
To appear in the Proceedings of the Workshop on Industrial–Strength Formal
Specification Techniques (WIFT’95), Boca Raton, Florida, April 5–8, 1995.

�

Formal Verification of the AAMP5 Microprocessor �� �������	��

����������

��������������

����� !���	" #$"%�'&(�*) ��

��"%�+�

�*�,�% ,.-0/(1 243�56�7 2824149+: 6�7<;=; 3�5�>?1A@B2DC ,!&%!�)
�
7 >?E 3�242<F�9+G
3�5�9�@BG
1 7 9�@B26 3IH+@B5�JK@ 1AHL:NM0FOCQP�R�S�T�U$V=W �

)'$!##�(�'&�&.�����(&�"-�##��&$

/X@B9�H<@BYZ@ ; W+5�14[Z@B:6�7+;K\+] G
3�5�W+>?143�9<>03�^ ��&(�*&(/
W+J_F`F�9<G
3�5�9%@?G
1 7 9�@B2

/a3�9+2 7 ,�@B5�EbM 6 CQT�S�c�R�P�V=W �
)(!,�)��)#�)(!��&$

Abstract

This paper describes the experiences of Collins Commer-
cial Avionics and SRI International in formally specifying
and verifying the microcode for the AAMP5 microproces-
sor with the PVS verification system. This project was con-
ducted to determine if an industrial microprocessor de-
signed for use in real–time embedded systems could be
formally specified at the instruction set and register trans-
fer levels and if formal proofs could be used to prove the
microcode correct. The paper provides a brief technical
overview, but its emphasis is on the lessons learned in using
PVS for an example of this size and the implications for us-
ing formal methods in an industrial setting.

Keywords: Formal Methods, Formal Specification, For-
mal Verification, Microprocessor Verification, Microcode
Verification, Hardware Verification, High Integrity Sys-
tems, Safety Critical Systems, PVS

� d eAf?g hIi?eAjkg�l
Software and digital hardware are increasingly being used
in situations where failure could be life threatening, such
as aircraft, nuclear power plants, weapon systems, and
medical instrumentation. Several authors have demon-
strated the infeasibility of showing that such systems meet
ultra–high reliability requirements through testing alone
[
��
]. Formal methods are a promising approach for
increasing our confidence in digital systems, but many
questions remain on how it can be used effectively in an
industrial setting.

This paper describes a project, formal verification of
the microcode in the AAMP5 microprocessor, conducted
to explore how formal techniques for specification and
verification could be introduced into an industrial process.
Sponsored by the Systems Validation Branch of NASA
Langley and by Collins Commercial Avionics, a division

of Rockwell International, it was conducted by Collins and
the SRI International Computer Science Laboratory. The
project consisted of specifying in the PVS language
developed by SRI [22] a portion of a Rockwell proprietary
microprocessor, the AAMP5, at both the instruction set and
register–transfer levels and using the PVS theorem prover
to show the microcode correctly implemented the
specified behavior for a representative subset of
instructions.

While this paper includes a brief technical overview
(see [28,29] for a detailed technical discussion), its
emphasis is on the lessons learned in using PVS for an
example of this size and the implications for using formal
methods in an industrial setting. The central result of this
project was to demonstrate the feasibility of formally
specifying a commercial microprocessor and the use of
mechanical proofs of correctness to verify microcode. This
is particularly significant since the AAMP5 was not
designed for formal verification, but to provide a more than
three fold performance improvement, by pipelining
instruction execution, while remaining object code
compatible with the earlier AAMP2. As a consequence, the
AAMP5 is one of the most complex microprocessors to
which formal methods have been applied.

Another key result was the discovery of both actual and
seeded errors. Two actual microcode errors were
discovered and corrected during development of the
formal specification, illustrating the value of simply
creating a precise specification. Two seeded errors were
systematically uncovered while doing correctness proofs.
One of these was an actual error that had been discovered
after first fabrication but left in the microcode provided to
SRI. The other error was designed to be unlikely to be
detected by walkthroughs, testing, or simulation.

Several other results emerged during the project,
including the ease with which practicing engineers became

�� !) mon pNqsrtrvu wxmxnzy|{s}�~o��y|�x{��Zq
y|� mx�xq
����{
nvmo�xqsuxy|� �krtqs�x}��xwxq
�k{
��}x�<� �x� rzy�nzqsy|� mo�x�s�Nq
�x�
� {
����{srz{sq
nv�k�D��{s�xy|{
nv�sux�x}o{snt��mo�xy|nvq
�ky|r
���?�s�+�8�s�s�s��qs�x}D�.� ����
����

�

comfortable with PVS, the need for libraries of general
purpose theories, the usefulness of formal specification in
revealing errors, the natural fit between formal specifica-
tion and inspections, the difficulty of selecting the best
style of specification for a new problem domain, the high
level of assurance provided by proofs of correctness, and
the need to engineer proof strategies for reuse.

�
����� ���	��

�

NASA Langley’s research program in formal methods [8]
was established to bring formal methods technology to a
sufficiently mature level for use by the United States
aerospace industry. Besides the inhouse development of a
formally verified reliable computing platform (RCP) [��],
it has sponsored a variety of demonstration projects to
apply formal methods to critical subsystems of real
aerospace computer systems.

The Computer Science Laboratory of SRI International
has been involved in the development and application of
formal methods for more than twenty years. The formal
verification systems EHDM and the more advanced PVS
were both developed at SRI. Both EHDM and PVS have
been used to perform several verifications of significant
difficulty, most notably in the field of fault–tolerant
architectures [23] and hardware designs [12]. Recently,
SRI has been actively involved in investigating ways to
transfer formal verification technology to industry.

Collins Commercial Avionics is a division of Rockwell
International and one of the largest suppliers of
communications and avionics systems for commercial
transport and general aviation aircraft. Collins’ interest in
formal methods dates from 1991 when it participated in the
MCC Formal Methods Transition Study [17]. As a result of
this study, Collins initiated several small pilot projects to
explore the use of formal methods, with verification of the
AAMP5 microcode being the latest and most ambitious in
the series.

2.1 AAMP Family of Microprocessors

The Advanced Architecture Microprocessor (AAMP)
consists of a Rockwell proprietary family of microproces-
sors based on the Collins Adaptive Processor System
(CAPS) originally developed in 1972 [1,4]. The AAMP
architecture is specifically designed for use with
block–structured, high level languages like Ada in
real–time embedded applications. It is based on a stack
architecture and provides hardware support for many
features normally provided by the compiler run–time
environment such as procedure state saving, parameter
passage, return linkage, and reentrancy. Use of an internal
stack cache holding the top few elements of the stack
provides the AAMP family with performance that rivals or
exceeds that of most commercially available 16–bit

processors. To support real–time embedded systems, the
AAMP architecture also provides many functions
normally provided by the real–time executive, such as
interrupt handling, task state saving, and context
switching.

The AAMP instruction set is large (208 instructions),
CISC–like, and closely resembles the intermediate output
of many compilers. Instructions are of variable length,
although most are only one byte long, resulting in
improved throughput and code density. The instruction set
supports arithmetic operations on 16–bit and 32–bit integer
and fractional data types, as well as 32–bit and 48–bit
floating point data. The AAMP family also provides
built–in error checking. Computational exceptions, such as
arithmetic overflow, divide–by–zero, and stack overflow
are automatically detected and handled.

The original CAPS architecture, a multi–board
minicomputer, was developed in 1972 and was quickly
followed by the CAPS–2 through CAPS–10. In 1981, the
original AAMP consolidated all CAPS functions except
memory on a single integrated circuit. It was followed by
the AAMP2, AAMP3, and AAMP5. The AAMP5 is
designed for use in critical applications such as avionics
displays, but is not intended for use in ultra–critical
systems such as autoland or fly–by–wire. Members of the
CAPS/AAMP family have been used in an impressive
variety of products including the Lockheed L–1011 Digital
Flight Control System (DFCS) and Active Control System
(ACS), the Boeing 757 and 767 Autopilot Flight Director
System (AFDS), the Boeing 747–400 Integrated Display
System (IDS) and Central Maintenance Computer (CMC),
the Boeing 757, 767, and 737–300 Electronic Flight
Instrumentation System (EFIS) and Engine Instrumenta-
tion/Crew Alerting System (EICAS), and Navstar Global
Positioning System (GPS) receivers.

2.2 PVS

PVS (Prototype Verification System) [22] is an environ-
ment for specification and verification that has been
developed at the SRI International Computer Science
Laboratory. In comparison to other widely used
verification systems, such as HOL [14] and the
Boyer–Moore prover [5], the distinguishing characteristic
of PVS is that it supports a highly expressive specification
language with a very effective interactive theorem prover
in which most of the low level proof steps are automated.
The system consists of a specification language, a parser,
a typechecker, and an interactive proof checker. The PVS
specification language is based on higher–order logic with
a richly expressive type system so that a number of
semantic errors in specification can be caught by the
typechecker. The PVS prover consists of a powerful
collection of inference steps that can be used to reduce a
proof goal to simpler subgoals that can be discharged

�

automatically by the primitive proof steps of the prover.
The primitive proof steps include, among other things, the
use of arithmetic and equality decision procedures,
automatic rewriting, and BDD–based Boolean simplifica-
tion.

2.3 Historical Perspective/Scale of the Challenge

Microprogram verification has much in common with
processor verification, in that both relate the programmer’s
view of a processor to its hardware implementation. A
number of microprocessor designs have been formally
verified [2,3,10,11,15,16,18,25,26,27,30,31,33]. Howev-
er, the AAMP5 is significantly more complex, at both the
macro and micro–architecture levels, than any other
processor for which formal verification has been
attempted; it has a large, complex instruction set, multiple
data types and addressing modes, and a microcoded,
pipelined implementation. Of these, the pipeline and
autonomous instruction and data fetching present special
challenges. One measure of the complexity of a processor
is the size of its implementation. In the case of the AAMP5
this is some 500,000 transistors, compared with some tens
of thousands in previous formally verified designs and 3.1
million in an Intel Pentium [24].

Microcode verification is not new: it was pioneered by
Bill Carter at IBM in the 1970’s and applied to elements of
NASA’s Standard Spaceborne Computer [10]; in the
1980’s a group at the Aerospace Corporation verified the
microcode for an implementation of the C/30 switching
computer using a verification system called SDVS [11];
and a group at Inmos in the UK established correctness
across two levels of description (in Occam) of the
microcode for the T800 floating point unit using
mechanized transformations [2]. Similarly, several groups
have performed automated verification of (non–micro-
coded) processors, of which Warren Hunt’s FM8501 [15]
(and subsequent FM9000 [16]) are among the most
substantial. The problems of pipeline correctness have also
been studied previously by Srivas and Bickford [�����],
Saxe and Garland [25], Burch and Dill [7], and Windley
and Coe [33]. A very simple microcoded processor design
developed by Mike Gordon called Tamarack serves as
something of a benchmark for microprogram verification
and was considered quite a challenge not so long ago [30].
PVS is able to verify the microcode of Tamarack
completely automatically in about five minutes [12].

2.4 Overview of the Technical Approach

The verification of a microprocessor normally involves
specifying the processor as a machine that executes
instructions at two levels – the macro level and the micro
level – and then proving a desired correctness condition
that relates the behavior of the processor at these two

levels. The macro level specification of AAMP5 describes
the externally observable effect of executing an instruction
on the state visible to an assembly language programmer.
The micro level specification describes the AAMP5 at the
register–transfer level, defining the effect of executing an
arbitrary micro–instruction on the movement of data
between the registers and other components in the AAMP5
design. Verifying the correctness of an instruction consists
of defining an appropriate Abstraction function between
these levels (Figure 1) and showing that the sequence of
micro–instructions f1, f2, ..., fn making up each machine
instruction F causes a corresponding change in the
micro–state s1 as F does to the macro–state S1, i.e., that
F(Abstraction(s1)) = Abstraction(fn(...(f2(f1(s1)))...)). This
basic notion of correctness must be supplemented with a
few additional assurances, such as a demonstration that the
machine reaches a valid initial state after power–up and
that each instruction eventually terminates. Further
refinements are also necessary to deal with the internal
pipelining of the AAMP5. These details are discussed more
fully in Sections 4, 5, and 6.

Micro–Instructions

Macro–Instruction

Figure 1 – Overview of the Technical Approach

f2

f1 fn...

 Abstraction

Macro–State S1

Micro–State s1

F

 Abstraction

It is important to note that the microcode verification
performed here, unlike other commercial microcode
verification efforts [2,32], does not rely on an abstract
semantics for the interpretation of the micro–instructions.
We show that the actual register–transfer level hardware
interpretation of the microcode correctly implements the
macro–instructions. The verification [2] of the microcode
of the T800 floating point unit showed that the microcode
satisfied its specification using a high level operational
model for the micro–instructions. Yuan Yu’s work [32]
mechanically checked the correctness of a set of MC68020
object–code programs using a formal model of the
MC68020 instruction set.

�
���������	��
��
� ����������
������������ ����
������

This project was selected by Collins and SRI for a number
of reasons. Both Collins and SRI wanted to explore the
usefulness of formal verification on an example that was
large enough to provide realistic insight, yet small enough
to be completed at reasonable cost. Verification of the
AAMP5 fit these criteria well. While the AAMP5 was one
of the most complex microprocessors Collins had built, its

�

requirements were well understood since it was to be
object–code compatible with the earlier AAMP2. This
allowed the formal methods team to concentrate on formal
specification and verification rather than on designing a
new product. Also, much of the complexity of an AAMP
microprocessor resides in the microcode, and past
experience had shown that this is one of the most difficult
parts of the microprocessor to get right. Success with
formal verification in other projects suggested that this
technology might be ready for application to an industrial
microprocessor.

Due to the importance of the AAMP5 to Collins, the
formal specification and verification of the AAMP5 was
performed as a shadow project and did not replace any of
the normal design and verification activities performed on
a new microprocessor. This also allowed us to relax some
of the steps that would be required on a production project
and focus on the application of formal methods.

To fit the scope of the project to the time available, a

core set of 13 instructions, each representative of a class of
AAMP instructions, were identified to be specified and
verified by SRI. An additional set of 11 instructions were
identified to be specified and verified by Collins as time
permitted. Even so, it was necessary to specify the entire
AAMP5 architecture and develop the infrastructure
needed verify the entire instruction set since the core set
contained at least one member from each instruction class.

A summary of the level of effort is presented in Table
I. As shown there, relatively little time was spent on
training the Collins’ engineers in PVS. The small amount
of structured training needed was one of the surprises of the
project. Early on, SRI conducted a one–week course on the
use of PVS and formal specifications at Collins’ Cedar
Rapids facility for the five engineers that would be
involved with the project. These consisted of half–day
lectures with related lab exercises in the afternoon. No
additional formal training was felt necessary. When new

Table I – Level of Effort
Task Performed Start Stop Hours

Project Management
Planning & Monitoring Collins Jan 93 Aug 94 123

Education
PVS Course Collins Feb 93 Feb 93 125PVS Course

SRI Feb 93 Feb 93 68

Specification of the Macro–Architecture (2,550 Lines of PVS in 48 Theories)
Initial Development Collins Mar 93 May 93 172Initial Development

SRI Mar 93 May 93 360

Revision & Extension Collins May 93 Sept 93 289Revision & Extension
SRI May 93 Sept 93 120

Inspection Collins Sept 93 Feb 94 96

Resolve Inspection Issues Collins Feb 94 May 94 64

Revision to Support Proofs Collins Mar 94 Aug 94 54

Specification of the Micro–Architecture (2,679 Lines of PVS in 20 Theories)
Initial Development Collins May 93 Feb 94 137Initial Development

SRI May 93 Feb 94 520

Revision Collins Feb 94 Aug 94 160Revision
SRI Feb 94 Aug 94 120

Inspection Collins Mar 94 Aug 94 83

Resolve Inspection Issues Collins Mar 94 Aug 94 66

Translate Microcode to PVS Collins Jun 94 Aug 94 21

Revision to Support Proofs Collins Jun 94 Aug 94 12

Proofs of Correctness
Development of Correctness Criteria SRI Mar 94 Jun 94 320

Developing Proof Infrastructure SRI May 94 Aug 94 240

Verification of Core Instructions SRI Jun 94 Aug 94 240

�

team members joined the project, they were provided
access to the PVS documentation and trained by inclusion
in review of the PVS specifications. The most effective
form of education seemed to be hands on development with
frequent peer review.

Aside from overall management and education, the
project split naturally into three phases, specification of the
macro–architecture, specification of the micro–architec-
ture, and proofs of correctness of the microcode. Each of
these phases are discussed in detail in Sections 4, 5, and 6.
The basic process followed in the first two phases was that
Collins would provide design specifications to SRI, SRI
would provide first drafts of PVS specifications to Collins,
and Collins would informally review these specifications
and return comments to SRI for revision. At some point,
the Collins team would take the specifications, prepare
them for inspections, conduct the inspections, correct the
defects found, and send the revised specifications back to
SRI. This approach was chosen both to validate the
correctness of the specifications and to ensure that Collins
personnel became actively involved in developing the PVS
specifications. A similar process was followed for
performing proofs of correctness of the microcode, with

SRI providing the first examples and strategies that Collins
would use on similar instructions.

To reduce the potential for missing errors in the
microcode due to errors in the PVS specifications,
independent teams were assigned to different portions of
the project. While all early drafts of the specifications were
produced by SRI, different individuals at Collins were
assigned to review and revise the macro–architecture and
micro–architecture specifications. Different teams were
also used to inspect the macro–architecture and the
micro–architecture. The microcode itself was produced by
a member of the original AAMP5 team without any
knowledge of the formal specifications and translated into
the PVS specification language by yet another individual.
As a result, the process of proving the microcode correct
often revealed errors in the specifications, but once a proof
was completed, confidence in the correctness of the
associated microcode was high.

�
�������������
	��
��������	���� �
������� ��������	�����	������

The macro–architecture specification of the AAMP family
defines each instruction as a state transition function over

% The macro state theory defines the state of internal registers in the AAMP, code memory,
% and data memory. Basic operations based on the combined state of these registers
% and memory are also defined here.
macro_state: THEORY

BEGIN
IMPORTING opcodes_attributes, code_memory, data_memory

% The macro state of the AAMP consists of code memory, data memory, the
% user/executive mode flag, the interrupt enabled flag, the cenv, pc, denv, sklm,
% lenv, and tos registers.
macro_state: TYPE = [# cmem : code_memory,

dmem : data_memory,
user : bool,
inte : bool,
cenv : word,
pc : word,

 denv : word,
sklm : word,
lenv : word,
tos : word #]

% Returns the current code environment.
 current_code_env(st: macro_state) : code_env = cmem(st)(word2cenv(cenv(st)))

% Returns the current instruction byte + n.
nth_instr_byte (st: macro_state, n: nat) : byte = current_code_env(st)(pc(st) + n)

• • •
END macro_state

Figure 2 – PVS Specification of the AAMP Macro–Architecture State

�

the state of the microprocessor and external memory.
Figure 2 shows a portion of the PVS specification of the
macro state, consisting of code memory, data memory, and
several internal flags and registers. This is precisely the
view of the AAMP state that an application programmer
must understand to write assembly code.

Figure 3 shows a portion of the ref update theory that
defined how the AAMP REF (reference) instructions
update the macro state. REF instructions copy words from
data memory to the top of the accumulator stack. The
current macro state is provided as a parameter to the next
macro state function. The base and offset of the source data
is provided by the data address base and data address offset
functions (defined in the imported addressing theory). The
auxiliary functions of push, multipop, and data memory ref
(defined in the imported macro state theory) are also used
to define the change to the macro state.

4.1 Initial Development

The macro–architecture specification of the AAMP was
developed through gradual refinement by SRI and Collins
and progressed through several iterations, each incorporat-
ing increasing amounts of detail. Since the AAMP5 was to
be object–code compatible with the earlier AAMP2, this

work was based on the AAMP2 Reference Manual [1].
Each iteration was reviewed via informal walkthroughs by
Collins and the comments returned to SRI. This phase
lasted approximately three months, took 532 man hours to
complete, and resulted in a first draft of the specification
consisting of 1,595 lines of PVS organized into 25 theories.
Several issues emerged during this period.

As the specification grew in size, an ever increasing
portion of it was devoted to defining the properties of bit
vectors, i.e., sequences of bits such as words of memory
and internal registers. Ultimately, these theories evolved
into a reusable library of 2,030 lines of PVS organized into
31 theories. Availability of this library at the start of the
project would have greatly shortened this phase.

Large parts of the specification were simply tables of
attributes of the various AAMP instructions. While the
PVS representation of this information was readable, a
PVS construct explicitly designed to support the
expression of tabular data would have improved their
clarity (such a construct has been added to the latest version
of PVS).

There was one design choice made in implementing the
AAMP5 where completion of the formal specification
beforehand would have been beneficial. The AAMP5 does
not signal a stack overflow until the top–of–stack exceeds

% The ref_update theory computes the next macro state after a REF instruction.
% The new macro state is returned with the addressing arguments popped from the stack,
% the data values pushed on the stack, and the program counter incremented to point to
% the next instruction.
ref_update : THEORY

BEGIN

IMPORTING addressing, executive_service_routines

% Address base and offset of data source.
base (st:macro_state) : data_env_ptr = data_address_base(st)
offset (st: macro_state) : data_env_addr = data_address_offset(st)

% Returns the next macro state on a REF instruction.
next_macro_state(st: macro_state): macro_state =

 CASES memory_data_type_of(current_opcode(st)) OF
• • •

 % Move two words from memory to the stack.
double: push(data_memory_ref(st, base(st), offset(st)),

push(data_memory_ref(st, base(st), offset(st) + 1),
multipop(st, number_of_addr_words(current_opcode(st))))),

• • •
 ENDCASES WITH [(pc) := next_pc(st)]

END ref_update

Figure 3 – Specification of the REF Instructions

�

both the stack limit and the additional capacity of the stack
cache, providing the application program a few more
words of space beyond the stack limit. Since the exact
number of extra words varies depending on the instruction
and the state of the stack cache, this was impossible to
model without bringing all the details of the stack cache
into the macro–architecture specification. Ultimately, the
formal specification was written as though stack overflow
was signaled when the stack limit was exceeded and
adjustments were made to the correctness conditions to
complete the proofs. If the formal specification had been
developed before the detailed design, stack overflow
would probably have been signaled when the stack limit
was exceeded, better hiding the stack cache from the
application programmer.

4.2 Revision and Extension

Once SRI and Collins were satisfied with the overall
structure of the specification, its completion was taken
over by Collins. This was done for several reasons, the
most pragmatic being to allow SRI to move on to the
specification of the micro–architecture. Ownership by
Collins also encouraged transfer of the formal methods
technology. There was also a growing concern whether the
AAMP domain experts, who were not skilled in PVS,
would be able and willing to read the PVS specification. It
was felt that the Collins team was best situated to facilitate
this.

Over the next five months, the roles of SRI and Collins
on the macro–architecture were reversed, with Collins
revising and extending the specifications and SRI
providing informal review. More of the executive service
functions were specified and the number of instructions
specified was increased to 108 of the AAMP’s 209
instructions. NASA Langley also took over completion
and validation of the bit vector theories. To make the
specifications more accessible to the AAMP domain
experts, considerable effort was invested in improving
their readability by choosing more meaningful names,
adding general comments, adding comments tracing the
specifications back to the AAMP2 Reference Manual, and
ensuring that all functions were written as clearly as
possible. Approximately 409 man hours were invested in
this effort. At its conclusion, the macro–architecture
specification consisted of 2,550 lines of PVS organized
into 48 theories, not including the bit vectors library
mentioned earlier.

Most surprising during this phase was the discovery of
two errors in the AAMP5 microcode even though it had
already been reviewed and partially tested. Both errors
were found while trying to formally specify the behavior
of the AAMP under unusual circumstances that were not
clearly specified in the AAMP2 Reference Manual,

prompting a team member to examine the microcode in the
AAMP5. The first was a logic error that allowed the top of
stack register (TOS) to wrap around a data environment
instead of raising a stack overflow. To result in a failure,
this error required the very unlikely combination of an
unusual system configuration, an improperly sized stack,
and a specific sequence of instructions. The second error
was made precisely because the reference manual was
unclear on how the AAMP should update the local
environment register (LENV) when a procedure call
caused a stack overflow. This was implemented by setting
the LENV to its ‘‘overflow’’ value, while the correct
behavior was to leave the LENV unchanged. While this
would have been discovered during Ada validation testing,
the validation suite probably would not have been executed
until after the first AAMP5 chips were in hand. Both errors
were unique to the AAMP5 and corrected before first
fabrication.

4.3 Inspection of the Macro Specification

Formal inspection of the macro–architecture was felt to be
essential, both to validate the correctness of the
specification and to familiarize more engineers at Collins
with PVS. Checklists were drawn up for use in the
inspections based on earlier checklists used in inspecting
VDM specifications, the RAISE Method Manual [6], and
checklists used for code inspections at Collins.

Eleven inspections were held of the macro–level
specification covering thirty–one of the most important
theories. Inspectors were required to review the designated
theories ahead of time, using the checklists as guides, and
record all potential defects encountered. Defects were
classified as trivial, minor, and major. Trivial defects were
defined as those that did not affect correctness and for
which an obvious solution existed, such as spelling errors.
Minor defects included those that might affect clarity or
maintenance but did not affect correctness. Major defects
were defined as those that affected correctness. As a rule
of thumb, a defect was classified as minor if two reasonable
people could disagree on whether it was a defect. Despite
their name, most of the major defects were very limited in
scope and could be corrected in a few minutes. Some of the
errors were misunderstandings by SRI, some were errors in
the original AAMP documentation, and some had been
inserted by Collins during the revisions. Total time spent
in preparation by all participants, time spent in inspection,
and number of defects found are shown in Table II.

During the first inspection, team members were still
uncomfortable with PVS, as indicated by the number of
hours spent in preparation. This apprehension dissipated
quickly and the inspectors settled down to a rate of
approximately 150 lines of PVS and comments per hour of
preparation time (the rate increased during inspections
nine through eleven since these were of simple tables).

�

Table II – Macro–Architecture Inspection Results

Inspection
#

PVS
 Theories

Lines of
PVS

Inspectors Preparation
 (hours)

Inspection
 (hours)

Minor
Defects

Major
Defects

1 3 203 3 12.0 0.8 6 1
2 3 281 3 3.0 0.8 6 6
3 4 216 3 4.0 0.8 12 3
4 2 116 3 4.3 1.0 3 5
5 2 195 3 3.5 1.0 5 6
6 3 149 3 3.0 0.5 3 2
7 4 147 3 2.7 0.4 6 2
8 3 135 3 3.5 0.6 4 3
9 3 332 3 1.5 0.5 5 0
10 2 204 3 1.2 0.4 1 0
11 2 079 3 0.9 0.3 2 0

Total 31 2057 39.6 6.3 53 28

 This rate is probably high since the inspectors were
well aware that this was a shadow project. On an actual
project, more preparation time would have been required.
Even so, 53 minor (style) defects and 28 major
(substantive) defects were discovered in specifications that
had been carefully prepared for inspection. As shown in
Table I, approximately 96 hours were spent conducting the
inspections and 64 hours were spent correcting the defects
found.

The ease with which the inspectors became comfortable
with PVS was one of the main surprises of the project. A
similar result was observed with a different team on the
inspections of the micro–architecture. Much of this was
due to the time that was spent preparing the theories for
inspection. While the purpose of the inspections was to
validate the accuracy of the formal specifications, issues of
style and clarity could dominate an inspection if a theory
was not well organized. On the few occasions that
unprepared theories were submitted for inspection, the
result was quick rejection by the inspection team. Clear
organization, standard naming conventions, and meaning-
ful comments were essential.

Also surprising was the extent to which formal
specifications and inspections complemented each other.
The inspections were improved by the use of a formal
notation, reducing the amount of debate over whether an
issue really was a defect or a personal preference. In turn,
the inspections served as a useful vehicle for education and
arriving at consensus on the most effective styles of
specification. This is reflected in Tables II and III by the
lower number of defects recorded in the later inspections.

4.4 Revisions to Support Proofs

As work began on proving the microcode correct, it
became necessary to make several changes to the
macro–architecture specification to support the proofs.

Some of these were due to limitations in the version of PVS
then available. The combined macro and micro–architec-
ture specifications were the largest PVS specification
completed to date and optimizations were needed in how
PVS handled certain constructs. Since these improvements
would take time, the short–term solution was to revise the
specifications to use other PVS constructs.

Other changes were more substantive. The original
style of specification shown in Figure 3 was constructive
in that it defined a specific function for the next macro state
function. It also used a number of auxiliary functions that
made the specifications compact and easy to read, but
required the user to look up each function to truly
understand the resulting change in state. This style also
made it difficult to specify a single instruction since most
of the structure for an entire class of instructions was
required in order to complete the first instruction in that
class. In doing the proofs, it became clear that a more
descriptive style of specification, in which the change in
state was more directly defined, would be needed as an
intermediate step. Fortunately, these could be stated as
lemmas that could be proven from the original
specification, preserving our investment in inspections. An
example is presented in Figure 4 for the REFDL
instruction. As these lemmas were created, it became
evident that in many ways they were a preferable style of
specification. They were more readable, simpler to
validate, and were closer to what a user wanted to know in
the first place. They also made it possible to specify a small
portion of the next macro state function, i.e., to specify one
instruction or part of an instruction at a time. Specifying
each instruction as one or more axioms in this style would
have made specifying the core set of 13 instructions much
simpler. However, this would also have made it easier to
introduce inconsistencies in the specification, e.g.,
specifying two different next states for the same current

�

% REFDL – Reference Local Environment, Double Word (no stack overflow)
% The two words located at LENV+F are pushed onto the accumulator stack,
% where LENV is the current local environment pointer and F is the least
% significant four bits of the current instruction byte.
REFDL_lemma: LEMMA

LET F = current_code_env(st)(pc(st)^(3,0)),
XLS = current_data_env(st)(lenv(st) + (bv2nat(F))),
XMS = current_data_env(st)(lenv(st) + (bv2nat(F) + 1))

IN current_opcode(st) = REFDL & tos(st) > sklm(st) + 1 IMPLIES
normal_macro_machine.next_macro_state(st) =

st WITH [(dmem) (word2denv(denv(st))) (tos(st)–1) := XMS]
WITH [(dmem) (word2denv(denv(st))) (tos(st)–2) := XLS,

(pc) := pc(st) + 1,
(tos) := tos(st) – 2]

Figure 4 – Descriptive Style of Specification

state. The standard technique for showing that a set of
axioms is consistent is to prove the existence of a model
satisfying those axioms, which is exactly what was done in
proving the constructive specification satisfied each
lemma. One of the lessons learned during this project was
to more carefully consider the trade–offs between these
two styles of specification.

�
�����������
	��
�����������
��� ��������� ���������
�
�
�
�����

The micro–level specification describes the AAMP5
design at the register–transfer level, i.e., it specifies the
effect of executing an arbitrary micro–instruction on the
movement of data between the registers and other
components in the AAMP5 design. As shown in Figure 5,
the AAMP5 design consists of four semi–autonomous

functional units. The DPU uses the LFU/ICU pair to fetch
instructions from memory and the BIU to transfer data to
and from memory. The microcode for an instruction
resides inside a ROM in the DPU. In addition to controlling
the movement of data within the DPU, the microcode also
generates DPU requests for the other units. Since our goal
was to verify the microcode as interpreted by the DPU, we
modeled the DPU design (shown in greater detail in
Figure 6) at the register–transfer level, but we abstracted
the behavior of the LFU and BIU by specifying their
responses to the various requests generated by the DPU
rather than their detailed design.

The DPU is specified as a finite state machine. The state
of the machine is modeled as a set of signals, i.e., values
on wires that vary over time. A signal may denote an
external input to the machine, e.g., an interrupt, or an

Figure 5 – Block Diagram of the AAMP5 Microarchitecture

opcode (8) Bus
Interface
 Unit
 (BIU)

Look–
Ahead
Fetch
 Unit
(LFU)

1KB Instruction Cache Unit (ICU)

 48–bit, Pipelined
 Data Processing Unit (DPU)

data (16)

addr (24)

addr (24)addr (24)

data (16)

data (16)

code (16)

addr (24)

addr (24)

code (16)

immed (16)

��

output of a state–sensitive component of the design, e.g.,
a register, memory, register file, etc. Time is a discrete
quantity measured in cycles of the master clock. The
specification of the machine defines the value at time t+1
of every signal that denotes an output of a component in
terms of the values of the inputs to the component at time t.

5.1 Initial Development

Development of the micro–architecture specification
mirrored that of the macro–architecture. As indicated in
Table I, initial development of the micro–architecture
specification by SRI took approximately 657 man hours
over 10 months. The specification closely followed the
block structure of the micro–architecture, usually with one
theory per component. Surprisingly, the specification of
the micro–architecture without the PVS version of the
microcode was only slightly larger than the specification
of the macro–architecture, an indication how much of the
complexity of the AAMP5 is contained within the
microcode and how structured hardware designs tend to be.
Once decisions about the data types to be used to model

signals and states are made, it should be possible to
automatically derive a PVS specification of a hardware
design from its description in a more traditional hardware
description language.

Completion of the micro–architecture specification
took longer than the specification of the macro–architec-
ture for a number of reasons. The AAMP5 micro–architec-
ture document, unlike the AAMP2 Reference Manual, is
targeted for an audience that is familiar with the basic
architecture of the AAMP processor family. As a result,
SRI had to spend considerable time becoming familiar
with the design. In particular, the interactions between the
DPU and its environment were difficult to specify.
Although the design of the LFU and the BIU were well
documented, the interface conditions that the DPU has to
obey to ensure proper LFU and BIU services were not
explicitly stated. This information had to be extracted
through reverse engineering of the detailed designs and
extensive discussions with the Collins staff. The time spent
on both these efforts could be substantially reduced if
formal specification activity were integrated earlier and
more closely into the conventional design cycle.

WDR

W

IR1

CENVCNV

FC

IR0

NBL

ALU

Shift

T
Reg
File

Q

DPC

Read Data

cnst

cnst

DPC1

M

Barrel
Shift

DENV

LENV

Data Adr

Write Data

0–31

DP

PC/2

Fetch Data

FD[15:0]

Code Adr
CA[23:0]

Queue
Parser

 Data
Format

LFU

DPU

DPC2

RD[15:0]

DA[23:0]

WD[15:0]

MULT

PC

IM

EP

IMM

R

UNIV

CNTR

MC0
MC1

MC2

Nano–
Sequencer

Nano–
Control
ROM

Micro–
Sequencer

Micro–
Control
ROM

Figure 6 – AAMP5 Microarchitecture

��

5.2 Revision

To make the specifications acceptable to the AAMP5
designers for inspection, the initial micro–architecture
specifications developed by SRI were informally reviewed
by three Collins engineers familiar with both PVS and the
AAMP5 and revised as was done for the macro–architec-
ture. Since the initial specifications covered the entire
micro–architecture, there was no need for Collins to extend
the specification as was done for the macro–architecture.
Most of the changes consisted of modifying names to
reflect local conventions, adding comments tracing back to
the design documents, and improving the clarity of the
specifications. Even so, this was a sizeable effort, requiring
280 hours spread over seven months. When completed, the
micro–architecture specification consisted of 2,679 lines
of PVS and comments organized into 20 theories.

Revisions were also made later to the micro–architec-
ture specifications to facilitate proofs, but these were more
technical in nature and not as significant as the ones made
to the macro–architecture specification. Most involved
trading the use of an advanced and expressive construct of
the specification language for a more basic construct to
improve the efficiency of proofs.

5.3 Inspection

Formal inspections of the micro–architecture were
conducted just as for the macro–architecture. To maximize
the independence between the macro and micro
specifications, only one participant from the macro–archi-
tecture inspections was included in the micro–architecture
inspection team. Ten inspections were held, including two
reinspections, covering 15 of the most important theories.
The results are shown in Table III.

Again, the inspectors quickly adapted to PVS, reaching
an average inspection rate of approximately 290 lines of
PVS and comments per hour. Interestingly enough, the
designers of the AAMP5, who were the least familiar with
the PVS language, found the specifications the simplest to
read, consistently turning in the most major defects and the
lowest preparation times. This was a direct result of their
detailed knowledge of the AAMP5 and the close
correspondence between the AAMP5 design and the
specifications. As with the macro–specification, more
preparation time would have been required on an actual
project. Sixty–four minor (style) defects and 19 major
(substantive) defects were discovered. As shown in Table
I, 83 hours were invested in conducting the inspections and
66 hours were spent correcting the defects found.

5.4 Translation of the Microcode to PVS

Translation of AAMP5 microcode to PVS was performed
by hand for this project, even though the translation was
straightforward enough that it could easily be automated.
Hand translation of the microcode required approximately
1/2 hour per AAMP instruction.

�
�����������	��� ���
���
�
�����
���

In addition to verifying a core set of thirteen instructions,
a key goal for the verification task was to facilitate the
transfer of the verification technology to Collins so they
would be able to verify instructions outside the core set. To
support this, SRI developed the infrastructure necessary
not only to verify the entire AAMP5 instruction set, but
also to do it as automatically as possible.

Table III – Micro–Architecture Inspection Results

Inspection
#

PVS
 Theories

 Lines of
PVS

Inspectors Preparation
(hours)

Inspection
 (hours)

Minor
Defects

Major
Defects

1 3 357 5 8.3 1.5 15 6
2 2 173 5 3.9 1.0 11 2
3 1 146 4 3.2 0.4 7 1
4 1 146 5 3.3 0.8 6 2
5 1 152 5 4.2 0.3 3 4

 6* 1 160 4 1.3 0.5 1 0
7 1 272 4 3.6 0.6 10 1

 8* 1 423 5 4.6 0.8 4 2
9 3 197 4 2.0 0.5 6 1
10 3 256 4 1.6 0.5 1 0

Total 17 2282 36.0 6.9 64 19
* Reinspection of previously inspected theory

��

As of this reporting, we have completed the verification
of eleven instructions (some of which are outside the core
set) ranging over several major instruction classes,
spending about 4 to 5 staff months on the verification task.
Out of this time, about a month was spent on actually
verifying the instructions. The rest of the time was spent in
developing the general infrastructure that is reusable for all
instructions. Verifying an instruction from a new class that
has not been tried before typically takes 4 to 5 days to
complete since it may involve extending the infrastructure.
Verifying additional instructions within the same class
typically takes up to a day.

6.1 Development of Proof Infrastructure

Once an instruction moves into the DPU, the instruction is
interpreted in a two–stage pipeline. The first stage is used
to read the register file and setup the operands required for
the ALU operation. In the second stage the results of the
(combinatorial) ALU are written to their destinations. A
third stage is invoked only if an instruction causes a
delayed branch in the instruction execution based on the
outcome of the ALU operation. For example, an ALU
overflow during an ADD instruction will cause a jump to
the exception handler. In case of a delayed jump the
instructions in the first two stages are aborted.

To verify the correctness of an instruction, we prove that
the micro machine satisfies the commuting property shown
in Figure 1. This property states that if the DPU is at an
instruction starting point, i.e., a state in which the DPU is
beginning to execute the first stage of the first
micro–instruction of the microcode for the instruction,
then the current instruction (1) will eventually complete,
(2) will have the effect as stipulated in the macro
specification, and (3) the first micro–instruction of the next
AAMP5 instruction will move into the DPU.

The box in Figure 1 illustrates the requirement that the
actual effect of the instruction execution must correspond
with the expected result specified by the next macro state
function. The function Abstraction shown in Figure 1 maps
the state of a micro–machine at any given time into an
object that corresponds to the abstract view used at the
macro level. In addition to proving the condition described
by Figure 1, we have to show that the special resetting
(startup) sequence designed for the processor will force the
processor into the appropriate instruction starting point.
All AAMP5 interrupts, of which reset is an instance, have
to be proved in a similar fashion.

Although the commuting diagram condition shown in
Figure 1 is generally applicable to all microprocessors, it
has to be refined in a number of ways to fit the
idiosyncrasies of a particular processor. In the case of
AAMP5, the design aspects that make this refinement
challenging are the pipelining of the micro–instructions
and the fact that instruction fetching and data transfers are

handled autonomously. An adjustment is needed to handle
pipelining because when the execution of a new instruction
begins, the results of the previous uncompleted instruction
may not yet be in place at their destinations. We handle this
by ‘‘skewing’’ the definition of the abstraction function
over time by an amount that is a function of the depth of the
pipeline. That is, in the definition of Abstraction, values for
the states of the micro–machine components that will be
set by the uncompleted instructions must be obtained from
a future micro–state.

The impact of autonomous instruction and data fetches
is that the number of cycles required to complete an
instruction, although finite, becomes indefinite. The DPU
stalls, i.e., performs activities that do not have any
externally visible effect, while waiting for the memory
operations to complete. We handle this by decomposing
the commuting condition proof into a set of general
verification conditions that characterize the stalling
behavior of the DPU and another set of instruction specific
verification conditions that characterize the correctness of
an instruction in the absence of stalling. The two sets of
verification conditions are then combined to prove the
correctness of an instruction. The proof of the general
verification conditions and the combination proof only
need to be performed once. The proofs of the general
verification conditions rely on the specification of the
DPU’s environment, namely the LFU and the BIU.

We have also developed a general methodology for
formulating the verification conditions for each instruc-
tion. The general methodology can be customized to a
particular AAMP5 instruction based on a set of attributes
of the instruction such as its instruction class and the length
of its microcode. We have developed a general proof
strategy, i.e., a recipe involving a set of smaller proof steps,
to prove the instruction specific verification conditions.
The proof strategy uses symbolic execution, which is
supported by PVS’s automatic rewriter, case analysis,
which is supported by PVS’s BDD–based propositional
simplifier, and simplification supported by PVS’s decision
procedures. More details about this strategy, which is
suitable for a variety of hardware verification applications,
can be found in [12].

We estimate that about fifty percent of the infrastructure
that has been developed could be reused. This includes
general rules about bit–vector operations that are useful in
automating the correctness proofs and the general
hardware proof strategy. Most of the rest of the
infrastructure should be reusable in the verification of
another microprocessor belonging to the AAMP family.

6.2 Errors Discovered by the Proofs

The process of proving the microcode correct revealed
several errors in the macro and micro–architecture
specifications, even though they had been carefully

��

reviewed and inspected. More significant were errors
discovered in the microcode itself. Since only a small set
of instructions were to be formally verified and because
these instructions had already been verified by traditional
methods, it was unlikely that any errors would be found
through proofs of correctness. To address this, two memory
address calculation errors were deliberately inserted in the
microcode without the knowledge of SRI. The first was
designed to be unlikely to be detected by walkthroughs,
testing, or simulation. The second was an actual error that
had not been detected by traditional verification methods,
but was found when running application code on an early
fabrication of the AAMP5. Both errors were easily
detected by SRI during the proof process, who also
explained what corrections were needed. This served as a
powerful demonstration of the value of formal verification.

�
� �������	��
���
�������
�������������
��	�

This section discusses the lessons learned on this project
and their implications for the industrial use of formal
methods.

7.1 Feasibility of Formal Verification

The central result of this project was to demonstrate the
technical feasibility of formally specifying the AAMP5
and the use of mechanical proofs of correctness to verify
its microcode and micro–architecture. A much larger
fraction of the AAMP instruction set was specified than
originally planned, with 108 of the AAMP’s 209
instructions completed. The portion completed is actually
greater than this, since many of the instructions specified
are representative of an entire family of instructions. This
is notable since the AAMP has a large and complex
instruction set, providing in hardware many of the features
normally provided by the compiler’s run–time environ-
ment and the real–time executive.

All of the micro–architecture needed for formal
verification of the microcode was formally specified. Due
to the style of specification chosen, translation of the
microcode into PVS was a simple exercise that should be
easy to automate.

At this time, eleven instructions have been proven
correct in the absence of interrupts. Since these are
representative of several major instruction classes, most of
the low level proof strategies could be reused in
verification of the remaining instructions. The existence of
these strategies will also make it simpler to transfer this
technology to Collins. We do not see any technical
obstacles to extending either the specification of the
macro–architecture or the correctness proofs.

7.2 Benefits of Formal Verification
Many benefits were obtained on this project through the
use of formal specifications alone. Our experiences
suggest that one of the most important benefits of formal
specification is to precisely define the interface between
users and developers, encouraging the development of a
clean interface. For example, the difficulty of formally
specifying when stack overflow is detected pointed out the
need to better hide the stack cache from an application
programmer. The process of completing a formal
specification encourages the specifier to ‘‘look in the
corners’’ and consider unusual cases and boundary
conditions that are often sources of errors. To our surprise,
this process alone uncovered two errors in the microcode
that had not yet been discovered by traditional methods.
Formal specification also pointed out several situations
that the AAMP2 Reference Manual [1] and the AAMP5
design documents left unspecified or stated unclearly. This
seems to be a general deficiency of any English
specification and not of the AAMP documentation.

The process of performing mechanical proofs has
detected several errors in the formal macro and
micro–specifications. More importantly, the correctness
proofs systematically found two errors seeded in the
microcode. Our belief is that construction of a proof does
force a much more detailed review of the microcode than
is achieved through traditional methods such as
walkthroughs.

7.3 Cost of Formal Verification
The cost of developing and validating the macro and
micro–architecture specifications and developing the
proofs of correctness were significant, but many of these
expenses have to be attributed to the exploratory nature of
the project. Reuse of specifications, proof strategies, and
expertise should greatly reduce these costs in the future.
Some portions of the specification, such as the bit vector
theories, can be reused across a wide range of hardware
applications. For microprocessors in the AAMP family,
virtually the entire macro–architecture specification can
be reused. Even for new development, the examples
created in this project are rich enough to allow the
designers to write similar specifications, eliminating the
time spent by SRI in studying the AAMP5 and by Collins
in reviewing and revising the formal specifications.

A large portion of the time spent on the correctness
proofs was invested in the development of reusable proof
strategies rather than just proving the correctness of the
core set of instructions. Also, much of the overhead of
completing the proofs was due to inefficiencies in the
implementation of PVS then available. Improvements to
PVS incorporated as a direct result of this project rectify
most of these problems. Even so, formal verification is
likely to remain more expensive than traditional methods.

��

This should not be surprising. Traditional methods rely on
reviews, partial analyses, and testing a portion of the input
space. Proofs of correctness are a rigorous form of analysis
that verifies the design for all possible inputs. To provide
the same level of assurance, traditional methods would be
just as, if not more, expensive than formal methods.

7.4 Transferring Formal Methods to Industry

It is very difficult to inject new methodologies into an
industrial setting since one of the ways industry remains
competitive is to use tried and tested approaches within a
well understood problem domain. Despite their name,
formal methods provide remarkably little methodology to
guide their use in a new setting. The difficulties in
specifying and verifying a real–time executive are likely to
be very different from those of verifying microcode. Given
this, it seems prudent to plan for costs to be high the first
time around and to expect most of the benefits to appear on
subsequent projects of a similar nature. It is our belief that
the groundwork performed on this project will greatly
lower the cost of specifying and verifying another member
of the AAMP family, a hypothesis we plan to demonstrate
in the upcoming year.

We did not feel that it was particularly difficult for the
engineers at Collins to learn to use either the PVS language
or the theorem prover. In fact, it was much easier for them
to apply formal methods than it was for the formal methods
experts to become knowledgeable about the AAMP5. The
real problem was not how to use PVS, but how to build a
precise mathematical model of our own microprocessor.
Even so, widespread acceptance of a general purpose
specification language such as PVS or Z [21] by practicing
engineers is likely to be an uphill battle. A more productive
approach may be to develop specialized notations or
models that fit a specific problem domain and that can
automatically be translated into an underlying formalism
such as PVS. This would allow the domain experts to work
in a familiar and natural notation while a small group of
formal methods experts (and tools) check their work for
consistency and completeness.

In the near term, an important goal on future projects
will be to get formal specification integrated into the early
design effort. This will eliminate many of the costs of
developing and validating the specifications, particularly
if they can be used as the primary specification, not just as
an add–on. Enhancements to PVS could facilitate this. In
particular, integrating PVS with the standard document
preparation system used at Collins would allow us to
intersperse the formal specification with the text and
diagram style used currently, i.e., the ‘‘specification as a
document’’ concept promoted in Z and CaDiZ [21].

Validation of formal specifications is essential to have
confidence in the correctness proofs. We found inspections

worked well with formal specifications, were quite
inexpensive, and provided a natural vehicle for training.
Maximizing the independence of the teams producing the
specifications greatly increased our confidence in both the
proofs and the specifications. When combined with proofs
of correctness, this is a very powerful validation technique
that should not be overlooked. Other forms of validation
that could have been used more extensively in this project
include early proof of the type correctness conditions
generated by PVS and proving expected properties, or
putative theorems, of the specification. Even our limited
experience with proving putative theorems suggests that
this is a useful validation technique.

Full proofs of microcode correctness are a very rigorous
form of analysis, enabling one person to achieve a much
higher level of confidence than can now be achieved by a
team. Even so, there is very little in existing verification
practices that would be eliminated by formal proofs. It may
be possible to decrease the time spent on inspections, but
some level of peer review will still be necessary to ensure
good style, maintainability, and to check for issues not
modeled in the specifications. It may be possible to replace
some testing with proofs, but testing would not be
eliminated since it provides an important check on the
fidelity of the specifications and low level properties not
modeled in the specification. In the specific case of the
AAMP family, large libraries of simulations and
diagnostics have been built up over the years. These cost
very little to modify and execute, so it is unlikely that any
testing would be eliminated on future AAMP projects.

Formal methods provide the means to improve, not
replace, existing practices. Formal specification can play
an important role by improving the precision and clarity of
communication, particularly when the specification
language closely matches the problem domain. Formal
verification of selected properties can provide validation
of the specifications that would be particularly valuable
during early life–cycle activities such as requirements
capture. Finally, formal proofs of correctness provide a
rigorous analysis of the consistency between a specifica-
tion and its design appropriate when extremely high levels
of assurance are essential or when the complexity of
interacting components is so great that analysis is the only
adequate means of verification.

Acknowledgements – The authors thank Rick Butler of
NASA Langley for his support and refinement of the bit vectors
library, Sam Owre and Natarajan Shankar of SRI International for
the development and maintenance of PVS, and Al Mass and Dave
Greve of Rockwell International for their many hours on this
project. We also thank John Rushby of SRI and John Gee, Dave
Hardin, Doug Hiratzka, Ray Kamin, Charlie Kress, Norb
Hemesath, Steve Maher, Jeff Russell, and Roger Shultz of Rockwell
for their support and assistance.

��

References
[1] AAMP2 Advance Architecture Microprocessor II Reference

Manual, Collins Commercial Avionics, Rockwell Internation-
al Corporation, Cedar Rapids, Iowa 52498, February 1990.

[2] Barrett, G., Formal Methods Applied to a Floating–Point
Number System, IEEE Transactions on Software Engineer-
ing, Vol. 15, No. 5, pg. 611–621, May, 1989.

[3] Beatty, D. and R. Bryant, Formally Verifying a Microproces-
sor Using a Simulation Methodology, in Proceedings of the
31st Design Automation Conference, ACM, pg. 596–602,
June, 1994.

[4] Best, D., C. Kress, N. Mykris, J. Russel, and W. Smith, An Ad-
vanced–Architecture CMOS/SOS Microprocessor, IEEE Mi-
cro, pg. 11–26, August, 1982.

[5] Boyer, R. and J. Moore, A Computational Logic Handbook,
Academic Press, Inc.: San Diego, CA, 1988.

[6] Brock, S. and C. George, The RAISE Method Manual, Com-
puter Resources International A/S, 1990.

[7] Burch, J. and D. Dill, Automatic Verification of a Pipelined
Microprocessor Control, in Proceedings of Computer Aided
Verification (CAV’94), LNCS 818, pg. 68–80, June 1994.

[8] Butler, R., NASA Langley’s Research Program in Formal
Methods, in Proceedings of the Sixth Annual Conference on
Computer Assurance (COMPASS’91), pg. 157–162, Gai-
thersburg, MD, June 1991.

[9] Butler, R. and G. Finelli, The Infeasibility of Experimental
Quantification of Life–Critical Software Reliability, Software
Engineering Notes, Vol. 16, No.5, pg. 66–76, December 1991.

[10] Carter, W. , W. Joyner, Jr., and D. Brand, Microprogram Verifi-
cation Considered Necessary, in Proceedings of the National
Computer Conference, AFIPS, pg. 657–664, Vol. 48, 1978.

[11] Cook, J., Verification of the C/30 Microcode Using the State
Delta Verification System (SDVS), in Proceedings of the 13th
National Computer Security Conference, National Institute of
Standards and Technology/National Computer Security Cen-
ter, pg. 20–31, Washington, D.C., Oct. 1990.

[12] Cyrluk, D., S. Rajan, N. Shankar, and M. Srivas, Effective
Theorem Proving for Hardware Verification, in Preliminary
Proceedings of the Second Conference on Theorem Provers in
Circuit Design, Bad Herrenalb (Blackforest), Germany, R.
Kumar and T. Kropf, Editors, pg. 287–305, Forschungszen-
trum Informatik an der Universit’at Karlsruhe, FZI Publica-
tion, 1994.

[13] Divito, B., R. Butler, and J. Caldwell, High Level Design Proof
of a Reliable Computing Platform, in Dependable Computing
for Critical Applications – 2, J. Meyer and R. Schlichting, Edi-
tors, pg. 279–306, Springer Verlag: Vienna, Austria, February
1991.

[14] Gordon, M. and T. Melham, Introduction to HOL: A Theorem
Proving Environment for Higher–Order Logic, Cambridge
University Press: Cambridge, UK, 1993.

[15] Hunt Jr., W., FM8501: A Verified Microprocessor, Lecture
Notes in Artificial Intelligence, Vol. 795, Springer–Ver-
lag:Berlin, 1994.

[16] Hunt Jr., W. and B. Brock, A Formal HDL and its Use in the
FM9001 Verification, in Mechanized Reasoning and Hard-
ware Design, C. Hoare and M. Gordon, Editors, pg. 35–47,
Prentice Hall International Series in Computer Science: Hemel
Hempstead, UK, 1992.

[17] Gerhart, S., M. Bouler, K. Greene, D. Jamsek, T. Ralston, and
D. Russinoff, Formal Methods Transition Study Final Report,
MCC Report STP–FT–322–91, Microelectronics and Com-
puter Technology Corporation, Austin, Texas, August 1991.

[18] Leeman, G., W. Carter, and A. Birman, Some Techniques for
Microprogram Validation, in Information Processing 74,
Proc. IFIP Congress 1974, North–Holland Publishing Co.,
pg. 76–80, 1974.

[19] Littlewood, B. and L. Strigini, Validation of Ultra–High De-
pendability for Software–based Systems, Communications of
the ACM, Vol. 36, No. 11, pg. 69–80, November 1993.

[20] May, D., G. Barrett, and D. Shepherd, Designing Chips that
Work, in Mechanized Reasoning and Hardware Design, C.
Hoare and M. Gordon, Editors, pg. 3–19, Prentice Hall In-
ternational: Hemel Hempstead, UK, 1992.

[21] McDermid, J., Formal Software Development Using Z, York
Software Engineering Limited, a tutorial presented at the
Ninth Annual Conference on Computer Assurance (COM-
PASS’94), Gaithersburg, MD, June 27– July 1, 1994.

[22] Owre, S., J. Rushby, and N. Shankar, PVS: A Prototype Verifi-
cation System, In Deepak Kapur, Editor, 11th International
Conference on Automated Deduction, (CADE), pg. 748–752,
Saratoga, NY, June 1992, Vol. 607 of Lecture Notes in Artifi-
cial Intelligence, Springer–Verlag.

[23] Owre, S., J. Rushby, N. Shankar, and F. von Henke, Formal
Verification for Fault–Tolerant Architectures: Prolegomena
to the Design of PVS, to appear in IEEE Transactions on Soft-
ware Engineering, 1995.

[24] Pentium Processor User’s Manual, Volume 1: Pentium Pro-
cessor Data Book, Order Number 241428–001, Intel Corpora-
tion, 1993.

[25] Saxe J. and S. Garland, Using Transformations and Verifica-
tion in Circuit Design, Formal Methods in System Design,
Vol. 4, No. 1, pg. 181–210, 1994.

[26] Srivas, M., and M. Bickford, Formal Verification of a Pipe-
lined Microprocessor, IEEE Software, Vol. 7, No. 5, pg.
52–64, September, 1990.

[27] Srivas, M. and M. Bickford, Verification of the FtCayuga
Fault–Tolerant Microprocessor System, Volume 1: A Case
Study in Theorem Prover–Based Verification, NASA Contrac-
tor Report 4381, July 1991.

[28] Srivas, M. and S. Miller, Formal Verification of the AAMP5: A
Case Study in the Verification of a Commercial Microproces-
sor, to appear in Applications of Formal Methods, Michael G.
Hinchey and Jonathan P. Bowen, Editors, Prentice–Hall In-
ternational Series in Computer Science.

[29] Srivas, M. and S. Miller, Formal Verification of an Avionics
Microprocessor, to be submitted as a NASA Contractor Re-
port.

[30] Stavridou, V., Gordon’s Computer: A Hardware Verification
Case Study in OBJ3, Formal Methods in System Design,
Vol. 4, No. 3, pg. 265–310, 1994.

[31] Windley, P., K. Levitt, and G. Cohen, Formal Proof of the
AVM–1 Microprocessor Using the Concept of Generic Inter-
preters, NASA Contractor Report 187491, March 1991.

[32] Yu, Yuan, Automated Proofs of Object Code for a Widely Used
Microprocessor, DEC/SRC Research Report 114, October 5,
1993.

[33] Windley, P. and M. Coe, A correctness model for pipelined mi-
croprocessors, in Preliminary Proceedings of the Second Con-
ference on Theorem Provers in Circuit Design, Bad Herrenalb
(Blackforest), Germany, R. Kumar and T. Kropf, Editors, pg.
35–54, Forschungszentrum Informatik an der Universit’at
Karlsruhe, FZI Publication, 1994.

