.

58 Paper A

4.4 Cause C: Implementation deviations from specification

This class compiles all problems that are consequences of the fact that require-
ments in the original specification were never carried through. It also includes those
cases in which there is no formal requirement, but in which the problem has been
correctly addressed elsewhere in the design documentation.

4.4.1 Descriptions of Problems

Problem C1 An authorized user can create a merged copy of the entire Open and
Secret databases by requesting record after record. In the system analysed, there
is no limit on the number of records a single user can access in a limited period of
time.

Problem C2 In the system analysed, a user who is authorized to read records in
the Open DB or the Secret DB may also make arbitrary changes to them. This
is most likely due to the test status of the system, but is still a problem requiring
attention.

Problem C3 Due to the design of the pilot register application, when a record for
a person is requested from the Secret DB, the person isalwaysfirst looked up in
the Open DB. There is in fact no way to reach the secret data without first querying
the Open DB when using the pilot register application. This means that a read-
transaction to the Secret DB (with encrypted record identifiers) is always preceded
by a read-transaction to the Open DB (with plaintext record identifiers) requested by
the same client (and user). An attacker listening to the network can therefore easily
combine records from the Secret DB with records in the Open DB by looking at
either the user identity or the client identity in the network messages.

A summary of the problems caused by implementation deviations from specifi-
cation is given in Table 3.

4.4.2 Discussion The fact that issues that were correctly addressed, solved and
specified during the system design phase are still not implemented is a sign of,
possibly subtle, organisational problems in the development organisation. Problems
of this kind are well-known to the software community and have been so for many
years. It is interesting to note that, despite this knowledge, such problems persist
even in large and experienced organisations. This strongly supports the standpoint
that security is not only a result of technical solutions, but that “soft”, human-related
issues play an important role. The solution, as usual, must be sought in the areas of
good software engineering practices and traditional team management.

4.5 Cause D: Oversights and bugs

This class includes pure mistakes and “bugs” in the design and implementation,
as well as problems that depend on failure to notice the security impact of certain

An Analysis of a Secure System Based on Trusted Components 59

Table 3. Problems caused by implementation deviations from specifica-
tion.

Problem Point of Means of
No. Description attack attack
C1 Dishonest employees can create a merged copy of

the databases.
Client Misuse

of app.
C2 Read access automatically implies write access. Client Misuse

of app.
C3 When a record from the Secret DB is requested,

the Open DB is always first consulted.
Network Passive

Means of attack: Misuse of app. = misuse of the legal application (as
opposed to a Trojan horse), Passive = a passive network attack (interception)

design areas. It is related to the previous class, but the issues presented here were
never discussed or mentioned during the design phase.

4.5.1 Descriptions of problems

Problem D1 Records are supposed to have a last date for removal (periodic
purge). This field could be used to match records between the databases, with some
certainty.

Problem D2 The designers have no control over the ordering of records in the
database. In the system analysed, records are always added in thesame orderin
both the Open DB and in the Secret DB. With access to copies (disk or backups) of
the two databases, it is an easy task to identify all the secret records.

Problem D3 With access to backup tapes of different generations, it should be
easy to match added (and deleted) records from the two databases. It may not be
possible to match records with 100% certainty, but it may give a good indication
that a record from the Open DB corresponds to a record in the Secret DB. (This
method is probably interesting only to an attacker if Problem D2 is solved, be-
cause if records are stored in the same order in the databases, an attacker can match
records from a single generation of backup tapes.)

A summary of the problems caused by oversights and bugs is given in Table 4.

4.5.2 Discussion All of the problems presented relate to the concept of separa-
tion of open and secret data. The reason for this is probably the inherent clash of
interests between the users’ demand for functionality and the designers’ security
requirements; users want to merge information from the Open and the Secret DB
when working with the application, while the system tries to keep the information
separated. It is worth noting that the developers do not seem to have considered re-
sults of research and practice in database security, see for example Castanoet al.[8].

60 Paper A

Table 4. Problems caused by oversights and bugs.

Problem Point of Means of
No. Description attack attack
D1 Periodic purge info could be used to match

records in the databases.
Server R DB

D2 Ordering of records in Open DB and Secret DB is
the same.

Server R DB

D3 Backup tapes could give information about which
Open DB entries correspond to Secret DB entries.

Server R DB

Means of attack: R DB = reading the database (from disk or backups)

This class illustrates the general problem of systemvalidation, as opposed to
verification, that is the problem of designing a system consistent with thereal re-
quirements of the customer, which are not necessarily the same as thespecified
requirements. Therefore, no specific security-related remedies apply to this class,
and the discussion can be referred to general reports on this topic, such as Som-
merville [25].

5 Results obtained from the analysis

5.1 Comments to the classes

All causes of the vulnerabilities and problems found in the system analysed have
been classified into one of four classes. The first class of these, “misdirected trust”,
represents a real problem area that is difficult to solve, in which a trade-off must be
made between practical system design and security requirements. It is often very
practical if not all units in the system have to be fully trusted, but the achievement
would be to fulfil this requirement without compromising the security of the total
system. Our analysis indicates that there are no evident ways to accomplish this. It
could rather be questioned whether this is possible at all.

The class “misuse of security mechanisms” exhibits the problem of system de-
sign. Not only is it important to use highly secure building blocks; their interface
requirements must also be fully understood and taken into consideration in order for
them to be integrated correctly, and the interaction between them as well as with the
users must be clarified. Failure to consider these aspects may result in a deficient
system design, which is aggravated by the fact that the system owner is unaware of
it.

Two of the classes, “implementation deviations from specification” and “over-
sights and bugs”, are non-technical by nature but nevertheless very important. The
reasons for these problems, and consequently also the remedies, are to be found in
the area of software quality control, configuration management and “human engi-
neering”.

An Analysis of a Secure System Based on Trusted Components 61

5.2 Some technical issues

� Whenclients are physically insecure, all security sensitive data processing
at the client end must take placeinsidethe trusted hardware. Otherwise, the
data is subject to disclosure or manipulation in some way. In the system
analysed, this implies that for example personal numbers would have to be
entered on the keypad of the SIU (see Figure 3) and encryptedbeforebeing
sent to the PC. Still, sensitive data must eventually be output to the authorized
user (displayed on the screen) and can be captured for example by a simple
Trojan horse running in the background and taking repeated snapshots of
the screen. In general, it is very difficult to use physically unprotected PCs
running an insecure operating system when building a secure system, because
any user, authorized or not, can do virtually anything to the client machine
and its internal resources.

� It is difficult to use ordinarycommercial softwarepackages, since these are
often not compatible with security evaluated products [23]. In our case, the
security mechanisms of DB/2 or OS/2 LAN Server are designed with ambi-
tions far lower than those of the system analysed, which makes them likely
points of attack. We have observed the problems with ordering of records,
protection of logs, client software authentication and others.

� When clients and servers communicate over anuntrusted network, designers
must always assume that every bit sent over the network is read by an attacker,
and that every bit received from the network may have been inserted or altered
by an attacker. Solutions to this problem are far from easy to find but, when
properly used, the cryptographic functions provided by trusted components
can help to design protocols that are difficult to attack.

� The constraint of using onlydata encryption algorithmsthat are sufficiently
weak to be allowed to be exported from the United States is a serious short-
coming, because their only effect will be to give the users and owners of the
system a false sense of security. These algorithms form nothing but minor ob-
stacles to a determined attacker. Rather, encryption algorithms and keys must
be strong enough to survive attacks during and beyond the expected lifetime
of the system. Two things must be kept in mind: First, the computer power
available to an attacker is steadily increasing; and, second, when in operation,
systems tend to be in use for a longer time than originally expected.

� The actualimplementation does not always follow the original goalsand in-
tentions of the designers. This may be the result of lack of detail and explic-
itness in the design documents or other insufficient communication between
designers and programmers etc. Whatever the reasons, this problem must
be overcome in the development of secure systems. Otherwise, systems will
continue to fail.

62 Paper A

6 Conclusions

The security analysis performed revealed a significant number of vulnerabilities
and potential vulnerabilities in the investigated system. It showed that the use of
encryption, tamper-proof hardware devices, smartcards etc. does not necessarily
increase the security of a system because vulnerabilities are introduced in theap-
plication and operationof the system [2–4].

Since the target system was a beta release and not a final product, a certain num-
ber of problems were to be expected. On the other hand, given the amount of effort
and money that had already been invested in the design, and bearing in mind that
the analysis was made by a small team with limited time and resources, it is surpris-
ing that a relatively large number of “trivial” problems still remained in the system,
for example those related to unimplemented specification requirements. Therefore,
security is as much an organisational and management issue as a technical one, and
it must be addressed throughout the development process, from specification and
implementation to operation and maintenance.

References

[1] D G Abraham, G M Dolan, G P Double, and J V Stevens. Transaction Security
System.IBM Systems Journal, 30(2):206–229, 1991.

[2] Ross J Anderson. Why cryptosystems fail. InProceedings of the 1st ACM
Conference on Computer and Communications Security, pages 215–227, Fair-
fax, Virginia, November 3–5, 1993. ACM.

[3] Ross J Anderson. Making smartcard systems robust. InProceedings of
Cardis 94, Lille, France, October 24–26, 1994. Out of print.

[4] Ross J Anderson. Why cryptosystems fail.Communications of the ACM,
37(11):32–40, November 1994.

[5] C R Attanasio, P W Markstein, and R J Philips. Penetrating an operating
system: a study of VM/370 integrity.IBM Systems Journal, 15(1):102–116,
1976.

[6] Jørgen Brandt, Ivan Bjerre Damgård, and Peter Landrock. Anonymous and
verifiable registration in databases. InAdvances in Cryptology – Proceedings
of EUROCRYPT ’88, volume 330 ofLNCS, pages 167–176. Springer-Verlag,
1988.

[7] Sarah Brocklehurst, Bev Littlewood, Tomas Olovsson, and Erland Jonsson.
On measurement of operational security. InProceedings of the Ninth An-
nual Conference on Computer Assurance (COMPASS ’94), pages 257–266,
Gaithersburg, Maryland, June 27–July 1, 1994.

[8] Silvana Castano, Mariagrazia Fugini, Giancarlo Martella, and Pierangela
Samarati.Database Security. Addison-Wesley and ACM Press, 1994.

An Analysis of a Secure System Based on Trusted Components 63

[9] Simson L Garfinkel. Netscape’s international browser security breached.San
Jose Mercury News, August 17, 1995.

[10] Peter D Goldis. Questions and answers about tiger teams.EDPACS The EDP
Audit, Control, and Security Newsletter, XVII(4):1–10, October 1989.

[11] Ulf Gustafson, Erland Jonsson, and Tomas Olovsson. Security evaluation of
a PC network based on intrusion experiments. InProceedings of SECURI-
COM 96 – 14th Worldwide Congress on Computer and Communications Se-
curity Protection, pages 187–202, Paris, France, June 5–6, 1996. MCI.

[12] Martin E Hellman. DES will be totally insecure within ten years.IEEE Spec-
trum, 16(7):32–39, July 1979.

[13] I S Herschberg. Make the tigers hunt for you.Computers & Security,
7(2):197–203, 1988.

[14] D B Johnson and G M Dolan. Transaction Security System extensions to the
Common Cryptographic Architecture.IBM Systems Journal, 30(2):230–243,
1991.

[15] D B Johnson, G M Dolan, M J Kelly, A V Le, and S M Matyas. Common
Cryptographic Architecture Cryptographic Application Programming Inter-
face. IBM Systems Journal, 30(2):130–150, 1991.

[16] D B Johnson, S M Matyas, A V Le, and J D Wilkins. The Commercial Data
Masking Facility (CDMF) data privacy algorithm.IBM Journal of Research
and Development, 38(2):217–226, March 1994.

[17] X Lai and J Massey. A proposal for a new block encryption standard. In
Advances in Cryptology – Proceedings of EUROCRYPT ’90, volume 473 of
LNCS, pages 389–404. Springer-Verlag, 1991.

[18] Richard R Linde. Operating system penetration. InProceedings of the Na-
tional Computer Conference, volume 44 ofAFIPS Conference Proceedings,
pages 361–368, Anaheim, California, May 19–22, 1975. AFIPS Press, Mont-
vale, New Jersey.

[19] Mark Lomas and Bruce Christianson. To whom am I speaking? – Remote
booting in a hostile world.Computer, 28(1):50–54, January 1995.

[20] National Bureau of Standards, U.S. Department of Commerce.DES Modes of
Operation, December 1980. FIPS PUB 81.

[21] National Institute of Standards and Technology, U.S. Department of Com-
merce.Data Encryption Standard (DES), December 1993. FIPS PUB 46-2.

[22] Tomas Olovsson, Erland Jonsson, Sarah Brocklehurst, and Bev Littlewood.
Towards operational measures of computer security: Experimentation and
modelling. In Brian Randell et al., editors,Predictably Dependable Comput-
ing Systems, ESPRIT Basic Research Series, chapter VIII. Springer, Berlin,
1995.

64 Paper A

[23] William R Price. Issues to consider when using evaluated products to imple-
ment secure mission systems. InProceedings of the 15th National Computer
Security Conference, pages 292–299, Baltimore, Maryland, October 13–16,
1992. National Institute of Standards and Technology/National Computer Se-
curity Center.

[24] Gustavus J Simmons. Cryptanalysis and protocol failures.Communications
of the ACM, 37(11):56–65, November 1994.

[25] Ian Sommerville. Software Engineering. Addison-Wesley, fourth edition,
1992.

[26] The Swedish Patent and Registration Office.Anordning och metod för lagring
av datainformation, 1994. Swedish Patent No. 501 128.

[27] U.S. Department of Defense.Trusted Computer System Evaluation Criteria,
December 1985. DoD 5200.28-STD.

[28] Victor L Voydock and Stephen T Kent. Security mechanisms in high-level
network protocols.Computing Surveys, 15(2):135–171, June 1983.

65

Paper B

Analysis of Selected Computer Security Intrusions:

In Search of the Vulnerability

Technical Report 275, Department of Computer Engineering, Chalmers University
of Technology, G̈oteborg, Sweden, 1996. Presented at NORDSEC – First Nordic
Workshop on Secure Computer Systems, Göteborg, Sweden, Nov. 7–8, 1996.

66

This page is intentionally left blank.

67

Analysis of Selected Computer Security Intrusions:
In Search of the Vulnerability

Ulf Lindqvist Ulf Gustafson� Erland Jonsson

Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden
fulfl, erland.jonssong@ce.chalmers.se

Abstract

This paper presents an in-depth analysis of some selected computer
security intrusions we have encountered during intrusion experiments
and security analyses. The intrusions presented here illustrate the wide
range of threats that owners and users of modern distributed comput-
ing systems must face. Several different dimensions of the intrusions
are considered and discussed in detail, such as the flaw exploited in
the intrusion, the cause of the presence of the flaw in the system, the
method of attack, the initial result of the penetration, the possible im-
plications and recommended remedies. It is argued that an intrusion is
not feasible solely because of a single flaw, but is rather a function of a
number of different flaws and characteristics of the system. This makes
the job of detecting and preventing intrusions much more complicated.

1 Introduction

An intrusion into a computer system is possible owing to the existence of some
kind of vulnerability, that is a characteristic that can be utilized for the purpose of
penetrating the system. The immediate approach to prevent the intrusion would be
to remove that vulnerability. However, an intrusion is not made possible by a single
vulnerability in the system, but rather by a number of different vulnerabilities and
characteristics that combine to form a penetration path. In many cases it is neces-
sary to remove only one of the items in the path to make the intrusion impossible.
In other cases, such an action will not suffice, since there can be ways to circum-
vent the obstacle created by this removal. Thus, we face a rather complex situation,
which is reflected in the intrusion process as such.

The intention of this paper is to illustrate the complexity of the system character-
istics that make intrusions possible, and thereby to shed light on the corresponding

�Author’s present address: Ericsson Mobile Data Design AB, S:t Sigfridsgatan 89, SE-412 66
Göteborg, Sweden, Ulf.Gustafson@erv.ericsson.se

68 Paper B

intrusion process, which in turn may help to design tools for intrusion detection.
Other authors have approached the same problem from various angles. For exam-
ple, Ilgunet al. [4] used state transition analysis to represent and model intrusions,
Dacieret al.[2] used stochastic Petri nets for the same purpose and Reid [9] studied
the anatomy and exploitation of vulnerabilities in contemporary systems.

Our approach is to base work mainly on the results of realistic intrusion exper-
iments that we conducted [3, 8], as well as on results of a security analysis of a
secure database system [6]. Although the main objective of the experiments was to
find operational measurements of computer security, we inevitably gained knowl-
edge of many vulnerabilities at the same time. Furthermore, from the reports of
the alleged attackers, we were able to form a very good idea aboutexactly howthe
intrusions were performed1, information that is not normally available in ordinary
vulnerability databases (such as CERT2 advisories) and which has helped us in the
analysis.

In the following, Section 2 presents the scheme used for the description of the
intrusions. Section 3 gives a straightforward presentation of five intrusions on three
different systems. Section 4 presents a refined analysis of the underlying flaws, and
Section 5 discusses the outcome of this analysis and the problem of referring an
intrusion to a single cause. Section 6 concludes the paper.

2 Description scheme of the intrusions

This section describes a number of selected intrusions on three different sys-
tems [3, 6, 8]. The selection is made with respect to intrusion method, primary flaw
and system design, so that a fairly wide area is covered. Still, each of the intrusions
represent a severe attack against the central security functions of the system, result-
ing in the gaining of system administrator privileges or equivalent violation of the
security policy.

In the analysis of such complex events as computer security intrusions, it is im-
portant to determine exactly what dimension (aspect, attribute) of the event the
analysis concerns [5]. In this paper, we have chosen to discuss in detail several
distinct dimensions of every intrusion presented in order to give a complete picture
of the event.

The description is given in relatively great detail and includes the following di-
mensions: exploited (primary) flaw, attack method and potential impact of the in-
trusion. Possible remedies are also discussed. The description is structured under
the headings presented below.

Summary Gives a short summary of the intrusion.

Description of the flaw Identifies the immediate or major reason why the intru-
sion was possible, and gives a relatively detailed technical description of the

1Because we do not want to provide attackers with new information, we have chosen to present
only flaws to which system patches have been available for some time and methods of attack which
are already well known.

2CERT Coordination Center, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA 15213-3890, USA

Analysis of Selected Computer Security Intrusions 69

vulnerability.

Cause Identifies the cause of the flaw present in the system.

Method of attack Describes how the flaw can be successfully exploited in an at-
tack.

Initial result of penetration Gives the “normal” or primarily expected internal re-
sult of an accomplished penetration. The result of a penetration can be dif-
ficult to determine [5], but identification of the initial result is important in
certain types of intrusion detection systems [4].

Potential impact Tries to assess the worst possible damage that can result from
the penetration, although a significant additional effort might be required to
move on from the initial result.

Possible remediesDiscusses possible ways to eliminate the flaw.

The distinction between ‘flaw’ and ‘cause’, for example, or ‘initial result’ and
‘potential impact’ is not always clear and unambiguous. We have had the ambition
to make a practical and comprehensible demonstration of the intrusions, but the
names and contents of the headings are subject to discussion.

3 Description of intrusions

The intrusions presented in this section represent different systems, different
causes and different methods of attack, but a common denominator is the sever-
ity of the potential impact. In all the cases described, a carefully launched attack
would effectively circumvent the security mechanisms of the system. In the Unix
examples and the Novell example, an attacker can gain system administrator privi-
leges, that is, complete control of the system. The database system in the last exam-
ple was built primarily to strongly protect the privacy of the recorded individuals,
expectations which are dashed by the described attack.

3.1 Unix: X terminal emulator logging vulnerability

Summary The X Window System terminal programxterm, running with the ef-
fective user id ofroot, had a flawed logging facility (CERT Advisory CA-93:17)
that could be used to create any file or append to any existing file.

Description of the flaw The purpose of the logging facility is that all the output
from a terminal session can be saved in a log file. The name of a log file can be
specified as a command line argument toxterm. The program examines whether the
invoker is permitted to access the specified log file by using theaccess(2v)system
call, which uses the real user and group id in the verification. However,xtermruns
with effective user idroot, and the logical error is that the real user id (that of the
user invoking the program) is used to check the existence and protection of the log
file, while the effective user id (root) is used for the opening of the file.

70 Paper B

Cause The reason whyxterm runs with effective user idroot in the default in-
stallation is that it needs to change the owner of the pseudo-terminal slave device.
The code that handles the opening of the log file was not written with the caution
required for such programs.

Method of attack In a directory in which the attacker has write permission, the
attacker creates a symbolic link to either a non-existing file or an already existing
file. First, the attacker changes the current directory to the directory above the one
containing the symbolic link. Thenxtermis started with the symbolic link specified
as the log file. If the file pointed to by the symbolic link does not exist, it will
be created and will contain the output fromxterm. If the directory containing the
symbolic link is writable but not readable by the attacker, and the link points to an
existing file, the output ofxtermwill be appended to that file.

Initial result of penetration Any user can create any file or append to any exist-
ing file.

Potential impact Any user can gainroot access, for example by appending to
/etc/passwdor appending to or creating/.rhosts.

Possible remedies The distributed patches have disabled the logging facility. A
better countermeasure would be to rewrite the program to only turn on super-user
privileges for the operations where that is absolutely necessary, following “the prin-
ciple of least privilege” [11].

Comments A variant of this attack is to trickxterm into changing the owner of
any existing file, as described in [1].

3.2 Unix: Writable /etc/utmp vulnerability

Summary The system logging file/etc/utmpwas world-writable in some distri-
butions of SunOS and other Unix variants (CERT Advisory CA-94:06). This con-
figuration flaw made it possible for anyone with access to a user account to gain
root privileges.

Description of the flaw The/etc/utmpfile records information about who is cur-
rently logged on to the system. The file consists of a sequence of entries as declared
in the /usr/include/utmp.hinclude file. Each entry contains the name of the special
file associated with the user’s terminal, the user’s login name, the remote host from
which a user has logged in (when applicable) and the time of the login.

Many programs trust the information in the/etc/utmpfile. Rather than fetching
the real user id of the process (by for example thegetuid(2v)system call), the pro-
grams that trust the/etc/utmpfile collect the user id of the invoker from that file,
often by using thegetlogin(3v)library function.

Analysis of Selected Computer Security Intrusions 71

Cause Some Unix variants were distributed with a world-writable/etc/utmpfile.
The reason for this was that unprivileged programs that connect to a virtual terminal
should be able to put entries in the file, to make the user appear to be logged in.

Method of attack An attacker can easily write a program that erases his entry
from the /etc/utmpfile. This makes the attacker “invisible” from listings of pro-
grams such astalk, rusers, finger, whoand in some casessyslogd. Of course, it is
also possible to fool the system by changing the appropriate field instead of deleting
it.

Initial result of penetration Any user can make arbitrary changes to/etc/utmp.
Programs that trust this information can be misled about the identity of the user.
Also, programs that use the/etc/utmpfile for presenting the users currently logged
in may be tricked into presenting arbitrary output, whereby it is possible to hide or
falsify accounting information.

Potential impact In SunOS 4.1.x (SunOS 4.1.3U1 not included), any user can
gainroot access.

Possible remedies Patches should be installed in all SunOS 4.1.x distributions
(except SunOS 4.1.3U1) for programs according to the CERT advisory mentioned.
It is also possible to make/etc/utmpwritable only toroot, with the disadvantage that
unprivileged programs that connect to a virtual terminal are no longer able to put
an entry into/etc/utmp. This means that programs such aswho that use/etc/utmp
will not know that a user is connected to a virtual terminal when an unprivileged
program made the connection.

3.3 Unix: Keyboard snooping

Summary By connecting to the X Window server of a target host, an attacker can
monitor and record all the user’s keystrokes. Especially, passwords to the target
system and to other systems can be recorded.

Description of the flaw In the X Window System, any client program that can
connect to the display server can also take over the mouse or keyboard and, for
example, send keystrokes to other applications or invisibly monitor all keystrokes
that are sent to the server (keyboard events are shareable). There are basically two
authorization mechanisms in the X Window System: the original host-basedxhost
facility and the host/user-basedXauthorityfacility (also referred to asmagic cookie
authorization) introduced in X11R4 [12]. TheXauthorityfacility was designed to
prevent this particular attack by allowing server access only to the user logged in
at the console (who can in turn grant access to other users), but the problem is that
anyxhostsettings override theXauthoritysettings.

72 Paper B

Cause As the experiment target system [8] was set up, any user logged in to a
workstation (not necessarily sitting by the console) could connect to the X Window
server of that workstation, because thexhostmechanism was inadvertently set to
allow this, effectively overriding the also enabledXauthoritymechanism.

Method of attack The attackers in the experiment found a program calledxkey
on the Internet. The program invisibly monitors all keystrokes sent to the specified
X Window server and prints the characters on standard output. The printout can for
example be saved in a file for later examination.

Initial result of penetration The attackers can capture everything the user types
at the keyboard.

Potential impact If the user types a password, for example when starting anftp
or rlogin session, that password is captured by the attackers, who can use it to gain
access to the account in question. One group of attackers let the program run in
the background on all the target workstations during the duration of the experiment.
This gave the attackers 69 user passwords, of which 25 were passwords to other
systems than the target system.

Possible remedies If the Xauthoritymechanism had been properly set up and en-
abled, and thexhostmechanism had been disabled, this attack would have been
much more difficult to accomplish, although not impossible. TheXauthoritymech-
anism is susceptible to network eavesdropping, for example, but an attacker who
can tap the network can also capture transmitted passwords without using the X
Window System at all. Another remedy is to use the “Secure Keyboard” option in
the terminal emulatorxtermwhen typing sensitive data (usually reached by click-
ing the left mouse-button while pressing the control key). Knowledge about this
option is not very widespread among users, but it would have effectively stopped
this particular attack.

3.4 Novell: NCP packet forging

Summary A deficiency in the NetWare Core Protocol (NCP) makes it possible
for any ordinary user to become a supervisor-equivalent user on the NetWare net-
work. This applies to any unpatched NetWare 3.11 systems or a NetWare 3.12 or
4.x system that does not use packet signatures.

Description of the flaw A NetWare server and NetWare client communicate with
each other by means of NetWare Core Protocol packets. The packets include infor-
mation about where the packet is going and where it came from, as well as a user
authentication code and data. In NetWare 3.11 and earlier, there is no packet authen-
tication done to validate the NCP packet’s origin. In NetWare 3.12 and higher, Net-
Ware incorporates a packet signature authentication procedure. However, packet
signatures is an option that must be turned on, since it is turned off by default. It

Analysis of Selected Computer Security Intrusions 73

must also be enabled on both the server and the clients. If the packet signatures
option is not used in NetWare, it is possible for arbitrary users that have an ac-
count on the system to extend their privileges by forging packets and send them to
the file server. This flaw is utilized by a well-known program calledhack.exeor
nethack.exe, which is written in the Netherlands.

Cause If the system administrator on a NetWare installation chose not to use
packet signatures (for performance reasons, for example), the authenticity of the
network packets would not be checked. This deficiency makes it possible for any
user to produce a supervisor request, for example, by sending carefully constructed
packets to the server. The NCP packet signatures option can be added to 3.11
through a patch, but the option is included in version 3.12 and higher. However,
this is still a vulnerability and a potential threat to Novell networks both because
the patch might not be installed on all NetWare 3.11 networks and because some
administrators of higher versions might choose not to use packet signatures.

Method of attack Unfortunately there is not much information available about
Novell NCP because this protocol is proprietary. However, a skilled attacker with
insight into NCP can still write a program that extracts one arbitrary NCP packet,
originating from the supervisor or a supervisor-equivalent user, from the network
and fill it in carefully [13]. The attacker then sends a specific number of forged
packets to the NetWare server. From the file server point of view, one of the forged
packets will appear authentic and the server will without questioning perform the
actions as specified in the data part of the packet. The easiest way to perform this
attack is to use the publicly available programhack.exe. Given that the supervisor
is logged in,hack.exechanges the supervisor password when executed. Then every
account on the file server is made supervisor-equivalent and, finally, the original
supervisor is logged out.

Initial result of penetration Any legitimate user in a NetWare installation may
change, add or remove arbitrary privileges for any user of the system.

Potential impact A program such ashack.exemay exploit the packet authentica-
tion deficiency by automatically giving supervisor equivalence to all users that have
accounts on the file server.

Possible remedies The NCP packet signatures patch should be installed and ac-
tivated in all NetWare 3.11 installations. To prevent packet forging, administrators
should enable packet signature level 3, which forces packet signatures to be used.
Clients that do not support packet signatures will not be able to access the file server,
meaning that they will need to be upgraded. NetWare 3.12 and 4.x include the up-
dated software, but the administrator must still set the correct packet signature level
on both server and clients. When NCP packet signatures is used, any attempt to
forge packets to the server will result in a message on the server console, in the
error log, and be sent to the affected client. Packet signatures works by using an

74 Paper B

additional step during the encrypted password login call, to calculate a 64-bit ses-
sion key. The session key is never transmitted over the network. It is used as the
basis for a cryptographic signature (MD4 [10], according to Novell documentation)
which is added on each NCP packet exchange. A packet with correct signature is
taken as proof that it comes from the claimed client.

3.5 A database system: Ordering of records

Summary In a commercial database system, personal data was split into sensi-
tive and public records, which were kept on two separate databases. An advanced
cryptographic separation method was able to be circumvented for the simple reason
that corresponding records were always added and stored in the same order in the
two databases.

Description of the flaw The target system is a database application for storage
and handling of personal registers, designed to protect the privacy of the recorded
individuals. Every individual record is split into two parts: a record containing
sensitive data and a public record. The two types of records are stored in two
separate databases. The public records contain publicly available data, such as
name, address etc., and a so called “personal number” used for record identification.
For the sensitive records, encrypted personal numbers are used as record identifiers,
and the idea is that only authorized users should be able to perform the encryption
and thereby link the sensitive part of a record to the public (identifying) part, even
with access to the data as stored on disk or tape.

However, when new individuals are added to the database, a public record is cre-
ated in the “open” database, and a sensitive record is stored in the “secret” database.
The database management system (DBMS) is a commercial off-the-shelf (COTS)
product, and the application developers have no control of the ordering of records
in the database. As it turns out, sensitive and public records are listed in the same
order in the two databases.

Cause The application always adds a pair of records (one sensitive and one pub-
lic) for each new recorded individual, and the DBMS always adds new records to
the end of each database.

Method of attack With read access to the two databases, identification of sensi-
tive records is a trivial task, since the first sensitive record corresponds to the first
public record and so on.

Initial result of penetration An attacker can identify all sensitive records.

Potential impact If the sensitive fields are not encrypted (encryption of sensi-
tive fields other than identifiers is an option in the system), the attacker can gain
knowledge of sensitive information about all individuals recorded in the database.

Analysis of Selected Computer Security Intrusions 75

Possible remedies If all fields of the sensitive records were encrypted, the de-
scribed attack would be far more difficult (although the flaw might ease cryptanal-
ysis). However, because encryption affects system performance, the system is sup-
posed to guarantee privacy even if all fields are not encrypted. We can observe that,
to achieve the desired separation and to make identification of sensitive records
difficult, the ordering of records must beat leastas difficult for an attacker to de-
termine as the encryption of record identifiers. Otherwise, it is easier to attack the
ordering than the encryption.

4 A refined analysis of the vulnerabilities

This section gives a detailed analysis of the actual reasons, for which the intru-
sions were possible. Even if, according to a first assessment, there is a major reason
for the intrusion, a more detailed analysis reveals a far more complicated situation.
In most cases, there are two or three types of reasons why the intrusion is possible:
related to thedesignof a specific functional (software) module,integration and set-
ting upof the system, and theadministration and useof the system. The intrusions
presented in Section 3 are now re-investigated in view of this decomposition.

Unix: X terminal emulator logging vulnerability

� By default,xtermin some Unix systems runs with effective user idroot.

� The segment of thextermcode that opens thextermfile logging facility was
not written with appropriate precautions.

To achieve the intended functionality,xtermhad to run asroot, regardless of the
identity of the invoking user (xterm is ‘setuid to root’). However, writing such
programs, especially those that run asroot, is a very delicate matter, and mistakes
that potentially abuse overall system security are easily made. The major mistake
leading to this vulnerability was thatxtermexecutes some system calls as theroot
user instead of the user invoking the program.

Unix: Writable /etc/utmp vulnerability

� /etc/utmpwas world-writable, so that any program could put entries into the
file.

� Some privileged programs trusted the information in/etc/utmpand believed
that it contained the correct names and terminals of the currently logged-in
users.

The combination of the two items above constitutes the flaw. This should have
been realized by the developers before the system was distributed, but this is far
from the only implicit cross-dependency in a typical Unix system. Any system ad-
ministrator could have eliminated the flaw by removing the world-write permission
from /etc/utmp, but that would probably have resulted in reduced functionality of
some programs.

76 Paper B

Unix: Keyboard snooping

� Any user at a host trusted by the target host’sxhostfacility is able to connect
to the X Window server of the target host. By this, any such user may tap
X Window events from the console user at the target host. In this particular
case, keyboard events were monitored.

� A security feature,Xauthority, that addresses this kind of flaw has been intro-
duced, but anyxhostsetting overrides anyXauthoritysettings.

The problem here is that the original X authentication procedure possesses severe
limitations. Even though a better X authentication method is made available to most
Unix systems today,xhostis still used on numerous systems, primarily because of
its more understandable user interface. This fact totally destroys the intention of
Xauthority.

Novell: NCP packet forging

� Originally, the NetWare server trusted any proper packet addressed to it on
the network, and it was rather easy to find out how a proper packet was con-
structed.

� A packet authentication patch was made available, and the feature is included
in more recent distributions of Novell NetWare, although the use of the facil-
ity is optional.

There may be many different reasons why the packet authentication facility was
not implemented in the first versions of NCP. Perhaps the designers of NetWare
were unaware of how easily packets could be forged in such an environment. An-
other, more likely, reason may have been that the designers believed that, because
the NCP protocol was, and still is, proprietary, it would be too difficult for potential
attackers to gain sufficient knowledge about the protocol to breach the system. If
this was the case, then it was a devastating assumption, since it is obviously a risk
that a program such ashack.exeis created and widely spread. This is an example of
the well-known danger of “security through obscurity”.

Even if the packet authentication facility is available, it is left to the system ad-
ministrator to put it to work. It is more than possible that this facility is not activated
on numerous NetWare systems today. For example, we performed an intrusion ex-
periment on a Novell NetWare 3.12 system in an educational environment during
late 1994 [3]. In this target system, the packet authentication option was not en-
abled, in spite of the fact that this flaw has been known since 1992.

A database system: Ordering of records

� The system consists of two databases, one sensitive and one public. The
security of the system depends upon the demand that only authorized users
should be able to determine what public record to which a given sensitive
record belongs.

Analysis of Selected Computer Security Intrusions 77

� The application always adds a pair of records (one sensitive and one public)
for each new recorded individual.

� The DBMS always adds new records to the end of each database.

Because the designers of the database application had no control of the com-
mercial database management system and neglected to check how the ordering of
records was made in it, the security functions of the application were easily circum-
vented. This shows how a “simple” mistake can ruin an advanced and expensive
security system.

5 Discussion

The interaction between different parts of a system, parts which are designed
to meet different requirements, is clearly a security problem. This is obvious in
the /etc/utmpcase, in the database case, and perhaps also in the keyboard snoop-
ing case. Those who designed the programs that trust the information in/etc/utmp
never thought that other programs would require the file to be world-writable; the
designers of the database system never bothered to examine how the COTS DBMS
stored the data; users and administrators were not aware that the sophisticatedXau-
thority mechanism was turned off when they enabled the more user-friendlyxhost
mechanism.

Thextermlogging flaw is a case in which the designers had made an attempt to
create a secure feature, but their attempt was not sufficient and did not follow the
engineering principles that had been known for more than a decade in the security
community [11]. The Novell designers fell into the trap that we call “misdirected
(or misplaced) trust” [6], that is one cannot justifiably trust any message sent from
an insecure PC client machine with respect to integrity or authenticity.

Many of the security problems shown in this paper are, as mentioned, of a rather
complex nature. A disappointing fact, from a security point of view, is that even
though the exploitation of the flaws initially demands deep system knowledge, an
easy-to-use program or a step-by-step description that automatically performs the
intrusion is often available. Among the intrusions described here, such tools are
available for both the packet authentication problem in Novell, thexterm logging
vulnerability and the keyboard snooping flaw in Unix. Such tools make it possible
for even a user with minimal system knowledge to abuse system security.

6 Conclusions

This paper clearly shows that an intrusion is a function of not only one, but a
number of vulnerabilities and characteristics of the system and the organization.
This makes the problem quite complex, but complexity is unfortunately often ade
facto property of security problems, no matter how much we try to simplify the
real world in our models. Several system development methods are designed to
deal with complexity [7], but complexity is a problem not only for developers and
integrators but also for users and administrators, as we have seen in this paper.

78 Paper B

It should also be noted that none of the problems that we have presented here are
really technically difficult to solve. Solutions exist, but the problem is to spread this
knowledge, use it, and use it correctly. Although security very often concerns deep
technical details, if a development or customer organization does not make sure that
these details are addressed correctly, the situation will not improve.

References

[1] Taimur Aslam, Ivan Krsul, and Eugene H Spafford. Use of a taxonomy of se-
curity faults. InProceedings of the 19th National Information Systems Secu-
rity Conference, pages 551–560, Baltimore, Maryland, October 22–25, 1996.
National Institute of Standards and Technology/National Computer Security
Center.

[2] Marc Dacier, Mohamed Kâaniche, and Yves Deswarte. A framework for se-
curity assessment of insecure systems. InPredictably Dependable Computing
Systems: First Year Report, ESPRIT Basic Research Project 6362 – PDCS 2,
pages 561–578. LAAS-CNRS, Toulouse, France, September 1993.

[3] Ulf Gustafson, Erland Jonsson, and Tomas Olovsson. Security evaluation of
a PC network based on intrusion experiments. InProceedings of SECURI-
COM 96 – 14th Worldwide Congress on Computer and Communications Se-
curity Protection, pages 187–202, Paris, France, June 5–6, 1996. MCI.

[4] Koral Ilgun, Richard A Kemmerer, and Phillip A Porras. State transition anal-
ysis: A rule-based intrusion detection approach.IEEE Transactions on Soft-
ware Engineering, 21(3):181–199, March 1995.

[5] Ulf Lindqvist and Erland Jonsson. How to systematically classify computer
security intrusions. InProceedings of the 1997 IEEE Symposium on Secu-
rity and Privacy, pages 154–163, Oakland, California, May 4–7, 1997. IEEE
Computer Society Press, Los Alamitos, California.

[6] Ulf Lindqvist, Tomas Olovsson, and Erland Jonsson. An analysis of a secure
system based on trusted components. InProceedings of the Eleventh An-
nual Conference on Computer Assurance (COMPASS ’96), pages 213–223,
Gaithersburg, Maryland, June 17–21, 1996. IEEE, Piscataway, New Jersey.

[7] Peter G Neumann.Computer-Related Risks. ACM Press and Addison-Wesley,
New York, 1995.

[8] Tomas Olovsson, Erland Jonsson, Sarah Brocklehurst, and Bev Littlewood.
Towards operational measures of computer security: Experimentation and
modelling. In Brian Randell et al., editors,Predictably Dependable Comput-
ing Systems, ESPRIT Basic Research Series, chapter VIII. Springer, Berlin,
1995.

[9] Jim Reid. Open systems security: Traps and pitfalls.Computers & Security,
14(6):496–517, 1995. Also presented at Compsec International ’95 in London.

Analysis of Selected Computer Security Intrusions 79

[10] Ronald L Rivest. The MD4 message digest algorithm. In A J Menezes and
S A Vanstone, editors,Advances in Cryptology – Proceedings of CRYPTO ’90,
volume 537 ofLNCS, pages 303–311. Springer-Verlag, 1991.

[11] Jerome H Saltzer and Michael D Schroeder. The protection of information
in computer systems.Proceedings of the IEEE, 63(9):1278–1308, September
1975.

[12] Dennis Sheldrick. Security and the X Window System.UnixWorld, pages
103–110, January 1992.

[13] David J Stang and Sylvia Moon.Network Security Secrets. Network World
Secrets. IDG Books Worldwide, 1993.

80

This page is intentionally left blank.

81

Paper C

How to Systematically Classify Computer Security Intrusions

In Proceedings of the 1997 IEEE Symposium on Security and Privacy,
pp. 154–163, Oakland, California, May 4–7, 1997.

82

This page is intentionally left blank.

83

How to Systematically Classify
Computer Security Intrusions

Ulf Lindqvist Erland Jonsson

Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden
fulfl, erland.jonssong@ce.chalmers.se

Abstract

This paper presents a classification of intrusions with respect to tech-
nique as well as to result. The taxonomy is intended to be a step on
the road to an established taxonomy of intrusions for use in incident
reporting, statistics, warning bulletins, intrusion detection systems etc.
Unlike previous schemes, it takes the viewpoint of the system owner
and should therefore be suitable to a wider community than that of sys-
tem developers and vendors only. It is based on data from a realistic
intrusion experiment, a fact that supports the practical applicability of
the scheme. The paper also discusses general aspects of classification,
and introduces a concept called dimension. After having made a broad
survey of previous work in the field, we decided to base our classifi-
cation of intrusion techniques on a scheme proposed by Neumann and
Parker in 1989 and to further refine relevant parts of their scheme. Our
classification of intrusion results is derived from the traditional three
aspects of computer security: confidentiality, availability and integrity.

1 Introduction

The first step in wisdom is to know the things themselves; this notion
consists in having a true idea of the objects; objects are distinguished
and known by classifying them methodically and giving them appro-
priate names. Therefore, classification and name-giving will be the
foundation of our science.

CAROLUS LINNÆUS,Systema Naturæ, 1735

The work presented in this paper emanates from intrusion experiments that we
conducted [20]. The objective of the experiments was to find operational measures
of computer security, that is measurements which reflect the dependence on and
uncertainty of the operational environment in a probabilistic way, as opposed to
static measures [19, 25] which reflect instead the quality of the system design. The

84 Paper C

need for a classification scheme arose when we were refining our modelling of the
intrusion process [10].

Although several classification schemes focusing on different intrusion-related
properties have been proposed, there is still no established taxonomy in general
use. When trying to apply these schemes to our data, we found that they either
focused on aspects other than those we were able to observe or that they were too
superficial to be useful. We decided to develop a scheme that would fit our data, as
well as be useful to others.

The motivations for a taxonomy and the objectives of the work are further ex-
plained in Section 2, while Section 3 is a note on the terminology used in this paper.
The previous work in the field is presented in Section 4, the intrusion experiment
is described in Section 5, and Section 6 describes our classification scheme. The
advantages and limitations of the scheme are discussed in Section 7 and, finally,
Section 8 concludes with a summary of the key points presented in this paper.

2 Rationale and objectives

Why would someone want to devise a taxonomy of intrusions? Is there a need
for an established taxonomy? What tangible gain, other than the abstract aesthetic
value of elegant expression and order, can justify the efforts required? Indeed, these
are relevant questions, and we have found several answers.

� In general, categorizing a phenomenon makes systematic studies possible.
In particular, a taxonomy of intrusions enables us to compile statistics on
intrusions, observe patterns and draw other conclusions from collected intru-
sion data. We hope that this process will extend our knowledge of the phe-
nomenon, and that it will be possible to strengthen systems against intrusions
using this knowledge.

� An established taxonomy would be useful when reporting incidents to inci-
dent response teams, such as the CERT Coordination Center. It could also
be used in the bulletins issued by incident response teams in order to warn
system owners and administrators of new security flaws that can be exploited
in intrusions. (The CERT Coordination Center has produced an “Incident
Reporting Form” [6] which lists incident categories, however this does not
constitute a proper taxonomy since it mixes intent, technique, vulnerability
and result categories in an informal manner.)

� If the taxonomy included a grading of theseverityor impact of the intru-
sion, system owners and administrators would be helped in prioritizing their
efforts.

What is required by such a taxonomy? We have identified some desired (ideal)
properties which are worth focusing upon in the formation of the taxonomy.

� The categories in a taxonomy should be mutually exclusive (every specimen
should fit inat mostone category) and collectively exhaustive (every speci-
men should fit inat leastone category).

How to Systematically Classify Computer Security Intrusions 85

� Every category should be accompanied by clear and unambiguous classifica-
tion criteria defining what specimens are to be put in that category.

� The taxonomy should be comprehensible and useful not only to experts in
security but also to users and administrators with less knowledge and experi-
ence of security.

� The terminology of the taxonomy should comply with the established security
terminology (something that is not always easy to define).

Landwehret al. made an important general observation [13]:

“A taxonomy is not simply a neutral structure for categorizing speci-
mens. It implicitly embodies a theory of the universe from which those
specimens are drawn. It defines what data are to be recorded and how
like and unlike specimens are to be distinguished.”

Amoroso pointed out the following properties to consider when inventing or se-
lecting an attack taxonomy [1, chapter 3].

� Completeness.The taxonomy should encompass all possible attacks on the
target system.

� Appropriateness.The selected taxonomy should appropriately characterize
the attacks to the target system, that is any constraints on the taxonomy or on
the system should be specified and considered before application.

� Internal versus External Threats.An attack taxonomy should differentiate
attacks that require insider access to a system from those that can be initiated
by external intruders who may not have gained access to the system.

3 A note on terminology

The terms intrusion, penetration, attack, breach and compromise are often used
interchangeably, which can be a source of misunderstanding. Informally, we con-
sider anintrusion (or penetration), which is a successful event from the attacker’s
point of view, to consist of: 1) anattack in which asecurity flaw(or vulnerability)
is exploited, and 2) abreach(or compromise) which is the resulting violation of
the explicit or implicit security policy of the system. An attack that does not lead
to a breach is considered unsuccessful, although it may provide the attacker with
some information, at least that the attempted attack does not work for some reason.
However, the distinction between breach and intrusion is neither strict nor crucially
important for the following discussion.

We have adopted a wide view of thesystemconcept, according to which users
can sometimes be considered part of the system or at least seen as part of the system
context or environment. This is common in the field of safety engineering [22] and
we also find it necessary to the security perspective. One reason for including users
in the system concept is that sometimes an attack will be successful only when

86 Paper C

there are other users in the system who unknowingly interact with the attacker. For
example, if an attacker plants a Trojan horse, it must be run by a credulous user in
order to work. Another reason for adopting a holistic view of the system, rather
than studying separate components when analysing intrusions, is that it is usually
not important to the attackerhow or wherethe intrusion is made, as long as the
result is the desired one.

4 Previous work

Through the years, several classifications of intrusions have been presented, some
concentrated on the intruders and their methods (that is thethreator intrusion tech-
nique) and others on the characteristics of the computer system that make the in-
trusion possible (that is thevulnerabilityor security flaw). The latter classifications
do not usually take into account the exploitation of the categorized flaws, while the
former often describe the exploited flaw in conjunction with the exploitation tech-
nique. For the sake of completeness, both types of classification are included in this
survey of previous work.

4.1 Classifications of intrusion techniques and threats

An early work is that of Lackey, in which six categories of penetration techniques
were presented [12]. The classification is “based on many examples of actual sys-
tem penetration”, although no references are presented.

Neumann and Parker categorized computer misuse techniques into nine classes
on the basis of data from about 3,000 computer abuse cases collected by the two
authors over a period of 20 years [18]. The authors emphasize that their classes are
not mutually exclusive in the sense that actual computer abuse cases often involve
techniques from several classes. The classes are listed in Table 1. The order is
roughly from the physical world (Class NP1) to the hardware (Class NP2) to the
software (Class NP3 and higher), and from unauthorized use to misuse of authority.

We found the classification suggested by Neumann and Parker interesting since it
appears to be well-founded and to cover most of the known techniques. It also has
an elegant feature, namely the inherent grading of the classes, from external attacks
to authorized users misusing their privileges. It is not perfect, however, and some
of its shortcomings are discussed in Section 7 (Neumann presented a revised and
extended version of the scheme [17, chapter 3], but we prefer the original version
since the new scheme does not clearly separate technique from vulnerability or
result).

Brinkley and Schell [5] categorized what they call information-oriented computer
misuse (regarding the security aspectsconfidentialityand integrity, but notavail-
ability, which the authors call resource-oriented computer misuse) into six different
classes, which are not mutually exclusive. No specific support for the classifica-
tion scheme is presented, except for a small number of examples from other cited
references.

In his Ph.D. thesis, Kumar made a classification of intrusions based on the “sig-
natures” (patterns) they leave in the audit trail of the system [11]. The classification

How to Systematically Classify Computer Security Intrusions 87

Table 1. Computer misuse techniques [18].

Class Description
NP1 External misuse Generally nontechnological and

unobserved, physically separate from
computer and communication facilities,
for example visual spying.

NP2 Hardware misuse a) Passive, with no (immediate) side
effects.
b) Active, with side effects.

NP3 Masquerading Impersonation; playback and spoofing
attacks etc.

NP4 Setting up subsequent misusePlanting and arming malicious software.
NP5 Bypassing intended controls Circumvention of existing controls or

improper acquisition of otherwise
denied authority.

NP6 Active misuse of resources Misuse of (apparently) conferred
authority that alters the system or its
data.

NP7 Passive misuse of resources Misuse of (apparently) conferred
reading authority.

NP8 Misuse resulting from
inaction

Failure to avert a potential problem in a
timely fashion, or an error of omission,
for example.

NP9 Use as an indirect aid in
committing other misuse

a) As a tool in planning computer
misuse etc.
b) As a tool in planning criminal and/or
unethical activity.

is intended for use in intrusion detection systems based on pattern matching. Con-
sequently, it does not consider intrusions that do not leave tracks in the audit trail,
for example passive wiretapping.

4.2 Classifications of security flaws

In a general sense, a security flaw in a computer system is a kind of “bug”. Beizer
presented a taxonomy of bugs that concentrates on where in the software develop-
ment process the bug is introduced [3].

Landwehret al. constructed a taxonomy of computer program security flaws, ex-
emplified with 50 documented case studies of security flaws in different computing
environments [13]. The flaws are categorized with respect to three characteristics
or, as we suggest, in threedimensions. The dimensions are genesis (how did the
flaw enter the system?), time of introduction (whendid it enter the system?) and
location (wherein the system is it manifested?).

88 Paper C

In a classic article, Saltzer and Schroeder present eight design principles for pro-
tection mechanisms, one of them being the well-known principle of least privi-
lege [23]. Starting from these principles, and using UNIX as an example of an
“unsecure operating system”, Hogan categorized security flaws in stand-alone sys-
tems and distributed environments [8]. This classification is chiefly concerned with
why the flaws are present in the system.

Based on 49 cases in which UNIX security faults have led to intrusions, Aslam
devised a taxonomy of security faults, as well as a design of a database for vulnera-
bility data [2]. Aslam provides selection criteria that enable a distinct classification
of the 49 cases. Only faults embodied in software are included.

5 The intrusion experiment

This section briefly outlines the arrangement of the experiment; for details see
Olovssonet al. [20]. The target system consisted of a set of 24 SUN ELC diskless
workstations connected to one file-server, all running SunOS 4.1.2. The attackers
were 24 undergraduate students taking a course in applied computer security. They
were all legal users of the system with normal user privileges and with physical
access to all workstations except the file-server.

During this time, the system was in operational use for other laboratory courses
taken by undergraduate students at the Department of Computer Engineering. The
system itself was a ‘standard’ configuration, and thus not expected to differ sig-
nificantly from other similar systems in use; it was supervised by an experienced
system administrator. All standard monitoring and accounting features were en-
abled in the system to allow us to monitor the activities of each user account and to
measure the resources each attacker spent during the breach process.

Through questionnaires, we know that the attackers did not consider themselves
particularly knowledgeable about computer security issues compared with other
students of the Computer Science and Engineering program, except for a certain
degree of interest which made them choose to take the course in the first place. The
attackers worked in groups of two. It was a deliberate choice to let ‘normal’ users
attack the system, as opposed to professional attackers with experience from other
systems. The attackers were informed that some specific activities were prohibited,
namely doing physical damage to the system, attacking other systems, cooperating
between groups or affecting the operation of other users on the system without first
consulting the experiment coordinator. All attacking activities were to be carefully
documented and reported to the coordinator.

A major motivation for the attackers was that the experiment was a compulsory
part of the course they were taking. They were also given a general description of
the overall objectives of the experiment so that they had a complete understanding
of why certain rules must be obeyed, and why and in what way they should report
their actions.

The attackers were told that a breach occurswhenever the attackers succeed in
doing something they are not normally allowed to do, for example to use another
user’s account. It is still somewhat difficult to determine objectively whether a given
event is a valid breach or not but, after analysis of attacker reports and system logs,

How to Systematically Classify Computer Security Intrusions 89

we have acknowledged some 60 separate, valid breaches in this experiment.

6 Taxonomy

6.1 Introduction

When examining specimens for classification, it should be noted that the speci-
mens often have many different attributes, any of which could be chosen as the basis
of the classification. We suggest the use of the termdimensionfor such an attribute.
Accordingly, it is important to decide exactly what dimension of an intrusion the
classification should be based on, because there are indeed several possibilities: the
system component that was attacked; the intent of the attacker; the technique used
in the attack; the reason why the exploited flaw is present in the system; the out-
come of the intrusion etc. Some classification schemes make this point very clear
(for example [13]), while others are less specific.

When we tried to categorize the flaws exploited in our recorded intrusions ac-
cording to the scheme of Landwehret al. [13], we found that the only feasible
dimension, based on the information we had, was location. Since neither the de-
tails of the system development process nor the source code was available to us,
only a minority of the flaws could be categorized with respect to genesis or time
of introduction. Furthermore, for many of our recorded intrusions, it is not a trivial
task to determine the actual flaw. Consider for example the scenario in which an
attacker feeds the password file to a password-guessing program that tries words
from various dictionaries. What is the vulnerability that makes this attack possible?
Is it the fact that every user can read the encrypted passwords in the password file?
Or is it the fact that some users tend to choose easy-to-guess passwords? Or is the
encryption method not sufficiently sophisticated? Or is a single reusable password
simply insufficient for the authentication of users?

We would like to be able to make a classification from the system owner’s point
of view. That is why we focus on the external observations of attacks and breaches
which the system owner can make. An owner of a system is usually unable to cat-
egorize security flaws in detail. This is because most of the software and hardware
is purchased from system vendors; source code and internal design is most often
proprietary and not available from the vendor.

We believe that the dimensions of an intrusion that are most interesting to system
owners areintrusion techniquesandintrusion results. Details of theintrusion tech-
niqueare needed to gain an understanding of intruders and the threat that system
owners face. In addition, with this knowledge, it is often possible for the adminis-
trator to apply a quick fix to stop further intrusions of this kind while waiting for a
patch from the vendor. This quick fix can be, for example, to clear the set-user-id bit
of a flawed program or to remove a service completely (this usually has a negative
impact on the service to legal users of the system). Information about theintrusion
resultis needed for the system owner to judge how critical the intrusion is according
to the security policy of the system. For example, in some systems, disclosure of
confidential information is considered much worse than denial of service while, in
other systems, it is exactly the opposite. Another important field of application for

90 Paper C

data on intrusion results and techniques is the design of intrusion detection systems.
Our classification of intrusion techniques is presented in Table 2 and our classi-

fication of intrusion results in Table 3. For each category of the two dimensions,
we give the number of intrusions from our experiment that fit in the category. The
number is zero in some categories; nevertheless they are included as we believe
that such intrusions are possible, although they did not occur in this particular ex-
periment. The dimensions and their categories are explained and illustrated with
examples below.

6.2 Intrusion techniques

As the scheme of Neumann and Parker [18] appeared to be the most useful of the
previous classifications of intrusion techniques, our first step was to try to classify
the intrusions made during the experiment in those classes. Since all attackers in
our experiment were authorized users of the system, we expected that most of the
intrusions would fit into the higher classes. The result was that all of the intrusions
could be entered in class NP5, NP6 or NP7 (see Table 1). Our goal was a more fine-
grained partitioning, however; thus our next step was to define subclasses below the
three classes in the Neumann and Parker scheme.

6.2.1 Category NP5: Bypass of intended controls The categorybypass of in-
tended controlswas divided into three subclasses:password attacks, spoofing priv-
ileged programs,andutilizing weak authentication.

Password attacks, as already pointed out by Neumann and Parker, is a broad sub-
class that includes all intrusions in which passwords are in some way involved. We
decided to further divide this subclass into the third-level categoriescaptureand
guessing, since different countermeasures apply to the two techniques.Spoofing
privileged programsis a technique in which programs executing with higher priv-
ileges are tricked to perform illicit operations on behalf of the attacker.Utilizing
weak authenticationis the technique of taking advantage of the fact that the system
does not perform proper authentication of the originator of certain requests. Exam-
ples of this subclass include: obtaining client root privileges by manipulating the
boot process, obtaining server root privileges by executing a set-user-id program
generated by a client root, sending email with faked headers by manually inter-
acting with the mailer daemon, and other situations in which the system trusts an
identification without requiring any authentication token at all.

6.2.2 Category NP6: Active misuse of resourcesThe categoryactive misuse
of resourceswas divided into the two subclassesexploiting inadvertent write per-
missionandresource exhaustion.

Exploiting inadvertent write permissionincludes exploitation of the fact that
many system objects are by default world writable. This means that any user on
the system can modify these objects, although this is seldom the system (or object)
owner’s intention; it is the same for group writable objects. These objects are often
found by using the techniques of category NP7.Resource exhaustionis a technique
used to cause denial of service, for example by consuming all available disk space.

How to Systematically Classify Computer Security Intrusions 91

Table 2. Taxonomy of intrusions: Intrusion techniques.

Number ofCategory
intrusions

NP5 Password Capture 6
Bypassing attacks Guessing 12
intended Spoofing privileged programs 6
controls Utilizing weak authentication 13

NP6 Active misuse Exploiting inadvertent write permission 12
of resources Resource exhaustion 0

NP7 Passive Manual browsing 1
misuse of Automated Using a personal tool 0
resources searching Using a publicly available tool 8

UNIX is very susceptible to this kind of attack, but it is often easy to track down
the source of the problem [21], making the attack only temporarily useful. The par-
ticipants in the intrusion experiment were explicitly told not to use an attack of this
kind, for example the command “while true fork() ”, which would effectively
stop other users from starting new processes. If they had more innovative ideas for
denial of service attacks that could not be traced, such attacks could be tried after
discussion with the experiment coordinator at times when no normal users were
present.

6.2.3 Category NP7: Passive misuse of resourcesThe categorypassive mis-
use of resourcesis the “read” counterpart of NP6. It is natural to divide the tech-
niques intomanual browsingandautomated searching; the latter involves the use
of a special tool program designed to find security problems in a system. Such
a program can be either constructed by the attacker for the particular attack or a
general tool fetched from a public archive. Several such tools are available, for
example COPS [7], which was a popular instrument among the participants in our
experiment. The formation of third-level categories for distinction betweenpub-
licly available toolsandpersonal toolsis motivated by detection mechanisms. It is
often easy to design an intrusion detection system to recognize the characteristics
of a public tool, while this is more difficult for tools that are previously unknown
(compare with the problem of virus detection).

6.3 Intrusion results

What are the consequences of an intrusion? This question is more difficult to
answer than might appear at first glance. Usually, it is meaningful to consider only
the immediate result that characterizes a breach, because the total outcome of an in-
trusion depends on how the attackers move on from the initial breach. For example,
if the attackers gain root access on the file-server, they can do virtually anything
to the system and the final consequences are impossible to assess completely. In

92 Paper C

Table 3. Taxonomy of intrusions: Intrusion results.

Number ofCategory
intrusions

Disclosure of Only user information disclosed 0
confidential
information

System (and user) information
disclosed 10

Exposure
Access as an ordinary user account 19Service to
Access as a special system account 0unauthorized
Access as client root 3entities
Access as server root 5

Affects a single user at a time 2
Denial of

Selective
Affects a group of users 0

service Unselective Affects all users of the system 2
Transmitted Affects users of other systems 0

Affects a single user at a time 6
Erroneous

Selective
Affects a group of users 0

output Unselective Affects all users of the system 8
Transmitted Affects users of other systems 3

our intrusion experiment, the attackers were told to stop when they had obtained
the desired higher privileges, as we did not want them to disturb the work of ordi-
nary system users [20]. In terms of real-time intrusion detection, another reason for
concentrating on the immediate result is that it is desirable to detect the intrusion
and take preemptive action as early as possible, preferably before any damage is
done [9].

However, it is not obvious what should be considered the immediate result. A
typical example is password-guessing. The very first result of a successful pass-
word-guessing attack is that the attackers gain knowledge of the user’s password.
A password is not just any piece of information, however, because the immediate
implication is access to the user’s account on the system. We decided to adopt
a practical point of view, whereby we consider the result of a password-guessing
attack to be access to the account in question.

Another example is the planting of a Trojan horse. The initial event is a modifica-
tion or creation of an object in the system but, if the Trojan horse is never activated
by a credulous user or system process, there is no detrimental result from the sys-
tem owner’s point of view. Consequently, we consider the result of theactivation
of the Trojan horse to be the result of the intrusion (although it would be desirable
to detect the presence of the Trojan horse before it is activated). This example also
illustrates that there is no point in considering intent when categorizing results. The
creation and insertion of the Trojan horse is most likely done with malicious intent,
but the activation can be considered an accident. Although we are concerned pri-
marily with intentional attacks, the same results could in fact be caused by accidents
(see [17] for more examples).

How to Systematically Classify Computer Security Intrusions 93

We decided to base our classification of intrusion results on the three traditional
aspects of computer security: confidentiality, availability and integrity. The aspect
of confidentiality is extended as suggested by Meadows [14] toexclusivity, to de-
note not only protection against unauthorized access to confidential information,
but also protection against unauthorized use of the system. A breach of exclusivity
results inexposure, a breach of availability results indenial of serviceand a breach
of integrity results inerroneous output. Those are the top-level categories of our
classification of intrusion results.

6.3.1 Exposure The exposure category is naturally divided into the subclasses
disclosure of confidential informationandservice to unauthorized entities.

Disclosure of confidential informationis further divided into the third-level cate-
goriesonly user information disclosedandsystem (and user) information disclosed,
since we believe that cases of the former class sometimes (but not always) can be
considered less severe than those of the latter. Examples ofdisclosure of confiden-
tial information include the following.

Reading backup tapesThe tape streamer used for backups of the file-server was
world-readable. The attackers in our experiment discovered that tapes were
automatically ejected immediately after the backup procedure had finished
writing to the tape. However, old tapes were reused and could be read from
the time the tape was inserted to the start of the backup procedure. The result
was that an older copy of the entire contents of the server’s disks could be read
by anyone on the system. (Result:system (and user) information disclosed;
Technique:manual browsing).

Spoofing ARP The program/etc/arpruns with the effective group id ofkmemand,
when a file which is readable to this group, for example/dev/kmemor /dev/
eeprom, is fed to the program, parts of the file will be displayed as syntax
error messages. (Result:system (and user) information disclosed; Technique:
spoofing privileged programs).

Service to unauthorized entitiesis divided into third-level categories reflecting
the privileges associated with the service delivered. The categoryaccess as an or-
dinary user accountconcerns either a legal user of the system who gains access to
another user’s account, or an outsider who gains access to any user account on the
system.Access as a special system accountmeans an account with higher privi-
leges than an ordinary user account, but not super-user (root) access. An example
from UNIX is bin or any other account that owns system files. The reason why we
make a distinction betweenaccess as client rootandaccess as server rootis that
in most client-server environments, the super-user on a client host has no special
privileges on the server host. This is because users often have complete physi-
cal access to the client workstations, and consequently can manipulate the hosts
in many different ways; they can reboot the machines, connect or replace storage
devices or network connection cables etc. In fact, workstations to which the users
have complete physical access cannot be trusted at all, although this is ignored in
many systems (with the exception of the root identity on the server as mentioned
above). This was realized in MIT’s Project Athena, where the root password for

94 Paper C

the public workstations was not even kept secret; Kerberos was developed instead
and used for user authentication [24]. Examples ofservice to unauthorized entities
include the following.

Automated password-guessingThe use of an automated tool for password-guess-
ing based on dictionaries of likely passwords, a widely discussed and utilized
technique, was also successfully used in our experiment. Many user accounts
with simple passwords were compromised, but the root password was never
guessed. (Result:access as an ordinary user account; Technique:password
attacks—guessing).

Manipulating the boot process Several attackers tried to reboot a client host in
single-user mode. Since this was successfully utilized in an earlier exper-
iment to gain client root access, the system administrator had enabled the
PROM password feature of the workstations to prevent this type of attack.
However, some attackers found a method by which they could still reboot
the host in single-user mode to become client root without being prompted
for a password. (Result:access as client root; Technique:utilizing weak
authentication).

6.3.2 Denial of service The subclassesselectiveandunselectivefor denial of
service were suggested by Needham [16]. The third-level categories should be
self-explanatory. Bytransmitted, we mean that the intrusion affects the service
delivered by other systems to their users, not the service delivered by our system to
other systems. In the latter case, other systems can in fact be seen as users of our
system. There were no intrusions that caused denial of service on other systems in
the experiment, but such intrusions are indeed possible. For example, an attacker
can make a host on the system use the same IP address as a host on another system,
something which normally causes both hosts to lose contact with the network. The
possible range of this particular attack depends on the network configuration [4].
We have not separated transmitted attacks as selective or unselective, because it is
difficult to define what unselective would mean for a transmitted attack, especially
for the denial of service category. We hope that it is not possible for a computer on
the Internet to cause denial of service onall connected systems (although the result
of the Internet Worm incident in 1988 was too close for comfort). An example of
denial of serviceis given here.

Causing a crash by remote copy to audio deviceThere was a bug that caused a
machine to crash immediately if the remote copy commandrcp was invoked
with the target/dev/audio. If executed on the server, the whole system would
go down. This was clearly a system bug, but the audio device should not
be readable or writable to any user except the user currently logged in at
the console. (Result:unselective; Technique:exploiting inadvertent write
permission).

6.3.3 Erroneous output In the formation of the erroneous output category, it
soon became evident that the same subcategories could be used as in the denial of

How to Systematically Classify Computer Security Intrusions 95

service category. “Output” is used in a wide sense, and denotes more than what
is shown on the user’s terminal or sent on a network connection. Modifications
of system objects, such as the contents of files on hard disks or data structures in
main memory, are also considered as “output”, and when that output is the result of
an intrusion, the intrusion belongs to this category. Examples oferroneous output
include the following.

Spoofing Xterm The X Windows terminal programxterm , running with the effec-
tive user id of root, had a flawed logging facility (CERT Advisory CA-93:17)
which could be used to create any file or append to any existing file. Although
this could be used to gain access as server root, we categorized the result as
erroneous output, which was the immediate result. Our decision is supported
by the fact that it is not obvious how to move on from the first step, that
is to gain root access. (Result:unselective; Technique:spoofing privileged
programs).

Faking e-mail By manually communicating with the mailer daemon, attackers can
send e-mail messages with faked headers, particularly false sender identity, to
any other system on the Internet. (Result:transmitted; Technique:utilizing
weak authentication).

7 Discussion

The classification of intrusion techniques proposed by Neumann and Parker [18]
is of course not perfect, nor is our extension of their scheme. It can be discussed
for example whether all kinds of attacks involving passwords in one way or another
should actually belong in class NP5, as stated by Neumann and Parker, or whether
some belong in class NP7. Another problem, which always accompanies attempts
to classify human behaviour, is how to obtain an unambiguous classification. The
classification of intrusion techniques indirectly involves the intentions of the system
owner and of the attacker, which are not always clear and logical. Therefore, it is
sometimes a question of interpretation as to whether a certain intrusion belongs
in one class or the other, or in both. Our subclasses are designed to be mutually
exclusive with respect to technique but, as noted by Neumann and Parker, an actual
case of abuse is often complex and involves several techniques. As observed by
Meadows [15], it depends on the level of abstraction whether an action that is part
of an attack is considered atomic or complex.

The classification of intrusion results is perhaps easier in the sense that the classes
are in all essential respects mutually exclusive. The problem here lies in determin-
ing what it is meaningful to consider as the outcome of the intrusion, as discussed
in Section 6.3. Although it would probably be desirable to include a grading of the
severity of the intrusions, this is often a subjective and system-dependent property;
it is therefore left to system owners who can judge how severe a particular result
category is in their system, according to their security policy.

A significant question is whether our scheme is applicable to other systems and
circumstances besides those of the experiment from which it was derived. Our

96 Paper C

proposed answer is based on the properties specified by Amoroso [1], as cited in
Section 2.

� As to theresultdimension, we believe that, with our definition of exposure,
the top and second levels of our taxonomy satisfy Amoroso’scompleteness
and appropriatenessproperties for most systems. The third level is more
specialized and may fit only similar systems. We do not find any reason to
differentiate between internal and external attacks in theresult dimension,
since the results can be the same regardless of the origin of the attack. For
example, an intrusion in which an outsider guesses a user password and logs
in as that user is categorized asexposure – service to unauthorized entities –
access as an ordinary user account.

� The techniquedimension is less general, as it is an extension of a more gen-
eral scheme. For the system in our experiment, it is complete and appropriate.
Since many systems in industrial and academic environments are very simi-
lar to our experimental system, we believe that our scheme is likely to have
a wide field of application. Our experiment concerns only internal attacks,
however external attacks are intended to fit in the lower classes of the Neu-
mann and Parker scheme.

Although the size of the experiment is too small to draw strong conclusions about
distribution in general, it is still interesting to examine the number of intrusions in
the classes of the two dimensions we have studied. Figure 1 shows this distribution
and is also a clear illustration of why the term dimension is appropriate. The figure
shows that some techniques have a one-to-one correspondence to the result, while
other techniques can be used to reach many different kinds of results.

8 Conclusions

We have presented a classification scheme for computer security intrusions, in
which the classification is made with respect to the intrusion technique and the
intrusion result, with the needs of system owners and administrators in mind. By
using data from a realistic intrusion experiment, we have shown that the scheme is
likely to be generally applicable. We believe that the proposed scheme will, with
further application, evaluation and refinement, be a good candidate for a generally
accepted taxonomy of intrusions.

Acknowledgments

The authors are grateful to several people who have read earlier versions of this
paper and made valuable comments and suggestions. We thank especially Tomas
Olovsson who also coordinated the intrusion experiment, and Per Kaijser for his
support and suggested improvements.

The introductory quotation from Systema Naturæ was translated from the Latin
original into English by M. S. J. Engel-Ledeboer and H. Engel, Nieuwkoop, Hol-
land, 1964.

How to Systematically Classify Computer Security Intrusions 97

Intrusion technique

N
P

5-pc
N

P
5-pg

N
P

5-spp
N

P
5-uw

a
N

P
6-eiw

p
N

P
6-re

N
P

7-m
b

N
P

7-pers
N

P
7-publ

Intrusion result

exposure-disclosure-user

exposure-disclosure-system
1

1
8

exposure-service-user
4

12
3

exposure-service-system

exposure-service-client
3

exposure-service-server
2

3

denial of service-sel-single
2

denial of service-sel-group

denial of service-unsel
2

denial of service-transm

err output-sel-single
1

5

err output-sel-group

err output-unsel
5

3

err output-transm
3

12
42

1

333

2

5

13

3 5 2

1
8

Figure 1. Distribution of intrusions in the two dimensions.

98 Paper C

References

[1] Edward Amoroso.Fundamentals of Computer Security Technology. Prentice-
Hall, 1994.

[2] Taimur Aslam. A taxonomy of security faults in the Unix operating system.
Master’s thesis, Purdue University, West Lafayette, Indiana, August 1995.

[3] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, second
edition, 1990.

[4] Scott O Bradner. A practical perspective on routers. In Daniel C Lynch
and Marshall T Rose, editors,Internet System Handbook, chapter 7. Addison-
Wesley, 1993.

[5] Donald L Brinkley and Roger R Schell. What is there to worry about? An
introduction to the computer security problem. In Marshall D Abrams, Sushil
Jajodia, and Harold J Podell, editors,Information Security: An Integrated Col-
lection of Essays, pages 11–39. IEEE Computer Society Press, Los Alamitos,
California, 1995.

[6] CERT Coordination Center, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA 15213-3890, USA.Incident Reporting Form,
February 28, 1996. Version 3.0.

[7] Daniel Farmer and Eugene H Spafford. The COPS security checker system. In
Proceedings of the Summer USENIX Conference, pages 165–170, Anaheim,
California, June 1990. USENIX Association.

[8] Carole B Hogan. Protection imperfect: The security of some computing envi-
ronments.Operating Systems Review, 22(3):7–27, July 1988.

[9] Koral Ilgun, Richard A Kemmerer, and Phillip A Porras. State transition anal-
ysis: A rule-based intrusion detection approach.IEEE Transactions on Soft-
ware Engineering, 21(3):181–199, March 1995.

[10] Erland Jonsson and Tomas Olovsson. An empirical model of the security in-
trusion process. InProceedings of the Eleventh Annual Conference on Com-
puter Assurance (COMPASS ’96), pages 176–186, Gaithersburg, Maryland,
June 17–21, 1996. IEEE, Piscataway, New Jersey.

[11] Sandeep Kumar.Classification and Detection of Computer Intrusions. PhD
thesis, Purdue University, West Lafayette, Indiana, August 1995.

[12] R D Lackey. Penetration of computer systems an overview.Honeywell Com-
puter Journal, 8(2):81–85, 1974.

[13] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A
taxonomy of computer program security flaws.ACM Computing Surveys,
26(3):211–254, September 1994.

How to Systematically Classify Computer Security Intrusions 99

[14] Catherine A Meadows. An outline of a taxonomy of computer security re-
search and development. InProceedings of the 1992–1993 ACM SIGSAC
New Security Paradigms Workshop, Little Compton, Rhode Island, Septem-
ber 22–24, 1992 and August 3–5, 1993. IEEE Computer Society Press, Los
Alamitos, California.

[15] Catherine A Meadows. A representation of protocol attacks for risk assess-
ment. In Rebecca N Wright and Peter G Neumann, editors,Proceedings of
DIMACS Workshop on Network Threats, volume 38 ofDIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 1–10, Pis-
cataway, New Jersey, December 2–4, 1996. American Mathematical Society.

[16] Roger M Needham. Denial of service: An example.Communications of the
ACM, 37(11):42–46, November 1994.

[17] Peter G Neumann.Computer-Related Risks. ACM Press and Addison-Wesley,
New York, 1995.

[18] Peter G Neumann and Donn B Parker. A summary of computer misuse tech-
niques. InProceedings of the 12th National Computer Security Conference,
pages 396–407, Baltimore, Maryland, October 10–13, 1989. National Institute
of Standards and Technology/National Computer Security Center.

[19] Office for Official Publications of the European Communities.Information
Technology Security Evaluation Criteria, June 1991. Version 1.2.

[20] Tomas Olovsson, Erland Jonsson, Sarah Brocklehurst, and Bev Littlewood.
Towards operational measures of computer security: Experimentation and
modelling. In Brian Randell et al., editors,Predictably Dependable Comput-
ing Systems, ESPRIT Basic Research Series, chapter VIII. Springer, Berlin,
1995.

[21] Dennis M Ritchie. On the security of UNIX, May 1975. Reprinted inUNIX
System Manager’s Manual, 4.3 Berkeley Software Distribution. University of
California, Berkeley, USA, April 1986.

[22] John Rushby. Critical system properties: Survey and taxonomy. Technical
Report CSL-93-01, Computer Science Laboratory, SRI International, Menlo
Park, CA 94025-3493, USA, May 1993. Revised February 1994.

[23] Jerome H Saltzer and Michael D Schroeder. The protection of information
in computer systems.Proceedings of the IEEE, 63(9):1278–1308, September
1975.

[24] Jennifer G Steiner, Clifford Neuman, and Jeffrey I Schiller. Kerberos: An au-
thentication service for open network systems. InProceedings of the USENIX
Winter Conference, pages 191–202, Dallas, Texas, February 9–12, 1988.
USENIX Association.

[25] U.S. Department of Defense.Trusted Computer System Evaluation Criteria,
December 1985. DoD 5200.28-STD.

100

This page is intentionally left blank.

101

Paper D

A Map of Security Risks Associated with Using COTS

Computer, Vol. 31, No. 6, pp. 60–66, June 1998.

102

This page is intentionally left blank.

103

A Map of Security Risks Associated with Using COTS

Ulf Lindqvist Erland Jonsson

Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden
fulfl, erland.jonssong@ce.chalmers.se

Abstract

The widespread use of commercial off-the-shelf (COTS) products in
combination with increased internetworking calls for an analysis of the
associated security risks. Combining Internet connectivity and COTS-
based systems results in increased threats from both external and in-
ternal sources. Traditionally, security design has been a matter of risk
avoidance. Now more and more members of the security community
realize the impracticality and insufficiency of this doctrine. It turns out
that strict development procedures can only reduce the number of flaws
in a complex system, not eliminate every single one. Vulnerabilities
may also be introduced by changes in the system environment or the
way the system operates. Therefore, both developers and system own-
ers must anticipate security problems and have a strategy for dealing
with them. This is particularly important with COTS-based systems, be-
cause system owners have no control over the development of the com-
ponents. The authors present a taxonomy of potential problem areas.
It can be used to aid the analysis of security risks when using systems
that to some extent contain COTS components.

1 Introduction

The traditional security design approach has been one of risk avoidance, not only
in systems with high-security (military grade) requirements but also in medium-
security systems, such as those typically found in financial institutions and cor-
porate research departments. The design approach has been to construct mainly
customer-specific solutions using security mechanisms such as physical “air gap”
separation, information flow analysis, and strict or formal development and verifica-
tion methods. However, there are several reasons why these techniques are applied
less frequently today:

� Developing entirely customer-specific solutions is usually far more expensive
and in all cases more time-consuming than purchasing COTS products.

104 Paper D

� Some security mechanisms, particularly cryptography, have proven so diffi-
cult to implement correctly that developers should be provided with ready-
made building blocks, relieving them of the risk of introducing subtle but
serious flaws.

� Most organizations want connectivity and internetworking rather than phys-
ical separation. (Physical separation—also called “sneaker net”—requires
manual intervention to transport data between a protected system and the
outside world.)

More and more members of the security community realize the impracticality and
insufficiency of risk avoidance as the sole doctrine. This was understood long ago
in the reliability community, where fault tolerance was developed as a complement
to fault prevention [2]. It turns out that strict development procedures can only
reducethe number of flaws in a complex system, not eliminate every single one.
Vulnerabilities may also be introduced by changes in the system environment or
the way the system operates. Therefore, both developers and system owners must
anticipate security problems and have a strategy for dealing with them [6]. This is
particularly important with COTS-based systems, because system owners have no
control over the development of the components.

2 Security-related COTS products

Any type of COTS component might have an impact on the overall system se-
curity, depending on how it is used in the system. Therefore every type of COTS
product could be security-related. On the other hand, not all COTS products are
designed without relevant security concerns. Some COTS products are indeed de-
signed, implemented, and evaluated according to medium or even high levels of
security functionality and assurance (although these products are in the minority).
Examples of COTS products intended to improve security include cryptographic
software (and hardware), network firewalls, and antivirus tools.

The open question, however, is what level of security one can attain by com-
posing a system of different products. An ideal design goal would be to make the
overall system security independent of how some untrusted components behave, but
that is often difficult to accomplish in practice.

COTS operating systems deserve special attention, for several reasons:

� Operating systems are perhaps the most widespread COTS products.

� Only a handful of different basic types of COTS operating systems exist from
which to choose, and they show wide variation in their security functionality
and assurance.

� Many application programs rely on the operating system to enforce security
mechanisms, such as user identification, authentication, and access control.

A Map of Security Risks Associated with Using COTS 105

3 Taxonomy of security risks

Every situation in which the use of computers can affect something valuable
(for example, human lives or health, privacy, economic assets, or national security)
involves risks. Peter G. Neumann informally defines a risk as “a potential problem,
with causes and effects,” although pointing out that there is no standard definition
of the term [11, pp. 2, 348].

Here we are mainly concerned with security risks, which we define as

� the system, through human misuse, experiences loss of confidentiality, in-
tegrity, or availability for any of its resources; or

� the system, through misuse or by accident, experiences the introduction of a
security vulnerability. (A security vulnerability is a flaw that could later be
exploited to cause a loss of confidentiality, integrity, or availability.)

Our taxonomy is a map of potential problem areas. It can be used to aid the
analysis of security risks when using systems that to some extent contain COTS
components. It is based on the typical phases in the establishment of the system.

3.1 Component design

Some security risks originate from the design of the COTS components and are
consequently beyond the control of the customers:

Inadvertently flawed component design The components may have various
types of bugs, some of which may affect security.

Intentionally flawed component design The components may contain inten-
tional security flaws, such as backdoors, viruses, or Trojan horses (for a more
detailed explanation of this problem, see the sidebar “Defining the Confinement
Problem.”).

Excessive component functionality A component may have many more features
than the customer needs or even knows about, and so the customer might not realize
the true security implications of including the component in the system.

Open or widely spread component design Although most academic security
researchers (including ourselves) promote openness and public scrutiny for better
security, a risk does exist if details of the component design are widely known
outside the customer organization. Even worse, from a security point of view, is the
common situation in which the design is known to a large development organization
and its partners but not to the customers.

Insufficient or incorrect documentation The developer might not provide the
customer with the documentation needed to correctly and securely integrate the
component into the system.

106 Paper D

3.2 Component procurement

There are also security risks associated with purchasing and delivering compo-
nents:

Insufficient component validation A component purchase might not fully con-
form with the customer’sreal security requirements, which are not necessarily the
same as the customer’sspecifiedrequirements.

Delivery through insecure channel For example, in downloading a software
component via the Internet, the product might be manipulated along the way by
a third party (an intermediary attack) or the customer might be tricked into down-
loading a manipulated product from a site controlled by the attacker, instead of the
real product from the vendor’s site.

3.3 Component integration

Integrating components, which is a step in the design of the composed system,
has the following risks:

Mismatch between product security levels A common problem when integrat-
ing different products is that the security level must be set to the lowest common
denominator to make the products work together. For example, in the Microsoft
Windows NT File System, user access to local system files and folders can be re-
stricted to read-only permission to prevent accidental or intentional modification.
However, for Microsoft Office 97 to work properly, the user must be given write
permission for a number of system folders and files [10].

Insufficient understanding of integration requirements The integrators might
not fully understand all of the preconditions for secure integration of the products,
for example, that some components must be physically protected.

3.4 Internet connection of system

When the system is connected to the Internet, a number of additional risks must
be considered:

Increased external exposure By connecting the system to the Internet, exposure
expands to a large number of potential external attackers who otherwise would not
have any data communication path to the system.

Intrusion information and tools easily available An insider who decides to at-
tack the system can get a great deal of applicable information from the Internet.

A Map of Security Risks Associated with Using COTS 107

Executable content Many World Wide Web pages have executable content (for
example, Java applets) that automatically downloads and executes on a user’s com-
puter when viewing the page in a Web browser. Credulous users might well run
programs that attack their system.

Outward channel for stolen information The Internet connection constitutes a
channel that can covertly and conveniently export information stolen from the sys-
tem, for example, by internal attackers or by programs planted by external attackers.

3.5 System use

Some risks are related to how the users operate the system:

Unintended use The system can be used in an unintended way, for example,
to store and process data that are more sensitive than the system was designed to
handle or to attack other systems.

Insufficient understanding of function Users might not be able to judge their
adherence to the security policy if they do not fully understand a function. For
example, they might not know whether or not a particular program transmits pass-
words in the clear over the network.

3.6 System maintenance

Finally, there are risks involved in the maintenance of the system:

Insecure updating In the same way as the initial software delivery is risky if
performed via an insecure channel, software updates can be modified in transit or
system owners can be fooled into installing fraudulent updates.

Unexpected side effects Any changes made to components in the system can
have unexpected side effects and might introduce new security vulnerabilities.

Maintenance backdoors The history of computer insecurity contains many cases
in which developers left open backdoors for convenient testing and maintenance of
their products. However, such backdoors can be misused by anyone who knows or
finds out about them.

4 Analyzing risks to privacy in a database system

We were invited to investigate the security of a privacy-oriented database system
under development. The system, which was based mainly on COTS products, was
designed to strongly protect the privacy of the individuals recorded in the database.
Our study revealed a large number of security problems that we reported to the

108 Paper D

developers and later further analyzed in terms of underlying causes and possible
remedies [8].

The system was intended for personal registers in government or municipal ser-
vices, offices in health care and in social care, and other public services. The major
design goal was to make it virtually impossible to link a sensitive record in the
database to an individual without proper authorization. To accomplish this separa-
tion of data, the designers used a combination of cryptographic devices and record
pseudonymity. Their idea was to split identifying data and descriptive data be-
tween two separate databases, using an individual identification number, similar to
a Social Security number, as the link between them. Figure 1 illustrates how data
could be split between the two databases.

� Theopen databasewould contain publicly available data such as name and
address, with plaintext individual identification numbers as record identifica-
tion fields.

� Thesecret databasewould contain sensitive data, with encrypted individual
numbers as record identifiers. That is, the records in the secret database are
pseudonymous rather than anonymous. The designers did not require encryp-
tion of any other fields in the secret database unless that information could be
used to link confidential information to specific individuals.

Open
database

Identification
No.

5912285565

6102121016

Name

Alice Bar

Bob Foo

Secret
database

Grant

$7,000

$9,000

Encrypted identification
 No.

ãA<#- zIJ^` ?ˆ

^

ˆAyS 2n1ºiI–a` ? ˜

Figure 1. The two databases with simple examples of records.

The design goal was to make the database system resistant to many different
kinds of potential attackers, ranging from dishonest or disgruntled current or former
employees to other organizations and even foreign governments. Furthermore, even
with physical access to the client hosts, to a copy of the databases from the server
host, or to both, the attackers should not be able to violate the security policy of
the system. The developers summarized the comprehensive security policy of the
system in two statements:

i) Confidentiality. Only authorized users should be able to link records in the
secret database to a single individual.

ii) Integrity. Only authorized users should be able to modify records in a mean-
ingful way.

A Map of Security Risks Associated with Using COTS 109

Most of the system components were COTS products from IBM: The computers
were PS/2 PCs running OS/2 2.11, the Transaction Security System (TSS) [1] was
used for encryption and authentication, the database-management system (DBMS)
was DB2/2, and the OS/2 LAN Server was used for network communication be-
tween the clients and the server.

Several of the problems exposed in our study could be traced to the fact that all
of the COTS components (except the TSS) were developed with lower security re-
quirements than the composed database system. The developers had failed to make
the security of the system independent of the (in)security of those components.

4.1 Risks revealed

A selected subset of the problems we found shows typical COTS-related security
risks.

Trojan horse in client. Users had to present a smart card and a secret PIN to
start the application and the cryptographic operations that were needed to identify
records in the secret database. Owing to the lack of security protection mechanisms
in the operating system, nothing could prevent an attacker with physical access
to a client host from installing a Trojan horse that could, for example, record all
transactions the user performs.

Information leaking to swap file. The virtual memory swap file of OS/2 might
contain sensitive information. The application has no control over what information
is transferred to this file. It would be possible for an attacker to collect information
by searching this file after the authorized user has finished working.

DBMS log files. The log files of the DBMS contained, among other things, infor-
mation about the origin of records, which could be used to correlate records in the
two databases.

DBMS ordering of records. The designers had no control over the ordering of
records in the database. In the system analyzed, records were always added in the
same order in both the open and secret databases. With access to copies (disk or
backups) of the two databases, it would be an easy task to identify all the secret
records.

The last item is perhaps the most evident example of how a “simple” but serious
problem can be overlooked when developers rely on general-purpose products to
solve problems for which those products were not designed.

All of these problems can be categorized as insufficient understanding of integra-
tion requirements. Or, if we choose to consider the components as unsuitable for
this type of application, as insufficient component validation.

110 Paper D

5 Risks experienced in intrusion experiments

There is currently no established method to quantitatively measure the security
of a system in comparison with other systems. However, there are guidelines for
building systems with a certain level of security functionality and assurance, and
developers can submit their system to a third-party evaluator who will try to deter-
mine whether the system was built according to the guidelines. In the reliability
field, guidelines exist for building high-reliability systems, as well as methods to
test the system and measure its reliability in an artificial operational environment,
typically through various fault-injection methods [4].

With that analogy in mind, and with the objective of finding operational security
measurements, we conducted intrusion experiments in which students were encour-
aged to attack a certain system for a limited period of time, under careful supervi-
sion and with the requirement that all their activities be reported and documented.

Thus far, we have performed one pilot experiment and three full-scale experi-
ments on a Unix system (SunOS 4.x) and one full-scale experiment on a Novell
NetWare system. We have analyzed the first Unix experiment and presented a
model of the intrusion process [5], as well as a taxonomy of intrusion techniques
and results. Analysis of the other experiments is in progress.

We chose to use ordinary students as attackers instead of experienced crackers
and to provide them with standard user accounts. In this way, we would model the
insider threat; that is, when legitimate users of a system for some reason decide
to extend or misuse their privileges. We also ensured that each test environment
represented a standard installation of a common COTS-based computing system.

The results of the stated experiments should be interesting to all readers who use
comparable systems. Unfortunately, those results are not comforting:

� Almost all attackers performed successful intrusions.

� Several of the intrusions were indeed severe, giving the attacker administrator
privileges.

� The Internet provides a vast amount of information on how to successfully
attack common systems.

� Known vulnerabilities are often technically difficult to exploit. Still, many of
our attackers broke into the system through such holes (often without really
understanding why it was possible) by using so-calledexploit scriptspub-
lished on the Internet.

The last item describes a serious threat, of which today’s system owners must
be aware. A relatively small community of technically skilled crackers prepares
programs that automatically exploit some vulnerability in a common type of system
and makes these programs available on the Internet. Consequently, the group of
potential attackers who can perform technically advanced intrusions now includes
all who can find, download, and execute these programs—clearly an immensely
large number of people.

The exploit scripts (which can be shell scripts, source code, or precompiled bi-
naries) do not always work as distributed, probably to prevent people without any

A Map of Security Risks Associated with Using COTS 111

programming skills from using them. However, the errors are sometimes easy to
fix, and many exploit scripts are ready to use. Typically, the exploit scripts take
advantage of flaws in privileged programs (such assetuidprograms in Unix) or
processes (typically network server processes) by, for example, acting in one of the
following ways:

� The exploit script calls the victim program with input data that were unex-
pected by the author of the victim program. The input data must in some
cases be carefully crafted by the author of the exploit script, whereas in other
cases the author simply provides an excessive amount of random data.

� The exploit script makes unexpected changes in the execution environment,
for example, by moving or renaming files accessed by a privileged process.

� The exploit script retrieves the secret upon which security is based (typically
a password or a cryptographic key) through, for example, shrewd guessing or
an exhaustive search.

Our experiments resulted in a wide variety of intrusions, each of which would
normally be possible owing to a combination of several risks rather than a single
one. (Incidentally, this seems to be a general fact.) For example, one well-known
intrusion uses thesetuidmechanism of the Sendmail program. This may be related
to the inadvertently flawed component design and excessive component functional-
ity as well as insufficient component validation in the taxonomy. On the other hand,
the fact that this intrusion method was known to the attackers may make it referable
to the class intrusion information and tools easily available.

6 A risk management approach

The problem of protecting COTS-based systems connected to the Internet is dif-
ficult, because this combination increases outsider as well as insider threats. Simply
by connecting to the outside world, a system becomes vastly more exposed to ex-
ternal attackers. Furthermore, as observed in our experiments, the existence and
availability of exploit scripts and information about flaws also increase the threat
from insiders.

Solutions must be sought in the risk management field, where the cost of pro-
tection is traditionally weighed against the potential loss caused by a violation of
security. A modern risk management philosophy must also include the following:

A well-defined and relevant security policy The security policy primarily de-
fines what is and is not allowed in terms of system security, although it should also
include dictates regarding enforcement, responsibilities, and reporting. In fact, an
intrusion is defined as a violation of the security policy (regardless of whether the
violation comes from the inside or outside). Without a security policy, you cannot
determine if an event is an intrusion, strictly speaking. Hence, the definition of a
relevant security policy is a prerequisite for security risk management.

112 Paper D

Holistic perspective System security must be viewed as a holistic property; it is
not sufficient to just look at a small number of stronger parts (compare with the
database system example). Thus, system security must be considered in a space
as well as a time dimension. By time, we mean the system life cycle: Security
risks should be estimated in the development, procurement, integration, operation,
and maintenance of a system. By space, we mean the structure of the system and
the environment in which it is embedded, an environment that includes humans,
buildings, and organizations.

Confinement of untrusted components Processes that are untrusted should be
limited in what they can do, ideally to the extent that they can do nothing else than
exactly what they are supposed to do (see the sidebar “Defining the Confinement
Problem”). For example, a process that normally does not perform any network
communication should not be allowed to connect to the network. Confining un-
trusted COTS components is highly desirable, but is difficult to do in practice. It
might be difficult to correctly determine the minimum set of resources that black-
box components require to function in all cases. If you fail to do this, the component
may not be able to operate in an unforeseen situation. Or you may specify a confine-
ment that is too lax to provide an appropriate level of security. And if you use COTS
products to perform the confinement (for example, using a standard Web browser to
confine Java applets), the question becomes how far the guardians themselves can
be trusted.

Partitioning The growing complexity of systems and networks is the source of
numerous security problems. By partitioning a system into relatively small parts,
separated by “watertight bulkheads” in the form of trusted monitoring components,
the gain is twofold: Each part becomes less complex and more manageable in terms
of security, and the effects of an intrusion are likely to be limited to a single section.
The partitioning must be performed with caution, however, to avoid the creation of
undesired “single points of failure,” for example, a single vulnerable link for the
vital communication between two sections.

Contingency anticipation All systems have security vulnerabilities, and many
sites will experience security violations. An organization that has accepted this and
made appropriate planning will more likely succeed in limiting loss after having
been the victim of an intrusion. This contingency planning, preferably performed
with the support of software tools, should include methods for intrusion detection,
evidence collection, and recovery.

Flaw remediation and active evolution A system owner should strive to remove
all known vulnerabilities in a system as soon as they are discovered. This is not
always easy, because all implications of the remedial actions must be carefully
considered. Furthermore, component developers might be unwilling to produce
patches. However, our experiments show that removal of all publicly known vul-
nerabilities would make the attackers’ task significantly more difficult. Continuous

A Map of Security Risks Associated with Using COTS 113

replacement of components when new security technologies emerge is also impor-
tant.

Support The continuous risk management process must be supported by all levels
of an organization, from top management down to ordinary users. Organizations
using COTS products also need active security support from both developers and
third-party vendors.

Awareness The tradition of covering up security incidents aids only the attack-
ers and must be broken if we will ever have a chance to learn from earlier mistakes.
Through education and openness concerning security, people can become more mo-
tivated and many risks can be avoided.

7 Conclusions

The use of COTS systems presents two faces, from a security point of view.
On the one hand, security vulnerabilities in those systems will be continuously
discovered, owing to the fact that crackers will find it more rewarding to look for
flaws and write exploit scripts that can be used to attack many systems. On the
other hand, a large customer base should mean that vendors can afford to make an
extensive effort to fix security problems. Furthermore, such systems will be closely
watched by the security community, and alerts of security problems will be readily
announced. However, alerts are of little use if they are not read, understood, spread
throughout organizations, and followed by appropriate measures taken by vendors,
managers, administrators, and users. Thus, we believe that awareness and openness
in security issues are the only means to gain manageable security in COTS-based
systems.

References

[1] D G Abraham, G M Dolan, G P Double, and J V Stevens. Transaction Security
System.IBM Systems Journal, 30(2):206–229, 1991.

[2] Algirdas Avižienis. Design of fault-tolerant computers. InProceedings of
the 1967 Fall Joint Computer Conference, volume 31 ofAFIPS Conference
Proceedings, pages 733–743, Anaheim, California, November 14–16, 1967.
Thompson Books, Washington, D.C.

[3] William E Boebert and Richard Y Kain. A further note on the confinement
problem. InProceedings of the 1996 30th IEEE Annual International Car-
nahan Conference on Security Technology, pages 198–203, Lexington, Ken-
tucky, October 2–4, 1996. IEEE, Piscataway, New Jersey.

[4] Ravishankar K Iyer. Experimental evaluation. InProceedings of the 25th
International Symposium on Fault-Tolerant Computing (Special Issue), pages

114 Paper D

115–132, Pasadena, California, June 27–30, 1995. IEEE Computer Society
Press, Los Alamitos, California.

[5] Erland Jonsson and Tomas Olovsson. A quantitative model of the security
intrusion process based on attacker behavior.IEEE Transactions on Software
Engineering, 23(4):235–245, April 1997.

[6] Jay J Kahn and Marshall D Abrams. Contingency planning: What to do
when bad things happen to good systems. InProceedings of the 18th Na-
tional Information Systems Security Conference, pages 470–479, Baltimore,
Maryland, October 10–13, 1995. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[7] Butler W Lampson. A note on the confinement problem.Communications of
the ACM, 16(10):613–615, October 1973.

[8] Ulf Lindqvist, Tomas Olovsson, and Erland Jonsson. An analysis of a secure
system based on trusted components. InProceedings of the Eleventh An-
nual Conference on Computer Assurance (COMPASS ’96), pages 213–223,
Gaithersburg, Maryland, June 17–21, 1996. IEEE, Piscataway, New Jersey.

[9] Gary McGraw and Edward W Felten.Java Security: Hostile Applets, Holes
& Antidotes. John Wiley & Sons, New York, 1996.

[10] Microsoft Corporation, Redmond, Washington.OFF97: Security Require-
ments When Using NTFS Partitions, August 12, 1997. Article Q169387 in
Microsoft Knowledge Base.

[11] Peter G Neumann.Computer-Related Risks. ACM Press and Addison-Wesley,
New York, 1995.

[12] Jerome H Saltzer and Michael D Schroeder. The protection of information
in computer systems.Proceedings of the IEEE, 63(9):1278–1308, September
1975.

[13] Ravi S Sandhu. Lattice-based access control models.Computer, 26(11):9–19,
November 1993.

[14] Ken Thompson. Reflections on trusting trust.Communications of the ACM,
27(8):761–763, August 1984.

A Map of Security Risks Associated with Using COTS 115

I Sidebar: Defining the Confinement Problem

Theconfinement problemis a classic computer security problem. Basically, it is
a question of how to limit the actions of an executing program that normally has all
the privileges of its invoking user and, therefore, can do anything the invoker can
do.

One example of such a program is a Trojan horse. A Trojan-horse program ap-
pears to be benign and to behave as expected by the invoker but, in addition to or
instead of the expected actions, does something malicious.

A classic and most elegant example of a Trojan horse was presented by Ken
Thompson [14]. Thompson describes a portion of code hidden in the C compiler on
a Unix system. When Thompson’s modified compiler compiles the login program,
it inserts a backdoor into the login binary that, for example, grants access to any
account upon entering a “master key” password. To ensure that the Trojan horse
does not disappear when the C compiler is replaced by a new version, Thompson’s
compiler detects when it is used to compile a new C compiler and inserts the Trojan
code into the object code of the new compiler.

Unfortunately, Trojan horses present not only a theoretical problem for research-
ers but a serious threat to ordinary users of computer systems. In the world of
computing today, factors such as increased software complexity, dynamic code link-
ing, user abstraction from underlying functions, Internet connectivity, and frequent
downloading of executable code from various sources all facilitate the insertion of
Trojan horses and make them difficult to discover.

A general problem

However, the confinement problem does not apply only to Trojan horses. Un-
trusted software that is not malicious might still have side effects that are unex-
pected by the invoker and may cause security problems. This should be of particular
concern to developers of systems that include COTS components.

Traditionally, computer security has focused on confidentiality, that is, making
sure that only authorized subjects (people, processes) have read access to certain
information. Therefore, an early definition of the confinement problem concerns
information leakage: “. . . the problem of confining a program during its execution
so that it cannot transmit information to any other program except its caller.” [7]
Great effort has been expended on the analysis and elimination of covert channels
(unauthorized communication paths through which a process could transmit confi-
dential information).

The basic problem can be stated more generally: “What is the appropriate way
to confine an untrusted program so that it can do everything it needs to do to meet
the user’s expectations, but nothing else?” The imprecise definition does not give
much hope for a final solution, and the real difficulty lies in correctly specifying the
permitted behavior of the program.

116 Paper D

Suggested solutions

The general problem could be addressed, however, if it were possible always to
follow the principle of least privilege, which states that every subject should operate
using the least set of privileges necessary to complete the job [12]. Several access
control models designed with the purpose of enforcing that principle have been pro-
posed [13]. With military applications in mind, designers have developed operating
systems implementingmandatory access control, which bases confinement on data
classification labels and personnel clearance.

A more recent approach isdomain-and-type enforcement(DTE), in which an
attribute called a domain is associated with each subject and another attribute called
a type is associated with each object. A central matrix specifies whether a particular
mode of access to objects of a type is granted or denied to subjects in a domain [3].

Another type of confinement mechanism is the Java security model [9], which
is an example of language-based confinement of downloaded mobile code. Cryp-
tographic methods for ensuring authenticity and integrity of programs are often
suggested, but their main drawback is that they only solve the problem of confirm-
ing the author’s identity and that the program has not been altered by someone else;
they are of little help when the user does not trust the author.

117

Part II

Methods to improve system security

118

This page is intentionally left blank.

119

Paper E

The Remedy Dimension of Vulnerability Analysis

In Proceedings of the 21st National Information Systems Security Conference,
pp. 91–98, Arlington, Virginia, Oct. 5–8, 1998.

120

This page is intentionally left blank.

121

The Remedy Dimension of Vulnerability Analysis

Ulf Lindqvist1 Per Kaijser2 Erland Jonsson1

1Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden
fulfl, erland.jonssong@ce.chalmers.se

2Siemens AG
DE-81730 M̈unchen

Germany
Per.Kaijser@mchp.siemens.de

Abstract

This work is aimed at supporting system and information owners in
their mission to apply a proper remedy when a security flaw is dis-
covered during system operation. A broad analysis of the different as-
pects of flaw remediation has resulted in a structured taxonomy that
will guide the system and information owners through the remedy iden-
tification process. The information produced in the process will help
in making decisions about changes to the system or procedures. A se-
lected vulnerability that was able to be removed using three different
remedies is used as an example.

1 Introduction

When the discovery of a security flaw in a system has come to the knowledge of a
party that risks suffering a direct loss if the vulnerability were to be exploited by an
attacker, that party must decide what remedial action to take in order to remove the
flaw from the system. The party in question is usually the organization that owns
the system and/or the information stored and processed in the system. The work
presented in this paper is aimed at supporting the owners in their mission to apply a
proper remedy once a flaw is discovered, by providing them with a framework for
remedy identification and analysis.

The traditional and most common situation in larger organizations is that the
ownership of, or right to access, data and information stored and processed in a sys-
tem coincides with the ownership of the system3. For smaller organizations, par-
ticularly for the many small and medium enterprises (SMEs), there is an increased
interest in outsourcing, that is, letting a professional service provider own, man-
age and operate “your” system. The result is that information owners and system
owners belong to different organizations. Still, both types of owners are vulnerable

3Information owneris normally referred to information with intellectual property rights (IPR).
However, it can also be used to denote the individual or organization that is authorized to control
access to a piece of information that might or might not be IPR protected. In the context of this
paper,information ownercovers both cases.

122 Paper E

to security breaches. An information owner risks losing control of the informa-
tion, and a system owner may be forced to pay damages or risks losing customers
through a bad reputation.

To improve the security of IT systems, several guidelines and standards have
been produced. These have been aimed at the different actors that have an effect
on the security of the IT system, such as the manufacturers, procurers, managers,
operators and users. For vendors and manufacturers, the functionality of the sys-
tem and the development processes have been the target of standards (TCSEC [18],
ITSEC [16], CC [6]) that specify criteria against which security evaluations can
be made. These have also led to an increased interest in research on formal meth-
ods [1, 10, 15]. For procurers, baseline security documents have been created that
give a minimum set of requirements on security features that an IT system should
possess [20]. Managers, operators and users of an IT system need to follow certain
rules in the form of security policies in order to minimize potential threats. For this
purpose, guidelines and codes of practice have been specified [4, 8].

In spite of all these efforts, the number of security vulnerabilities can only be
reduced, not eliminated. But what is more important: Only a minor part of the
systems trusted with valuable information in trade, industry, public services and
academia today are designed and implemented according to these criteria. Further,
the ways in which hardware and software can be combined and interconnected are
so complex that not even experts can fully understand how to avoid vulnerabilities.
Reports about new vulnerabilities in computing systems are issued on almost a daily
basis, for example in CERT advisories (such as [5]) posted on the Internet. It is true
that security policies and recommendations for system and information owners play
an important role, but they will not solve all weaknesses. To put it briefly:

� Vulnerabilities exist and will remain in all systems in operation.

Everyone should realize that, whatever precautions are taken, security flaws will
be present in systems when delivered and in operation and that we need to form
strategies for dealing with these flaws. However, this does not mean that we propose
a penetrate-and-patch doctrine; it is still very important to try to eliminate as many
security flaws as possible during early phases of system development, because the
costs and risks associated with a repair increase dramatically later in the product
life cycle. We want to emphasize that security should be considered throughout
the entire system life cycle and that the efforts in different phases complement one
another.

It is the owners of the information and the owners of the system who are primar-
ily exposed to security risks. Therefore, our work aims at supporting the owners in
this situation. The authors hope that the results of this work will also be beneficial
to the security community in a wide sense, including international industrial con-
sortia such as I-44 and ESF5, incident response teams such as CERT and, of course,
system and information owners.

4International Information Integrity Institute, a part of SRI Consulting which in turn is a sub-
sidiary of SRI International. WWW: https://rome.isl.sri.com/i4/

5European Security Forum, Plumtree Court, London EC4A 4HT, England

The Remedy Dimension of Vulnerability Analysis 123

In the following, Section 2 describes some earlier work in the field, while our
analysis of the remedy dimension and our proposed taxonomy are presented in Sec-
tion 3. Examples of remedies follow in Section 4, and some conclusions are drawn
in Section 5.

2 Previous work

In our previous work on categorization6 of intrusions, we made some general
observations on the design of categorization schemes [14]. First, it is important
to clearly state the attribute or view of the intrusion on which the categorization
was based. We suggested the use of the termdimensionfor that view. Second, it
is desirable to have mutually exclusive and collectively exhaustive categories, but
this is often difficult, or even impossible, to fulfil. Third, the true value of such a
taxonomy is that its formation and application enforces a structured analysis, which
clarifies the matter and can generate new ideas.

The choice of the remedy attribute as a further dimension for categorization of
vulnerabilities is natural and significant. It encompasses the whole life cycle of an
IT system and focuses on the parties exposed to the risks that the vulnerabilities
represent. Until now, little has been published on how to actually perform remedy
planning and analysis, although several authors have observed the need for such
activities. In an insightful paper, Kahn and Abrams stressed the importance of an-
ticipating system security failures and planning for recovery and remediation [9].
Risk management, flaw remediation and evolutionary development is argued to pro-
vide more cost-effective and up-to-date security assurance than the TCSEC model
of risk avoidance and static systems.

In the Common Criteria [6], there is a so called assurance family namedLife
cycle support—Flaw remediation(ALC FLR). Earlier drafts of the criteria were
studied by van Laenen [19], who points out the problem of re-evaluation when a
change to the system has been made and also suggests two new requirements to be
considered:Mean time to remediationandMaximum time to remediation. It should
be noted, however, that this concerns only remedies provided by the developer.

3 Remedy analysis and taxonomy

In the terminology used in the field of dependable and fault-tolerant computing
systems [12], the termfault preventionis used for methods that prevent faults from
occurring or being introduced into a system. Actions that aim to reduce the pres-
ence of faults that already have been introduced fall under the category offault
removaland, especially, fault removal encountered during the operational phase of
a system’s life is calledcorrective maintenance. The present paper investigates cor-
rective maintenance applied to faults that cause security failures or, in other words,
the remedy dimensionof security vulnerabilities.

6We prefer the termcategorizationto classification. The reason is that in the security field, the
latter term is traditionally associated with a very specific dimension, namely, levels of confidentiality.

124 Paper E

The remedy clearly depends on the nature of the vulnerability, but several new
aspects must be carefully taken into account:

� What and who has caused the problem?

� Is there a possible way to remove the flaw?

� Will the changes introduce new vulnerabilities?

� Will the changes affect the quality of service?

� Will the changes actually remove the vulnerability?

� What will it cost to make the changes?

� What action should be taken—should any changes be made at all? If so, by
whom?

The system owner can become aware of a vulnerability through internal experience
as well as from external sources such as a product developer who provides a cor-
rection, an alert group such as CERT which may point out a vulnerability or from
its own customers (the information owners). The information owner—the organi-
zation to which all users of the system belong—normally comes to know about a
fault after having had practical experience with it, but may also be informed of it by
others, for example the system owner.

First, the source of the vulnerability should be identified. This includes identi-
fication of the technical location of the fault in the system as well as identification
of the organizational unit whose activities introduced the fault. The latter may for
example be the producer of the product, the system owner or the information owner.

The next step is to turn to those believed to be able to provide a solution to the
vulnerability. This is preceded by an analysis of possible locations of a remedy. The
owner then informs the potential remedy providers about the problem, its location in
the system or the process that is believed to cause it and, possibly, gives suggestions
for how to overcome it. The result may be one or more proposed remedy actions
that must be carefully analyzed with respect to their impact on the system and on
system operation and use.

Before and after each of these steps, a decision must be made as to how to pro-
ceed. Is it worth continuing the remedy process? And, if it is considered worthwhile
to continue and there are alternatives, which one(s) should be taken? All these de-
cisions must be based on facts and be viewed in the light of economic constraints.
To support and aid the system and information owners in their decisions, a four-
stage remedy identification process is proposed. The properties to be identified and
analyzed are:

� Fault location

� Remedy location

� Remedy provider

� Remedy impact

Each of these stages are described in detail below.

The Remedy Dimension of Vulnerability Analysis 125

3.1 Identification of fault location

The point in the system structure, operation or use at which the fault causing the
vulnerability is located is called the fault location. Since a vulnerability might con-
sist of a combination of circumstances [13], it may not be possible to distinctively
identify a single point as the location of the fault. Still, the analysis is a necessary
starting point in the remedy process.

Our taxonomy on fault location is shown in Table 1. The taxonomy of computer
program security flaws presented by Landwehret al. [11] partly serves the same
purpose, and our categorization can be viewed as a combination and extension of
the dimensions they calllocation and time of introduction. The reader is urged
to note that, although the same diagram is used for categorization of the remedy
location in the following subsection, the remedy location does not always coincide
with the fault location (see the example in Section 4).

Table 1. Taxonomy of fault location or remedy location.

Requirements
Product/ Design
solution Implementation

Requirements
Fault Integration Design
location Implementation

External issues
or

Installation
Internal issues
Policy

Remedy Operation/ Monitoring and
location administration enforcement of policy

Instructions
Policy

Use Monitoring and
enforcement of policy
Instructions

We will describe some of the categories below, hoping that the names of the other
categories will be self-explanatory. We consider a fault to be located in theintegra-
tion if a component is vulnerable as part of one system but not of another. In the
installationcategory,external issuesare located outside the chosen system bound-
ary (for example, physical protection) whileinternal issuesare initial configuration
parameters etc.

The second-level categories below the top-level categoriesoperation/administra-
tion andusemay also call for some clarification. Apolicy (or, more specifically,
a security policy) is basically a set of rules stating what is allowed, what is not
allowed and what must be done.Monitoring and enforcement of policyconcern
the management’s efforts to make certain that the policy is respected and obeyed (a
flaw may consist in the lack of enforcement of an existing and appropriate policy).

126 Paper E

To help administrators and users to operate the system in a way consistent with the
policy, instructionsare required. For example, if the policy states that owners and
users must take all reasonable action to prevent passwords from being revealed to
an attacker, then the instructions should, for example, tell the system owner how
to operate the system so that passwords are never sent in the clear via an untrusted
network.

The result of this phase of the remedy identification process is the structural
location of the cause of the fault. This will aid the owner in the next step of the
process, namely, in determining where a remedy should be applied.

3.2 Identification of remedy location

Now the owner wishes to identify where in the system structure, operation or use
a remedy should be applied. This step is based on the result of the fault location
identification as well as on the type of flaw. The reason for this categorization is
twofold: first, to be able to find the most appropriate remedy provider (see Sec-
tion 3.3) and, second, to be able to estimate the remedy impact (see Section 3.4).

It should be noted that, from this stage and onward, several alternative proposed
remedies to the same flaw may co-exist, each with its own location, provider and
impact. The alternatives need not even be mutually exclusive, for example certain
flaws might be of such a severe nature that an immediate remedy action is required
until a more proper solution can be produced and applied. This stage in the process
needs to be revisited as new proposals result from the owner’s contacts with possible
remedy providers.

The scheme for categorization of remedy location is identical to that of fault
location, as shown in Table 1.

3.3 Identification of remedy provider

By remedy provider, we mean the party that needs to make the necessary changes
in a component or process in order to remove the vulnerability. Identification of the
remedy provider is naturally closely related to the remedy location, but is also re-
lated to the fault location. The organization behind the process in which the flaw
was introduced is probably, but not necessarily, the best suited to provide infor-
mation leading to a remedy. Furthermore, the originator of the fault has at least a
moral, if not legal, responsibility to fix the problem.

The taxonomy of remedy provider is shown in Table 2. The categorization is
based on the fact that the top-level categories often represent different organizations.
Product developersare responsible for the production and maintenance (in terms of
error correction and evolution) of the product.Integratorsare responsible for the
integration of products and solutions into a workable system.Solution providers
are responsible for customer-specific solutions.

It should be noted that thesystemand information ownersare also actively in-
volved in the maintenance of the system, regardless of which party provides the
actual remedy. Whereas a product developer often provides the technical solution
for the removal of a fault, it is the system owner’s administrators and operators that
perform the update or ask the information owners to do it at their sites.

The Remedy Dimension of Vulnerability Analysis 127

Table 2. Taxonomy of remedy provider.

Designers
Product developers Implementors/

maintenance
Integrators
Solution providers

Remedy Policy makers
provider System owners Administrators/

operators
Policy makers

Information owners Administrators/
operators
End-users

The identification of the remedy provider together with the result of the remedy
location analysis helps the owner to identify the best way to remove the vulnera-
bility. In the final step of the process, the results of the responses from the remedy
providers (the suggested remedies) must be analyzed with respect to their impact
on the system and the business.

3.4 Analysis of remedy impact

It is important to thoroughly analyze the impact of a suggested remedy on the
system before applying it. If there are several different suggestions, the analysis
could also help in choosing the optimum solution. This fourth step in the remedy
process is based on our taxonomy of remedy impact as shown in Table 3. The reader
should note that the category groups numbered 1 through 10 in Table 3 are not
mutually exclusive. In fact, every remedy analyzed with respect to impact should
be assigned to a single subcategory within each of these 10 different groups, as
illustrated in Section 4.

Theprimary technical effectscategory concerns to what extent the remedy takes
care of the vulnerability and what effects it has on the functionality of the compo-
nent in which the changes were applied. If a particular instance of the vulnerability
is removed but the basic flaw endures, we consider the vulnerability to bepartly
eliminated. On the other hand, aprovisionally eliminatedvulnerability means that
the flaw itself is not repaired, but the situation in which it can be exploited is ren-
dered impossible, for the time being (a typical example is the shutdown of a faulty
service). The category ofsecondary technical effectsconcerns whether anew vul-
nerability is introduced, and how thefunctionalityof unchanged (but dependent)
parts is affected.

In addition to technical effects, there are also economic effects of a remedial
action. The only such effects of interest to the decision-maker are of course the ones
concerning their own organization. We have also separated the economic effects
into primary and secondary, where the former are related to the immediate cost of

128 Paper E

Table 3. Taxonomy of remedy impact.

Category No.
Target Provisionally

Primary technical vulnerability Partly 1
effects eliminated Completely

Impaired
Functionality Unchanged 2
(of changed parts) Improved

High
Secondary technical Severity of Medium 3
effects identified new Low

vulnerability None
Impaired

Functionality Unchanged 4
(of unchanged parts) Improved

High
Remedy Primary economic Cost for internal Medium 5
impact effects resources Low

(related to performing High
the change) Cost for external Medium 6

resources Low
None
Increased

Secondary economic Cost in human Unchanged 7
effects resources Decreased
(after the change) Increased

Processing time Unchanged 8
Decreased
Increased

Cost in computer Unchanged 9
resources Decreased

Long
Time to remediation Medium 10

Short

The Remedy Dimension of Vulnerability Analysis 129

performing the change, while the latter concern the long-term consequences after
the change is made. The immediate cost consists of the internal cost from workload
among the owner’s own staff and the cost of paying for equipment, services or
solutions from external sources (depending on the contract situation). An example
of long-term impact is the case in which the change results in a certain additional
working time for some administrator or user tasks. On the other hand, if the system
services are faster and simpler after the change, a secondary economic effect would
be decreased processing time.

The time the owner needs to wait for the remedy is of course a significant fac-
tor in the decision process, since the system and information are vulnerable until
the remedy has been applied. The category oftime to remediationwith the rough
subcategorieslong, mediumandshort is meant to be used in a relative rather than
absolute sense.

4 A vulnerability and examples of remedies

In this section, we present a well-known vulnerability and some examples of
remedies in order to illustrate and exemplify the taxonomy presented in Section 3.
For the sake of brevity, the technical description of the flaw is here kept to a min-
imum; the interested reader will find more detailed descriptions in the references
cited.

4.1 The Unix X terminal emulator logging vulnerability

The X Window System terminal programxterm, running with the effective user
id of root (super-user) in some Unix variants, had a flawed logging facility that
could be used to create an arbitrary new file or modify any existing file by appending
an arbitrary set of data to it [2, 5, 13].

Our first step is to identify the vulnerability. It turns out that, in the procedure
implementing the logging facility,xtermmakes certain critical system calls with the
privileges ofroot instead of with the privileges of the user invoking the program.
In this case, the flaw must clearly be categorized as being located in the product
design, since the program presumesroot privileges but is not designed with the
precaution needed for privileged programs.

A correction can either be provided by the product developers, product mainte-
nance or even the system owner, giving rise to three alternative remedy actions for
us to consider:

a) Remove the super-user privileges fromxterm

b) Disable the logging facility ofxterm

c) Rewritextermaccording to “the principle of least privilege”

We thus note that there is only one entry for fault location whereas there are three
for both remedy location and remedy provider.

130 Paper E

4.2 Remedy a: remove the super-user privileges

The quickest and easiest way to remedy thextermflaw is to clear the set-user-id
flag of the program, that is, to remove its super-user privileges. However, there is a
reason whyxtermwas installed with those privileges: it needs to change the owner
of the pseudo-terminal slave device, an action which requiresroot access7. When
testing this remedy on a SunOS 4.1.2 system in a university computer security lab-
oratory, we found the following:

� To the terminal user,xtermappears to function normally.

� The pseudo-terminal slave device, to whichxtermconnects, is still owned by
root. In order for the device to be readable and writable for the user, it must
be so for a group of users or even all users. Consequently, a new vulnerability
is introduced, primarily threatening the user rather than the system owner.

� If the system logging file/etc/utmpis writable only toroot (which was the
case in the test system, since a writable/etc/utmpconstitutes another vulner-
ability, see [13]) the terminal connection is not reported by some programs
that list the users logged on to the system, for examplewho.

We can only consider the vulnerability to be provisionally eliminated by this rem-
edy because, for example, an uninformed administrator who discovers the device
and logging problems might assume that the privileges have been turned off by
mistake or by accident. If the administrator turns the privileges back on, the sys-
tem would again be vulnerable. Any economic effects of this simple remedy are
negligible.

With the information at hand, we make the following categorization of this rem-
edy:

Fault location: Product: Design

Remedy location: Installation: Internal issues

Remedy provider: System owners: Administrators/operators

Remedy impact: see Table 4.

4.3 Remedy b: disable the logging facility

The patches distributed by the developers in response to the CERT warning dis-
able the logging facility. The function of the logging facility is to provide a simple
means for the user to save the terminal output in a file, a service evidently impaired
by this remedy. Another disadvantage of this approach is that it does not solve
the basic problem, namely, thatxtermunnecessarily makes all its system calls with
root privileges, leaving the system vulnerable to a number of other, similar and yet
undiscovered flaws (see the discussion on Remedy c below).

7There are Unix variants in whichxtermworks without special privileges. In such cases, this
particular vulnerability never existed, and the remedy discussion is a non-issue.

The Remedy Dimension of Vulnerability Analysis 131

Table 4. Impact analysis of the three suggested remedies.

Impact of remedy a b c No.

Primary
technical
effects

Target
vulnerability
eliminated

Provision-
ally

Partly Completely 1

Functionality Unchanged Impaired Unchanged 2
Secondary
technical
effects

Severity of
identified new
vulnerability

Medium None None 3

Functionality Impaired Unchanged Unchanged 4
Primary
economic

Cost for internal
resources

Low Low Low 5

effects Cost for external
resources

None None Depends 6

Secondary
economic

Cost in human
resources

Unchanged Unchanged Unchanged 7

effects Processing time Unchanged Unchanged Unchanged 8
Cost in computer
resources

Unchanged Unchanged Unchanged 9

Time to remediation Short Medium Long 10

Fault location: Product: Design

Remedy location: Product: Implementation

Remedy provider: Product developers: Implementors/maintenance

Remedy impact: see Table 4.

4.4 Remedy c: rewrite the program

Regardless of whether the concern is reliability, safety or security, it has long
been known that critical regions of software should be as small and simple as pos-
sible, since complex programs are error-prone. It is also well-known in the security
community that no action should be performed with higher privileges than those
absolutely necessary to complete the task. These two rules are known as the prin-
ciples of “economy of mechanism” and “least privilege”, respectively [17]. The
flawed version ofxterm is a large program running with constant super-user priv-
ileges, although such powers are necessary only for a small fraction of its duties.
Unfortunately,xterm is not the only Unix utility that violates both of the above
principles;sendmailis another notorious example.

This remedy action suggestsxterm to be rewritten in a defensive, security-con-
scious programming style, following “best practice” guidelines for privileged pro-
grams [3, 7]. In this case, not only the logging flaw would be eliminated, but also

132 Paper E

any similar security flaws in other parts of the code. This is a relatively expensive
solution, however, and there is always a risk that new security flaws and other bugs
are introduced when such a large piece of software is modified extensively.

Fault location: Product: Design

Remedy location: Product: Design

Remedy provider: Product developers: Designers

Remedy impact: see Table 4.

4.5 Discussion

In our example, a single fault was able to be removed using three different reme-
dies with different impacts. Thanks to the taxonomy, the three remedies can be
easily compared. It gives the system owner well-founded facts for making a deci-
sion, and we see that even if remedy c is preferred, either a or b could probably be
accepted as a temporary solution.

How different owners would categorize a certain aspect of a given remedy may
appear somewhat subjective. It should be remembered that each owner needs to
find and validate remedies according to site-specific circumstances. Categorizations
might therefore vary for different owners. Future development of categorization
criteria could perhaps further help users of the taxonomy.

5 Conclusions

The purpose of the remedy identification process defined and described in this
paper is to aid and support those exposed to the threats—the system and informa-
tion owners—in how to proceed in their decision process, rather than to design a
remedy for a given vulnerability. Our process consists of four phases; locating the
fault, locating the remedy, identifying the provider of the remedy and analyzing the
impact of the remedy. Each of these phases requires a taxonomy for easy catego-
rization. The paper has described four taxonomies that are the core of the analysis
in each of these steps. The remedy location and remedy provider phases can be
iterative, since the result of each may require an update of the other. This is differ-
ent from the first phase (fault location), which only serves as initial input, and the
last phase (remedy impact), which analyzes the output from the two middle phases.
The final result—the impact of each proposed remedy—is the desired outcome on
which the owner can base a sound decision as to how to proceed.

The Remedy Dimension of Vulnerability Analysis 133

References

[1] Marshall D Abrams and Marvin V Zelkowitz. Striving for correctness.Com-
puters & Security, 14(8):719–738, 1995.

[2] Taimur Aslam, Ivan Krsul, and Eugene H Spafford. Use of a taxonomy of se-
curity faults. InProceedings of the 19th National Information Systems Secu-
rity Conference, pages 551–560, Baltimore, Maryland, October 22–25, 1996.
National Institute of Standards and Technology/National Computer Security
Center.

[3] Matt Bishop. How to write a setuid program.;login: (The USENIX Associa-
tion Newsletter), 12(1):5–11, January/February 1987.

[4] British Standards Institution.Code of Practice for Information Security Man-
agement, 1995. BS 7799.

[5] CERT Coordination Center, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 15213-3890, USA.xterm Logging Vulnerability,
November 11, 1993. CERT Advisory CA-93:17.

[6] Common Criteria Implementation Board.Common Criteria for Information
Technology Security Evaluation, May 1998. Version 2.0. See also ISO/IEC
15408.

[7] Simson Garfinkel and Gene Spafford.Practical UNIX & Internet Security.
O’Reilly & Associates, second edition, 1996.

[8] INFOSEC Business Advisory Group.The IBAG Framework for Commercial
IT Security, September 1993. Version 2.0.

[9] Jay J Kahn and Marshall D Abrams. Contingency planning: What to do
when bad things happen to good systems. InProceedings of the 18th Na-
tional Information Systems Security Conference, pages 470–479, Baltimore,
Maryland, October 10–13, 1995. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[10] Carl E Landwehr. Formal models for computer security.ACM Computing
Surveys, 13(3):247–278, September 1981.

[11] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A
taxonomy of computer program security flaws.ACM Computing Surveys,
26(3):211–254, September 1994.

[12] Jean-Claude Laprie, editor.Dependability: Basic Concepts and Terminology,
volume 5 ofDependable Computing and Fault-Tolerant Systems. Springer-
Verlag, Vienna, 1992.

[13] Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. Analysis of selected com-
puter security intrusions: In search of the vulnerability. Technical Report 275,
Department of Computer Engineering, Chalmers University of Technology,

134 Paper E

Göteborg, Sweden, 1996. Presented at NORDSEC – Nordic Workshop on
Secure Computer Systems, Göteborg, Sweden, November 7–8, 1996.

[14] Ulf Lindqvist and Erland Jonsson. How to systematically classify computer
security intrusions. InProceedings of the 1997 IEEE Symposium on Secu-
rity and Privacy, pages 154–163, Oakland, California, May 4–7, 1997. IEEE
Computer Society Press, Los Alamitos, California.

[15] Peter G Neumann. Architectures and formal representations for secure sys-
tems. Technical Report SRI-CSL-96-05, Computer Science Laboratory, SRI
International, Menlo Park, CA 94025-3493, USA, May 1996.

[16] Office for Official Publications of the European Communities.Information
Technology Security Evaluation Criteria, June 1991. Version 1.2.

[17] Jerome H Saltzer and Michael D Schroeder. The protection of information
in computer systems.Proceedings of the IEEE, 63(9):1278–1308, September
1975.

[18] U.S. Department of Defense.Trusted Computer System Evaluation Criteria,
December 1985. DoD 5200.28-STD.

[19] Filip van Laenen. Pedigree and credentials, remediation and legal aspects
to gain assurance in IT products and systems. Master’s thesis, Katholieke
Universiteit Leuven, Belgium, and Norges Tekniske Høyskole, Norway, 1995.

[20] X/Open Company Ltd., UK.X/Open CAE Specification: Baseline Security
Services (XBSS), 1995. X/Open Document Number C529.

135

Paper F

An Approach to UNIX Security Logging

In Proceedings of the 21st National Information Systems Security Conference,
pp. 62–75, Arlington, Virginia, Oct. 5–8, 1998.

136

This page is intentionally left blank.

137

An Approach to UNIX Security Logging

Stefan Axelsson Ulf Lindqvist Ulf Gustafson� Erland Jonsson

Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden
fsax, ulfl, erland.jonssong@ce.chalmers.se

Abstract

Host-based intrusion detection and diagnosis systems rely on logged
data. However, the logging mechanism may be complicated and time-
consuming and the amount of logged data tends to be very large. To
counter these problems we suggest a very simple and cheap logging
method,lightweight logging. It can be easily implemented on a UNIX
system, particularly on the Solaris operating system from Sun Micro-
systems. It is based on logging every invocation of theexec(2)system
call together with its arguments. We use data from realistic intrusion
experiments to show the benefits of the proposed logging and in parti-
cular that this logging method consumes as little system resources as
comparable methods, while still being more effective.

1 Introduction

The main problem with collecting audit data for a log is not that it is difficult
to collect enough data, but rather that it is altogether too easy to collect an over-
whelming amount of it. The sheer volume of the audit data is the immediate reason
that logging is often considered a costly security measure. The collection of a large
amount of audit data places considerable strain on processing and storage facilities,
not to mention the time that must be spent, either manually, or aided by computers,
sifting through the logs in order to find any breaches of security. The trade-off is
between logging too much, and being drowned in audit data, or logging too little to
be able to ascertain whether indeed a breach has taken place [1, 7, 8].

Most UNIX installations do not run any form of security logging software, main-
ly because the security logging facilities are expensive in terms of disk storage,
processing time, and the cost associated with analysing the audit trail, either man-
ually or by special software. In this paper we suggest a minimal logging policy,

�Author’s present address: Ericsson Mobile Data Design AB, S:t Sigfridsgatan 89, SE-412 66
Göteborg, Sweden, Ulf.Gustafson@erv.ericsson.se

138 Paper F

lightweight logging, based on the one single system callexec(2)1. We use empir-
ical data derived from practical intrusion experiments to compare the lightweight
logging method with a few other simple methods. It is concluded that theintrusion
traceability of the proposed logging method is superior to that of the comparable
methods.

2 The purpose of logging

The main purpose of logging for security reasons is to be able to hold users of the
system accountable for their actions [14]. Logging is one of two basic requirements
for this, the other being identification/authentication. It is impossible to hold a user
accountable for some action indicated in the logs if it can not be excluded that
someone else has “masqueraded” as the user.

Even though less than perfect accountability may result from the mere existence
of a log, the logging mechanism serves other useful purposes [9]:

� It makes it possible to review the patterns of use, of objects, of users, and
of security mechanisms in the system and to evaluate the effectiveness of the
latter.

� It allows the site security officer to discover repeated attempts by users of the
system to bypass security mechanisms.

� It makes it possible for the site security officer to trail the use (or abuse) that
may occur when a user assumes privileges greater than his or her normal
ones. While this may not have come about as a result of a security violation,
it is possible for the user to abuse his or her privileges in the new role.

� The knowledge that there is a mechanism that logs security relevant actions in
the system acts as a deterrent to would-be intruders. Of course, for a security
logging policy to be effective in a deterring capacity, it must be known to
would-be intruders.

� The existence of a log makes “after the fact” damage assessment and damage
control easier and more effective. This in turn raises user assurance that at-
tempts to bypass security mechanisms will be recorded and discovered. Logs
are a vital aid in this aspect of contingency resolution [6].

In UNIX environments in general, and in the systems under discussion in par-
ticular, some of the above mentioned aims cannot be fully realized. For instance,
once a user has assumed super-user privileges in a UNIX system, he (or she) then
typically has the power to turn off logging, alter existing logs, or subvert the run-
ning logging mechanism to make it provide a false record of events. Furthermore,
UNIX systems typically do not use sufficiently strong methods of authentication to
make it possible to hold a user accountable on the grounds of what appears in an

1We useexec(2)as a generic name denoting all kernel system calls implementing the traditional
UNIX execfunctionality. In most UNIX versions (including SunOS 4.x), onlyexecve(2V)is a kernel
system call, while other variants ofexecare provided as library routines.

An Approach to UNIX Security Logging 139

audit trail. In either case, the knowledge that a security violation has taken place is
to be much preferred to the situation in which a breach of security has taken place,
but gone unnoticed.

3 Lightweight logging

3.1 Definition

We strive for a logging policy that would allow us to detect and trace attacks
against our system, i.e. that could be incorporated into an intrusion-detection sys-
tem (IDS) and by its mere simplicity facilitate the postmortem intrusion-detection
task. Our main purpose is to provide an audit trail from which the security officer
can establish exactly what occurred, and how it occurred, rather than merely being
able to detect that some sort of significant event has taken place. A logging policy
should meet the following requirements:

1) The system should be transparent to the user, i.e. it should behave in the manner
to which he has been accustomed.

2) Since system resources are always sparse, as little as possible should be con-
sumed. This means minimizing the use of storage space, processing time, and
time spent by the administrator.

3) While meeting the above requirements, sufficient data should be recorded to
maximize our chances to detect and trace any, and all, intrusions.2

We have found that it would be possible to tracemostof the intrusions presented
in this paper by logging relevant information about eachexec(2)system call made
in the system. Since the number ofexec(2)calls roughly corresponds to the number
of commands issued by the user, the amount of audit data should be in the same
order as that ofpacct,3 while recording more security relevant data thanpacctdoes.

Unfortunately one cannot configure the SunOS 4.x BSM audit mechanism (see
Section 4.2) to generate one record for every command executed, likepacct.If one
wishes to record every invocation of theexec(2)system call, one must audit all the
system calls in that audit class, in total 15 different system calls. This may produce
more audit data than we care to store and process. Furthermore, the arguments to
theexec(2)call are not recorded, and that fact reduces the quality of the audit data
considerably.4

2Our intrusion data were collected on the premise that the attackers operated as insiders. In
order to log data relevant to tracing intrusions from outsiders, a network security tool such asTcp
wrappercould be combined with our suggested logging mechanism. See [15] for a description of
Tcp wrapper.

3See Section 4.2.2 for a more detailed presentation ofpacct, the UNIX process accounting facil-
ity.

4Both these restrictions have been lifted in SunOS 5.x.

140 Paper F

Table 1. Penetration scenario.

Step Shell command Comment
1 $ ln -s /u/vulnerable-file -i Make link to a setuid root shell

script.
2 $ -i Invoke the shell script as -i.
3 root# The user now has an interactive

root shell.

3.2 Example

The example in Table 1 is a classic UNIX intrusion scenario that can be exploited
to gain super-user privileges. This security flaw was present in SunOS 4.1.2, the
version on which the first experiment was conducted. In order for the flaw to exist,
there must be a shell script somewhere on the system that issetuidor setgid to
someone, i.e. it is run with the privileges of its owner, or group, not its caller. The
flaw is exploited by the intruder calling the shell script via a symbolic link, and
this results in the intruder gaining access to an interactive command interpreter,
henceforth called shell.

This flaw comes about as a result of a bug in the UNIX kernel. When the kernel
executes the shell script, it first applies thesetuidbit to the shell and then calls the
shell with the filename of the shell script as the first argument. If this filename is
“ -i,” the shell mistakes this for the command line switch to start in interactive mode.
In later versions of SunOS, 5.x this problem has been corrected.5

To analyse what needs to be recorded in order to trace this intrusion, we look at
the system calls made when exploiting this flaw. Steps 1) and 2) in Table 2 detail the
system calls that are invoked when runningln(1V)andsh(1). Both these commands
are executed by a shell that performs thefork(2V)/exec(2)sequence, which is a
prerequisite for all command execution in UNIX.

We outline our suggestion for what information to be included in the audit record
in Table 3.

Perhaps the only field in Table 3 that merits further comment is the field “log
UID”. We propose that each user be assigned a unique identifier when he logs into
the system. This identifier does not change for the duration of the session, even if
the user’s real UID changes, as a result of an invocation of the commandsu(1V)for
instance. The existence of the “log UID” field makes it easier to trace the commands
invoked by each user, although it is not strictly necessary. The same information
may be distilled from complete knowledge about the branch on the process tree
from the root (login) to the leaf (the current process). The log UID simplifies this
task; we have borrowed the concept from C2 auditing [9, 14].

From the above audit records it becomes clear that user5252executed aln(1V)
command that made a soft link with the name-i to the shell script, and that the

5The filename is no longer passed as the argument to the shell. Instead, the shell is passed a
filename on the form/dev/fd/XwhereX refers to the file descriptor of the already open file. See [11,
p. 69] for an introduction to the/dev/fdinterface.

An Approach to UNIX Security Logging 141

Table 2. System calls.

Step System calls invoked Comment
1 fork()

execve(”/bin/ln”, ”ln”, ”/u/vul...”, ”-i”)
stat (”-i”, 0x9048) = -1 ENOENT
symlink (”/u/vulnerable-file”, ”-i”) = 0
close (0) = 0
close (1) = 0
close (2) = 0
exit (0) = ?

Make link to asetuidroot shell
script.
(ENOENT = No such file or di-
rectory.)

2 fork()
execve(”-i”, ”-i”, ...)
sigblock (0x1) = 0
sigvec (1, 0xf7fff94c, 0xf7fff940) = 0
sigvec (1, 0xf7fff8d4, 0) = 0
sigsetmask (0) = 0x1
sigblock (0x1) = 0
.

Invoke the shell script as -i.
The shell starts with some calls
to sigblock, sigvec, andsigset-
mask. The system calls that are
executed are then dependent on
the input to the shell.

3 root#

Table 3. The proposed system call logging.

Information recorded
for execve(2)

Step 1 (ln) (example) Step 2 (sh)
(example)

a record creation time stamp xxxx1 xxxx2
the real UID 5252 5252
log UID YY YY
effective UID 5252 0
real GID 11 11
effective GID 11 11
process ID 1278 1280
parent process ID 1277 1277
filename /bin/ln ./-i
current working directory /u/hack /u/hack
root directory / /
return value success success
argument vector toexecve(2V) ”-s”, ”/u/vulnerable-file”, ”-i” ”-i”

142 Paper F

user then invoked the shell script via the link.
If we look in detail at the above, it becomes clear that we need only log the

invocations of theexecve(2V)system call made by this user to trace the intrusion.
Since we log the argument vector (argv) to theexecve(2V)call, we need not log the
symlink call separately. As can be seen above, that information is recorded when
we log the argument vector to theln(1V)command. We have all the data necessary
to trace this specific intrusion back to the user that performed it.

In essence, the proposed logging scheme, creates one audit record per command
issued. This also holds true for regular process accounting withpacct, but there are
several differences:

� By logging the start of execution of every command instead of the end of
execution, we have a better chance of detecting an ongoing intrusion attempt.
This is especially true if we consider long running commands that crack pass-
words or search the filesystem for example. Furthermore, the command that
commences the intrusion is logged. This is far from certain if we delay log-
ging until the command has completed execution, since this may already have
turned off auditing etc.

� The most severe security intrusions in UNIX environments are often per-
formed by tricking a setuid program into performing some illicit action. By
logging both the real and effective UID every time a command is to be run,
we can detect many such intrusions.

� Regular accounting logs the first eight characters of every finished command
but, since programs can be copied and renamed, this is easy to circumvent. By
logging the full path name of every command, together with all arguments,
the proposed auditing policy is much more difficult to trick.

4 The logging during the data collection experiment

4.1 The experiment

During the years 1993–1996, we performed four intrusion experiments in UNIX
systems [5, 10]. The original goal of these experiments was quantitative modelling
of operational security, that is, we tried to find measures for security that would
reflect the system’s “ability to resist attacks”. In order to do so, extensive logging
and reporting were enforced and a great deal of data were generated. We believe
that these data are also useful for the validation of the logging policy proposed in
this paper.

During the experiments a number of students (13, 24, 32, and 42, respectively)
were allowed to perform intrusions on a system in operational use for laboratory
courses at the Department of Computer Engineering at Chalmers in Sweden. The
system consisted of 24 SUN ELC disk-less workstations and a file server, all run-
ning SunOS 4.1.2 or SunOS 4.1.3U1. The system was configured as delivered,
with no special security enhancing features [3].

An Approach to UNIX Security Logging 143

The attackers, who worked in pairs, were given an account on the system—thus,
they were “insiders”—and were encouraged to perform as many intrusions as pos-
sible. Their activities were limited by a set of rules meant to avoid disturbing other
users of the system and to ensure that the experiment was legal. Further details are
found in the references cited above.

4.2 The logging

There were three main classes of accounting in the experiment system that were
active:

Connect time accounting is performed by various programs that write records
into /var/adm/wtmp, and /etc/utmp[12]. Programs such aslogin(1) update
thewtmp(5V)andutmp(5V)files so that we can keep track of who was logged
into the system and when he was logged in.

Process accountingis performed by the system kernel. Upon termination of a
process, one record per process is written to a file, in this case/var/adm/
pacct. The main purpose of process accounting is to provide the operator of
the system with command usage statistics on which to base service charges
for use of the system [12].

Error and administrative logging is primarily performed by thesyslogd(8)dae-
mon [12]. Various system daemons, user programs, or the kernel log ab-
normal, noteworthy conditions via thesyslog(3)function. These messages
end up in the files/var/adm/messagesand/var/log/syslogon the experiment
system.

Another class of logging designed with security in mind is the SunOS BSM (Ba-
sic Security Module) logging sub system [12]. This logging facility is said by Sun
Microsystems to conform to the requirements laid forth in TCSEC C2, even though
the SunOS BSM has not been formally certified according to TCSEC. This logging
mechanism was not active in the experiment system.

The system logging and accounting files in the experiment system thus consist of
/var/adm/wtmp, /etc/utmp, /var/adm/pacct, /var/log/syslog, and/var/adm/messages.

4.2.1 Connect time accounting Various system programs enter records in the
/var/adm/wtmpand /etc/utmpfiles when users log into or out of the system. The
purpose of theutmp(5)file is to provide information about users currently logged
into the system, and the entry for the particular user is cleared when he logs out
of the system. Thewtmp(5V)file is never modified in this manner; instead, when
the user logs out, another entry is made containing the time he left the system.
Thewtmp(5V)file thus contains a record of each user as he entered and exited the
system.

Thewtmp(5V)file also contains information indicating when the system was shut
down or rebooted and when thedate(1V)command was used to change the system
time.

Thewtmp(5V)records contain the following information:

144 Paper F

� The name of the terminal on which the user logged in.

� The name of the user who logged in.

� The name of the remote host from which the user logged in, if any.

� The time the user logged into or out of the system.

4.2.2 Process accounting by pacctThe process accounting system is, as men-
tioned before, designed to provide the operator of the system with command usage
statistics on which to base service charges for use of the system. Thepacct system
is usually activated by theaccton(8)command when booting the system. When
active, the UNIX kernel appends an audit record to the end of the log file, typically
/var/adm/pacct, on the termination of every process. The audit record contains the
following fields:

� Accounting flags; contains information indicating whetherexecve(2V)was
ever accomplished and whether the process ever had super-user privileges.

� Exit status.

� Accounting user.

� Accounting group ID.

� Controlling terminal.

� Time of invocation.

� Time spent in user state.

� Time spent in system state.

� Total elapsed time.

� Average memory usage.

� Number of characters transferred.

� Blocks read or written.

� Accounting command name; only the last eight characters of the filename are
recorded.

4.2.3 Error and administrative logging Beside the functions described above,
many user and system programs use the logging facility provided by thesyslog
service. At system start-up, the logging daemonsyslogd(8)is started, and processes
can then communicate withsyslogd(8)via thesyslog(3)interface.

The messages sent tosyslog(3)contain a priority argument encoded as afacility
and alevel to indicate which entity within the system generated the log entry and
the severity of the event that triggered the entry. Thesyslogservice is configured to

An Approach to UNIX Security Logging 145

act on the differentfacilities andlevelsby appending the message to the appropri-
ate file, write the message on the system console, notify the system administrator,
or send the message via the network to asyslogd(8)daemon on another host. In
the experiment system,syslogwas configured to append all messages to/var/adm/
messagesand debug messages fromsendmail(8)to /var/log/syslog.

5 Evaluation of the intrusion data with respect to
different logging methods

During our experiments we defined an intrusion as the successful performance
of an action that the user was not normally allowed to perform. About 65 intru-
sions were made, most of them already known by the security community, e.g.,
by CERT.6 However, while CERT only informs about what system vulnerability
was used for a specific intrusion, our experiment yielded further data. The great-
est advantage of our intrusion data is that we knowexactly howthe intrusion was
performed, which obviously is of specific interest when discussing logging for
intrusion-detection purposes. Therefore, we categorize our intrusions according
to what kind of audit trail they leave. For each intrusion class, we discuss the pos-
sibility of detecting an attack with normal system accounting or monitoring, and by
means of using the suggested lightweight logging method.

The intrusions are categorized in ten broad classes as presented in the rest of
this section. For the sake of brevity, only one typical intrusion in each class is
described in detail, while the others are outlined. The discussion is structured under
the following headings:

System logging; the logging performed by the kernel and system processes such
asinit(8), andpacct(8).

Application program logging; the logging performed byapplication programs,
such assu(1V)etc.

Monitoring resource utilization; some attacks result in abnormal load on CPU,
disk, network, etc., and this can be monitored, and anomalous behaviour can
be detected. In practice, many intrusions are detected because the users of the
system report that it acts “funny” in this respect.

Lightweight logging; discussion of the validity of the recorded information related
to the suggested lightweight logging policy (loggingexecve(2V)).

5.1 Class C1: Misuse of security-enhancing packages

There are several programs available that help the supervisor of a UNIX system
to increase security by testing for known security problems. These programs can of
course also be (ab)used by an attacker to learn about existing flaws in the attacked
system.

6Seehttp://www.cert.orgfor information about CERT, and the advisories they publish.

146 Paper F

Crack The target system did not enforce password shadowing, so any user was
able to read out the encrypted password values and mount a dictionary attack
by obtaining and executing the publicly available password guessing program
Crack.

System logging: The execution of these kinds of programs, which are well-
known packages consisting of several subprograms, leaves distinct patterns
of multiple entries in thepacctfile that are easy enough to detect and trace,
provided the commands are not renamed.

Application program logging: N/A.

Resource utilization: Possibly massive disk (network if NFS) and CPU uti-
lization.

Lightweight logging: The program name is recorded and saved with its ar-
guments. Each spawned subprogram in the collection will also be recorded
together with its arguments. This approach gives more accurate information
considering the patterns in the log file.

COPS Intended to be used by system administrators to find security problems in
their UNIX installations,COPSis a publicly available package that can also
be used by attackers. It consists of a set of programs, each of which tries to
find and point out potential security vulnerabilities.

Password generation rulesWhen assigning passwords to other students attend-
ing courses at the department, a program that randomly creates 7-character
lower-case passwords is used. To make the passwords pronounceable and
thus easier to memorize, the program makes every password contain 3 vow-
els and 4 consonants in a distinct pattern. Unfortunately, it turns out that this
pattern severely limits the randomness of user passwords and makes exhaus-
tive search feasible. The attackers compiled a dictionary that satisfied the
password generation rules and then ranCrack.

Conclusion: Both system logging and our proposed logging policy are capable of
detecting the use of the security-enhancing packages encountered during the
experiment.

5.2 Class C2: Search for files with misconfigured permissions or
setuid programs

A general search of the filesystem for files for which the attacker has write per-
mission, or files that aresetuidto some user is often a step performed by the security
packages mentioned in C1. We list it as a separate class since many of our attackers
performed such a search when first trying to breach security. These attacks also
have in common that they are resource-intensive in terms of (network) disk traffic
and may be detected because of this.

Search for files with public write permission The target in this attack was care-
lessly configured permissions on various files in the system, especially sys-
tem files or user configuration files. Files with public write permissions can

An Approach to UNIX Security Logging 147

be modified by arbitrary users, compromising the integrity of the system.
During the experiment we chose not to count general searching as a breach
in itself; to regard the action as a breach, we demanded a detailed description
of how to exploit the vulnerable file.

System logging: If thefind(1)command is used, traces of that can be found
in pacct. However, since the arguments to thefind(1)command are not avail-
able, it is doubtful whether the security administrator can tell the difference
between benign uses offind(1)and uses that are consistent with an ongoing
intrusion attempt.

Application program logging: N/A.

Resource utilization: Possibly massive disk (network if NFS) and CPU uti-
lization.

Lightweight logging: The arguments tofind(1), together with the command
name, are logged, making it possible to discover what the attacker is search-
ing for. If the attacker tries to hide the name by making soft or hard links to
the find command, the links are also traceable.

Search forsetuidfiles Wrongly configuredsetuidfiles may compromise overall
system security, especiallysetuidshell scripts orsetuidprograms with built-
in shell escapes. In this case we also demanded a detailed description of how
to exploit the vulnerable file.

Conclusion: The suggested logging policy can detect usage offind(1)for purposes
of searching for files as above. System logging, on the other hand, has a
difficult time differentiating between suspect and legitimate uses offind(1).

5.3 Class C3: Attacks during system initialization

As the experiment system was configured, it was possible to attack it by halting
it during system initialization. The single-user root privileges thus obtained were
able to be further exploited to become multi-user root.

Single user boot It was possible to boot the clients from the console to single-user
mode. This was possible because/etc/ttytabwas not set up to secure console
login. Hence, it was possible to modify an arbitrary filesystem on the client.
(Although the clients were disk-less, their root directories were mounted via
NFS from the file server.)

System logging: Through the records in/var/adm/wtmp, /var/adm/pacctand
/var/adm/messagesit is possible to tell when the machine was rebooted after
it has come up in multi-user mode again. However, the commands executed
in single-user mode are not logged, since logging is not active in single-user
mode.

Application program logging: N/A.

Resource utilization: limited.

148 Paper F

Lightweight logging: It is possible to log the actions performed during single-
user mode, but this is not normally done. The single-user mode is viewed as
a transient administrative state, employed for administrative duties or system
repair. As such, the resources necessary for running the logging mechanism
may be unavailable. In our case, all but the root partition was mounted read
only, making it difficult to store the log on disk.

Inserting a new account into the/etc/passwdfile This is primarily a method to
become multi-user root. After becoming single-user root, it is possible to
insert a new account in the password file. It is then possible to log into that
account when the client comes up in multi-user mode.

Setuidcommand interpreter/program in root filesystem As single-user root, it
is possible to make a copy of a command interpreter (shell), change the owner
of the copy to an arbitrary user (for example root) and set itssetuidflag. Then,
when the host has entered multi-user mode, the attacker need only execute
the copied shell to take the identity of its assigned owner. This method was
primarily used to become multi-user root.

File server intrusion through setuidprogram Although the clients were all disk-
less, all modifications on the clients root filesystems were also available to the
users on the file server. In this way, it was possible to become another user by
executing asetuidprogram as described in the preceding intrusion scenario.

Conclusion: Since the system is not fully operational during initialization, it is
difficult for both methods to detect, let alone trace, any intrusion attempt.
It would be technically difficult to design a logging mechanism that would
function under such circumstances, since we are in effect giving away super-
user privileges to anyone who happens to walk by. This turns this attack into
an “outsider” attack, and we must monitor physical access to the computer
room in order to have a chance of catching the intruder.

5.4 Class C4: Exploiting inadvertent read/write permissions of
system files

As the experiment system was configured, many critical system files and direc-
tories were set up with inadvertently lax access permissions. This made it possible
for the attackers to modify critical files to subvert system programs, or, in one case,
to read data to which the attackers should not have had access.

YP configuration error NIS (seeyp(3R))was installed according to the manual,
meaning that it was necessary to initialize/var/yp before bringing the ma-
chine up to multi-user mode. Doing this, and neglecting that an appropriate
umaskis not activated by default in single-user mode, may result in dangerous
file permission settings on files created under those circumstances. The NIS
server configuration database,/var/yp, in the target system had permission
mode 777, that is, writable and readable for all.

An Approach to UNIX Security Logging 149

/etc/utmpwritable The default on the experiment system was for/etc/utmpto be
writable for all users. This makes it possible for an intruder to hide from
appearing in the output of commands such aswho(1) andusers(1)but, more
importantly, it allows a user to alter system files. This is accomplished by
editing /etc/utmpand then issuing asetuidcommand (write(1) for instance)
that uses/etc/utmpto find its output file.

System logging:pacct will show only that some user issued, for instance,
a write(1) command that looks benign enough. There is certainly no way
of differentiating this use ofwrite(1) from ordinary legitimate uses of that
command.

Application program logging: N/A.

Resource utilization: Limited.

Lightweight logging: Unfortunately, if the command the user uses to ma-
nipulate/etc/utmpdoes not stand out in the audit trail, this kind of intrusion
will be difficult to trace. Since we log all arguments to commands issued, our
chances of catching the modifying command will have increased substantially
in comparison with the chances thatpaccthas.

Crash the X-server When a client wishes to connect to the X-server on the local
machine, the client looks for a UNIX domain socket at a predefined location
in the filesystem (/tmp/.X11-unix/X0in the experiment system). This socket
and its directory were world-writable in the experiment system and, as a re-
sult, the user could remove the socket and thus hang the X-server. By replac-
ing the socket with a non-empty directory and forcing the X-server to restart,
the directory is unlinked, and the files are left “hanging”. This would require
the supervisor to manually fix the system on the next boot withfsck(8).

Reading of “mounted” backup tapes In the experiment system, a backup tape
was always present in the tape streamer awaiting that night’s backup run.
Since the backup tapes were constantly reused (a fairly common policy in
many installations) and the tape streamer’s device file had world-read per-
missions set, it was possible for the attackers to read the previous week’s
backup tapes. This enabled them to read files that they would not normally
be allowed to read.

Conclusion: Misuse of system files with erroneous permissions is often detectable
by the proposed logging scheme. This misuse often manifests itself as a
suspect argument to a user command, that is, the command accesses a file
that it should not normally access. System logging has very slim chances of
detecting this, since arguments are not logged.

5.5 Class C5: Intercepting data

Due both to configuration errors and the nature of certain UNIX system appli-
cations, it was possible for the attackers to intercept communication between users
and the experiment system.

150 Paper F

Snooping the X-server A publicly available program calledxkeywas used to lis-
ten to traffic to the X-server. This program tries to connect to the X-server on
the target machine and, if the request is granted, makes it possible to intercept
any keystrokes typed by the console user at the target machine.

Frame buffer grabber If a person can log into a SunOS 4.1.x workstation from a
remote host, he or she may be able to read the contents of the console’s video
RAM memory. The frame buffer character special file,/dev/fb, is per default
writable and readable for everyone.

Ethernet snooping Many typical UNIX clients for remote login transmit authenti-
cation information in the clear via the network. It is thus possible for someone
with access to the network (network topology and technology permitting) to
eavesdrop on this traffic and learn passwords, etc. In most UNIX installa-
tions one must already have local super-user privileges to be able to perform
this kind of attack, and this was the case in the experiment system when the
attackers performed the intrusions.

System logging:pacctrecords the commands issued by every user, including
root. If the super-user has run any of the more popular network listening tools,
they should appear in the log entries ofpacct, that is, unless the intruder has
already turned off logging, which unfortunately is very likely.

Application program logging: N/A.

Resource utilization: Listening to all network traffic (by setting the network
interface in “promiscuous mode”) can load the local host heavily.

Lightweight logging: The same argument as forpacctabove applies. How-
ever, since the arguments to, for instancetcpdump, are recorded, it should be
easier to differ between legitimate and illegitimate uses oftcpdump.

Conclusion: The snooping that is described above is performed by special pro-
grams, most of which are not part of the system distribution. It is easy for the
attacker to rename popular packages when installing them, thus foiling our
logging effort. In the experiment, most attackers did not bother with this, and
hence their intrusions were relatively easy to trace, since these are programs
that normally should not be run.

5.6 Class C6: Trojan horses

Some attackers made unsuspecting users execute Trojan horses, that is, applica-
tions that purported to do something benign, but did something sinister in addition
to that.

Trojan su It is possible for anyone to create a fakesu(1V)program that when exe-
cuted saves a copy of the entered password and then prints an error message
“su: Sorry” as though the password were wrong. The program then erases
itself from the filesystem.

An Approach to UNIX Security Logging 151

System logging: Normally, whensu(1V)is executed but the result is unsuc-
cessful, a record starting with “#su” is found in pacct. The “#” indicates that
the program was executed with root privileges.7 Consequently, the Trojan
horsesu, which does not run with root privileges, should appear as a plain
“su”, which can easily be detected. We cannot judge whether this can be cir-
cumvented by a more carefully designed Trojan horse. With regard to tracing,
the only thingpacct tells us is the user who executed the Trojansu, not the
location or creator of the program.

Application program logging: N/A.

Resource utilization: limited.

Lightweight logging: Enough information to trace this intrusion is recorded
since the intrusion method requires that the command is invoked assu. In-
formation is recorded on which user executed the program and the full path
of the program, and both real UID andsetuidsettings are logged. Since the
full path of the program is logged, the chances of discovering who actually
planted the fakesuprogram increases.

Trojan e-mail attachment This is somewhat of a social engineering attack. One
group of attackers sent an e-mail message that contained what was announced
to be a picture of explicit nature. However, the picture could not be viewed
by normal software already installed on the system, but only with the sup-
plied software, which was also attached to the e-mail. That software was a
Trojan horse that hijacked the viewer’s account before it correctly displayed
the picture.

Conclusion: System logging records only the last part of the path to the command.
Because of this it is impossible to differentiate between the running of legit-
imate commands and their Trojan counterpart. The suggested logging policy
detects these attacks, since it will show the execution of a normal system
command with a suspect path, or the running of a command that has been
introduced into the system in a suspicious way.

5.7 Class C7: Forged mail and news

Owing to the design of the mail and news servers on the experiment system, it
was fairly easy to send a message that purported to be from someone else.

Faking email On many UNIX systems, it is possible to fake the sender of an e-
mail message, making it appear to originate from another user or even from a
non-existing user. This is done by connecting to the mail port through TCP/IP
and interacting directly with thesendmail(8)daemon.

System logging: If thetelnet(1C)command has been used, we can find a
record of that inpaccton the sending machine and connect that to the records
in syslog(3)(described below) through the time stamps.

7However, the documentation is unclear as to the exact circumstances under which the “#” is
inserted bypacct(2). We have found that it is a fairly unreliable indicator as to what privileges were
actually acquired by the executing program.

152 Paper F

Application program logging: If the message has been sent from one of our
workstations, we can find tracks in/var/log/syslogleft by sendmail(8)via
syslogd(8)on that machine, but only with the faked sender identity.

Resource utilization: limited.

Lightweight logging: Clearly, not enough information is recorded to trace
the sending of a fake e-mail. Partial information may be available depending
on the way in which way thetelnet(1C)command is invoked or whether the
commandmconnect(8)is used.

Forged news As a consequence of the way in which the remote USENET News
server protocol was designed, it is fairly easy to forge a USENET News article
to make it appear as though it originated from another user on the system. All
authentication must be performed in the news-client software, but nothing
prevents a user from connecting to a remote News server by hand, that is, by
usingtelnet(1C).

Conclusion: All attackers that forged mail and news did indeed use thetelnet(1C)
command, passing the parameters on the command line, and were thus easy to
detect by the suggested logging, even if the actual mail or news article would
be difficult to trace. However, it is trivial to invoke thetelnet(1C)command
without any command line arguments and foil both methods of logging.

5.8 Class C8: Subvertingsetuid root applications into reading
or writing system files

Setuidroot applications on UNIX systems are allowed to read or write to any file
by default. It is imperative that such applications check user supplied arguments
carefully, lest they be tricked into doing something that the user would not normally
be allowed to do. However, many such applications contain flaws that allow an
attacker to perform such unauthorized reading or writing of critical files.

Xterm logfile bug, version 1 Thexterm(1)client has an option for the entire ses-
sion to be logged to a file. Furthermore,xterm(1)is setuidroot for it to be able
to change the owner of its device file to that of the current user. A bug makes
it possible for any user to specify an existing file as the logfile toxterm(1)
and havexterm(1)append data supplied by the attacker to that file.

System logging: From thepacctfile, all we can see is that someone has run
xterm(1), a so common occurrence that we can safely say that it is impossible
to trace an intrusion this way.

Application program logging: N/A

Resource utilization: Limited.

Lightweight logging: Since we log all the arguments toxterm(1)as it is being
run, we catch both the invocation of the logfile mechanism and the telltale
argument-e echo "roott::0:1::/bin/sh" or a similar one, which is the
hallmark of this intrusion.

An Approach to UNIX Security Logging 153

Xterm logfile bug, version 2 A variation of the preceding exploit, where the at-
tacker can create a file and have the output fromxterm(1)inserted in that file,
provided that the file does not already exist.

Change files through mail alias The UNIX operating system maintains a global
mail aliases database used by thesendmail(8)program to reroute electronic
mail. One standard alias delivered with some versions of UNIX isdecode.
By allowing this alias, it is possible for anyone to modify some directories in
the system.

Finger daemon The finger(1)utility in the experiment system issetuid to root,
and it makes an insufficient access check when returning information about
a user. It is possible to make finger display the contents of any file via the
use of a strategic symbolic link from.plan in the user’s home directory, to the
target file.

Ex/vi-preserve changes fileThe venerable UNIX text editorsex(1)andvi(1) have
a feature by which in the event that the computer crashes or the user is un-
expectedly logged out, the system preserves the file the user was last editing.
The utility that accomplishes this,expreserve(8), is setuidto root, and has a
weakness by which the attacker can replace and change the owner of any file
on the system.

/dev/audiodenial of service Owing to a kernel bug, it is possible to crash the ma-
chine by sending a file viarcp(1C)to /dev/audioon a remote machine.

Interactive setuidshell This problem in SunOS 4.1.x has been fixed in more re-
cent operating systems. An attacker simply invokes asetuid (or setgidor
both) shell script through a symbolic link, which immediately results in an
interactive shell with the effective UID (and/or GID) of the owner of the shell
script. This is detailed in Section 3.2.

Conclusion: The methods used to trick thesetuidprogram inevitably either supply
suspect arguments to the command or modify the filesystem in advance to
running thesetuidcommand. Depending on the specific circumstances, our
logging proposal has a high chance of detecting and tracing the intrusion,
since we either log the suspect arguments themselves or log the commands
that poison the filesystem. System logging does not manage to accomplish
either.

5.9 Class C9: Buffer overrun

As mentioned above, asetuidprogram must be careful in checking its arguments.
There exists a class of security flaws where the attacker subverts thesetuidappli-
cation by filling an internal (argument) buffer so that it overflows into thesetuid
program’s execution context. In this way it is possible for the attacker to force the
setuidprogram to execute arbitrary instructions. We have encountered only one
such attack. We include it here because of the severity of this type of attack and
because it is widespread and commonly encountered in the field.

154 Paper F

Buffer overrun in rdist The rdist(1) utility has a fixed length buffer that can be
filled and thus made to overflow onto the stack ofrdist(1), which is setuid
root. The attackers did not manage to exploit this other than to crashrdist(1),
but we include it here in any case, as it is an interesting class of intrusions.

System logging: As usual,pacct does not manage to leave any conclusive
traces in the log files. The invocation of the program with the overflow con-
dition would probably not show up, since the name of the finished program
is recorded at the end of execution when the original program image has typ-
ically already been overlaid with that of asetuidshell.

Application program logging: N/A.

Resource utilization: Limited.

Lightweight logging: Since we log the arguments to the command,rdist(1) in
this case, we immediately see that something is wrong. We in fact record in
the log the entire program thatrdist(1) is lured into overflowing onto its stack!
(We may not always be so fortunate; some variations of these exploits keep
the actual overflow code in an environment variable, which we will not log.)
Since we see both the originalexec(2)of rdist(1), followed by theexec(2)of
a root shell, without the interveningfork(2V), we have conclusive proof that
the system has been subverted.

Conclusion: See the discussion concerning the above exploit, since it is typical of
these kinds of exploits.

5.10 Class C10: Execution of prepacked exploit scripts

It is possible for the novice attacker to download prepacked programs or com-
mand scripts that exploit a known security flaw. Such packages are in wide circula-
tion and provide the attacker with an easy entry into the system.

Loadmodulesetuidroot script We have included a specific example of a breach
that involves asetuidscript since thissetuidscript is included in the SunOS
distribution tapes. Hence, this security flaw is widespread and, as such exploit
scripts have been developed, and widely circulated. This particular exploit
script (load.root) was found by many experimenters who used it successfully,
some without any deeper understanding of the security flaw involved. The
exploit script in question uses the environment variableIFS to trick loadmod-
ule(8) into producing an interactive shell with super-user privileges.

System logging: Sincepacctdoes not record the arguments to the commands
that the user executes, it is difficult to establish that theload.rootexploit script
has indeed been run. However, as the exploit script executes a number of
commands in a predefined sequence, it should, at least in theory, be possible
to ascertain that the script has been run with some level of certainty. This
is generally not possible without detailed knowledge about the script. As
mentioned previously, the “#” marker to indicate that super-user privileges
has been used does not appear in this case.

An Approach to UNIX Security Logging 155

Application program logging: N/A.

Resource utilization: Limited.

Lightweight logging: Since we can determine what commands were run and
with what arguments, it becomes much easier to determine that a breach has
occurred. In particular, the fact that the user has executed a script that in turn
invokesexec(”/bin/sh”, ”sh”, ”-i”) with root privileges gives the game away.
However, the flaw is exploited by the introduction of an environment variable,
something which we do not record because this would lead to the storage of
too much data. A strong indication that some sort ofIFS manipulation has
taken place, however, is the fact that the audit trail shows that a user has
executed a command namedbin as part of a shell script.

Mailrace (sendmail) The original mail handling client/bin/mail(1) is setuidroot
in SunOS. If a recipient of a mail message lacks a mail box, the program
creates one before it appends the mail message to it. Unfortunately, there
exists a race condition between the creation of the mail box and the opening
of it for writing. Exploit scripts have been published that exploit this race
condition. These operate by replacing the newly created mail box with a
symbolic link to any file which, as a result, will be overwritten or created
with the contents specified by the attacker.

Conclusion: If the script is known beforehand, its use can be established with nor-
mal system logging. The suggested logging makes it a good deal more likely
that a script that has not been previously examined can be traced and analysed
to determine its effects.

6 Summary and discussion of results

After studying the above security breaches it becomes clear that the main system
logging mechanism,pacct, suffers from three major shortcomings:

1) It does not commit the executed command to the audit trail until it has finished
executing. This misses crucial long running commands. Commands, the process
image of which is overlaid by a call toexec(2), does not appear in the audit trail,
and the command that crashes or compromises the system is at risk of not being
included in the audit trail.

2) Pacctdoes not record the arguments to issued commands. This more often than
not turns the log material into a useless alphabet soup from a security perspec-
tive, since it is impossible to see what executed commands were set to act upon
in terms of files etc. In most of the cases above, the arguments to the commands
are what set legitimate uses of the commands apart from illegitimate ones.

3) The mechanism that is supposed to trace uses of super-user privileges is unre-
liable at best and downright erroneous at worst. It can thus not be trusted to
provide worthwhile information about the use of super-user privileges.

156 Paper F

Table 4. Summary of logging mechanism evaluation.

Light- Tradi-
Class (number of intrusions in class) weight tional

logging logging
C1: Misuse of security enhancing packages (3) X X
C2: Search for files with misconfigured permissions or
setuid programs (2)

X

C3: Attacks during system initialization (4)
C4: Exploiting inadvertent read/write permissions of
system files (4)

X

C5: Intercepting data (3)
C6: Trojan horses (2) X X
C7: Forged mail and news (2)
C8: Subvertingsetuidroot applications into reading or
writing system files (7)

X

C9: Buffer overrun (1) X
C10: Execution of prepacked exploit scripts (2) X X

Number of classes: 7 3
Number of intrusions (30): 21 7

In Section 5 we have compared lightweight logging to three other logging meth-
ods:system logging, application program logging, andmonitoring resource utiliza-
tion. In order to make our comparison, we group all these logging methods under
the heading oftraditional logging, since we believe that they would most often be
employed together. The results are summarised in Table 4, which contains a total of
30 different attacks in 10 classes. We see that lightweight logging detects 21 intru-
sions in 7 classes, whereas traditional logging only covers 7 intrusions in 3 classes.
The “coverage”—loosely defined as related to the number of missed intrusions—is
for lightweight logging, about a factor 2.5 better than for traditional logging, e.g.,
9 missed intrusions compared to 23. This is despite the fact that traditional log-
ging collects audit data from more sources. However, neither method succeeded in
detecting any of the attacks in the three classes C3, C5, and C7 (altogether 9).

From this comparison it becomes clear that by correcting the three shortcomings
in the originalpacctmechanism, mentioned above, our proposed policy manages
to trace an overwhelming portion of the intrusions, namely those that fall into the
following three categories:

1) The user has run commands he should not run; the log shows that someone
with a log-UID that does not correspond to a known supervisor has executed
commands with super-user privileges.

2) The user has run commands with suspect arguments and, by doing so, has man-
aged to trick a system application into doing something illicit.

An Approach to UNIX Security Logging 157

3) The user has run a suspicious-looking sequence of commands. This indicates
that the user has run some exploit script or some security enhancing package
that he should not have run.

Furthermore, as a result of this, our logging policy produces an audit trail from
which more detailed information can be extracted, namely exactlyhowan intrusion
was performed and not only that iswas indeedperformed. Thus, by also logging
more security-relevant information pertaining to who executed the command, and
the general environment in which it was executed, we have a sufficiently complete
record of events on which we could base further action, provided that the audit trail
is protected from manipulation. This can be accomplished by logging to a dedicated
network loghost, or to a write-only media, as detailed in [4, Chapter 10].

7 Conclusion

We have shown that the lightweight logging method is more effective in tracing
intrusions than comparable methods and that it traces an overwhelming majority
of intrusions encountered during our experiments. It can very easily be imple-
mented using the SunOS BSM module in newer versions of the SunOS operating
system [13]. Since it does not consume much resources in terms of processing
power and storage capacity, it can be left running on all machines in an installation.
Thus, it can be used as a “poor man’s logging”.

References

[1] James P Anderson. Computer security threat monitoring and surveillance.
Technical report, James P Anderson Co., Box 42, Fort Washington, PA 19034,
USA, April 15, 1980. In [2].

[2] Matt Bishop, editor.History of Computer Security Project CD-ROM. Num-
ber 1. Department of Computer Science, University of California at Davis,
Davis, CA 95616-8562, USA, October 1998. Available fromhttp://seclab.cs.
ucdavis.edu/projects/history.

[3] Sarah Brocklehurst, Bev Littlewood, Tomas Olovsson, and Erland Jonsson.
On measurement of operational security. InProceedings of the Ninth An-
nual Conference on Computer Assurance (COMPASS ’94), pages 257–266,
Gaithersburg, Maryland, June 27–July 1, 1994.

[4] Simson Garfinkel and Gene Spafford.Practical UNIX & Internet Security.
O’Reilly & Associates, second edition, 1996.

[5] Erland Jonsson and Tomas Olovsson. A quantitative model of the security
intrusion process based on attacker behavior.IEEE Transactions on Software
Engineering, 23(4):235–245, April 1997.

158 Paper F

[6] Jay J Kahn and Marshall D Abrams. Contingency planning: What to do
when bad things happen to good systems. InProceedings of the 18th Na-
tional Information Systems Security Conference, pages 470–479, Baltimore,
Maryland, October 10–13, 1995. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[7] Teresa F Lunt. A survey of intrusion detection techniques.Computers &
Security, 12(4):405–418, June 1993.

[8] Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. Network intru-
sion detection.IEEE Network, 8(3):26–41, May/June 1994.

[9] National Computer Security Center, Fort George G. Meade, MD 20755-6000,
USA. A Guide to Understanding Audit in Trusted Systems, June 1, 1988.
NCSC-TG-001, Version-2.

[10] Tomas Olovsson, Erland Jonsson, Sarah Brocklehurst, and Bev Littlewood.
Towards operational measures of computer security: Experimentation and
modelling. In Brian Randell et al., editors,Predictably Dependable Comput-
ing Systems, ESPRIT Basic Research Series, chapter VIII. Springer, Berlin,
1995.

[11] W Richard Stevens. Advanced Programming in the UNIX Environment.
Addison-Wesley, 1992.

[12] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043,
USA. System and Network Administration, March 27, 1990. Part No: 800-
4764-10, Revision A.

[13] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043,
USA. SunSHIELD Basic Security Module Guide, November 1995.

[14] U.S. Department of Defense.Trusted Computer System Evaluation Criteria,
December 1985. DoD 5200.28-STD.

[15] Wietse Venema. TCP WRAPPER: Network monitoring, access control and
booby traps. InProceedings of the 3rd USENIX UNIX Security Symposium,
pages 85–92, Baltimore, Maryland, September 14–16, 1992. USENIX Asso-
ciation.

159

Paper G

Detecting Computer and Network Misuse Through the

Production-Based Expert System Toolset (P-BEST)

In Proceedings of the 1999 IEEE Symposium on Security and Privacy,
pp. 146–161, Oakland, California, May 9–12, 1999.

160

This page is intentionally left blank.

161

Detecting Computer and Network Misuse Through
the Production-Based Expert System Toolset

(P-BEST)�

Ulf Lindqvist
Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden
ulfl@ce.chalmers.se

Phillip A. Porras
Computer Science Laboratory

SRI International
Menlo Park, California

porras@csl.sri.com

Abstract

This paper describes an expert system development toolset called the
Production-Based Expert System Toolset (P-BEST) and how it is em-
ployed in the development of a modern generic signature-analysis en-
gine for computer and network misuse detection. For more than a
decade, earlier versions of P-BEST have been used in intrusion detec-
tion research and in the development of some of the most well-known
intrusion detection systems, but this is the first time the principles and
language of P-BEST are described to a wide audience. We present
rule sets for detecting subversion methods against which there are few
defenses—specifically, SYN flooding and buffer overruns—and provide
performance measurements. Together, these examples and measure-
ments indicate that P-BEST-based expert systems are well suited for
real-time misuse detection in contemporary computing environments.
In addition, the simplicity of the P-BEST language and its close inte-
gration with the C programming language makes it easy to use while it
is still very powerful and flexible.

1 Introduction

Intrusion detection components analyze system and user operations in computer
and network systems in search of activity considered undesirable from a security
perspective. Data sources for intrusion detection may include audit trails produced
by an operating system, or network traffic flowing between systems, or application
logs, or data collected from system probes (e.g., file system alteration monitors).

�The work presented in this paper is currently funded by the Information Technology Office,
Defense Advanced Research Projects Agency (DARPA/ITO), under contract number F30602-96-
C-0294. U. Lindqvist participated in this work while visiting SRI International as an international
fellow and his work was partly funded by The Swedish National Board for Industrial and Technical
Development (NUTEK), under project number P10435.

162 Paper G

The collected data may be stored for batch-mode analysis or immediately analyzed
in real-time.

For the most part, the various strategies for intrusion detection are not unique
to the field, but are rather derived from applications established by other fields:
knowledge-based expert systems, pattern recognition algorithms, statistical pro-
filing techniques, neural networks, Bayesian statistics, information retrieval algo-
rithms, state-transition models, Petri-net techniques, and so forth. Among the more
widely used strategies proposed early within the intrusion detection community are
signature-based analyses.

Intuitively, we describe a signature-based intrusion-detection component as an
algorithm with which we specify the characteristics of malicious behavior and then
monitor an event stream for activity that maps to the target behavior. Various
signature-based systems have been developed, ranging from simple (but efficient)
pattern-matching systems to more sophisticated algorithms that employ more gen-
eral directed reasoning systems such as rule-based expert systems. In this paper, we
describe in detail the principles and language of one forward-chaining rule-based
expert system construction toolset called P-BEST (Production-Based Expert Sys-
tem Toolset), which has been continually applied to intrusion detection applications
for more than a decade, but never before widely presented in this level of detail.

By using a general expert system, we can describe the behavior of our signature-
based intrusion-detection component within an established theoretical framework.
This choice also facilitates the evolution of the component, because new rules can
be added without changing existing rules and without creating any undesired de-
pendency. Traditional reasons for not choosing an expert system are related to low
performance, difficult integration with other program components, and language
complexity. However, in this paper we show that P-BEST is sufficiently fast for
real-time detection of currently widely used attack methods—SYN flooding and
buffer overruns—against which systems usually have no defense mechanisms. We
also show that P-BEST provides exceptional interoperability with native operating
system libraries, and is easily integrated into a larger software framework for dis-
tributed anomaly and misuse detection. We also argue that while the production
rule language is powerful, it remains easy to use for beginners.

2 Monitoring misuse through expert systems

Expert systems provide strategies and mechanisms for processing facts regarding
the state of a given environment, and deriving logical inferences from these facts.
With respect to intrusion detection, a fact maps to an event that is recorded and
evaluated by the expert system. This process of fact evaluation leading to the asser-
tion of a new derived fact or conclusion is referred to asmodus ponens, which states
that given(p) q) andp we deduceq. Systems that iteratively apply modus po-
nens under a bottom-up reasoning strategy (from evidence evaluation to conclusion)
are referred to asforward-chainingsystems. Forward-chaining expert systems are
well-suited for reasoning about activity within an event stream. A forward-chaining
rule-based system is data-driven: each fact asserted may satisfy the conditions under
which new facts or conclusions are derived. Alternatively,backward-chainingsys-

Detecting Computer and Network Misuse Through. . . P-BEST 163

tems employ the reverse strategy; starting from a proposed hypothesis they proceed
to collect supportive evidence. Backward-chaining systems are typically applied
to problems of diagnosis, whereas forward-chaining strategies dominate systems
involving prognosis, monitoring, and control applications.

Using a forward-chaining rule-based system, one may establish a chain of rules,
or rule set, with which a series of asserted facts may lead the system to deduce that
a targeted multistep scenario has occurred. Within an intrusion detection system,
event records are asserted as facts and evaluated against penetration rule sets. As
individual rules are evaluated against facts and satisfied, the individual event records
provide a trail of reasoning that allows the user to analyze the evidence of malicious
activity in isolation from the full event stream. In this section, we will discuss the
basic elements of forward-chaining rule-based systems, and provide an overview of
the P-BEST expert system and its language.

2.1 Components of forward-chaining systems

The underlying strategy of a forward-chaining reasoning system involves the
atomic evaluation of each fact presented to the system against conditional expres-
sions that, when satisfied by the arguments of a fact, establish new derived facts or
conclusions. In this context, afact is a statement that is asserted into the system
and whose validity is accepted (for example, “smoke is present”). Facts are often
implemented as attributes and values that represent the state of the environment to
which the expert system is applied. Arule is an inference formula of the form
φ1,... ,φn infer ψ. Inference formulae can be alternatively expressed asproduc-
tion rules, such asIF ... THEN Production rules are the basic elements
through which an expert system is programmed to interpret and discover meaning
from environmental signals that it receives, as in

IF smoke is presentTHENfire is near.

A production rule consists of two parts, theantecedent(or conditional part, left-
hand side) and theconsequent(or right-hand side) as shown in Figure 1. When
the conditions(predicate expressions) in the antecedent are satisfied, the rule is
activated. The logical component through which an expert system evaluates a fact
against the production rules is referred to as theinference engine. As an antecedent
is found to be satisfied by the attributes of a fact, the consequent of the rule is
asserted to hold, and the rule is said to havefired. Expert systems might additionally
allow the inference engine to initiate action within the consequent, for example:

IF fire is nearTHENinitiate sprinkler.

Abstractly, the assertion of action, such as the initiation of a response, based on
a fact derived from an inference engine is placed within the purview of adecision
engine, though in practice inference and response may be merged.

The collection of facts available to the system at any point in time is called the
factbase(or working memory) of the system. The collection of rules is called
the knowledge base(or production memory). Although separation of data (facts)

164 Paper G

IF
condition1

condition2
...

9>=
>;

antecedent

THEN
derived f act1
derived f act2

...

9>=
>;

consequent

Figure 1. Production rule structure.

from knowledge (rules) is an important abstraction within rule-based expert sys-
tems, some texts use the terms more loosely and consider the factbase to be part of
the knowledge base. Another important abstraction is the separation of knowledge
from the inference engine. In practice, an inference engine, also known as an expert
systemshell, provides several advantages over a one-of-a-kind system written in a
procedural language. In particular, a knowledge-independent shell can be used to
develop expert systems for many different knowledge domains. The knowledge in
the expert system can also be incrementally extended by adding new rules, as op-
posed to implementing large portions of the decision process all at once. Next, we
present the principles and language of P-BEST, a construction toolset for building
customized inference engines, and discuss its applicability to intrusion detection.

2.2 An overview of P-BEST

The Production-Based Expert System Toolset (P-BEST) was originally written
by Alan Whitehurst, and employed in the Multics Intrusion Detection and Alerting
System (MIDAS) [18], which performed misuse detection on the National Com-
puter Security Center’s Internet-connected mainframe, Dockmaster. P-BEST was
later enhanced at SRI by Whitehurst, and later by Fred Gilham, and was employed
in an early version of the Intrusion Detection Expert Systems (IDES) [14], and later
Next-Generation IDES (NIDES) [1]. See Section 3 for details on the application of
P-BEST on these systems.

The P-BEST toolset consists of a rule translator, a library of runtime routines,
and a set of garbage collection routines. When using P-BEST, rules and facts are
written in the P-BEST production rule specification language. The rule translator,
pbcc, is then used to translate the specification into a C language expert system
program. This expert system can then be compiled into either of two forms: a stand-
alone self-contained executable program or a set of library routines that implement
the core P-BEST inference engine, and which can be linked to a larger software
framework. P-BEST has several features that make it well-suited for the type of
application described in this paper:

� The P-BEST language is small and relatively intuitive to use and extend.

� It is easily applied to a variety of problem domains. P-BEST provides a
general-purpose forward-chaining inference engine that can be targeted to

Detecting Computer and Network Misuse Through. . . P-BEST 165

a specific application domain. P-BEST does not inherently depend on the
structure of the input data stream or the inference objectives of the application
that employs it.

� By using translation instead of interpretation of rules, P-BEST can be used
to build expert systems for performance-demanding applications. A pre-
compiled expert system, rather than an expert system interpreter, provides
a significant advantage in performing real-time event analysis.

� Pre-compilation also allows P-BEST components to be integrated well into
larger program frameworks, and is easily called from, and can call out to,
other C libraries. Arbitrary C functions can be called from the antecedent or
consequent of any P-BEST rule. Thus, it is possible to write powerful rules
without adding unnecessary complexity to the P-BEST language.

2.3 The P-BEST language

P-BEST provides a production rule language from which users may specify the
inference formula for reasoning and acting upon facts asserted into its factbase from
external sources or derived from the satisfaction of other production rules. This
section provides a brief overview of the principle elements of this language, with
common examples of its usage. The language overview provides the reader with a
primer for understanding several examples of intrusion detection rules later in this
paper.

In P-BEST, the structure of a fact is specified by the user through a template
definition referred to as a pattern type orptype. For example, to define a ptype
namedeventthat consists of the four fieldseventtype(an integer),return code(an
integer),username(a string), andhostname(a string), we define the fact template
as in Figure 2. Facts from such a ptype definition could be constructed through the
monitoring of audit records and asserted into the factbase for evaluation against the
available production rules.

ptype[event event_type:int,
return_code:int,
username:string,
hostname:string]

Figure 2. An example of a ptype declaration.

Fact evaluation is performed by the P-BEST inference engine, where the at-
tributes of the fact are mapped against the predicate expression(s) of each rule
antecedent. For example, we may want to determine whether the asserted fact rep-
resents an unsuccessful login attempt, which we shall refer to ase. To express this
criterion using a mathematical notation style, we can form the statement in Equa-
tion 1.

�
9e
��

(e2 S)^event(e)^ (eevent type= login)^ (ereturn code= bad password)
�

(1)

166 Paper G

Here,S represents the set of all facts known to the P-BEST factbase, and within
which a production rule antecedent postulates the existence of a facte that satisfies
specific properties. In the P-BEST language, the statement in Equation 1 placed in
the antecedent of a rule would be written as in Figure 3.

[+e:event|event_type == login,
return_code == BAD_PASSWORD]

Figure 3. An example of fact matching.

The terme:event allows one to assign analias e to one fact (of possibly sev-
eral) that satisfies the antecedent for the duration of the rule. The plus (+) sign after
the opening bracket represents an existential quantifier that allows the rule to check
for any fact that satisfies the conditions of the antecedent. Alternatively, a minus
(-) sign searches for cases where no fact in the factbase satisfies the conditions of
the antecedent. For example,

[-event|username == "GoodGuy"]

evaluates to true if there is no event in the factbase that has been asserted on behalf
of “GoodGuy.”

The plus and minus tests have corresponding assert and delete actions that can
appear in the consequent of a rule. For example, to assert a new fact of ptype
bad_login and give its fields initial values, we can write

[+bad_login|username = e.username, hostname = e.hostname]

To be deleted from the factbase, a fact must be matched and given an alias in
the antecedent before it can be deleted in the consequent. This is illustrated in the
example of a complete rule namedBad Login in Figure 4.

1 rule[Bad_Login(#10;*):
2 [+e:event| event_type == login,
3 return_code == BAD_PASSWORD]
4 ==>
5 [+bad_login| username = e.username,
6 hostname = e.hostname]
7 [-|e]
8 [!|printf("Bad login for user %s from \
9 host %s\n", e.username, e.hostname)]
10]

Figure 4. An example of a rule declaration.

The Bad Login rule in Figure 4 also demonstrates how the evaluation of an
asserted fact can be used to derive subsequent facts that may themselves drive new
inferences. That is, in the above rule, should a login event be encountered with a
return code ofBAD_PASSWORD, the rule creates a new fact of ptypebad login ,
which saves the username and hostname of the event; the rule also destroys the
event facte from the factbase. Using a mathematical notation, we can represent

Detecting Computer and Network Misuse Through. . . P-BEST 167

this state transition in our factbase fromS to a desired new stateS0 as in Equation 2
(this excludes lines 8 and 9 in Figure 4).
�
9e
��

(e2 S)^event(e)^ (eevent type= login)^ (ereturn code= bad password)
�

`
�

S0 = S�feg
S
fbad login(b) j (busername= eusername)^ (bhostname= ehostname)g

�

(2)
Within parentheses after the rule name (line 1), there is a semicolon-separated

list of options. The option#10 means that this rule is given a ranking (priority)
of 10. Priorities allow one to specify well-defined orders in the sequences for rule
evaluation, and are primarily used for rules required to be evaluated first for ini-
tialization purposes, or that must be evaluated last to perform garbage collection.
The star option (*) indicates that the rule is repeatable, that is, the rule is allowed
to fire repeatedly even if no other rule is fired in between. Thus, a key function of
the consequent is to alter the state of the factbase such that the antecedent is not
satisfied indefinitely (e.g., the consequent may mark or remove a fact). The arrow
delimiter (==>) separates the antecedent and the consequent (line 4).

The[!|...] clause (line 8) within the consequent illustrates how the P-BEST
inference engine may call out to native C functions should action be warranted when
the antecedent is evaluated to true. Both inference and action can be taken directly
within the P-BEST inference engine. P-BEST recognizes most of the standard li-
brary C functions, which may be invoked directly via the[!|...] clause, and
which may refer to ptype attributes directly. User-defined C functions and auxiliary
variables may also be invoked and referenced, respectively. To do this, we must
declare our intentions to reference C variables and functions using the P-BEST
external type declaration mechanismxtype. For example, the following external
declarations will allow P-BEST to recognize a user-defined C function calledna-
tive probe()returning an integer and an integer variableendof streamas follows:

xtype [native_probe: intfunc]
xtype [end_of_stream: int]

We can then employ our native C routine and variable directly in a P-BEST pro-
duction rule, as illustrated in Figure 5. The antecedent[?|...] clause (line 3)
is a query clause used to evaluate conditional requirements. This rule will check to
see whether theend of stream variable has been set to1, and if not, it will set
the variable to the return code of the functionnative probe() (line 5), which
is invoked in the consequent. Thisnativeprobe()could, for example, provide an
interface to the host operating system that allows the expert system to retrieve appli-
cation records, which it may then assert as facts in the factbase. The rule also gives
an example (line 6) of how a field in an existing fact can be modified; in this case,
the fieldrec cnt of the factcounter , aliased in the antecedent, is incremented
by 1.

To further improve the performance of the expert system, rules can be disabled
and enabled dynamically through actions in the consequents of rules. A rule can
even disable itself, which means that it can fire once, at most, unless enabled again
by another rule. To disable a rule, we can put the following action in a consequent:

[-#rulename]

168 Paper G

1 rule[get_native_record(-99;*):
2 [+c:counter]
3 [?|’end_of_stream != 1]
4 ==>
5 [!|’end_of_stream = native_probe()]
6 [/c|rec_cnt += 1]
7]

Figure 5. Example usage of external C types.

To enable a rule, we can change the minus sign in the above statement to a plus
sign. In addition, a rule can be declared as disabled from start by adding a single
minus sign to the list of options after the rule name, for example:

rule[rulename(#10;*;-):

Using these features, we can build preconditional requirements that can enable
or disable whole portions of the knowledge base, depending on the current state of
the environment being monitored. For example, rules pertaining to the analysis of
a serviceA can be dynamically added or removed from the knowledge base by the
expert system itself, depending on whether serviceA is currently enabled or dis-
abled within the analysis target. Another example is when the analysis is extended
with previously disabled rules due to an increased level of suspicion reported by the
basic rule sets.

Another powerful feature of P-BEST is the ability of rules to uniquely mark and
unmark facts, and to test for these marks. This can be used when we want to give
several groups of mutually exclusive rules the chance to examine a fact before it is
deleted from the factbase. Each rule will evaluate the fact, and if the antecedent is
satisfied, the consequent of the rule will mark the fact. This will allow the rule to
avoid re-firing, while not having to remove the fact completely from the factbase.
When all such rules have evaluated (and if necessary marked) the fact, the fact can
then be removed by a lower-priority fact-removal rule that is run last. For example,
to match an event that is not marked withCHECKED, we can put the following test
in the antecedent of our rule:

[+e:eventˆCHECKED]

To mark a matched event facte with CHECKED, we can add the following action
to the consequent:

[$|e:CHECKED]

Alternatively, to unmark a fact we simply use a caret (ˆ) instead of the dollar
sign ($):

[ˆ|e:CHECKED]

Finally, we can use the dollar sign to check for a marked fact, as follows:

[+e:event$CHECKED]

Detecting Computer and Network Misuse Through. . . P-BEST 169

2.4 P-BEST language simplicity and usability tested in student
experiment

Although the P-BEST language has proven itself suitable for intrusion detection
systems, it is in fact also a general language for building rule-based expert systems
in many different applications. The close integration with C makes it unnecessary to
include more than the basic operations in the P-BEST language itself, because any
needed operation can be designed as a C function and called from the antecedent or
consequent of a P-BEST rule. Thus, the P-BEST language can be kept small and
simple, resulting in a very low learning threshold for beginners.

In addition to its use in intrusion detection system development, P-BEST has
recently for the first time been used for laboratory exercises in a university course in
applied computer security at Chalmers. In addition to the educational goals of these
exercises, we wanted to learn what amount of instruction is required for beginners
when applying P-BEST to intrusion detection analysis and thereby see whether the
experiment would support or contradict our hypothesis that the P-BEST is easy to
use for beginners.

The assignment was to build a system that could be used to automatically de-
tect attacks against a file transfer (FTP) server. For evaluation of their resulting
system, the students were given a very large data file (3 megabytes of text) contain-
ing recorded network data representing actual FTP transactions. A small number
of real and synthetic intrusions were mixed with a large number of normal trans-
actions, and the students were to use their system to find those intrusions. It was
supposed to be a pedagogic effect that the file was too large to be easily examined
by hand, because this is the very reason for having automatic intrusion detection
tools. It was also required by the students to include in their lab reports a discussion
of their experiences of using the tool.

There were 87 students who participated in the assignment, and with a few ex-
ceptions they worked in pairs, making a total of 46 groups. The estimated max-
imum working time was two lab sessions of four hours each, plus another eight
hours of homework to prepare the lab sessions and to complete the report. Out of
the 46 groups, 25 had built a system that gave the completely correct answer. An
additional 8 groups would most likely have got the correct result if they had not
all misinterpreted a vaguely formulated part of the instructions. Only a handful of
groups failed to hand in a report before the given deadline. Most students reported
that they found the exercise interesting and some even took the time to give detailed
suggestions of improvements to the tool. As we had expected, being used to writing
programs in a procedural style, they had some initial difficulties in declarative pro-
gramming. In summary, we claim that the student experiment shows that P-BEST
has a low learning threshold for beginners and is thereby suitable both for building
user-customizable intrusion detection systems as well as for student exercises in
computer security courses.

170 Paper G

3 Integration of P-BEST into IDS components

For more than 10 years, P-BEST has been successfully integrated into several
intrusion detection systems (IDSs) that represent the state of the art for their time.
The application of P-BEST to intrusion detection began in the mainframe world of
Multics and lands in present time with the highly distributed, scalable, and network-
oriented EMERALD (Event Monitoring Enabling Responses to Anomalous Live
Disturbances) environment. It is not only the IDSs that have changed over time; P-
BEST itself has been continuously improved as the requirements and its operational
environment have changed. However, performance and language simplicity are
issues that have had top priority from the beginning, and are no less important
today.

3.1 P-BEST in MIDAS

P-BEST was developed at SRI International and first deployed as the core of
MIDAS, which provided real-time intrusion and misuse detection for the National
Computer Security Center’s networked mainframe, Dockmaster, a Honeywell DPS-
8/70 running Multics [18]. Audit data preprocessing and command monitoring was
performed on the Dockmaster, and the data was sent to a separate Symbolics Lisp
machine where the expert system and the user interface were running.

MIDAS used both static and dynamic knowledge for detecting intrusive user be-
havior. The static knowledge was represented in so-called immediate attack heuris-
tics written as P-BEST rules that would trigger on events that were considered
anomalous regardless of previous system activity. In terms of dynamic knowl-
edge, MIDAS recorded user and system statistics in a database that would repre-
sent normal behavior. It is interesting to note that it was in fact another set of
P-BEST rules—the user anomaly heuristics and the system state heuristics—that
used threshold values derived from the statistics database to distinguish anomalous
user and system behavior from normal activity. Thus, the P-BEST inference engine
was the sole analysis component in MIDAS.

3.2 P-BEST in IDES and NIDES

In 1983, SRI International began research on statistical techniques for audit-trail
reduction and analysis [6]. This research led to the development of a prototype
IDES, capable of providing real-time detection of security violations on single-
target host systems. Originally, IDES only used statistical anomaly detection [5,
12], but later a component for misuse detection based on static knowledge was
added, using P-BEST [14]. The two components were fed the same audit records,
but performed their inferences and reporting independently.

Next, SRI began a comprehensive effort to enhance, optimize, and re-engineer
the earlier IDES prototype into a production-quality intrusion-detection system with
the name Next-Generation Intrusion Detection Expert System (NIDES). Just like
its predecessor, NIDES has both a statistical anomaly detection component and a
rule-based misuse detection component [1]. Again, P-BEST was the expert system
shell of choice for the rule-based component, but P-BEST was first extensively

Detecting Computer and Network Misuse Through. . . P-BEST 171

revised. Among other things, the revision gave P-BEST a new syntax and a very
tight coupling to the C programming language. While the early version of P-BEST
used in MIDAS and IDES compiled rules into Lisp object code, the new version
produced C source code. NIDES collects host audit trail data from different host
systems and converts it to the NIDES audit record format. The current version of
NIDES has a default rulebase of 39 rule sets (69 total production rules) but also
allows the user to write his or her own rules (that, for example, are specific to the
user’s environment or policy) and has a mechanism for dynamically adding new
rules at runtime.

3.3 P-BEST in the EMERALD eXpert

The EMERALD environment is a distributed scalable tool suite for tracking
malicious activity through and across large networks [16]. EMERALD employs
a building-block architectural strategy using independent distributed surveillance
monitorsthat can analyze and respond to malicious activity on local targets, and
can interoperate to form an analysis hierarchy. The generic EMERALD monitor
architecture is designed to enable the flexible introduction and deletion of analysis
engines from the monitor boundary as necessary. In its dual-analysis configuration,
an EMERALD monitor instantiation combines signature analysis with statistical
profiling to provide complementary forms of analysis over the operation of network
services and infrastructure. In general, a monitor may include additional analysis
engines that can implement other forms of event analysis, or a monitor may con-
sist of only a single resolver implementing a response policy based on intrusion
summaries produced by other EMERALD monitors. Monitors also incorporate a
versatile application programmers’ interface (API) that enhances their ability to in-
teroperate with the analysis target, and with other third-party intrusion detection
tools.

Underlying the deployment of an EMERALD monitor is the selection of a target-
specific event stream. The event stream may be derived from a variety of sources,
including audit data, network datagrams, SNMP traffic, application logs, and anal-
ysis results from other intrusion detection instrumentation. The event stream is
parsed, filtered, and formatted by the target-specific event-collection methods pro-
vided by the monitor’s pluggable configuration library, referred to as theresource
object. Event records are then forwarded to the monitor’s analysis engine(s) for
processing.

The EMERALD eXpert (pronounced E-expert) is a generic signature-analysis
engine based on the expert system shell P-BEST. The eXpert resource object has
two parts, one of which consists of the configuration files for the EMERALD API
that define the transports used for message passing (e.g., files or network connec-
tions), the message templates, and so forth, for the particular analysis target. The
other part of the resource object is a P-BEST source file containing the fact type
(ptype) declarations and rules. In the ptype declarations, the user must specify to
what message field (if any) the ptype field corresponds.

Under EMERALD’s eXpert architecture, special-purpose rule sets are encapsu-
lated within resource objects that are then instantiated with an EMERALD monitor,

172 Paper G

and which can then be distributed to an appropriate observation point in the com-
puting environment. This enables a spectrum of configurations from light weight
distributed eXpert signature engines to heavy-duty centralized host-layer eXpert
engines, such as those constructed for use in NIDES and MIDAS. In a given envi-
ronment, P-BEST-based monitors may be independently distributed to analyze the
activity of multiple network services (e.g., FTP, SMTP, HTTP) or network elements
(e.g., a router or firewall). As each EMERALD eXpert is deployed to its target, it
is instantiated with an appropriate resource object (e.g., an FTP resource object for
FTP monitoring), while the eXpert code base remains independent of the analysis
target.

EMERALD also introduces a target-independent code generation utility that al-
lows one to automatically produce the library interfaces necessary to integrate a
P-BEST expert system into the EMERALD monitor infrastructure. This utility ef-
fectively relieves the creator of a resource object from dealing with the internal op-
eration of the eXpert code-base, even when redirecting the eXpert to a completely
new event stream. This automated generation utility both enhances the rapid inte-
gration of eXpert to new analysis targets, and simplifies the process of augmenting
the rule base with new heuristics. The basic operation of an eXpert analysis engine
is as follows:

1. On startup, eXpert is initialized and its interface routine waits for messages on
one or several transports, as specified in the configuration files of the resource
object.

2. When an event record is received in the form of an EMERALD message, the
message is matched against an interface data structure associated with the
ptype definition in the eXpert’s P-BEST fact base.

3. The message content is transferred to the interface data structure, which in
turn is used to assert a fact into the expert system factbase.

4. The eXpert interface component hands over control to the expert system in-
ference engine.

5. If a rule is fired, in which the consequent specifies that an alert shall be gen-
erated, the alert is propagated back to the analysis engine’s interface com-
ponent, which in turn composes and sends the alert on to the EMERALD
resolver. The resolver operates as the monitor’s decision engine, and can in-
voke local responses based on the alert or propagate the alert on to subscribers
of the monitor’s results (including administrative display interfaces).

6. When there are no more rules that can fire, the expert system returns control
to the interface routine that again starts waiting for incoming messages.

In the following section, we discuss examples of how eXpert can be used to
analyze very different types of event streams.

Detecting Computer and Network Misuse Through. . . P-BEST 173

4 eXpert rule development examples

Throughout its usage, P-BEST inference engines have implemented a variety
of intrusion detection rule sets for detecting and responding to numerous forms
of malicious activity. Next, we describe the application of P-BEST in reasoning
about attacks represented in two data streams: Solaris 2.5.+ audit trails, and TCP/IP
packet streams. The examples illustrate the declarative style of the language, and
how event streams can be represented and analyzed.

4.1 Examples of BSM audit trail analysis

The first example of an event stream to be analyzed is the audit trail produced by
the Solaris Basic Security Module (BSM) from Sun Microsystems [19]. The audit
records are normally saved in a file, but we have developed a BSM collection unit
that receives audit records from the OS kernel in real time, formats and sends each
record as an EMERALD message to the target monitor for analysis.

For all the rules that analyze BSM data, there is a ptype calledbsm_event
into which the relevant fields from incoming messages are mapped. There is also a
rule that has highest priority and copies the time of every incomingbsm_event
fact into a newtime fact, and finally a rule with lowest priority that removes the
bsm_event fact after all the other rules have had a chance to look at it. For the
sake of brevity, these ptype definitions and administrative rules are omitted from
the examples.

4.1.1 Failed authentication attempts As an example of the declarative pro-
gramming paradigm that P-BEST supports, we present a set of rules that are de-
signed to detect a number of failed authentication attempts within a certain time
window. The example illustrates how facts are created in rule consequents to keep
state information between incoming events, and how the rule designer can make
sure that facts are removed from the factbase when they are no longer needed.

Let us assume that we want to raise an alert ifx user authentication failures occur
within y seconds for a monitored target. A user authentication failure is defined as
the case when either an invalid username or an invalid password is given to one of
the programslogin, telnet, rlogin, rshd, or su. To accomplish this, we may employ
the rule set presented in Table 1, which is described as follows:
� A1, A2 : For every incoming event that is a user authentication failure, save

the event information in abad login fact and increment the counter for current
bad logins (current bl cntr) by 1. The reason for having two rules is to sepa-
rate the case where the username is invalid (A1) from the case where the username
is valid but the password is invalid (A2). In the latter case, we want to include
the username in the information we save and therefore need a rule consequent that
is different from the former case where there is no username reported in the audit
record.
� A3: When thecurrent bl cntr counter has the valuex , send an alert and

create amax bl reached fact to indicate that the authentication failure threshold
was reached.

174 Paper G

� A4: If there exists amax bl reached fact, then loop through all saved
bad login facts. For everybad login fact, print the information contained
in the fact to a log file and delete the fact from the factbase.
� A5: If there exists amax bl reached fact but nobad login facts (i.e.,

they were all printed and deleted by ruleA4), then delete themax bl reached
fact from the factbase.
� A6: If there exists abad login fact, but nomax bl reached fact, and

the difference between thebad login timestamp and the current event timestamp
is more thany seconds, then delete thebad login fact from the factbase and
decrement thecurrent bl cntr by 1.

4.1.2 Buffer overrun attacks Buffer overrun attacks are a common way for
attackers to gain super-user privileges after first breaking into an unprivileged user
account. Typically, a privileged (setuidto root) program is called with an extremely
long and carefully crafted argument that overflows memory buffers and alters the
program execution [3]. In principle, it would require a fair amount of programming
skills and patience to exploit a buffer overrun vulnerability, but ready-to-use exploit
programs that can be downloaded from Internet sites give immediate super-user
access when executed. Here, we present an example of a simple heuristic P-BEST
rule that detects the behavior of most of the exploit programs. For example, it has
been tested against buffer overrun exploits that are based on subverting Solaris 2.5
eject, fdformat, ffbconfigandufsrestore.1

The heuristic rule is based on the following observations of the audit trail char-
acteristics of common buffer overrun exploits:

� We can detect the attack by analyzing a singleexecsystem call audit record,
as suggested in [2].

� To determine that theexeccall concerns asetuidprogram (otherwise, it would
not be a target for attack), we simply match only the audit records for which
theeffective user idandreal user idfields are different.

� The argument passed to theexeccall is relatively long (because it must over-
flow a buffer and contain executable code), making the length of the entire
audit record significantly exceed the length of almost all normalsetuid exec
calls.

� By necessity of the applicable hardware (Sun and Intel), theexecargument
contains binary opcodes in the range of ascii control characters. While such
a property may not necessarily hold on all possible hardware platforms, this
heuristic works exceptionally well for our purposes.

The P-BEST rule that uses the observations above to detect buffer overrun attacks
is shown in Figure 6. This simple heuristic rule is not a fool-proof way to detect all
possible buffer overrun attacks, but it is remarkably efficient in terms of coverage

1There are numerous additional buffer overrun attacks that employ the identical attack strategy
as the four attacks discussed here. All should be subject to detection by this rule.

Detecting Computer and Network Misuse Through. . . P-BEST 175

Table 1. Rule set for detection of failed authentication attempts.

1 rule[A1(*):
2 [+e:bsm_eventˆA12]
3 [?|e.header_event_type == ’AUE_login ||
4 e.header_event_type == ’AUE_telnet ||
5 e.header_event_type == ’AUE_rlogin ||
6 e.header_event_type == ’AUE_rshd ||
7 e.header_event_type == ’AUE_su]
8 [?|e.return_return_value == ’INVALID_USER]
9 [+cc: current_bl_cntr]

10 [-max_bl_reached]
11 ==>
12 [+bad_login |
13 timestamp = e.header_time,
14 audit_seq_no = e.msequenceNumber,
15 username = "invalid username",
16 command = e.header_command,
17 etype = e.header_event_type,
18 hostname = e.subject_hostname,
19 portID = e.subject_port_id,
20 processID = e.subject_pid,
21 textList = e.textList]
22 [/cc| value += 1]
23 [$|e:A12]
24]

1 rule[A2(*):
2 [+e:bsm_eventˆA12]
3 [?|e.header_event_type == ’AUE_login ||
4 e.header_event_type == ’AUE_telnet ||
5 e.header_event_type == ’AUE_rlogin ||
6 e.header_event_type == ’AUE_rshd ||
7 e.header_event_type == ’AUE_su]
8 [?|e.return_return_value == ’INVALID_PWD]
9 [+cc: current_bl_cntr]

10 [-max_bl_reached]
11 ==>
12 [+bad_login |
13 timestamp = e.header_time,
14 audit_seq_no = e.msequenceNumber,
15 username = e.subject_runame,
16 command = e.header_command,
17 etype = e.header_event_type,
18 hostname = e.subject_hostname,
19 portID = e.subject_port_id,
20 processID = e.subject_pid,
21 textList = e.textList]
22 [/cc| value += 1]
23 [$|e:A12]
24]

continues on next page

176 Paper G

continued from previous page

25 rule[A3(*):
26 [-max_bl_reached]
27 [+cc:current_bl_cntr | value == ’x]
28 [+ts:timeˆA3]
29 ==>
30 [!|printf("ALERT: Max Bad Logins \n")]
31 [+max_bl_reached | value = 1]
32 [$|ts:A3]
33 [!|EXpertReport(’eXpertMessagePointerString,
34 1042, "description", ’pTypeString,
35 "MAX LOGIN ALERT",
36 "ruleName", ’pTypeString, "A3", "")]
37]

25 rule[A4(*):
26 [+max_bl_reached]
27 [+bc:bad_login]
28 [+cc:current_bl_cntr]
29 ==>
30 [!|printf("(%s): %s from %s on %s port %d, \
31 PID = %d, time = %d, seq no = %d \n",
32 bc.textlist, bc.command, bc.username,
33 bc.hostname, bc.portID, bc.processID,
34 bc.timestamp, bc.audit_seq_no)]
35 [/cc|value -= 1]
36 [-|bc]
37]

38 rule[A5(*):
39 [+mx:max_bl_reached]
40 [-bad_login]
41 ==>
42 [-|mx]
43]

38 rule[A6(*):
39 [+ts:timeˆA6]
40 [-max_bl_reached]
41 [+bc:bad_login]
42 [+cc:current_bl_cntr]
43 [?|(ts.sec - bc.timestamp) > ’y]
44 ==>
45 [/cc|value -=1]
46 [-|bc]
47 [$|ts:A6]
48]

Detecting Computer and Network Misuse Through. . . P-BEST 177

and correctness; it detects most common attacks and has not produced any false
positives when tested on a collection of over 35 million audit records in which the
location of buffer overflow attacks was knowna priori.

1 rule[BSM_LONG_SUID_EXEC(*):
2 [+e:bsm_event]
3 [?|e.header_event_type == ’AUE_EXEC ||
4 e.header_event_type == ’AUE_EXECVE]
5 [?|e.subject_euid != e.subject_ruid]
6 [?|contains (e.exec_args, "ˆ\\") == 1]
7 [?|e.header_size > ’NORMAL_LENGTH]
8 ==>
9 [!|printf("ALERT: Buffer overrun attack \
10 on command %s\n", e.header_command)]
11]

Figure 6. A heuristic rule for detecting common buffer overrun attacks.

To determine a suitable value for theNORMAL_LENGTHthreshold parameter, we
have analyzed in the order of 4 million audit records representing normal system
usage (of which over 29 thousand wereexecevents) in addition to audit records rep-
resenting common buffer overrun attacks. This analysis gave the following results:

� All the attacks we tested produce anexecaudit record with a record length of
at least 500 bytes.

� Only 0.15 per cent of the normalexecaudit records were longer than 400
bytes.

Consequently, by setting the threshold to 400 and adding the conditions forsetuid
and control characters, false positives are effectively eliminated while exploits of
the described type are detected.

4.2 Network-based traffic analysis

In addition to its extensive application to the area of audit trail analysis, P-BEST
is now being applied to the analysis of network traffic streams. This work in-
cludes the analysis of TCP/IP packet streams for low-level TCP and IP layer at-
tacks (i.e., attacks that target vulnerabilities at the transport layer and below) as
well as higher-layer attacks involving vulnerabilities of application-layer (or net-
work service-layer) protocols, such as FTP, SMTP, and HTTP.

4.2.1 Attack description: SYN flood attack The SYN flood attack is a denial-
of-service attack that prevents the target machine from accepting new connections
to a given IP port [17]. Briefly, the attack exploits a resource exhaustion vulnerabil-
ity in the way operating systems handle TCP/IP connections. A TCP/IP connection
is established through a three-step handshake, in which the client sends a SYN
packet, followed by the server responding with a SYN-ACK packet, which is then
acknowledged by the client with an ACK packet. Of course, by no means is there an
expectation that all TCP/IP handshakes run to completion. When the SYN packet is

178 Paper G

received, the server allocates an entry in a finite queue of pending connections. We
refer to this stage as ahalf-openconnection. The queue entry will either be released
when the final ACK is received by the server, or the server will proceed to timeout
the incomplete handshake and release the entry.

An attacker can exploit the TCP/IP connection logic by initiating a series of SYN
packet connection requests to a server, but not completing the handshakes with an
ACK packet. Internally, the server’s queue of pending connections for the port will
eventually be exhausted and will not be released until the timeout periods for the
unfinished connections expire. As a result, subsequent connection requests to the
server that occur while the connection queue is full will be dropped, effectively
denying access to the server by other legitimate clients.

4.2.2 Event stream format The requirements for detecting the occurrence of
a SYN flooding attack against a host are rather minimal. From the perspective
of TCP/IP traffic monitoring, the analysis engine need only monitor SYN-ACK and
ACK packet exchanges to identify incomplete TCP/IP handshakes. In this example,
the traffic monitor is placed on a segment of the network capable of observing traffic
to and from the analysis target (the host being monitored). All SYN-ACK packets
sent from—and ACK packets sent to—the analysis target are recorded, and the
following event record is derived:

Connection Event Format:

<Event Type> <Timestamp> <Seq ID> <Client ID>

The EventType field is simply a binary flag, which indicates whether the packet
has its SYN and ACK flags enabled (which we can denote with 0), or only the
ACK flag enabled (denoted by 1). The timestamp is a numeric encoding of the
time at which the packet is observed from the monitor. The sequence ID represents
the TCP Sequence ID field, which is used to associate client requests with server
replies. Last, the ClientID can be used to identify the client who initiated the
connection. The ClientID is not critical for detection, and in all likelihood will
not be reliable (i.e., attackers will manufacture IP packets with bogus IP source
addresses). Nevertheless, we may choose to capture such information as the IP
address and port number of the client packet for reporting purposes only.

4.2.3 P-BEST fact type definitions Table 2 illustrates the ptype definitions of
three example facts that are specified for use in performing the TCP SYN flooding
analysis. The first ptype,conn event , is used to assert the connection event
described in the connection event record format discussed above. As connection
events are captured by the network monitor, their fields can be mapped (one to
one) to the fields of theconn event ptype, and theconn event ptype is then
asserted into the factbase of the SYN flood eXpert. Theopen conn ptype is used
to construct facts regarding half-open connections that are pending completion of
the TCP/IP handshake. Note, although we use the shorthand nameopen conn ,
the fact actually represents the assertion that a TCPhalf-openedconnection has
been observed. The fields of theopen conn contain the TCP sequence ID of the
pending connection, aclient ID string (as discussed above), the timestamp as

Detecting Computer and Network Misuse Through. . . P-BEST 179

Table 2. Facts for TCP SYN flood detection.

1 ptype[conn_event ptype[open_conn ptype[bad_conn
2 e_type:integer, expired:integer, count:integer]
3 sec:integer, sec:integer,
4 seq_id:integer, seq_id:integer,
5 client_ID:string] client_ID:string]

copied from the connection event, and an expired flag used for garbage collection by
the production rules. Last, the bad connection fact,bad conn , maintains a running
count of the number of bad connection requests detected through the observations
of SYN-ACK and ACK packages between the analysis target and external clients.

4.2.4 Example P-BEST rules for SYN flood detection The following illus-
trates one inference strategy that P-BEST can employ for deducing a TCP SYN
flooding attack, using the fact definitions defined above. In addition, a few con-
stants are referenced from the rule set, and are defined as follows:
� max bad conns: Number of bad connections tolerated before SYN flood

alert.
� expire time: Amount of time to wait on ACK before a connection is de-

clared a bad connection.
� bad conn life: Number of seconds that a bad connection fact will live

before being released.
Abstractly, the rules attempt to identify half-open TCP connections that expire

beyond a user-defined waiting period. As we assert half-open connection facts into
our factbase, we must include logic to recognize both when the connections are suc-
cessfully completed and when half-open connection expire beyond the user-defined
waiting period, from which we deduce the occurrence of a bad connection. SYN
flood attacks will result in excessive bursts of bad connections, which we monitor
with rules that maintain a running count of bad connections over a sliding window
of time. When the number of bad connections exceeds our maximum tolerance for
bad connections within our sliding time window, we raise an alert to denote the
burst of noncompleted connection requests. The following is a brief summary of
the rule set shown in Table 3.
� create open conn : determines whether the event connection represents

a SYN-ACK packet (from the monitor target). If so, the rule asserts a new fact
into the factbase calledopen conn , which records the TCP sequence number,
the timestamp at which this half-opened connection was first observed, an expired
flag to indicate when the half-open connection exceeds a time threshold, and the
client ID .
� destroy open conn : removes an open connection fact when the corre-

sponding ACK packet is received from the client.
� ignore spurious acks : removes events involving ACK packets that are

not associated with a specific SYN-ACK pending connection. In practice, such
packets are normal.

180 Paper G

Table 3. Rule set for detection of TCP SYN flood attacks.

1 rule[create_open_conn(*):
2 [+ev:conn_event|e_type == 0]
3 ==>
4 [+open_conn |seq_id = ev.seq_id,
5 sec = ev.sec,
6 expired = 0,
7 client_ID = ev.client_ID]
8 [-|ev]
9]

10 rule[destroy_open_conn(*):
11 [+ev:conn_event|e_type == 1]
12 [+oc:open_conn|seq_id == (ev.seq_id - 1),
13 expired == 0]
14 ==>
15 [-|oc] [-|ev]
16]

17 rule[ignore_spurious_acks(*):
18 [+ev:conn_event|e_type == 1]
19 [-open_conn|seq_id == (ev.seq_id - 1)]
20 ==>
21 [-|ev]
22]

23 rule[first_bad_conn(*):
24 [+ts:time]
25 [-bad_conn]
26 [+oc:open_conn|expired == 0]
27 [?|(ts.sec - oc.sec) > ’expire_time]
28 ==>
29 [+bad_conn|count = 1]
30 [/oc| expired = 1]
31]

continues on next page

Detecting Computer and Network Misuse Through. . . P-BEST 181

continued from previous page

1 rule[add_to_bad_cons(*):
2 [+ts:time]
3 [+oc:open_conn|expired == 0]
4 [?|(ts.sec - oc.sec) > ’expire_time]
5 [+bc:bad_conn|count < ’max_bad_conns]
6 ==>
7 [/bc|count += 1]
8 [/oc|expired = 1]
9]

10 rule[max_open_cons(*):
11 [+ts:time]
12 [+oc:open_conn|expired == 0]
13 [?|(ts.sec - oc.sec) > ’expire_time]
14 [+bc:bad_conn|count == ’max_bad_conns]
15 ==>
16 [!|syn_alert("SYN Attack: Last Host %s.\
17 SeqID = %d. Time = %d",
18 oc.client_ID, oc.seq_id, oc.sec)]
19 [/bc|count = 0]
20 [/oc|expired = 1]
21]
22

23 rule[free_bad_open_cons(*):
24 [+ts:time]
25 [+bc:bad_conn]
26 [+oc:open_conn|expired == 1]
27 [?|(ts.sec - oc.sec) > ’bad_conn_life]
28 ==>
29 [-|oc]
30 [/bc|count -= 1]
31]

32 rule[del_alerted_cons
33 [+oc:open_conn|expired == 1]
34 [+bad_conn|count == 0]
35 ==>
36 [-|oc]
37]

Minor corrections were made to this table after the original publication.

182 Paper G

� first bad conn : This and the following rule manage a running count of
the set of bad connections observed by the inference engine. They are driven
by time facts (line 24) which are used to monitor whether there exists a half-
open connection that has exceeded theexpire time limit. This rule is applied
once, to the firstopen conn fact encountered that is older thanexpire time .
Its consequent creates thebad conn fact, which initializes the bad connection
counter upon the first encountered expired connection. Note that the antecedent
line 25 evaluates to false once thebad conn fact has been initialized. In addition,
the rule marks theopen conn fact as expired (line 30), which is consulted by
free bad open cons when performing garbage collection.
� add to bad cons : is applied while the total number ofbad conn facts is

less than the maximum tolerated. If anopen conn fact timestamp exceeds the
expiration time and the fact has not been counted earlier, then thebad conn count
is incremented, and the expired flag for theopen conn fact is set.
� max open cons : is applied when the maximum number ofbad conn facts

is encountered during a burst ofbad conn life time units. If abad conn
count reaches the maximum toleratedbad conn facts, the consequent initiates a
SYN flood alert, and resets the bad connection count.
� free bad open cons : limits the amount of time that a bad open connec-

tion is counted against the system. Thebad conn life variable provides a
user-defined length of time with which a bad connection is considered relevant
to the bad connection count. This variable effectively represents the burst du-
ration for accumulating bad connections. Once an open connection exceeds the
bad conn life , then it is removed and the bad connection count is reduced.
� del alerted cons : deletes the half-open connections that have caused an

alert.

5 Performance

There are a variety of factors that influence the amount of time required to pro-
cess records through a P-BEST-based signature analysis engine. In this section, we
briefly discuss some of these factors and summarize several performance measure-
ments in analyzing both Solaris audit records and TCP packets through an EMER-
ALD eXpert P-BEST engine. These measurements are intended to reflect the pure
processing time required by the eXpert in receiving events, translating and assert-
ing the events into the eXpert fact base, processing the events through the inference
engine, and handling alert reporting.

The measurements exclude the processing time added to the system for event
generation; that is, it excludes the impact to system resources in audit record gen-
eration or the capturing and filtering of TCP packets. It is difficult to estimate the
daily expected volumes of audit and network traffic across a computing environ-
ment, in that such statistics are directly dependent on the structure of the computing
environment, network topology, and behavior and size of the user community. Fur-
thermore, the EMERALD architectural model lends itself well to the separation of
the event generation and collection components from the analytical engines, which
could in fact operate in parallel on separate hosts.

Detecting Computer and Network Misuse Through. . . P-BEST 183

Table 4. Performance of sample BSM and TCP analysis engines.

24 hrs BSM 120 hrs BSM 24 hrs IP 120 hrs IP
43 users 44 users 496 connects 1,343 connects

365 MB total 1.41 GB total 331 MB total 1.3 GB total
1.1 million recs 4.2 million recs 83,002 recs 352,445 recs

1 rule set
2 rules 4:10 min:sec 15:41 min:sec —– —–
buffer

overrun
16 rule sets

28 rules 8:09 min:sec 30:53 min:sec —– —–
various

intrusions
1 rule set
12 rules —– —– 1:33 min:sec 3:02 min:sec
TCP SYN

flood

The performance measurements were collected on a FreeBSD 2.2.6 host com-
puter system using a Pentium II 333 Mhz processor with 128 MB RAM. In addi-
tion to the processing capabilities of the host platform, there are several factors that
significantly influence the overall performance of the analysis engine. For example,
the average record size and total event stream size dictate the amount of I/O over-
head required. As each event is asserted by the rule base, the antecedent evaluation
also impacts performance: the sheer number of rules to evaluate, as well as the
complexity of each antecedent evaluation, significantly influence event processing
throughput. Consequent activation is also a consideration, as is the management of
derived facts that are asserted during the analysis.

Table 4 presents a summary of three analyses performed on 1 and 5 day collec-
tions of Solaris 2.5.1 audit records and TCP packet streams. The audit and TCP
data sets were collected by MIT Lincoln Laboratories, and made available for the
DARPA Intrusion Detection Evaluation Program. The BSM audit logs analyzed
here represent the simulated usage of a server with 43 users over one 24 hour period
and 44 users over a 5 day work week, with minimal filtering. While it is difficult to
generalize what such loads imply for other computing environments, the data set is
representative of the volume and type of audit activity observed during a prolonged
study of several Air Force local area networks.

The first row in Table 4 summarizes the performance of an EMERALD eXpert
implementing the buffer overflow rule presented in Section 4.1, which is roughly
able to apply this rule to 24 hours of audit data (over one million audit records) in
4 minutes, and 120 hours of audit data (4.2 million audit records) in under 16 min-
utes. In the second row, we present an eXpert with a more extensive collection of 28
rules. These rules implement 16 sets of Solaris BSM intrusion detection heuristics,
including threshold analyses, immediate attack recognition, process subversion de-

184 Paper G

tection, and illegal file access recognition. While the knowledge base of this second
eXpert represent an increase of fourteen fold over the 2-rule eXpert system in row
one, it introduces only a two fold increase in the overall processing time of the 1
and 5 day data sets. In this computing environment, the 16 rule sets can process the
full five day data set in just over 30 minutes; this represents a small fraction of the
overall audit generation time.

The third and fourth columns of Table 4 present an analysis of TCP/IP traffic
through a gateway that provides service between an internal domain of 4 servers
and 20 workstations, and an external untrusted network. Row three of Table 4
summarizes the performance of the TCP SYN flood detection rules presented in
Section 4.2 (with a few additional administrative rules). Here, a server was selected
for analysis, and all TCP packets sent to and from it were monitored for 24 and
120 hours, during which 496 and 1,343 connections were observed over 24 and
120 hours, respectively. The SYN Flood eXpert monitored only those TCP packets
targeted for the host of interest in which the SYN or ACK flags were enabled. The
filtering out of unnecessary packets is critical to managing the performance of a
real-time signature analysis engine, and in the SYN flooding case, the criteria for
analysis excludes all packets that are not directly involved in the TCP handshake.
In our simulated analysis, the SYN Flood eXpert is capable of performing the 24
hour packet analysis in 1.5 minutes, and the 120 hour analysis in 3 minutes.

6 Related work

P-BEST has evolved over a substantial lineage of intrusion detection projects,
which include MIDAS, IDES, NIDES, and now the EMERALD eXpert. It rep-
resents a very early example of the application of a forward-chaining rule-based
expert system to the problem of misuse detection in computer system activity logs.
However, P-BEST is by no means the only system to have applied rule-based expert
system techniques to detecting misuse in computing environments.

Several other systems have been developed that also center around the use of
forward-chaining inference logic, and have applied a variety of techniques for rep-
resenting the underlying heuristics used to represent misuse. The ASAX (Advanced
Security and Audit Trail Analysis on UniX) project [9], produced a highly spe-
cialized rule-based programming language called RUSSEL (Rule Based Sequence
Evaluation Language), which provides a combination of procedural and rule-based
programming constructs to reason about activity in Unix audit trails.

The University of California at Santa Barbara proposed the use of state transition
diagrams to model the sequence of operations and state changes that occur dur-
ing the execution of a penetration [15]. This technique was prototyped for SunOS
4.1.3+ and Solaris audit trails in a tool called the Unix State Transition Analysis
Tool (USTAT) [10]. While it did not represent its knowledge base using production
rules, USTAT was architected as a classic expert system, with an inference engine,
knowledge base, fact base, and separate decision engine. Another system, called
IDIOT (Intrusion Detection In Our Time), took a similar graphical approach to the
analysis of signature operations, but used Colored Petri-nets to model its analysis
of the patterns of execution represented in an event stream [13].

Detecting Computer and Network Misuse Through. . . P-BEST 185

Wisdom and Sense [20] and NADIR [11], both from Los Alamos National Labo-
ratory, are further examples of intrusion detection systems that employed rule-based
analyses to identify known malicious activity. In the case of W&S, the anomaly
detection component was also implemented as a rule-base. The signature analysis
component was combined into the same rule-base to represent site-specific policies,
expert penetration rules and other administrative data. NADIR’s expert rule-base
consists of penetration rules that are developed by interviewing and working with
security personnel.

Last, it is important to recognize a continuing growth in the number of com-
mercial products that provide forms of signature analysis for various computing
environments. Given the proprietary nature of these systems, it is difficult to un-
derstand which have chosen hard-coded narrow solutions to their problem sets, and
which have chosen more broad techniques that may be portable beyond their current
customers’ needs.

7 Limitations

In Section 2 we attempted to summarize how and why forward reasoning systems
provide a good foundation for modeling known abusive activity represented in an
event stream. There are, of course, limitations that are fair to point out with respect
to this general method. In our own system, antecedent evaluation is absolute, and
less capable in environments where uncertainty, incompleteness, or inaccuracies
exist within the event stream content. Other reasoning systems can provide some
options for handling belief and uncertainty within the analysis framework [8]. In
the presence of incomplete data, backward reasoning systems can operate in a diag-
nosis mode to seek out collaborative evidence of problems, and furthermore provide
quantitative probabilities based on “evidence to date” that a certain problem is the
culprit responsible for the presence of given symptoms. Such reasoning capabilities
could be valuable if applied well to the intrusion detection domain.

In addition to event stream inadequacies, heuristics presuppose the existence of
detailed insight into that which constitutes abusive system activity. The problem of
recognizing and responding tounknownmalicious phenomena is extremely diffi-
cult, and not directly addressed under signature analysis. Only in the cases where it
is possible to look for certainresults—rather than explicit action sequences leading
to those results—does signature analysis have a chance to detect new attack meth-
ods. For example, if an anonymous user causes the deletion of a file from our FTP
server, we can detect this result without knowing exactly how the attack was carried
out.

Other techniques that attempt to understandnormalsystem operation and to pro-
vide quick recognition of anomalous activity have been proposed; statistical profil-
ing [5], neural networks [4], and sequence analysis [7]. The intent of these systems
is to maximize the points at which anomalous activity corresponds to malicious ac-
tivity, which as a general property does not always hold. In addition, attempting to
maximize such systems’ sensitivity to malicious activity also tends to increase their
sensitivity to inane anomalies.

186 Paper G

8 Future work

In parallel with our current academic experiments with P-BEST, we are devel-
oping an Internet-accessible P-BEST translation service, which will allow users to
develop and compile rule sets into self-contained expert systems. Linkage modules
will be provided to allow users to feed the expert system Solaris 2.5.+ audit records
and TCP/IP packets in batch and real time. Users will be provided an HTML in-
terface from which ptype definitions and production rules can be submitted to the
P-BEST translation service. The translation service will attempt to compile an ex-
pert system based on the ptypes and rules; if successful, the user will receive a URL
link from which the expert system can be downloaded and tested in the user’s own
environment. If errors are identified in the rules or ptype declarations, a summary
of the errors will be returned to the user for revision. In addition, a simple reporting
utility will be provided to convert alerts generated by the expert system to HTML or
email notifications. We will make the following components available to other uni-
versities interested in conducting classroom experiments involving signature-based
intrusion detection:

� P-BEST expert system generation service available via HTML-based inter-
face

� Solaris audit and TCP/IP batch and real-time event collection interface mod-
ules

� HTML and email alert reporting interface module

� Language manuals and supporting documentation (including exploit detec-
tion exercises) developed in support of our current university classroom ex-
periment

For more information on the Internet-accessible P-BEST translation service for
academic experimentation, the reader may refer to the following URL:

http://www.csl.sri.com/emerald/

9 Conclusion

We have presented the operation of a production-based expert system toolset, and
its application to the problem of computer and network signature-based intrusion
detection. P-BEST has had considerable exposure to the intrusion detection prob-
lem domain over the past decade, under the MIDAS, IDES, and NIDES projects,
and now within the EMERALD eXpert. P-BEST has been employed on a Sym-
bolics processor for handling Multics audit records, SunOS 4.1.+, Solaris 2.5.+,
FreeBSD, and Linux for real-time audit trail analysis, accounting log analysis, and
TCP/IP packet analysis.

We presented details of the P-BEST production rule specification language, and
illustrated its use with example rule sets for detecting misuse in Solaris 2.5.+ audit
trails and TCP/IP packet streams. We also discussed the performance of P-BEST
inference engines in analyzing millions of events, which illustrates that P-BEST

Detecting Computer and Network Misuse Through. . . P-BEST 187

has been—and continues to be—useful in live monitoring of computer and network
operations.

In addition, work is in progress to move P-BEST into academic environments,
where it will be made openly available as an instructional tool for illustrating sig-
nature-based intrusion detection. P-BEST is currently being used for laboratory
exercises in one university course on applied computer security, where students are
guided through its usage and assigned rule development tasks for analyzing given
intrusions. We have demonstrated that the P-BEST language is not too complex
for beginners to employ, and is efficient for supporting the iterative development
of increasingly complex inference logic for automated reasoning about misuse in
computer and network operations.

Acknowledgments

The authors are grateful to Alan Whitehurst, the original author of P-BEST, and
to Fred Gilham who has made later enhancements and documentation and has an-
swered many questions from us. Several people have participated in discussions
and contributed with ideas and suggestions; we thank Peter Neumann, Keith Skin-
ner, and Martin Fong at SRI and Erland Jonsson and Stefan Axelsson at Chalmers.
We also thank the Chalmers students who participated in the P-BEST lab exercise.

References

[1] D Anderson, T Frivold, and A Valdes. Next-generation intrusion-detection
expert system (NIDES). Technical Report SRI-CSL-95-07, Computer Science
Laboratory, SRI International, Menlo Park, CA 94025-3493, USA, May 1995.

[2] Stefan Axelsson, Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. An ap-
proach to UNIX security logging. InProceedings of the 21st National Infor-
mation Systems Security Conference, pages 62–75, Arlington, Virginia, Octo-
ber 5–8, 1998. National Institute of Standards and Technology/National Com-
puter Security Center.

[3] D Bruschi, E Rosti, and R Banfi. A tool for pro-active defense against the
buffer overrun attack. In Jean-Jacques Quisquater et al., editors,Computer
Security – Proceedings of ESORICS 98, volume 1485 ofLNCS, pages 17–31,
Louvain-la-Neuve, Belgium, September 16–18, 1998. Springer-Verlag.

[4] Hervé Debar, Monique Becker, and Didier Siboni. A neural network com-
ponent for an intrusion detection system. InProceedings of the 1992 IEEE
Symposium on Security and Privacy, pages 240–250, Oakland, California,
May 4–6, 1992. IEEE Computer Society Press, Los Alamitos, California.

[5] Dorothy E Denning. An intrusion-detection model.IEEE Transactions on
Software Engineering, SE-13(2):222–232, February 1987.

188 Paper G

[6] Dorothy E Denning and Peter G Neumann. Requirements and model for
IDES—a real-time intrusion detection expert system. Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, CA 94025-3493,
USA, 1985.

[7] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A
Longstaff. A sense of self for Unix processes. InProceedings of the 1996
IEEE Symposium on Security and Privacy, pages 120–128, Oakland, Califor-
nia, May 6–8, 1996. IEEE Computer Society Press, Los Alamitos, California.

[8] Thomas D Garvey and Teresa F Lunt. Model-based intrusion detection. In
Proceedings of the 14th National Computer Security Conference, pages 372–
385, Washington, D.C., October 1–4, 1991. National Institute of Standards
and Technology/National Computer Security Center.

[9] Jani Habra, Baudouin Le Charlier, Abdelaziz Mounji, and Isabelle Mathieu.
ASAX: Software architecture and rule-based language for universal audit trail
analysis. In Yves Deswarte et al., editors,Computer Security – Proceedings
of ESORICS 92, volume 648 ofLNCS, pages 435–450, Toulouse, France,
November 23–25, 1992. Springer-Verlag.

[10] Koral Ilgun, Richard A Kemmerer, and Phillip A Porras. State transition anal-
ysis: A rule-based intrusion detection approach.IEEE Transactions on Soft-
ware Engineering, 21(3):181–199, March 1995.

[11] Kathleen A Jackson, David H DuBois, and Cathy A Stallings. An expert
system application for network intrusion detection. InProceedings of the 14th
National Computer Security Conference, pages 215–225, Washington, D.C.,
October 1–4, 1991. National Institute of Standards and Technology/National
Computer Security Center.

[12] Harold S Javitz and Alfonso Valdes. The SRI IDES statistical anomaly de-
tector. InProceedings of the 1991 IEEE Symposium on Security and Privacy,
pages 316–326, Oakland, California, May 20–22, 1991. IEEE Computer So-
ciety Press, Los Alamitos, California.

[13] Sandeep Kumar.Classification and Detection of Computer Intrusions. PhD
thesis, Purdue University, West Lafayette, Indiana, August 1995.

[14] Teresa F Lunt, R Jagannathan, Rosanna Lee, Alan Whitehurst, and Sherry
Listgarten. Knowledge-based intrusion detection. InProceedings of the An-
nual AI Systems in Government Conference, pages 102–107, Washington,
D.C., March 27–31, 1989. IEEE Computer Society Press, Los Alamitos, Cal-
ifornia.

[15] Phillip A Porras and Richard A Kemmerer. Penetration state transition analy-
sis: A rule-based intrusion detection approach. InProceedings of the Eighth
Annual Computer Security Applications Conference, pages 220–229, San An-
tonio, Texas, November 30–December 4, 1992. IEEE Computer Society Press,
Los Alamitos, California.

Detecting Computer and Network Misuse Through. . . P-BEST 189

[16] Phillip A Porras and Peter G Neumann. EMERALD: Event monitoring en-
abling responses to anomalous live disturbances. InProceedings of the 20th
National Information Systems Security Conference, pages 353–365, Balti-
more, Maryland, October 7–10 1997. National Institute of Standards and
Technology/National Computer Security Center.

[17] Christoph L Schuba, Ivan V Krsul, Markus G Kuhn, Eugene H Spafford, Au-
robindo Sundaram, and Diego Zamboni. Analysis of a denial of service attack
on TCP. InProceedings of the 1997 IEEE Symposium on Security and Pri-
vacy, pages 208–223, Oakland, California, May 4–7, 1997. IEEE Computer
Society Press, Los Alamitos, California.

[18] Michael M Sebring, Eric Shellhouse, Mary E Hanna, and R Alan White-
hurst. Expert systems in intrusion detection: A case study. InProceedings
of the 11th National Computer Security Conference, pages 74–81, Baltimore,
Maryland, October 17–20, 1988. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[19] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043,
USA. SunSHIELD Basic Security Module Guide, November 1995.

[20] H S Vaccaro and G E Liepins. Detection of anomalous computer session
activity. InProceedings of the 1989 IEEE Symposium on Security and Privacy,
pages 280–289, Oakland, California, May 1–3, 1989. IEEE Computer Society
Press, Los Alamitos, California.

190

This page is intentionally left blank.

191

Paper H

Designing IDLE: The Intrusion Data Library Enterprise

Abstract presented at RAID ’98 (First International Workshop on the Recent
Advances in Intrusion Detection), Louvain-la-Neuve, Belgium, Sept. 14–16, 1998.

192

This page is intentionally left blank.

193

Designing IDLE:
The Intrusion Data Library Enterprise

Ulf Lindqvist1;2 Douglas Moran� Phillip A. Porras2 Mabry Tyson3

1Department of Computer Engineering
Chalmers University of Technology

Göteborg, Sweden
ulfl@ce.chalmers.se

2Computer Science Laboratory
3Artificial Intelligence Center

SRI International
Menlo Park, California

fulf, porrasg@csl.sri.com
tyson@ai.sri.com

Abstract

High quality, timely information on intrusions is crucial in the devel-
opment, testing, tuning, and updating of intrusion detection systems
(IDSs) and intrusion recovery systems. We present the Intrusion Data
Library Enterprise (IDLE), a design and initial compilation of an ex-
tensible library of intrusion data that is efficiently parseable in both
human-readable and platform-independent machine-readable forms.
The IDLE format will be made available as a resource specifically for
the intrusion detection community. IDLE will provide IDS developers
and users with accurate field data for testing and tuning and, as new
intrusion types are discovered, it will enable tools to automatically up-
date rule sets and parameters.

1 Background and motivation

As developers of tools for intrusion detection and diagnosis, we have identified a
need for data on intrusions. Typically, we would like to have a collection of reliable,
detailed records that include exploit instructions and data on vulnerable system con-
figurations to make the intrusions repeatable in a lab environment. We would also
like to be able to add various types of information, such as what indicators of the
intrusion we are able to observe in the system. Legitimate concerns about distribut-
ing information on intrusion schemes has hampered the growth of such databases.
Ironically, this has led to the current situation where security professionals find their
best sources for intrusion data on underground Internet sites.

Our experience from detailed intrusion analysis indicates that a vast amount of
information is needed about the particular intrusion sample to make correct state-
ments about an intrusion type in terms of prerequisites, impact, traces, difficulty,

�Author’s present address: Recourse Technologies, Inc., 2450 El Camino Real, Palo Alto, CA
94306-1706, USA, dmoran@recourse.net

194 Paper H

remedies etc. Also, because systems are continually patched to block known in-
trusions, it can be difficult to recreate a vulnerable system configuration for each
intrusion sample when detailed vulnerability information is missing.

Typically, intrusion handling systems need to be updated when new types of in-
trusions are discovered. A major problem facing intrusion detection system (IDS)
developers is that the intrusion databases utilized provide little leverage for automat-
ing extensions to their systems. In many systems it is assumed that the users will
collect intrusion descriptions from various sources and write new rules or change
parameters as new intrusions are discovered. This could be compared to modern
virus detection systems, which often have automatic network-based update func-
tionality.

As a solution to this problem, we present the Intrusion Data Library Enterprise
(IDLE) which is an effort to create a standard format for describing vulnerability
and exploit information for IDS purposes.

2 Related work

Most of the previously presented databases for system vulnerabilities and/or ex-
ploits fall into one of two different categories, each with their own shortcomings,
respectively:

� Databases that are kept internal to an organization.

Problems: People outside the owner organization do not know about the
databases, their contents, or their structure. Sharing is discouraged or
even prohibited, motivated by liability issues or the simple fact that or-
ganizations do not want to reveal how their systems could be attacked.

� Publicly available databases from “underground” sources.

Problems: Data on such sites is often incomplete, of varying reliability, and
certainly not intended for intrusion detection.

To our knowledge, the only previously published work on vulnerability database
structure that talks about storing signatures for intrusion detection is that by per-
formed by Krsul at Purdue University [5]. However, the main purpose of Krsul’s
database is the same as that of the often-cited Landwehr taxonomy [6], namely,
vulnerability analysis and prevention rather than intrusion detection.

Vulnerability prevention was also the original goal of the vulnerability database
project managed by Matt Bishop at University of California at Davis, but it has
come to include intrusion signatures as well [2]. We currently seek to coordinate
the efforts in IDLE with the Davis project.

A threat description language specifically targeted for computer viruses was sug-
gested by Brunnsteinet al. [3]. A main difference between viruses and general
intrusions is that it is often more difficult to describe an exact signature in the gen-
eral case.

At Chalmers, we have previously worked on categorization of many aspects
of vulnerabilities and intrusions, including cause [7, 11], method and result [8],

Designing IDLE: The Intrusion Data Library Enterprise 195

risk [9], traces [1], and remedy [10]. That work will serve as a foundation for the
IDLE structure.

3 IDLE: A standard format for data sharing

In IDLE, we attempt to create a standard format that will facilitate rapid distri-
bution of information among IDS developers and related groups in order to achieve
“critical mass” in the coverage. Although the breadth of such exchange and the
access controls are outside the scope of this work, we would like to point out that
IDLE supports fine-grained data filtering that can be used to implement various
policies for data sharing and sanitization.

3.1 IDLE design highlights

The emphasis of our design is to include information that ensures automated re-
peatability, detection, and diagnosis of each intrusion sample. What makes IDLE
different from current intrusion databases is that it is designed to serve the IDS
community by coordinating detailed information on vulnerable configurations and
exploit instructions with documented observable dynamic and static traces (indica-
tors) of the intrusion type. The IDLE trace information is structured in a form that
will support an IDS downloading a new description and extracting the information
needed to automatically generate new rules (signatures, parameters, etc.) to identify
the new intrusion.

IDLE is designed to store technical data about intrusiontypes, where the primary
distinction between two types is that their observable traces differ in a significant
way. Another distinction between types is information that concern the vulnerable
configurations, for example, operating system, applications etc. However, IDLE is
not meant to be a database of intrusionincidentswhere evidence concerning attack
cases should be stored. Such a database would have other concerns and goals [4],
but could use IDLE for the technical description of the types of intrusions occurring
in the recorded incidents.

Support for partial information is a core part of the design of IDLE. Information
about an intrusion type will typically be initially incomplete, and different groups
may tend to populate only chosen subsets of a record. Incremental population is es-
pecially important in the observables, because different developers monitor system
activity from different perspectives: network traffic, audit logs, application logs,
filesystem traces, etc. IDLE must also be easily extensible to support the aspects
relevant to new and different target platforms, tools, and IDSs. In summary, there
are three aspects of incremental population:

� New entries (intrusion types) in the repository

� New data for certain fields of an existing entry

� New types of fields for new and old entries

It should also be noted that published records may be incomplete due to sharing
policies requiring certain parts of the database to be suppressed.

196 Paper H

3.2 Implementation

We have chosen to use the Extensible Markup Language (XML) [13], proposed
successor to HTML, for the intrusion database. There is an intense ongoing devel-
opment of tools for authoring, displaying, browsing and handling XML documents,
and we expect substantial leverage from this activity. XML provides a number of
features such as platform-independence, naturally hierarchical structure, customiz-
able field display filtering, the possibility to mix human-readable free-text fields
and machine-readable fields in the same record, and easy addition of new types of
fields. Those features enable IDLE to evolve both in terms of the content of indi-
vidual records and of the structure of the library. This makes us confident that for
IDLE, XML is a far better choice than an existing proprietary database format.

We will now give some examples of what the first draft structure of IDLE looks
like, both in terms of element hierarchy, XML code examples and conversion to
HTML for presentation. We have chosen to document an intrusion in which a so-
called buffer overflow vulnerability in some versions of the Solaris operating system
is exploited to gain administrator privileges.

In Figure 1, the hierarchical document structure for the intrusion record is shown
from the top level. Lower level elements are expanded in Figures 2, 3 and 4. An
example of what the actual XML code can look like is shown in Figure 5 which
corresponds to the CONFIRM element in Figure 2. A presentation specification
language candidate for XML is the Extensible Style Language (XSL), which in
itself is an application of XML. We have written XSL style files for conversion
of our XML documents to HTML for viewing with standard Web browsers. An
example of XLS code is shown in Figure 6 and the resulting browser view is shown
in Figure 7.

3.3 Current status

Currently, we are populating the database with example entries to evaluate and
refine the first draft structure. The objective is to be able to freeze a first Document
Type Definition (DTD) against which new entries can be formally validated by an
XML parser. The design of a DTD, together with an evaluation of suitable tools for
editing and database management is under way [12].

For presentation of the database contents, automatic generation of HTML con-
trolled by mapping rules written in the Extensible Style Language (XSL) has been
implemented. This conversion illustrates how data stored in XML easily can be
filtered, split, hyperlinked and interpreted.

Designing IDLE: The Intrusion Data Library Enterprise 197

INTRUSION
IDENTIFICATION

TITLE
RCS
ALIASES
RELATED_ITEMS

SUMMARY
SEVERITY

IMPACT
IMMEDIATE
POTENTIAL

DIFFICULTY
PRECONDITIONS

PRIVILEGES
AFFECTED_PLATFORMS

CONFIRMED
SUSPECTED_VUN
EXCEPTED
DETAIL_LINK

EXPLOIT
LOCAL_FILES
SOURCES
PROCEDURE

BULLETINS
SOLUTIONS

REMEDY

Figure 1. Top level view of the document structure.

AFFECTED_PLATFORMS
CONFIRMED

PLATFORM_DESC
OS
PFDETAILS

SYSINFO
PATCHES
FILES

PLATFORM_DESC
SUSPECTED_VUN
EXCEPTED
DETAIL_LINK

Figure 2. Detailed view of the CONFIRMED element.

198 Paper H

PROCEDURE
STEP
STEP

number 2
STEP_DESC
COMMAND ./eject-exploit
RESULT An interactive shell with effective userid 0
OBSERVABLES

NETWORK
NONE

AUDIT_TRAIL
AUDIT_DESC
AUDIT_RECORD
AUDIT_RECORD

APP_LOGS
FILESYSTEM

Figure 3. Detailed view of PROCEDURE and OBSERVABLES.

SOLUTIONS
REMEDY

number 1
provider local
vuln_elimination provisional
SOL_DESC

FREE_TXT Clear the setuid bit of the file
PATHNAME

DIRNAME /usr/bin/
FILENAME eject

Figure 4. Detailed view of SOLUTIONS and REMEDY.

Designing IDLE: The Intrusion Data Library Enterprise 199

<CONFIRMED>
<PLATFORM_DESC>

<OS>
<OSNAME>Solaris</OSNAME>
<OSREV>2.5</OSREV>

</OS>
<PFDETAILS>

<SYSINFO command="uname -a">SunOS...</SYSINFO>
<PATCHES command="showrev -p">No patches are installed
</PATCHES>
<FILES>

<FSENTRY>
<PATHNAME>

<DIRNAME>/usr/bin/</DIRNAME>
<FILENAME>eject</FILENAME>

</PATHNAME>
<CHECKSUM algorithm="MD5">35d...</CHECKSUM>
<FILESIZE unit="bytes">9680</FILESIZE>
<FILEPERMISSIONS>-r-sr-xr-x</FILEPERMISSIONS>
<FILEOWNER uid="0">root</FILEOWNER>
<FILEGROUP gid="2">bin</FILEGROUP>

</FSENTRY>
</FILES>

</PFDETAILS>
</PLATFORM_DESC>
<PLATFORM_DESC>

<OS>
<OSNAME>Solaris</OSNAME>
<OSREV>2.5.1</OSREV>

</OS>
<PFDETAILS>

<SYSINFO command="uname -a">SunOS...</SYSINFO>
<PATCHES command="showrev -p">No patches are installed
</PATCHES>
<FILES>

<FSENTRY>
<PATHNAME>

<DIRNAME>/usr/bin/</DIRNAME>
<FILENAME>eject</FILENAME>

</PATHNAME>
<CHECKSUM algorithm="MD5">206...</CHECKSUM>
<FILESIZE unit="bytes">9676</FILESIZE>
<FILEPERMISSIONS>-r-sr-xr-x</FILEPERMISSIONS>
<FILEOWNER uid="0">root</FILEOWNER>
<FILEGROUP gid="2">bin</FILEGROUP>

</FSENTRY>
</FILES>

</PFDETAILS>
</PLATFORM_DESC>

</CONFIRMED>

Figure 5. An example of the CONFIRMED element in XML.

200 Paper H

<rule>
<target-element type="SUMMARY"/>

<H4>Summary</H4>
<BLOCKQUOTE>
<children/>
</BLOCKQUOTE>

</rule>

<rule>
<target-element type="ALIASES"/>

<H4>Attack name aliases</H4>
<BLOCKQUOTE>
<children/>
</BLOCKQUOTE>

</rule>

<rule>
<element type="ALIASES">

<target-element
type="ATTACKNAME"/>

</element>
<children/><TT> </TT>

</rule>

<rule>
<target-element

type="SEVERITY"/>

<H4>Severity</H4>
<BLOCKQUOTE>
<children/>
</BLOCKQUOTE>

</rule>

<rule>
<element type="IMPACT">

<target-element
type="IMMEDIATE"/>

</element>
<H4>Immediate impact</H4>
<BLOCKQUOTE>
<children/>
</BLOCKQUOTE>

</rule>

<rule>
<element type="IMPACT">

<target-element
type="POTENTIAL"/>

</element>
<H4>Potential impact</H4>
<BLOCKQUOTE>
<children/>
</BLOCKQUOTE>

</rule>

<!-- We want to match the LOCALROOT element
one step below IMPACT -->

<rule>
<element type="IMPACT">

<element>
<target-element type="LOCALROOT"/>

</element>
</element>

<P>Access
as local root</P>

</rule>

<rule>
<target-element type="DIFFICULTY"/>

<H4>Difficulty</H4>
<BLOCKQUOTE>
<children/>
</BLOCKQUOTE>

</rule>

<rule>
<element type="DIFFICULTY">

<target-element type="READYEXPLOIT"/>
</element>

<P>Ready-to-run
exploit available</P>

</rule>

Figure 6. An example of XSL code for conversion of XML to HTML.

Designing IDLE: The Intrusion Data Library Enterprise 201

Figure 7. The resulting HTML file as viewed with the Netscape browser.

202 Paper H

4 Open issues and future work

IDLE is based on results the authors’ previous research on intrusion analysis,
detection and diagnosis. However, there are still issues in the IDLE design that will
require further research, for example:

� How should observable traces be represented to efficiently serve different
needs and tools?

� How can we make sure that the format cannot be utilized by an automatic
attack tool?

There are also other problems of a political rather than technical kind:

� Should there be a central IDLE data repository? If so:

– Who can be trusted to handle such a repository?

– Who has the resources to maintain the repository?

– What organization is willing to expose itself to the risks of publish-
ing high-quality exploit information, considering the possible legal and
public relations problems?

– What restrictions on access to the data should there be?

We hope that the benefits for the intrusion detection community of having a resource
such as IDLE will motivate collaborative efforts to solve the remaining problems.

5 Conclusion

We have presented IDLE which is an effort to create a common format for de-
scribing intrusion data for the IDS community, something that is clearly needed
and in great demand. We have shown how we can use XML to get built-in sup-
port for partial information and incremental population while allowing both human-
readable and machine-readable fields to be stored in a platform-independent format.
Because there are difficult political problems with a repository, we are currently
concentrated on developing the format rather than populating the database.

References

[1] Stefan Axelsson, Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. An ap-
proach to UNIX security logging. InProceedings of the 21st National Infor-
mation Systems Security Conference, pages 62–75, Arlington, Virginia, Octo-
ber 5–8, 1998. National Institute of Standards and Technology/National Com-
puter Security Center.

[2] Matt Bishop. The UC Davis vulnerabilities project, August 26, 1998.http://
seclab.cs.ucdavis.edu/projects/vulnerabilities/.

Designing IDLE: The Intrusion Data Library Enterprise 203

[3] Klaus Brunnstein, Simone Fischer-Hübner, and Morton Swimmer. Classifica-
tion of computer anomalies. InProceedings of the 13th National Computer
Security Conference, pages 374–383, Washington, D.C., October 1–4, 1990.
National Institute of Standards and Technology/National Computer Security
Center.

[4] John D Howard. An Analysis of Security Incidents On The Internet 1989–
1995. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania,
April 7, 1997.

[5] Ivan V Krsul. Software Vulnerability Analysis. PhD thesis, Purdue University,
West Lafayette, Indiana, May 1998.

[6] Carl E Landwehr, Alan R Bull, John P McDermott, and William S Choi. A
taxonomy of computer program security flaws.ACM Computing Surveys,
26(3):211–254, September 1994.

[7] Ulf Lindqvist, Ulf Gustafson, and Erland Jonsson. Analysis of selected com-
puter security intrusions: In search of the vulnerability. Technical Report 275,
Department of Computer Engineering, Chalmers University of Technology,
Göteborg, Sweden, 1996. Presented at NORDSEC – Nordic Workshop on
Secure Computer Systems, Göteborg, Sweden, November 7–8, 1996.

[8] Ulf Lindqvist and Erland Jonsson. How to systematically classify computer
security intrusions. InProceedings of the 1997 IEEE Symposium on Secu-
rity and Privacy, pages 154–163, Oakland, California, May 4–7, 1997. IEEE
Computer Society Press, Los Alamitos, California.

[9] Ulf Lindqvist and Erland Jonsson. A map of security risks associated with
using COTS.Computer, 31(6):60–66, June 1998.

[10] Ulf Lindqvist, Per Kaijser, and Erland Jonsson. The remedy dimension of vul-
nerability analysis. InProceedings of the 21st National Information Systems
Security Conference, pages 91–98, Arlington, Virginia, October 5–8, 1998.
National Institute of Standards and Technology/National Computer Security
Center.

[11] Ulf Lindqvist, Tomas Olovsson, and Erland Jonsson. An analysis of a secure
system based on trusted components. InProceedings of the Eleventh An-
nual Conference on Computer Assurance (COMPASS ’96), pages 213–223,
Gaithersburg, Maryland, June 17–21, 1996. IEEE, Piscataway, New Jersey.

[12] Conny Stefors. Describing computer security intrusions with XML: Docu-
ment structure and tools. Master’s thesis, Department of Computer Engi-
neering, Chalmers University of Technology, Göteborg, Sweden, 1999. In
preparation.

[13] The World Wide Web Consortium.Extensible Markup Language (XML) 1.0,
February 10, 1998.http://www.w3.org/TR/REC-xml.

204 Epilogue

This is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

SIR WINSTON LEONARD SPENCER CHURCHILL (1874–1965)

	Title page
	Abstract
	List of publications
	Contents
	Preface
	1 Introduction
	2 Thesis objective and scope
	3 Background and frame of reference
	4 Related work
	5 Research methodology
	6 Summary of papers
	7 Reflections
	8 Conclusions and directions for future work
	References
	Paper A
	Paper B
	Paper C
	Paper D
	Sidebar

	Paper E
	Paper F
	Paper G
	Paper H

