
A Tutorial Introduction to PVSPresented at WIFT '95: Workshop on Industrial-Strength FormalSpeci�cation Techniques, Boca Raton, Florida, April 1995Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, Mandayam Srivas�Computer Science LaboratorySRI InternationalMenlo Park CA 94025 USAwww: http://www.csl.sri.com/sri-csl-fm.htmlUpdated June 1995AbstractThis document provides an introductory example, a tutorial, and a compact refer-ence to the PVS veri�cation system. It is intended to provide enough information toget you started using PVS, and to help you appreciate the capabilities of the systemand the purposes for which it is suitable.
�Dave Stringer-Calvert provided valuable comments on earlier versions of this tutorial, and also checkedthe speci�cations and proofs appearing here. Preparation of this tutorial was partially funded by NASALangley Research Center under Contract NAS1-18969, and by the Advanced Research Projects Agencythrough NASA Ames Research Center NASA-NAG-2-891 (Arpa order A721) to Stanford Unversity.

ContentsOverview 1I Introduction to Mechanized Analysis of Speci�cations Using PVS 31 Introduction 52 An Electronic Phone Book: Simple Version 53 A Better Version of the Speci�cation Using Sets 164 Version of the Speci�cation That Maintains An Invariant 205 Summary 25II Tutorial on Using PVS 271 Introducing PVS 291.1 Design Goals for PVS : 301.2 Uses of PVS : 311.3 Getting and Using PVS : 312 A Brief Tour of PVS 322.1 Creating the Speci�cation : 332.2 Parsing : 342.3 Typechecking : 342.4 Proving : 352.5 Status : 382.6 Generating LATEX : 383 The PVS Language 403.1 A Simple Example: The Rational Numbers : : : : : : : : : : : : : : : : : : 403.2 A More Sophisticated Example: Stacks : 433.3 Implementing Stacks : 443.4 Using Theories: Partial and Total Orders : : : : : : : : : : : : : : : : : : : 463.5 Using Theories: Sort : 473.6 Sets in Higher-order Logic : 513.7 Recursion : 523.8 Dependent Typing : 533.9 Abstract Datatypes: Stacks : 543.10 Abstract Datatypes: Terms : 56i

Contents4 The PVS Proof Checker 574.1 Introduction : 574.2 Preliminaries : 594.3 Using the Proof Checker : 60Propositional Proof Commands : 60Quanti�er Proof Commands : 66Decision Procedures : 68Using De�nitions and Lemmas : 73Proof Checker Pragmatics : 755 Two Hardware Examples 765.1 A Pipelined Microprocessor : 77Informal Description : 77Formal Speci�cation : 78Proof of Correctness : 815.2 An N-bit Ripple-Carry Adder : 84Typechecking : 85Proof of Adder correct n : 866 Exercises 88III PVS Reference 891 PVS Files 912 PVS Language Summary 923 PVS Emacs Commands 984 PVS Prover Commands 103References 108
ii

OverviewOverviewPVS is a veri�cation system: an interactive environment for writing formal speci�cationsand checking formal proofs. It builds on nearly 20 years experience at SRI in buildingveri�cation systems, and on substantial experience with other systems. The distinguishingfeature of PVS is its synergistic integration of an expressive speci�cation language andpowerful theorem-proving capabilities. PVS has been applied successfully to large anddi�cult applications in both academic and industrial settings.PVS provides an expressive speci�cation language that augments classical higher-orderlogic with a sophisticated type system containing predicate subtypes and dependent types,and with parameterized theories and a mechanism for de�ning abstract datatypes such aslists and trees. The standard PVS types include numbers (reals, rationals, integers, naturals,and the ordinals to �0), records, tuples, arrays, functions, sets, sequences, lists, and trees, etc.The combination of features in the PVS type-system is very convenient for speci�cation, butit makes typechecking undecidable. The PVS typechecker copes with this undecidability bygenerating proof obligations for the PVS theorem prover. Most such proof obligations canbe discharged automatically. This liberation from purely algorithmic typechecking allowsPVS to provide relatively simple solutions to issues that are considered di�cult in someother systems (for example, accommodating partial functions such as division within a logicof total functions), and it allows PVS to enforce very strong checks on consistency and otherproperties (such as preservation of invariants) in an entirely uniform manner.PVS has a powerful interactive theorem prover/proof checker. The basic deductive stepsin PVS are large compared with many other systems: there are atomic commands for induc-tion, quanti�er reasoning, automatic conditional rewriting, simpli�cation using arithmeticand equality decision procedures and type information, and propositional simpli�cationusing binary decision diagrams. The PVS proof checker manages the proof constructionprocess by prompting the user for a suitable command for a given subgoal. The executionof the given command can either generate further subgoals or complete a subgoal and movethe control over to the next subgoal in a proof. User-de�ned proof strategies can be usedto enhance the automation in the proof checker. Model-checking capabilities used for auto-matically verifying temporal properties of �nite-state systems have recently been integratedinto PVS. PVS's automation su�ces to prove many straightforward results automatically;for hard proofs, the automation takes care of the details and frees the user to concentrateon directing the key steps.PVS is implemented in Common Lisp|with ancillary functions provided in C, Tcl/TK,and LATEX|and uses GNU Emacs for its interface. Con�gured for Sun SparcWorkstationsrunning under SunOS 4.1.3, the system is freely available under license from SRI.PVS has been used at SRI to undertake proofs of di�cult fault-tolerant algo-rithms [LR93a,LR93b,LR94], to verify the microcode for selected instructions of a complex,pipelined, commercial microprocessor having 500,000 transistors where seeded and unseedederrors were found [MS95], to provide an embedding for the Duration Calculus (an intervaltemporal logic [SS94]), and for several other applications. PVS is installed at many sitesworldwide, and is in serious use at about a dozen of them. There is a growing list of sig-ni�cant applications undertaken using PVS by people outside SRI. Many of these can beexamined at the WWW site http://www.csl.sri.com/sri-csl-fm.html.1

OverviewThis tutorial is intended to give you an idea of the
avor of PVS, of the opportunitiescreated by e�ective mechanization of formal methods, and an introduction to the use of thesystem itself. PVS is a big and complex system, so we can really only scratch the surfacehere. To make advanced use of the system, you should study the manuals (there are threevolumes: language [OSR93a], prover [SOR93], and system [OSR93b]), and some of the moresubstantial applications.There are three parts to this tutorial.� An Introduction to the Mechanized Analysis of Requirements Speci�cations UsingPVS. This tutorial introduction shows how PVS can be used to actively explore andanalyze a simple requirements speci�cation. It is intended to demonstrate the utilityof mechanized support for formal methods, and the opportunities for validation andexploration that are created by e�ective mechanization.� Tutorial on Using PVS. This introduces many of the capabilities of PVS by means ofsimple examples and takes you through the process of using the system. While it canbe read as an overview, it is best to have PVS available and to actively follow along.� PVS Reference. This presents all PVS system and prover commands, and illustratesthe language constructs in a very compact form.A useful supplement to the material presented here is [ORSvH95], which describes someof the larger veri�cations undertaken using PVS and also motivates and describes some ofthe design decisions underlying PVS.

2

Part IIntroduction to MechanizedAnalysis of Speci�cations UsingPVS

3

4

Analyzing Speci�cations Using PVS1 IntroductionSimply using a formal notation does not ensure that speci�cations will be correct: writing acorrect formal speci�cation is no easier than writing a correct program or a correct descrip-tion in English. Speci�cations|especially requirements speci�cations, where there is nohigher-level speci�cation against which they can be veri�ed|need to be validated againstinformal expectations. This is generally done by human review and inspection (which canbe very formalized processes), but with formal speci�cations it is possible to do more.The distinctive feature of formal speci�cations is that they support formal deduction:it is possible to reduce certain questions about a formal speci�cation to a process thatresembles calculation and that can be checked by others or by machine. Thus, reviews andinspections can be supplemented by analyses of formal speci�cations, and those analysescan be mechanically checked.In order to conduct mechanized analysis, it is necessary to support a speci�cation lan-guage with powerful tools including, primarily, a theorem prover. The needs of e�cienttheorem proving drive speci�cation language design in slightly di�erent directions than forunmechanized notations such as Z, but the presence of mechanization also creates newlinguistic opportunities|such as allowing typechecking to use theorem proving|that canenhance the clarity and precision of speci�cations.PVS is a veri�cation system: a speci�cation language tightly integrated with a powerfultheorem prover and other tools. This document is intended to serve as a �rst introductionto PVS: it is not intended to teach the details of the PVS language and theorem prover,but rather to give an appreciation of the opportunities created by mechanized analysis ingeneral, and of some of the capabilities of PVS in particular.2 An Electronic Phone Book: Simple VersionSuppose we are to formally specify the requirements for an electronic phone book, giventhe following informal description.1� A phone book shall store the phone numbers of a city� It shall be possible to retrieve a phone number given a name� It shall be possible to add and delete entries from a phone bookExamining this description, we see that there are three types of entities mentioned:phone books, phone numbers and names ; a phone book provides an association betweennames and phone numbers. We need three operations, which we can call FindPhone,AddPhone, and DelPhone. FindPhone should take a phone book and a name and returnthe phone number associated with that name. The exact functionality of the other twooperations is less clear, so we have to make some design decisions. We decide that AddPhoneshould take a phone book, a name, and a phone number and should add the association1This example is based on one by Ricky Butler and Sally Johnson of NASA Langley [BJ93].5

Phone Book: Simple Version Analyzing Speci�cations Using PVSbetween the name and number to the phone book; and that DelPhone should take a phonebook and a name and delete the phone number associated with that name (if any).The next step is decide how to represent these entities and operations in PVS. Ifwe were programming, we would have to choose some speci�c representations for phonenumbers and names|e.g., ascii strings, or more structured representations such as recordscontaining the area-code and number|and would have to make several design decisions atthis point. But for requirements speci�cation, all we require is that phone numbers andnames are distinguishable types of entities. In PVS, we can specify this as follows (a % signintroduces a comment that extends to the end of the line).N: TYPE % namesP: TYPE % phone numbersThese types are uninterpreted , meaning that we know nothing about their members|noteven whether they are zero, many, or in�nite in number|except that elements of type Nare distinguishable from those of type P, and that there is an equality predicate on eachtype (i.e., given two Ps, it is possible to tell whether they are the same or not).Next, we need to describe how phone books|associations between names and numbers|are to be represented. There are several possibilities: one is to record each association asa (name, phone number) pair, so that a phone book is a set of such pairs; another is asa function from names to phone numbers (you can think of a function as an array if thatnotion is more familiar to you). PVS is able to reason very e�ectively with functions, sothere is some advantage to the latter representation. We can specify this as follows.B: TYPE = [N -> P] % phone booksThis says that phone books have the type B, and are functions from names to phone numbers.We must recognize that not all names will be in every phone book|a phone book onlyrecords those names that have a phone number|so we need some way to distinguish thosenames that have a phone number from those that do not. In the speci�cation language Z, forexample, this would be accomplished by specifying that phone books are partial functions.E�cient theorem proving, however, strongly encourages use of total functions, so PVS isa logic of total functions.2 One way to indicate that a name has no phone number is toidentify some particular phone number, represented by n0 say, to indicate this fact. Ofcourse we need to mentally make note that this number must be di�erent from any \real"phone number (we will see later how we can enforce this requirement, and later still we willsee a better way to deal this whole issue of names that have no phone number). Give thisdecision, we can next specify the empty phone book as the (unique) phone book that mapsall names to n0. I will specify this axiomatically, later we will see how to do it de�nitionally.n0: Pemptybook: Bemptyax: AXIOM FORALL (nm: N): emptybook(nm) = n02PVS can represent partial functions very nicely using dependent types, but that is an advanced topic.6

Analyzing Speci�cations Using PVS Phone Book: Simple VersionIf we were programming an implementation, a literal translation of this representation wouldbe grossly ine�cient: it requires \space" for every possible name and it explicitly recordsfor every name that there is no number associated with the name. When programming, wewould seek more compact representations that traded o� space for e�cient access|perhapsa hash table or balanced binary tree. In requirements speci�cation, however, the idea issimply to record the functionality required, and it is not our concern to suggest an e�cientimplementation.We can specify the FindPhone operation as a function that takes a phone book and aname and returns the phone number associated with that name.FindPhone: [B, N -> P]Findax: AXIOM FORALL (bk: B), (nm: N): FindPhone(bk, nm) = bk(nm)Notice that this is a functional speci�cation style: the \state" of the system we are interestedin (i.e., the phone book) is passed to the FindPhone function as an argument; this is incontrast to a more procedural style of speci�cation (as in Z, for example), where thereis a built-in notion of state. Functional speci�cations use conventional logic and can bemechanized straightforwardly, whereas procedural speci�cations involve some kind of Hoarelogic|for which it is rather more di�cult to provide mechanized deduction.The distinction between functional and procedural kinds of speci�cation is revealedmore clearly in the case of our next operation, AddPhone. In a procedural speci�cation,this operation would update the state of the phone book \in place." In the functional styleused here, we model the operation by a function that takes a phone book, a name, and anumber, and gives us back a \new" phone book in which the association between the nameand number has been added.AddPhone: [B, N, P -> B]Addax: AXIOM FORALL (bk: B), (nm: N), (pn: P):AddPhone(bk, nm, pn) = bk WITH [(nm) := pn]The WITH construct is similar to function overriding in Z.Now that we have speci�ed two operations, perhaps we should check our understandingof them. If we were programming, we might run a couple of test cases. Some people advocatesomething similar (often called \animation") for speci�cations. This is generally feasibleonly with speci�cations that have a constructive character (i.e., that are essentially veryhigh-level programs). Not all speci�cations are best presented in this way, however, so thedesire to make speci�cations executable can distort their other characteristics. Another wayto probe a speci�cation is by means of \formal challenges." These are putative theorems:general statements that we think should to be true if our speci�cation says what it oughtto. This can yield more information than an individual test case (it is generally equivalentto running a whole class of test cases), and uses theorem proving (i.e., search), rather thandirect execution, so it is possible even when the speci�cation is not constructive. (If thespeci�cation is constructive|as in this example|then theorem proving generally comesdown to symbolic execution and is very e�cient.) A suitable challenge for the speci�cationwe have so far is: \if I add a name nm with phone number pn to a phone book and look upthe name nm, I should get back the phone number pn." We can write this as follows.7

Phone Book: Simple Version Analyzing Speci�cations Using PVSFindAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):FindPhone(AddPhone(bk, nm, pn), nm) = pnIn order to test this conjecture, we have to extend the speci�cation into a completePVS \theory" (as modules are called in PVS). This is shown in Figure 1. Then we loadthe speci�cation into PVS, parse and typecheck it, and start the prover. The mechanics ofdoing this are described in other PVS tutorial documents. Brie
y, PVS uses an extendedGNU Emacs as its interface, and PVS system functions are invoked by Emacs keystrokes.To invoke the prover, for example, place the cursor on the CONJECTURE and type M-x prove(this will automatically parse and typecheck if necessary).phone_1: THEORYBEGINN: TYPE % namesP: TYPE % phone numbersB: TYPE = [N -> P] % phone booksn0: Pemptybook: Bemptyax: AXIOM FORALL (nm: N): emptybook(nm) = n0FindPhone: [B, N -> P]Findax: AXIOM FORALL (bk: B), (nm: N): FindPhone(bk, nm) = bk(nm)AddPhone: [B, N, P -> B]Addax: AXIOM FORALL (bk: B), (nm: N), (pn: P):AddPhone(bk, nm, pn) = bk WITH [(nm) := pn]FindAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):FindPhone(AddPhone(bk, nm, pn), nm) = pnEND phone_1Figure 1: Speci�cation Ready for Checking the First ChallengeStarting the prover on the FindAdd conjecture produces the following display.FindAdd :|-------f1g FORALL (bk: B), (nm: N), (pn: P): FindPhone(AddPhone(bk, nm, pn), nm) = pnRule?This is a sequent : in general there will be several numbered formulas above the turnstilesymbol |-------, and several below. The idea is that we have to establish that the conjunc-tion (and) of the formulas above the turnstile implies the disjunction (or) of the formulas8

Analyzing Speci�cations Using PVS Phone Book: Simple Versionbelow the line. The Rule? prompt indicates that PVS is waiting for us to type a provercommand. These use lisp syntax, with pieces of PVS syntax embedded in quotes: forexample: (grind :theories ("phone 1")).This introduction is intended to describe the purpose and value of mechanized theoremproving in analysis of requirements speci�cation; it is not intended as a tutorial on thePVS prover, so I will not explain all the various choices and considerations at each step.The prover provides a number (about 20) basic commands, and a similar-sized collection ofhigher-level commands called \strategies" that are programmed using the basic commands.You type a command at the Ready? prompt, and the prover applies the command andpresents you with the transformed sequent and another prompt. When the prover recognizesthat a sequent is trivially true, it terminates that branch of the proof. Some commands maysplit the proof into branches, in which case you will be presented with one of the branches,and the others will be remembered and popped up when the current branch terminates.When all branches are terminated the theorem is proved.On straightforward theorems (and the straightforward parts of di�cult theorems), it isgenerally best to use the highest-level, most automated strategies, and only to resort tothe basic commands for crucial steps. The highest-level strategy is called grind. It doesskolemization, heuristic instantiation, propositional simpli�cation (using BDDs), if-lifting,rewriting, and applies decision procedures for linear arithmetic and equality. It takes severaloptional arguments which mostly supply the names of the formulas that can be used forautomatic rewriting (i.e., replacing of an instance of the left hand side of an equation bythe corresponding instance of the right hand side). In this case, we need to tell it that allthe de�nitions and axioms in the theory phone 1 may be used as rewrites. The commandabove does this, and is su�cient to prove the challenge.Rule? (grind :theories ("phone_1"))Addax rewrites AddPhone(bk, nm, pn)to bk WITH [(nm) := pn]Findax rewrites FindPhone(bk WITH [(nm) := pn], nm)to pnTrying repeated skolemization, instantiation, and if-lifting,Q.E.D.Encouraged by this small con�rmation that we are on the right track we can return tospecifying the DelPhone operation. This is speci�ed in a similar way to AddPhone.DelPhone: [B, N -> B]Delax: AXIOM FORALL (bk: B), (nm: N): DelPhone(bk, nm) = bk WITH [(nm) := n0]We can similarly test our understanding of this speci�cation by checking the intuitionthat adding a name and phone number to a book and then deleting them leaves the bookunchanged.DelAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):DelPhone(AddPhone(bk, nm, pn), nm) = bk9

Phone Book: Simple Version Analyzing Speci�cations Using PVSThe same proof strategy as before fails to prove the conjecture and produces the followingresult.DelAdd :|-------f1g FORALL (bk: B), (nm: N), (pn: P): DelPhone(AddPhone(bk, nm, pn), nm) = bkRule? (grind :theories ("phone_1"))Addax rewrites AddPhone(bk, nm, pn)to bk WITH [(nm) := pn]Delax rewrites DelPhone(bk WITH [(nm) := pn], nm)to bk WITH [(nm) := pn] WITH [(nm) := n0]Trying repeated skolemization, instantiation, and if-lifting, this simplifies to:DelAdd :|-------f1g bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0] = bk!1Rule?The identi�ers with ! in them are Skolem constants|arbitrary representatives for quanti-�ed variables. This sequent is requiring us to prove that two functions (i.e., phone books)are the same: one that has been modi�ed by adding a name and then removing it, anotherthat is unchanged. To prove that two functions are the same, we appeal to the principle ofextensionality , which says that this is so if the values of the two functions are identical forevery point in their domains.Rule? (apply-extensionality)Applying extensionality, this simplifies to:DelAdd :|-------f1g bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0](x!1) = bk!1(x!1)[2] bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0] = bk!1Rule? (delete 2)Deleting some formulas, this simplifies to:DelAdd :|-------[1] bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0](x!1) = bk!1(x!1)Rule?It is always possible to delete formulas from a sequent; here I have deleted the originalformula to reduce clutter, since it is the extensional form that is interesting. This se-quent is asking us to show that the phone number associated with an arbitrary name x!1is the same both before and after the phone book has been updated for name nm!1. A10

Analyzing Speci�cations Using PVS Phone Book: Simple Versioncase-analysis is appropriate here, according to whether or not x!1 = nm!1. This can beaccomplished by the (lift-if) command, which converts WITH expressions to their corre-sponding IF-THEN-ELSE form. The (ground) command (a slightly less muscular commandthan (grind)) then takes care of the various cases, except for one.DelAdd :|-------[1] bk!1 WITH [(nm!1) := pn!1] WITH [(nm!1) := n0](x!1) = bk!1(x!1)Rule? (lift-if)Lifting IF-conditions to the top level,this simplifies to:DelAdd :|-------f1g IF nm!1 = x!1 THEN n0 = bk!1(x!1)ELSE IF nm!1 = x!1 THEN n0 = bk!1(x!1)ELSE bk!1(x!1) = bk!1(x!1)ENDIFENDIFRule? (ground)Applying propositional simplification and decision procedures,this simplifies to:DelAdd :f-1g nm!1 = x!1|-------f1g n0 = bk!1(x!1)Rule?(A (grind) command would have performed both these steps.) For this sequent to be true,we need to to demonstrate that if x!1 = nm!1, then the phone number originally associatedwith x!1 is the special number n0. But, by virtue of the equality, this is the same as askingus to prove that the phone number originally associated with nm!1 is n0|and there isno reason why this should be true! Suddenly, we understand the problem: if the numberassociated with nm!1 beforehand was a real phone number, nm!2, say, then the AddPhoneoperation changes the association to the new number, and the DelPhone operation changesit again to n0|which is not equal to nm!2. Thus our conjecture is only true under theassumption that the name we add to the phone book currently has no number associatedwith it. We can test this by modifying the conjecture as follows.DelAdd2: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):FindPhone(bk, nm) = n0 => DelPhone(AddPhone(bk, nm, pn), nm) = bkAnd the (grind :theories ("phone 1")) strategy proves this.Another conjecture is that the result of adding a name and then deleting it is the sameas just deleting it. 11

Phone Book: Simple Version Analyzing Speci�cations Using PVSDelAdd3: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):DelPhone(AddPhone(bk, nm, pn), nm) = DelPhone(bk, nm)The (grind :theories ("phone 1")) strategy proves this conjecture also.Notice how our inability to prove the original DelAdd conjecture exposed a de�ciencyin our speci�cation and led us to discover the source of the de�ciency. Individual test casesmight have missed the particular circumstance that exposes the problem, but the strictrequirements of mechanically checked proof systematically led us to examine all the casesuntil we discovered the one that manifested the problem.Another conjecture we might try to prove is that after adding a name and phone numberto the phone book, the number stored for that name is a \real" number (i.e., not n0).KnownAdd: CONJECTURE FORALL (bk: B), (nm: N), (pn: P):FindPhone(AddPhone(bk, nm, pn), nm) /= n0The same kind of exploration with the prover will rapidly show that this is unprovablebecause there is nothing that requires the pn argument to AddPhone to be a \real" phonenumber.Our exploration of this speci�cation has revealed a couple of de�ciencies.1. AddPhone has the side e�ect of changing the phone number when applied to someonewho already has a number.2. Our speci�cation does not rule out the possibility of giving someone n0 as a phonenumberWe can deal with the second de�ciency by introducing a type GP of \good phone num-bers" as a subtype of P, with the constraint that n0 is not a member of GP. In PVS, this isdone by means of a predicate subtype, which can be written as follows.GP: TYPE = f pn: P | pn /= n0 gWe will see later that predicate subtypes are a very powerful element of the PVS speci�cationlanguage. Here we can make simple use of them by changing the signature of the AddPhonefunction from [B, N, P -> B] to [B, N, GP -> B], and this will automatically preventthe addition of n0 to a phone book as a real number.We can deal with the �rst de�ciency noted above by dividing the functionality ofAddPhone in two: the revised AddPhone will make no change to the phone book if the nameconcerned already has a phone number, and the new ChangePhone operator will change anexisting number, but will not add a number to a name that currently lacks one.In order to specify these functions, it is convenient to add a predicate Known? that takesa phone book and a name and returns true if that name has a \real" phone number in thebook concerned. (A predicate is just a function whose range type is boolean.) This can bespeci�ed as follows. 12

Analyzing Speci�cations Using PVS Phone Book: Simple VersionKnown?: [B, N -> bool]Known_ax: AXIOM FORALL (bk: B), (nm: N): Known?(bk, nm) = (bk(nm) /= n0)This axiomatic style of speci�cation has the disadvantage that axioms can introduceinconsistencies. An individual axiom is seldom dangerous: rather, danger lies in the inter-actions among several axioms. For example, with the original signature and de�nition ofAddPhone, adding the following axiom to that above yields an inconsistent speci�cation.Whoops: AXIOM FORALL (bk: B), (nm: N), (pn, P): Known?(AddPhone(bk, nm, pn), nm)Inconsistent speci�cations are dangerous because they can be used to prove anythingat all,3 and because they cannot be implemented. It is disturbingly easy to introduceinconsistent axioms, so it is generally best to use them sparingly. Axioms are really neededonly when it is necessary to constrain (rather than fully de�ne) the values of a function,or when it is necessary to constrain the interactions of several functions. When the intentis to fully de�ne the values of a function, it is generally better to state it as a de�nition,since PVS will then check that it is indeed a \conservative extension" (and therefore doesnot introduce an inconsistency).The predicate Known? can be introduced by means of a de�nition by replacing the twolines used earlier (the speci�cation of its signature and axiom) by the following single line.Known?: [B, N -> bool] = LAMBDA (bk: B), (nm: N): bk(nm) /= n0The use of LAMBDA notation can be a little daunting, so PVS allows an alternative, \ap-plicative," form of de�nition as follows.Known?(bk: B, nm: N): bool = bk(nm) /= n0The need to specify the types of the variables in this declaration can be eliminated bydeclaring them separately.bk: VAR Bnm: VAR NKnown?(bk, nm): bool = bk(nm) /= n0In this way, the previous axiomatic speci�cation for AddPhone can be changed to the fol-lowing de�nition, which incorporates the re�nement that the function does not change thephone book if the name already has a number known for it.gp: VAR GPAddPhone(bk, nm, gp): B =IF Known?(bk, nm) THEN bk ELSE bk WITH [(nm) := gp] ENDIF3For example, when used in conjunction with the AXIOMs emptyax, Known ax, and Addax, Whoops allowsus to prove true = false. 13

Phone Book: Simple Version Analyzing Speci�cations Using PVSWe can check that these changes provide some of the properties we expect by consideringthe following formal challenge.KnownAdd: CONJECTURE FORALL bk, nm, gp: Known?(AddPhone(bk, nm, gp), nm)This says that a name is de�nitely known (i.e., has a \real" phone number) after applyingAddPhone to it. Notice that since the variables bk, nm, and gp have already been declared,there is no need to specify their types in the FORALL construction. In fact, there is no needto provide the FORALL construction at all: the following speci�cation is equivalent to theone above, since PVS automatically interprets \free" variables as universally quanti�ed atthe outermost level.KnownAdd: CONJECTURE Known?(AddPhone(bk, nm, gp), nm)This conjecture is easily proved by the grind strategy.Proceeding in this way, we can construct the theory phone 2 shown in Figure 2. All theconjectures in that theory are proved by the simple command (grind). There is no need tospecify auto-rewriting of the phone 2 theory, since de�nitions are automatically availablefor rewriting (another advantage that they have over axioms).If we try to add the dangerous AXIOM Whoops to this new speci�cation, PVS will notethat the third argument supplied to Addphone (pn) is a P, whereas the signature of AddPhonesays it requires a GP in this position. PVS allows a value of a supertype to be used whereone of a subtype is required, provided the value can be proven, in its context, to satisfythe predicate of the subtype concerned. The corresponding proof obligation is generatedautomatically by PVS as a Type-Correctness Condition (TCC). PVS does not consider aspeci�cation fully typechecked until all its TCCs have been proved (though you can postponedoing the proof until convenient). TCCs are displayed by the command M-x show-tccs; inthe present case, the TCC generated by Whoops is the following.% Subtype TCC generated (line 37) for pn% untriedwhoops_TCC1: OBLIGATION (FORALL (pn: P): pn /= n0);This is obviously unproveable (and untrue!), and the folly of adding the axiom Whoops isthereby brought to our attention.Notice that if the pn in Whoops is changed to gp, then the formula not only becomesharmless (and no TCC is generated), but a proveable consequence of the de�nitions.
14

Analyzing Speci�cations Using PVS Phone Book: Simple Versionphone_2: THEORYBEGINN: TYPE % namesP: TYPE % phone numbersB: TYPE = [N -> P] % phone booksn0: PGP: TYPE = fpn: P | pn /= n0gnm: VAR Npn: VAR Pbk: VAR Bgp, gp1, gp2: VAR GPemptybook(nm): P = n0FindPhone(bk, nm): P = bk(nm)Known?(bk, nm): bool = bk(nm) /= n0AddPhone(bk, nm, gp): B =IF Known?(bk, nm) THEN bk ELSE bk WITH [(nm) := gp] ENDIFChangePhone(bk, nm, gp): B =IF Known?(bk, nm) THEN bk WITH [(nm) := gp] ELSE bk ENDIFDelPhone(bk, nm): B = bk WITH [(nm) := n0]FindAdd: CONJECTURENOT Known?(bk, nm) => FindPhone(AddPhone(bk, nm, gp), nm) = gpFindChange: CONJECTUREKnown?(bk, nm) => FindPhone(ChangePhone(bk, nm, gp), nm) = gpDelAdd: CONJECTUREDelPhone(AddPhone(bk, nm, gp), nm) = DelPhone (bk, nm)KnownAdd: CONJECTURE Known?(AddPhone(bk, nm, gp), nm)AddChange: CONJECTUREChangePhone(AddPhone(bk, nm, gp1), nm, gp2) =AddPhone(ChangePhone(bk, nm, gp2), nm, gp2)END phone_2 Figure 2: Revised Speci�cation15

Phone Book: Better Version Analyzing Speci�cations Using PVS3 A Better Version of the Speci�cation Using SetsThe realization that AddPhone had the e�ect of changing the phone number associated witha name if that name already had a phone number led us to revise the speci�cation so thatAddPhone has no e�ect when the name already has a phone number. This treatment assumesthat names can have at most one phone number associated with them. On re
ection, orafter consultation with the customer, we may decide that it is better to allow names tohave multiple numbers associated with them. We can accommodate this by changing therange of the phone book function from a single phone number to a set of phone numbersas follows.B: TYPE = [N -> setof[P]] % phone booksThis approach has the bene�t that we now have a \natural" representation for names thatdo not have phone numbers: they can be associated with the emptyset of phone numbers.A speci�cation based on this approach is shown in Figure 3. The set-constructingfunctions such as add, remove, emptyset, etc., and the predicates on sets such as disjoint?are de�ned in a PVS prelude (i.e., built-in) theory called set. You can inspect this theorywith the command M-x view-prelude-theory. A rather more attractive rendition of thisspeci�cation is shown in Figure 4; this is produced by the command M-x latex-theory,which typesets the speci�cation using LATEX.The �rst conjecture in this speci�cation is easily proved using (grind). The second onerequires the more complex proof shown below.("" (GRIND)(APPLY-EXTENSIONALITY)(DELETE 2)(LIFT-IF)(GROUND)(APPLY-EXTENSIONALITY)(DELETE 2)(GRIND))This is the form in which PVS proofs are stored for later replay.We have speci�ed single additions to the phone book, but it seems likely that bulkadditions will also be necessary. This will give us an opportunity to explore some moreadvanced features of the PVS language and prover. We would like to specify a functionAddList, say, that takes a phone book and some collection of names and phone numbersand adds all of those names and phone numbers to the phone book. Each name-and-numberis a pair, which can be represented in PVS by the tuple-type [N, P]. We could representa collection of such pairs by either a sequence, or a list|a list is most convenient here,and is represented in PVS by the type list[[N, P]]. In this expression, the outermostbrackets enclose the type parameter (here [N, P]) to the generic list theory (e.g., a listof phone numbers would be list[P]). In order to process such a list, we specify AddListas a recursive function that returns the phone book it is given if the list is empty, andotherwise recurses by applying the tail of the list to the phone book that results fromapplying AddPhone to the �rst name and number pair in the list.16

Analyzing Speci�cations Using PVS Phone Book: Better Version
phone_3 : THEORYBEGINN: TYPE % namesP: TYPE % phone numbersB: TYPE = [N -> setof[P]] % phone booksnm, x: VAR Npn: VAR Pbk: VAR Bemptybook(nm): setof[P] = emptyset[P]FindPhone(bk, nm): setof[P] = bk(nm)AddPhone(bk, nm, pn): B = bk WITH [(nm) := add(pn, bk(nm))]DelPhone(bk,nm): B = bk WITH [(nm) := emptyset[P]]DelPhoneNum(bk,nm,pn): B = bk WITH [(nm) := remove(pn, bk(nm))]FindAdd: CONJECTURE member(pn, FindPhone(AddPhone(bk, nm, pn), nm))DelAdd: CONJECTURE DelPhoneNum(AddPhone(bk, nm, pn), nm, pn) =DelPhoneNum(bk, nm, pn)END phone_3 Figure 3: Speci�cation Using Set Constructions

17

Phone Book: Better Version Analyzing Speci�cations Using PVS
phone 3: theorybeginN : typeP : typeB: type = [N ! setof[P]]nm; x: var Npn: var Pbk: var Bemptybook(nm): setof[P] = ;PFindPhone(bk; nm): setof[P] = bk(nm)AddPhone(bk; nm; pn): B = bk with [(nm) := fpng [bk(nm)]DelPhone(bk; nm): B = bk with [(nm) := ;P]DelPhoneNum(bk; nm; pn): B = bk with [(nm) := bk(nm) n fpng]FindAdd: conjecture pn 2 FindPhone(AddPhone(bk; nm; pn); nm)DelAdd: conjectureDelPhoneNum(AddPhone(bk; nm; pn); nm; pn) = DelPhoneNum(bk; nm; pn)end phone 3Figure 4: LATEX-Printed Version of the Speci�cation in Figure 3

18

Analyzing Speci�cations Using PVS Phone Book: Better Versionupdates: VAR list[[N, P]]AddList(bk, updates): RECURSIVE B =CASES updates OFnull: bk,cons(upd, rest): AddList(AddPhone(bk, proj_1(upd), proj_2(upd)), rest)ENDCASESMEASURE length(updates)In this speci�cation, the CASES expression introduces a pattern-matching enumerationover the constructors of an abstract data type (here, list), and the proj i functionsproject out the i'th member of a tuple. The MEASURE clause indicates the argument thatdecreases across recursive calls (more generally, it speci�es a function of the arguments, andan ordering relation according to which it decreases). PVS uses the MEASURE to generate aTCC to ensure that the function is total (i.e., that the recursion always \terminates"). Inthis case, the TCC is% Termination TCC generated (line 48) for AddListAddList_TCC1: OBLIGATION(FORALL (rest: list[[N, P]], upd: [N, P], updates: list[[N, P]]):updates = cons[[N, P]](upd, rest)IMPLIES length[[N, P]](rest) < length[[N, P]](updates))and it is proved automatically by PVS's standard strategy for proving TCCs (this strategy,called (tcc), is a variety of (grind)).The list datatype is speci�ed in the PVS prelude using the datatype construction(similar to a \free type" in Z).list [T: TYPE]: DATATYPEBEGINnull: null?cons (car: T, cdr:list):cons?END listThis speci�es that list is a datatype that takes a single type parameter and has constructorsnull and cons, with corresponding recognizers and predicate subtypes null? and cons?,and accessors car and cdr. This speci�cation expands internally into many axioms andde�nitions that are guaranteed to be conservative (i.e., not to introduce inconsistencies),and that are used very e�ciently by the prover.To validate our understanding of this function, we can try a couple of challenges. Areasonable expectation is that if a number is a member of the set of phone numbers for agiven name, then it is still a member of that set after an arbitrary list of names and phonenumbers have been added to the phone book.AddList_member: CONJECTUREmember(pn, FindPhone(bk, nm)) =>member(pn, FindPhone(AddList(bk, updates), nm))19

Phone Book: Version with Invariant Analyzing Speci�cations Using PVSLike most conjectures involving recursively-de�ned functions, this one requires a proof byinduction. PVS provides some powerful strategies for inductive proofs. Here, the singlestrategy (induct-and-simplify "updates" :defs t) is su�cient to prove the challenge.The argument "updates" is the name of the variable on which to induct, and :defs tinstructs PVS that it may treat all de�nitions as rewrites. PVS automatically selects thecorrect induction rule (here, induction on lists), based on the type of the induction variable.The induction rule itself is de�ned automatically as part of the expansion of the listdatatype de�nition.A rather more complicated conjecture is that the set of phone numbers associated witha given name is unchanged when a list of names and phone numbers are added to the phonebook if the given name is not mentioned in the list. This can be speci�ed as follows.FindList: CONJECTURE(every! (upd:[N, P]): proj_1(upd)/=nm) (updates) =>FindPhone(AddList2(bk, updates), nm) = FindPhone(bk, nm)In this speci�cation, every! introduces the body of a predicate that is true of all members ofthe list supplied as its argument (here, updates). It is another of the constructions de�nedautomatically as a result of expanding the list datatype de�nition. As with the previousexample, the induct-and-simplify strategy is able to prove this conjecture automatically.4 Version of the Speci�cation That Maintains An InvariantA reasonable expectation is that the same phone number is never assigned simultaneouslyto two di�erent names. We can extend the speci�cation to ensure this by adding a predicateUnusedPhoneNum that returns true if a given number is not assigned to any name in a givenphone book, and then modifying AddPhone to check the number being added is indeedunused.UnusedPhoneNum(bk, pn): bool =(FORALL nm: NOT member(pn,FindPhone(bk, nm)))AddPhone(bk, nm, pn): B =IF UnusedPhoneNum(bk, pn) THEN bk WITH [(nm) := add(pn, bk(nm))]ELSE bkENDIFIf we've got this right, then it ought to be the case that the sets of phone numbersassigned to di�erent names are always disjoint. We could generate a few challenges to checkthis, but we really want to be sure that the disjointness condition is an invariant of thespeci�cation. Recognizing this, we could try to generate the proof obligations that ensurethis property. It is tedious and error-prone to generate proof obligations of this kind byhand, so some systems have special provision for generating the proof obligations necessaryto guarantee invariants. PVS, however, can generate the necessary proof obligations as partof a much more general mechanism. 20

Analyzing Speci�cations Using PVS Phone Book: Version with InvariantWe have already seen that PVS allows predicate subtypes. The �rst step is to de�nethose phone books that are \valid" as the subtype VB of phone books in which the sets ofnumbers associated with di�erent names are disjoint.VB: TYPE = f b:B | (FORALL (x,y: N): x /= y => disjoint?(b(x), b(y))) gThen we change the speci�cation of FindPhone to specify that it takes a VB and returns aVB: bk: VAR VBAddPhone(bk, nm, pn): VB =IF UnusedPhoneNum(bk, pn) THEN bk WITH [(nm) := add(pn, bk(nm))]ELSE bkENDIFNow the expression bk WITH [(nm) := add(pn, bk(nm))] appearing here is a B, but notnecessarily a VB. But in order to satisfy the return type speci�ed for AddPhone, this expres-sion must be a VB. As already explained, PVS allows a value of a supertype to be usedwhere one of a subtype is required, provided the value can be proven, in its context, tosatisfy the predicate of the subtype concerned. The context here is UnusedPhoneNum(bk,pn), so the proof obligation that needs to be discharged in order to ensure this speci�cationis well-typed is the following.% Subtype TCC generated (line 37) for bk WITH [(nm) := add(pn, bk(nm))]AddPhone_TCC1: OBLIGATION(FORALL (bk: VB, nm: N, pn: P):UnusedPhoneNum(bk, pn) IMPLIES(FORALL (x, y: N):x /= y =>disjoint?[P](bk WITH [(nm) := add[P](pn, bk(nm))](x),bk WITH [(nm) := add[P](pn, bk(nm))](y))));This proof obligation is called a Type-Correctness Condition (TCC) and it is generatedautomatically by PVS. Proving it requires the following steps.("" (GRIND :IF-MATCH NIL)(("1" (GRIND)) ("2" (INST -1 "x!1" "y!1")(GRIND))("3" (GRIND))("4" (INST -1 "x!1" "y!1")(GRIND))("5" (INST -1 "x!1" "y!1")(GRIND)))) 21

Phone Book: Version with Invariant Analyzing Speci�cations Using PVS
(grind :if-match nil)

(grind) (inst -1 "x!1" "y!1")

(grind)

(grind) (inst -1 "x!1" "y!1")

(grind)

(inst -1 "x!1" "y!1")

(grind)Figure 5: Graphical Display of the Proof Tree for TCC AddPhone TCC1Notice that the proof splits into several branches after the �rst step. PVS can generate agraphical display of the proof tree|which can then be saved as a postscript �le|using thecommand M-x x-show-proof. The output for this proof is shown in Figure 5,The important point to note, however, is that the close integration between languageand prover in PVS allows the mechanization of very strong checks on speci�cations.The full version of the speci�cation of the previous section, adjusted to ensure that onlyvalid phone books are generated is shown in �gure 6 and the TCCs generated are shown inFigure 7.
22

Analyzing Speci�cations Using PVS Phone Book: Version with Invariantphone 4: theorybeginN : typeP : typeB: type = [N ! setof[P]]VB: type = fb: B j (8 (x; y: N): x 6= y) disjoint?(b(x); b(y)))gnm; x: var Npn: var Pbk: var VBemptybook: VB = (� (x: N): ;P)FindPhone(bk; nm): setof[P] = bk(nm)UnusedPhoneNum(bk; pn): bool = (8 nm: : pn 2 FindPhone(bk; nm))AddPhone(bk; nm; pn): VB =if UnusedPhoneNum(bk; pn) then bk with [(nm) := fpng [bk(nm)]else bkendifDelPhone(bk; nm): VB = bk with [(nm) := ;P]DelPhoneNum(bk; nm; pn): VB = bk with [(nm) := bk(nm) n fpng]FindAdd: conjectureUnusedPhoneNum(bk; pn)� pn 2 FindPhone(AddPhone(bk; nm; pn); nm)DelAdd: conjectureDelPhoneNum(AddPhone(bk; nm; pn); nm; pn) = DelPhoneNum(bk; nm; pn)end phone 4Figure 6: Speci�cation Enforcing the Invariant that Di�erent Names Have Disjoint Sets ofPhone Numbers 23

Phone Book: Version with Invariant Analyzing Speci�cations Using PVS
% Subtype TCC generated (line 15) for (LAMBDA (x: N): emptyset[P])emptybook_TCC1: OBLIGATION(FORALL (x, y: N): x /= y => disjoint?[P](emptyset[P], emptyset[P]));% Subtype TCC generated (line 23) for bk WITH [(nm) := add(pn, bk(nm))]AddPhone_TCC1: OBLIGATION(FORALL (bk: VB, nm: N, pn: P):UnusedPhoneNum(bk, pn) IMPLIES(FORALL (x, y: N):x /= y =>disjoint?[P](bk WITH [(nm) := add[P](pn, bk(nm))](x),bk WITH [(nm) := add[P](pn, bk(nm))](y))));% Subtype TCC generated (line 28) for bk WITH [(nm) := emptyset[P]]DelPhone_TCC1: OBLIGATION(FORALL (bk: VB), (nm: N), (x, y: N):x /= y =>disjoint?[P](bk WITH [(nm) := emptyset[P]](x),bk WITH [(nm) := emptyset[P]](y)));% Subtype TCC generated (line 30) for bk WITH [(nm) := remove(pn, bk(nm))]DelPhoneNum_TCC1: OBLIGATION(FORALL (bk: VB), (nm: N), (pn: P), (x, y: N):x /= y =>disjoint?[P](bk WITH [(nm) := remove[P](pn, bk(nm))](x),bk WITH [(nm) := remove[P](pn, bk(nm))](y)));Figure 7: TCCs for the Speci�cation of Figure 6

24

Analyzing Speci�cations Using PVS Summary5 SummaryIt is no easier to write correct speci�cations than to write correct programs; just like pro-grams, speci�cations need to be validated against their informal requirements and expecta-tions. The mechanization provided by PVS allows the human inspections and reviews thatare an essential element of validation to be supplemented by mechanically checked analyses.I hope the example considered here has conveyed some appreciation for the opportunitiescreated by mechanically supported formal speci�cation. Other tutorials describe more ofthe mechanics of using PVS, and give examples of its use to verify algorithm correctnessand to prove di�cult theorems.

25

26

Part IITutorial on Using PVS

27

28

Using PVS1 Introducing PVSPVS stands for \Prototype Veri�cation System."4 It consists of a speci�cation languageintegrated with support tools and a theorem prover. PVS tries to provide the mechanizationneeded to apply formal methods both rigorously and productively.The speci�cation language of PVS is a higher-order logic with a rich type-system, and isquite expressive; we have found that most of the mathematical and computational conceptswe wish to describe can be formulated very directly and naturally in PVS. Its theoremprover, or proof checker (we use either term, though the latter is more correct), is bothinteractive and highly mechanized: the user chooses each step that is to be applied andPVS performs it, displays the result, and then waits for the next command. PVS di�ersfrom most other interactive theorem provers in the power of its basic steps: these can invokedecision procedures for arithmetic, automatic rewriting, induction, and other relatively largeunits of deduction; it di�ers from other highly automated theorem provers in being directlycontrolled by the user. We have been able to perform some signi�cant new veri�cationsquite economically using PVS; we have also repeated some veri�cations �rst undertaken inother systems and have usually been able to complete them in a fraction of the originaltime (of course, these are previously solved problems, which makes them much easier for usthan for the original developers).PVS is the most recent in a line of speci�cation languages, theorem provers, andveri�cation systems developed at SRI, dating back over 20 years. That line includesthe Jovial Veri�cation System [EGMS79], the Hierarchical Development Methodology(HDM) [RL76, RLS79], STP [SSMS82], and EHDM [MSR85, RvHO91]. We call PVS a\Prototype Veri�cation System," because it was built partly as a lightweight prototype toexplore \next generation" technology for EHDM, our main, heavyweight, veri�cation system.Another goal for PVS was that it should be freely available, require no costly licenses, andbe relatively easy to install, maintain, and use. Development of PVS was funded entirelyby SRI InternationalIn the rest of this introduction, we brie
y sketch the purposes for which PVS is intendedand the rationale behind its design, mention some of the uses that we and others are makingof it, and explain how to get a copy of the system. In Section 2, we use a simple exampleto brie
y introduce the major functions of PVS; Sections 3 and 4 then give more detailon the PVS language and theorem prover, respectively, also using examples. More realisticexamples are provided in Section 5. The PVS language, system, and theorem prover eachhave their own reference manuals [OSR93a,SOR93,OSR93b], which you will need to studyin order to make productive use of the system. A pocket reference card, summarizing allthe features of the PVS language, system, and prover is also available.The purpose of this tutorial is not to introduce the general ideas of formal methods,nor to explain how formal speci�cation and veri�cation can best be applied to variousproblem domains; rather, its purpose is to introduce some of the more unusual and powerful4A number of people have contributed signi�cantly to the design and implementation of PVS. Theyinclude David Cyrluk, Friedrich von Henke, Pat Lincoln, Steven Phillips, Sreeranga Rajan, Jens Skakkeb�k,Mandayam Srivas, and Carl Witty. We also thank Mark Moriconi, Director of the SRI Computer ScienceLaboratory, for his support and encouragement. 29

Introducing PVS Using PVScapabilities that are provided by PVS. Consequently, this document, and the exampleswe use, are somewhat technical and are most suitable for those who already have someexperience with formal methods and wish to understand how PVS provides mechanizedsupport for some of the more challenging aspects of formal methods.1.1 Design Goals for PVSPVS provides mechanized support for Formal Methods in Computer Science. \FormalMethods" refers to the use of concepts and techniques from logic and discrete mathematics inthe development of computer systems, and we assume that you already have some familiaritywith this topic.Formal methods can be undertaken for many di�erent purposes, in many di�erent waysand styles, and with varying degrees of rigor. The earliest formal methods were concernedwith proving programs \correct": a detailed speci�cation was assumed to be available andassumed to be correct, and the concern was to show that a program in some concreteprogramming language satis�ed the speci�cation. If this kind of program veri�cation isyour interest, then PVS is not for you. You will probably be better served by a veri�cationsystem built around a programming language, such as Penelope [Pra92] (for Ada), or bysome member of the Larch family [GHW85]. Similarly, if your interests are gate-levelhardware designs, you will probably do best to consider model-checking and automaticprocedures based on BDDs [BCM+90].The design of PVS was shaped by our experience in doing or contemplating early-lifecycle applications of formal methods. Many of the larger examples we have done concernalgorithms and architectures for fault-tolerance (see [ORSvH95] for an overview). We foundthat many of the published proofs that we attempted to check were in fact, incorrect, as wasone of the important algorithms. We have also found that many of our own speci�cationsare subtly
awed when �rst written. For these reasons, PVS is designed to help in thedetection of errors as well as in the con�rmation of \correctness." One way it supportsearly error detection is by having a very rich type-system and correspondingly rigoroustypechecking. A great deal of speci�cation can be embedded in PVS types (for example,the invariant to be maintained by a state-machine can be expressed as a type constraint),and typechecking can generate proof obligations that amount to a very strong consistencycheck on some aspects of the speci�cation.5Another way PVS helps eliminate certain kinds of errors is by providing very rich mech-anisms for conservative extension|that is, de�nitional forms that are guaranteed to pre-serve consistency. Axiomatic speci�cations can very e�ective for certain kinds of prob-lem (e.g., for stating assumptions about the environment), but axioms can also introduceinconsistencies|and our experience has been that this does happen rather more often thanone would wish. De�nitional constructs avoid this problem, but a limited repertoire of suchconstructs (e.g., requiring everything to be speci�ed as a recursive function) can lead toexcessively constructive speci�cations: speci�cations that say \how" rather than \what."PVS provides both the freedom of axiomatic speci�cations, and the safety of a generous5As a way to further strengthen error checking, we are thinking of adding dimensions and dimensionalanalysis to the PVS type system and typechecker. 30

Using PVS Introducing PVScollection of de�nitional and constructive forms, so that users may choose the style of spec-i�cation most appropriate to their problems.6The third way that PVS supports error detection is by providing an e�ective theoremprover. Our experience has been that the act of trying to prove properties about speci�-cations is the most e�ective way to truly understand their content and to identify errors.This can come about incidentally, while attempting to prove a \real" theorem, such as thatan algorithm achieves its purpose, or it can be done deliberately through the process of\challenging" speci�cations as part of a validation process. A challenge has the form \ifthis speci�cation is right, then the following ought to follow"|it is a test case posed as aputative theorem; we \execute" the speci�cation by proving theorems about it.71.2 Uses of PVSPVS has so far been applied to several small demonstration examples, and a growingnumber of signi�cant veri�cations. The smaller examples include the speci�cation andveri�cation of ordered binary tree insertion [Sha93a], a compiler for simple arithmetic ex-pressions [Rus95], and several small hardware examples including pipeline and microcodecorrectness [CRSS94]. Examples of this scale can typically be completed within a day.More substantial examples include the correctness of a real-time railroad crossing con-troller [Sha93b], an embedding of the Duration Calculus [SS94], the correctness of sometransformations used in digital syntheses [Raj94], and the correctness of distributed agree-ment protocols for a hybrid fault model consisting of Byzantine, symmetric, and crashfaults [LR93a, LR93b, LR94]. These harder examples can take from several days to sev-eral weeks. Industrial applications of PVS include veri�cation of selected elements of acommercial avionics microprocessor whose implementation has 500,000 transistors [MS95].Some of these applications of PVS are summarized in [ORSvH95], which also motivates anddescribes some of the design decisions underlying PVS. Applications of PVS undertakenindependently of SRI include [Hoo94,But93,JMC94,MPJ94].1.3 Getting and Using PVSAt the moment, PVS is readily available only for Sun SPARC workstations running SunOS4.1.3, although versions of the system have been run on IBM Risc 6000 (under AIX) andDECSystem 5000 (under Ultrix). PVS is implemented in Common Lisp (with CLOS),and has been ported to Lucid, Allegro, AKCL, CMULISP, and Harlequin Lisps. Only theLucid and Allegro versions deliver acceptable performance. All versions of PVS requireGnu Emacs, which must be obtained separately. It is not particular about the windowsystem, as long as it supports Gnu Emacs, although some facilities for presenting graphicalrepresentaitons of theory dependencies and proof trees (implemented in Tcl/TK) do require6Unlike EHDM, PVS does not provide special facilities for demonstrating the consistency of axiomaticspeci�cations. We do expect to provide these in a later release, but using a di�erent approach than EHDM.7Directly executable speci�cation languages (e.g., [AJ90,HI88]) support validation of speci�cations byrunning conventional test cases. We think there can be merit in this approach, but that it should notcompromise the e�ectiveness of the speci�cation language as a tool for deductive analysis; we are consideringsupporting an executable subset within PVS. 31

A Brief Tour of PVS Using PVSX-Windows. In addition, LATEX and an appropriate viewer are needed to support certainoptional features of PVS.PVS is quite large, requiring about 50 megabytes of disk space. In addition, any systemon which it is to be run should have a minimum of 100 megabytes of swap space and 48megabytes of real memory (more is better). To obtain the PVS system, send a request topvs-request@csl.sri.com, and we will provide further instructions for obtaining a tape orfor getting the system by FTP. Alternatively, you may inspect the installation instructionsover WWW at URL http://www.csl.sri.com/pvs.html. All installations of PVS mustbe licensed by SRI. The Lucid Lisp version requires that you have a runtime license forLucid Lisp. A nominal distribution fee is charged for tapes; there is no charge for obtainingPVS by FTP.2 A Brief Tour of PVSIn this section we introduce the system by developing a theory and doing a simple proof.This will introduce the most useful commands and provide a glimpse into the philosophybehind PVS. You will get the most out of this section if you are sitting in front of aworkstation (or terminal) with PVS installed. In the following we assume familiarity withSun Unix and Gnu Emacs.Start by going to a UNIX shell window and creating a working directory (using mkdir).Next, connect (cd) to that working directory and start up PVS by typing pvs.8 Thiscommand executes a shell script which runs Gnu Emacs, loads the necessary PVS EMACSextensions, and starts the PVS lisp image as a subprocess.9 After a few moments, you shouldsee the welcome screen indicating the version of PVS being run, the current directory,and instructions for getting help. You may be asked whether you want to create a newcontext in the directory; answer yes unless it is the wrong directory or you don't have writepermission there, in which case you should answer no and provide an alternative directorywhen prompted.PVS uses EMACS as its interface by extending EMACS with PVS functions, but all theunderlying capabilities of EMACS are available. Thus the user can read mail and news, editnonPVS �les, or execute commands in a shell bu�er in the usual way.In the following, PVS EMACS commands are given �rst in their long form, followed byan alternative abbreviation and/or key binding in parentheses. For example, the commandfor proving in PVS is given as M-x prove (M-x pr, C-c p). This command can be enteredby typing the Escape key, then an x10 followed by prove (or pr) and the Return key.Alternatively, hold the Control key down while typing a c, then let go and type a p. The8You may need to include a pathname, depending on where and how PVS is installed.9All the Gnu Emacs (and X-Windows or Emacstool) command line
ags can be added to the pvscommand and passed through as appropriate; the -q
ag inhibits loading of the user's .emacs initialization�le, and should be used if di�culties are encountered starting PVS or if there appear to be con
icts inkeybindings. Do not report errors to us unless they can be reproduced when the -q
ag is used.10Many keyboards provide a Meta key (hence the M- pre�x), and this may be used instead. On the SUN3,the Meta key is normally labeled Left and on the SUN4 (sparc), it is labeled 3. The Meta key is like theshift key; to use it simply hold the Meta key down while typing another key.32

Using PVS A Brief Tour of PVSReturn key does not need to be pressed when giving the key binding form. In PVS allcommands and abbreviations are preceded by a M-x; everything else is a key-binding. Inlater sections we will refer to commands by their long form name, without the M-x pre�x.Some of the commands prompt for a theory or PVS �le name and specify a default; if thedefault is the desired theory or �le, you can simply type the Return key. Although the basickeyword commands described here are preferred by most serious users, PVS commands arealso available as menu selections if you are running under EMACS 19.To begin, type M-x pvs-help (C-h p) for an overview of the commands available inPVS (type q to exit the help bu�er). To exit PVS, use M-x exit-pvs (C-x C-c).PVS speci�cations consist of a number of �les, each of which contains one or moretheories. Theories may import other theories; imported theories must either be part ofthe prelude (the standard collection of theories built-in to PVS), or the �les containingthem must be in the same directory.11 Speci�cation �les in PVS all have a .pvs extension.As speci�cations are developed, their proofs are kept in �les of the same name with .prfextensions. The speci�cation and proof �les in a given directory constitute a PVS context ;PVS maintains the state of a speci�cation between sessions by means of the .pvscontext�le. The .pvscontext and .prf �les are not meant to be modi�ed by the user. Other �lesused or created by the system will be described as needed. You may move to a di�erentcontext (i.e., directory) using the M-x change-context command, which is analogous tothe UNIX cd command.Now let's develop a small speci�cation:sum: THEORYBEGINn: VAR natsum(n): RECURSIVE nat =(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)MEASURE (LAMBDA n: n)closed_form: THEOREM sum(n) = (n * (n + 1))/2END sumThis is a speci�cation for summation of the �rst n natural numbersThis simple theory has no parameters and contains three declarations. The �rst declaresn to be a variable of type nat, the built-in type of natural numbers. The next declarationis a recursive de�nition of the function sum(n), whose value is the sum of the �rst n naturalnumbers. Associated with this de�nition is a measure function, following the MEASUREkeyword, which will be explained below.12 The �nal declaration is a formula which givesthe closed form of the sum.2.1 Creating the Speci�cationThe sum theory may be introduced to the system in a number of ways, all of which createa �le with a .pvs extension,13 which can be done by11PVS does support soft links, thus supporting a limited capability for reusing theories.12In this case, the measure is the identity function, which could have been written simply as MEASURE n.13The �le does not have to be named sum.pvs, it simply needs the .pvs extension.33

A Brief Tour of PVS Using PVS1. using the M-x new-pvs-file command (M-x nf) to create a new PVS �le, and typingsum when prompted. Then type in the sum speci�cation.2. Since the �le is included on the distribution tape in the Examples/tutorial subdirec-tory of the main PVS directory, it can be imported with the M-x import-pvs-filecommand (M-x imf). Use the M-x whereis-pvs command to �nd the path of themain PVS directory.3. Finally, any external means of introducing a �le with extension .pvs into the currentdirectory will make it available to the system; for example, using vi to type it in, orcp to copy it from the Examples/tutorial subdirectory.The �rst two alternatives display the speci�cation in a bu�er. The third option requiresan explicit request such as a built-in Gnu Emacs �le command (like M-x find-file, C-xC-f), or the M-x find-pvs-file (M-x ff or C-c C-f) command. The latter is more usefulwhen there are multiple speci�cation �les, as it supports completion on just the speci�cation�les, ignoring other �les that you or the system have created in the directory.2.2 ParsingOnce the sum speci�cation is displayed, it can be parsed with the M-x parse (M-x pa)command, which creates the internal abstract representation for the theory described bythe speci�cation. If the system �nds an error during parsing, an error window will pop upwith an error message, and the cursor will be placed in the vicinity of the error. If youdidn't get an error, introduce one (say by misspelling the VAR keyword), then move thecursor somewhere else and parse the �le again (note that the bu�er is automatically saved).Fix the error and parse once more. In practice, the parse command is rarely used, as thesystem automatically parses the speci�cation when it needs to.2.3 TypecheckingThe next step is to typecheck the �le by typing M-x typecheck (M-x tc, C-c t), whichchecks for semantic errors, such as undeclared names and ambiguous types. Typecheckingmay build new �les or internal structures such as TCCs. When sum has been typechecked,a message is displayed in the minibu�er indicating that two TCCs were generated. TheseTCCs represent proof obligations that must be discharged before the sum theory can beconsidered typechecked. The proofs of the TCCs may be postponed inde�nitely, though itis a good idea to view them to see if they are provable. TCCs can be viewed using the M-xshow-tccs command, the results of which are shown in Figure 8 below.The �rst TCC is due to the fact that sum takes an argument of type nat, but thetype of the argument in the recursive call to sum is integer, since nat is not closed undersubtraction. Note that the TCC includes the condition NOT n = 0, which holds in the branchof the IF-THEN-ELSE in which the expression n - 1 occurs.The second TCC is needed to ensure that the function sum is total, i.e., terminates. PVSdoes not directly support partial functions, although its powerful subtyping mechanism34

Using PVS A Brief Tour of PVS% Subtype TCC generated (line 7) for n - 1% uncheckedsum_TCC1: OBLIGATION (FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0);% Termination TCC generated (line 7) for sum% uncheckedsum_TCC2: OBLIGATION (FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n);Figure 8: TCCs for Theory sumallows PVS to express many operations that are traditionally regarded as partial. Themeasure function is used to show that recursive de�nitions are total by requiring the measureto decrease with each recursive call.These TCCs are trivial, and in fact can be discharged automatically by using the M-xtypecheck-prove (M-x tcp) command, which attempts to prove all TCCs that have beengenerated. (Try it).2.4 ProvingWe are now ready to try to prove the main theorem. Place the cursor on the line containingthe closed form theorem, and type M-x prove (M-x pr or C-c p). A new bu�er willpop up, the formula will be displayed, and the cursor will appear at the Rule? prompt,indicating that the user can interact with the prover. The commands needed to prove thistheorem constitute only a very small subset of the commands available to the prover; moredetails can be found in the prover guide [SOR93].First, notice the display (reproduced below), which consists of a single formula (labeledf1g) under a dashed line. This is a sequent ; formulas above the dashed lines are calledantecedents and those below are called succedents . The interpretation of a sequent is thatthe conjunction of the antecedents implies the disjunction of the succedents. Either or bothof the antecedents and succedents may be empty.14 In our case, we are trying to prove asingle succedent.The basic objective of the proof is to generate a proof tree in which all of the leaves aretrivially true. The nodes of the proof tree are sequents, and while in the prover you willalways be looking at an unproved leaf of the tree. The current branch of a proof is thebranch leading back to the root from the current sequent. When a given branch is complete(i.e., ends in a true leaf), the prover automatically moves on to the next unproved branch,or, if there are no more unproven branches, noti�es you that the proof is complete.Now back to the proof. We will prove this formula by induction on n. To do this, type(induct "n").15 This is not an EMACS command, rather it is typed directly at the prompt,including the parentheses. This generates two subgoals; the one displayed is the base case,where n is 0. To see the inductive step, type (postpone), which postpones the current14An empty antecedent is equivalent to true, and an empty succedent is equivalent to false, so if bothare empty the sequent is unprovable.15PVS expressions are case-sensitive, and must be put in double quotes when they appear as argumentsin prover commands. 35

A Brief Tour of PVS Using PVSsubgoal and moves on to the next unproved one. Type (postpone) a second time to cycleback to the original subgoal (labeled closed form.1).16To prove the base case, we need to expand the de�nition of sum, which is done by typing(expand "sum"). After expanding the de�nition of sum, we send the proof to the PVSdecision procedures, which automatically decide certain fragments of arithmetic, by typing(assert).17 This completes the proof of this subgoal, and the system moves on to the nextsubgoal, which is the inductive step.The �rst thing to do here is to eliminate the FORALL quanti�er. This can most easily bedone with the skolem! command18, which provides new constants for the bound variables.To invoke this command type (skolem!) at the prompt. The resulting formula may besimpli�ed by typing (flatten), which will break up the succedent into a new antecedentand succedent. The obvious thing to do now is to expand the de�nition of sum in thesuccedent. This again is done with the expand command, but this time we want to controlwhere it is expanded, as expanding it in the antecedent will not help. So we type (expand"sum" +), indicating that we want to expand sum in the succedent.19The �nal step is to send the proof to the PVS decision procedures by typing (assert).The proof is now complete, the system may ask whether to save the new proof, and whetherto display a brief printout of the proof. You should answer yes to these questions just tosee how they work. After responding to these questions, the bu�er from which the provecommand was issued is redisplayed if necessary, and the cursor is placed on the formulathat was just proved. The entire proof transcript is shown below. Yours may be di�erent,depending on your window size and the timings involved.closed_form :|-------f1g (FORALL (n: nat): sum(n) = (n * (n + 1)) / 2)Rule? (induct "n")Inducting on n,16Three extremely useful EMACS key sequences to know here are M-p, M-n, and M-s. M-p gets the last inputtyped to the prover; further uses of M-p cycle back in the input history. M-n works in the opposite direction.To use M-s, type the beginning of a command that was previously input, and type M-s. This will get theprevious input that matches the partial input; further uses of M-s will �nd earlier matches. Try these keysequences out; they are easier to use than to explain.17The assert command actually does a lot more than decide arithmetical formulas, performing three basictasks:� it tries to prove the subgoal using the decision procedures.� it stores the subgoal information in an underlying database, allowing automatic use to be made of itlater.� it simpli�es the subgoal, again utilizing the underlying decision procedures.These arithmetic and equality procedures are the main workhorses to most PVS proofs. You should learnto use them e�ectively in a proof.18The exclamation point di�erentiates this command from the skolem command, where the new constantshave to be provided by the user.19We could also have speci�ed the exact formula number (here 1), but including formula numbers in aproof tends to make it less robust in the face of changes. There is more discussion of this in the proverguide [SOR93]. 36

Using PVS A Brief Tour of PVSthis yields 2 subgoals:closed_form.1 :|-------f1g sum(0) = (0 * (0 + 1)) / 2Rule? (postpone)Postponing closed_form.1.closed_form.2 :|-------f1g (FORALL (j: nat):sum(j) = (j * (j + 1)) / 2IMPLIES sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2)Rule? (postpone)Postponing closed_form.2.closed_form.1 :|-------f1g sum(0) = (0 * (0 + 1)) / 2Rule? (expand "sum")(IF 0 = 0 THEN 0 ELSE 0 + sum(0 - 1) ENDIF)simplifies to 0Expanding the definition of sum,this simplifies to:closed_form.1 :|-------f1g 0 = 0 / 2Rule? (assert)Simplifying, rewriting, and recording with decision procedures,This completes the proof of closed_form.1.closed_form.2 :|-------f1g (FORALL (j: nat):sum(j) = (j * (j + 1)) / 2IMPLIES sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2)Rule? (skolem!)Skolemizing,this simplifies to:closed_form.2 |-------f1g sum(j!1) = (j!1 * (j!1 + 1)) / 2IMPLIES sum(j!1 + 1) = ((j!1 + 1) * (j!1 + 1 + 1)) / 2Rule? (flatten)Applying disjunctive simplification to flatten sequent,this simplifies to:closed_form.2 :f-1g sum(j!1) = (j!1 * (j!1 + 1)) / 2|-------f1g sum(j!1 + 1) = ((j!1 + 1) * (j!1 + 1 + 1)) / 2Rule? (expand "sum" +)(IF j!1 + 1 = 0 THEN 0 ELSE j!1 + 1 + sum(j!1 + 1 - 1) ENDIF)37

A Brief Tour of PVS Using PVSsimplifies to 1 + sum(j!1) + j!1Expanding the definition of sum,this simplifies to:closed_form.2 :[-1] sum(j!1) = (j!1 * (j!1 + 1)) / 2|-------f1g 1 + sum(j!1) + j!1 = (2 + j!1 + (j!1 * j!1 + 2 * j!1)) / 2Rule? (assert)Simplifying, rewriting, and recording with decision procedures,This completes the proof of closed_form.2.Q.E.D.Run time = 5.62 secs.Real time = 58.95 secs.Note: The proof presented here is a low-level interactive one chosen for illustrativepurposes. In practice, trivial theorems such as this are handled automatically by the higher-level strategies of PVS. This particular theorem, for example, is proved automatically bythe single command (induct-and-simplify "n" :defs T).2.5 StatusNow type M-x status-proof-theory (M-x spt) and you will see a bu�er which displaysthe formulas in sum (including the TCCs), along with an indication of their proof status.This command is useful to see which formulas and TCCs still require proofs. Anotheruseful command is M-x status-proofchain (M-x spc), which analyzes a given proof todetermine its dependencies. To use this, go to the sum.pvs bu�er, place the cursor on theclosed form theorem, and enter the command. A bu�er will pop up indicating whetherthe proof is complete, and that it depends on the TCCs and the nat induction axiom.2.6 Generating LATEXIn order to try out this section, you must have access to LATEX and a TEX previewer, suchas vitex or dvitool (for SUNVIEW), or xdvi (for X-windows). Otherwise this section maybe skipped.Type M-x latex-theory-view (M-x ltv). You will be prompted for the theory name|type sum, or just Return if sum is the default. You will then be prompted for the TEXpreviewer name. Either the previewer must be in your path, or the entire pathname mustbe given. This information will only be prompted for once per session, after that PVSassumes that you want to use the same previewer.After a few moments the previewer will pop up displaying the sum theory, as shown inFigure 9. Note that LAMBDA has been translated as �. This and other translations are builtinto PVS; the user may also specify translations for keywords and identi�ers (and overridethose built-in) by providing a substitution �le, pvs-tex.sub, which contains commands tocustomize the LATEX output. For example, if the substitution �le contains the three lines38

Using PVS A Brief Tour of PVSsum: theorybeginn: var natsum(n): recursive nat =(if n = 0 then 0 else n + sum(n � 1) endif)measure (� n: n)closed form: theorem sum(n) = (n � (n + 1)) = 2end sum Figure 9: Theory sumTHEORY key 7 {\large\bf Theory}sum 1 2 {\sum_{i = 0}^{#1} i}the output will look like Figure 10.sum: Theorybeginn: var natPni=0 i: recursive nat = (if n = 0 then 0 else n + Pn � 1i=0 i endif)measure (� n: n)closed form: theorem Pni=0 i = (n � (n + 1)) = 2end sum Figure 10: Theory sumFinally, using the M-x latex-proof command, it is possible to generate a LATEX �lefrom a proof. A part of an example is shown below; details are in the PVS system manual.Expanding the de�nition of sumclosed form.2:f�1g Pj0i=0 i = (j0 � (j0 + 1)) = 2f1g (if j0 + 1 = 0 then 0 else j0 + 1 + Pj0 + 1 � 1i=0 i endif)= ((j0 + 1) � (j0 + 1 + 1)) = 239

The PVS Language Using PVS3 The PVS LanguageThe speci�cation language of PVS is a highly expressive language based on higher-orderlogic. The language was designed to describe computer systems, but concentrates on ab-stract descriptions rather than detailed prescriptions (i.e., what rather than how). Thelanguage supports modularity and reuse by means of parameterized theories , and has a richtype system, including the notion of a predicate subtype. This makes typechecking unde-cidable, but provides a great deal of
exibility. In addition, there are type constructors forfunction, tuple, record, and abstract datatypes.A theory consists of a sequence of declarations , which provide names for types, constants,(logical) variables, axioms, and formulas. These names may be overloaded; e.g., + may bedeclared to operate on a newly declared type, and still be available for integer addition.There is a large body of theories built into PVS, collectively referred to as the prelude.In the following sections we will describe the language by means of a series of examples.These examples were chosen to exemplify various aspects of the language, and do notnecessarily re
ect the best style. The PVS language is described in detail in [OSR93a].3.1 A Simple Example: The Rational NumbersThe rational numbers are built into PVS, but for the sake of illustration we attempt to de-velop a partial axiomatization. The examples in this section illustrate some simple syntacticand semantic aspects of PVS. They show how theories are de�ned containing declarationsof types, variables, and constants. They also illustrate the de�nition of types, subtypes, andconstants, the declaration of axioms and formulas, and the consequences of typecheckingin the presence of subtypes. We start with the following theory introducing a type rat, aconstant zero of type rat, and a binary function /. These form the signature of the theoryrats.rats: THEORYBEGINrat : TYPEzero : rat/ : [rat, rat -> rat]END ratsThe type rat is uninterpreted; the only assumption made by the system is that it isnonempty. Here the division function `/' takes two arguments of type rat and returnsa value of type rat.20The theory presented so far says little about the rational numbers; just that there isa constant and a binary function de�ned on the type. The rationals are a model for thistheory, but so are the booleans, the integers, etc.21 The next thing to do is to introduceaxioms and de�nitions that further constrain the possible interpretations of the theory. Wecan augment the rats theory above as follows:20The division symbol `/' has already been declared as an in�x symbol in the PVS grammar.21For example, we can interpret rat as the boolean type, zero as false, and / as AND.40

Using PVS The PVS Languagerats : THEORYBEGINrat : TYPEzero : rat/ : [rat, rat -> rat]* : [rat, rat -> rat]x, y: VAR ratleft cancellation : AXIOM x * (y/x) = yzero times : AXIOM zero * x = zeroEND ratsIn this augmented theory, we have introduced the declaration for the multiplication opera-tion `*,' the identi�ers x and y have been declared as logical variables that range over thetype rat, and we have added two axioms asserting properties of multiplication and division.Though the left cancellation axiom looks plausible, there is a problem with it.A reasonable \challenge" for our theory is the conjecture (EXISTS y : y /= zero).22Unfortunately, we can easily prove zero = y for any y, by substituting zero for x inleft cancellation, and applying zero times with (y/x) substituted for x. The conclusionzero = y is clearly not intended for a model of the rational numbers. One way to repair theproblem is to qualify the left cancellation axiom so that it reads x /= zero IMPLIES x *(y/x) = y. In this way, the axioms make no restrictions on the value returned by divisionwhen given a zero denominator. This technique of having division by zero return someunspeci�ed value is the traditional approach used in logic and mathematics, but can leadto problems in speci�cations since most implementations prefer to treat this as an errorcondition, rather than returning an arbitrary value.To circumvent this problem, PVS makes it possible to specify division so that it is anerror to apply it when the denominator is zero. Here is an improved PVS speci�cation:rats : THEORYBEGINrat : TYPEx, y : VAR ratzero : ratnonzero : TYPE = fx | x /= zerog/ : [rat, nonzero -> rat]* : [rat, rat -> rat]left cancellation : AXIOM zero /= x IMPLIES x * (y/x) = yzero times : AXIOM zero * x = zeroEND ratsHere the type nonzero is de�ned to be the type of elements of rat that are di�erent fromzero. We call nonzero a predicate subtype of rat, since it consists of the elements of ratsatisfying a given predicate. In this new speci�cation, the denominator argument mayonly range over the nonzero elements of the type rat. In typechecking the occurrence ofdivision in left cancellation, there is a type correctness condition (TCC) generated by thetypechecker that is added to the theory as a declaration:left cancellation TCC1: OBLIGATION(FORALL (x: rat): zero /= x IMPLIES x /= zero)22In PVS, \not equal" is written as \/=". 41

The PVS Language Using PVSNotice that the logical antecedent governing the occurrence of division is included as anantecedent of left cancellation TCC1. This TCC is of course easily proved. In fact, if theantecedent were written in the more natural form x /= zero, the TCC would not have beengenerated. TCCs such as this are obligations , and they must be proved in order to showthat the theory is type correct. PVS allows the proof of a TCC to be deferred, but untilit has been discharged any proofs involving the theory rats directly or indirectly will beconsidered incomplete.For a more slightly more sophisticated example, we can introduce the \less-than" rela-tion and the subtraction and unary minus operations, along with a statement asserting aproperty of subtraction, division, and the less-than ordering.23< : [rat, rat -> bool]- : [rat, rat -> rat]- : [rat -> rat]div test: FORMULA x /= y IMPLIES (y-x)/(x-y) < zeroNotice here that the relation < is declared as a function with range type bool representingthe booleans24 Typechecking the formula div test generates the TCCdiv test TCC1: OBLIGATION(FORALL (x:rat, y: rat): x /= y IMPLIES (x - y) /= zero)An alternative notation for predicate subtypes is illustrated by another example. If thepredicate non neg? (we often use a question mark in a name to indicate predicates) isde�ned asnon neg?(x): bool = NOT (x < zero)then the expression (non neg?) denotes a subtype with the same meaning as the typeexpression fx | NOT (x < zero)g. The function returning the absolute value of a rationalcan now be speci�ed asabs(x): (non neg?) = (IF (x < zero) THEN -x ELSE x ENDIF)When typechecked, this de�nition generates the TCCsabs TCC1: FORMULA(FORALL (x: rat): (x < zero) IMPLIES non neg?(-x))abs TCC2: FORMULA(FORALL (x: rat): NOT (x < zero) IMPLIES non neg?(x))Note that the type of abs is [rat -> (non neg?)] which is more informative than the typeof [rat -> rat]. The advantage of this is that whenever abs occurs as an argument to afunction requiring a non neg? argument, no new obligations are generated. For example,a square root function sqrt may be de�ned with type [(non neg?) -> (non neg?)] andfreely applied to the result of abs without incurring any new obligations.25Clearly, we still have an inadequate speci�cation of rational numbers since we do nothave the axioms required to prove the various TCCs that were generated. We will not23Note the overloading of the name -. All names of the same kind within a theory must be unique, withthe exception of expression kinds, which need only be unique up to the signature. The signature is enoughto distinguish these declarations.24Functions with range type bool are often called predicates in PVS, and are also used to represents sets.Some convenient notation for these interpretations is introduced later.25This is one of the advantages of having predicate subtypes; in a logic of partial terms we would beforced to show that the term involving sqrt is well-de�ned every time it occurs, or to somehow cache theinformation. 42

Using PVS The PVS Languageembark on the full axiomatization here, as no new features of the language are involved.The development of the rational numbers is described in an appendix to the LanguageReference [OSR93a]. It is important to note that the PVS proof checker has an underlyingdecision procedure that automatically proves many of the properties of the rational numbers.Summarizing, we have illustrated how predicate subtypes can be used to circumscribethe domain of partially de�ned operations such as division, and to more usefully delineatethe range of functions such as abs. We also examined how the use of predicate subtypesin an expression could require certain type correctness conditions to be proved before theexpression is regarded as well-typed.3.2 A More Sophisticated Example: StacksPerhaps the most hackneyed speci�cation example is that of stacks. It is interesting there-fore to examine if PVS can contribute anything novel to this well-worn example. Forstarters, let us try to capture the signature of the stack operations.stacks : THEORYBEGINstack : TYPEempty : stackpush : [nat, stack -> stack]top : [stack -> nat]pop : [stack -> stack]END stacksIn the theory stacks above, nat is the built-in type for natural numbers, stack is declaredas an uninterpreted type, and the empty is an uninterpreted constant of type stack. Thefunction push is declared to take a natural number and a stack and return a stack. The topfunction takes a stack and returns a natural number. The pop function takes a stack andreturns a stack.One immediate objection is that the above declaration only speci�es the signature forstacks of natural numbers and is therefore not su�ciently generic. PVS supports this byproviding parameterization at the theory level.26 With the stacks theory appropriatelyparameterized, we getstacks [t : TYPE] : THEORYBEGINstack : TYPEempty : stackpush : [t, stack -> stack]top : [stack -> t]pop : [stack -> stack]END stacksThis declares a schema of stacks, one for each type. Within the stacks theory t is treatedas a �xed uninterpreted type. When the stacks theory is used by another theory it mustbe instantiated. For example, the theory of stacks of natural number is just stacks[nat].26An alternative approach would allow type variables and type abstraction in the language, but in thepresence of subtypes this greatly complicates the semantics.43

The PVS Language Using PVSIt is important to note that each instantiation of a theory yields a new signature; thusinstantiating with int and nat yields two di�erent empty constants.The new signature is still unsatisfactory since the signatures for pop and top permitexpressions such as pop(empty) and top(empty), for which it is di�cult to ascribe a meaning.The obvious solution in PVS is to mimic what was done with division and constrain thedomains of pop and top. We do this by introducing the predicate nonemptystack? in the newspeci�cation below. Note that the expression [stack -> bool] for the type of a predicatehas been rewritten as the equivalent PRED[stack]. In addition, we add the usual stackaxioms:stacks [t: TYPE] : THEORYBEGINstack : TYPEnonemptystack? : PRED[stack]s : VAR stackx, y : VAR tns : VAR (nonemptystack?)empty : stackpush : [t, stack -> (nonemptystack?)]top : [(nonemptystack?) -> t]pop : [(nonemptystack?) -> stack]pop push : AXIOM pop(push(x, s)) = stop push : AXIOM top(push(x, s)) = xpush pop top : AXIOM push(top(ns), pop(ns)) = nspush empty : AXIOM empty /= push(x, s)nonempty empty : THEOREM NOT nonemptystack?(empty)pop2 push2 : THEOREM pop(pop(push(x, push(y, s)))) = sEND stacksNow we can explore the consequence of this speci�cation by examining the formuladeclaration pop2 push2. The left-hand side expression of this formula poses a problemfor most type systems since the type of pop(push(x, (push(y, s)))) (i.e., the argumentto the outermost pop) is stack, whereas the domain type of pop is the more constrained(nonemptystack?). In PVS, the typechecker generates the TCCpop2_push2_TCC1: OBLIGATION(FORALL (s: stack, x: t, y: t):nonemptystack?(pop(push(x, push(y, s)))))This TCC is easily proved from the axiom pop push.We have now presented an abstract speci�cation of stacks, showing how theories maybe parameterized and further illustrating the subtype mechanism. In the following sectionwe will explore di�erent constructive de�nitions of stacks, and in Section 3.9 we will seehow to de�ne stacks as an abstract datatype.3.3 Implementing StacksHaving satis�ed ourselves that stacks can be speci�ed using the signature and axioms above,we might wish to introduce an alternative, more de�nitional speci�cation of stacks. In thisnew speci�cation, we implement a stack with two components: a counter for recording thenumber of elements in the stack, and an array containing the stack entries. One way to44

Using PVS The PVS Languageimplement such a stack in PVS is to use the tuple type constructor and another is to employrecords. We examine both approaches below.newstacks [t: TYPE] : THEORYBEGINi, j: VAR natstack : TYPE = [nat, ARRAY[nat -> t]]s: VAR stackx, y: VAR tsize(s): nat = proj 1(s)elements(s): ARRAY[nat -> t] = proj 2(s)e: tnonemptystack?(s) : bool = (size(s) > 0)empty: stack = (0, (LAMBDA j: e))push(x,s): (nonemptystack?) =(size(s)+1, elements(s) WITH [(size(s)):=x])ns: VAR (nonemptystack?)top(ns): t = elements(ns)(size(ns)-1)pop(ns): stack = (size(ns)-1, elements(ns))END newstacksThere are several points to note about the above speci�cation. The 2-tuple implementingstacks is speci�ed by the type [nat, ARRAY [nat -> t]] whose �rst component is a naturalnumber and whose second component is an array with index type nat and element typet. The array type expression ARRAY[nat -> t] is identical to the function type expression[nat -> t] and the ARRAY keyword serves a descriptive rather than semantic purpose. Thebuilt-in family of proj functions serve to access tuple components. The function size isde�ned to return the size of stack s which is de�ned to be the �rst component of s, namely,proj 1(s). The stack elements are \stored" in the array that is the second component ofstack s, so that elements(s) is de�ned as proj 2(s). The size function could also have beende�ned by the declarationsize: [stack -> nat] = proj 1which is merely a consequence of applying the extensionality axiom of higher-order logicto the earlier de�nition of size. The next thing to note is that if the size of the stack isi, for i > 0, then the i stack values are stored in the indices 0 to i-1. A stack expressionis constructed by means of a pair of comma-separated expressions enclosed in parentheses,so that the empty stack is constructed by the expression (0, (LAMBDA j: e)) whose sizecomponent is 0, and where the elements array is initialized to contain a default element e.The push operation applied to an element x and a stack s constructs a stack with size size(s)+ 1, where the size(s) index of the elements array of s has been updated to be x. Thefunction update is done by the WITH construct as used in elements(s) WITH [(size(s)):=x].Correspondingly, the pop operation decrements the stack size by one, but leaves the elementsarray unchanged. Note that we have used predicate subtyping to ensure that pop is onlyapplied to stacks of positive size, i.e., nonempty stacks. The top operation applied to anonempty stack ns returns the (size(ns)-1)th element of the array elements(ns).The above speci�cation of stacks when implemented using the record type constructionof PVS rather than tuples, has the following form.newstacks [t: TYPE] : THEORYBEGIN 45

The PVS Language Using PVSi, j: VAR natstack : TYPE = [# size: nat, elements : ARRAY[nat -> t] #]s: VAR stackx,y: VAR te: tnonemptystack?(s) : bool = (size(s) > 0)empty : stack = (# size := 0, elements := (LAMBDA j: e) #)push(x,s): (nonemptystack?) =(# size:= size(s)+1,elements := elements(s) WITH [(size(s)):=x] #)ns: VAR (nonemptystack?)top(ns): t = (elements(ns)(size(ns)-1))pop(ns): stack = (ns WITH [size := size(ns) -1])END newstacksIn this new speci�cation of stacks, the record type is constructed by the type expression [#size: nat, elements : ARRAY[nat -> t] #] with �elds size and elements. The expression(# size := 0, elements := (LAMBDA j: e) #) constructs the empty stack. This speci�ca-tion is slightly more pleasing than the one using tuples since the size and elements functionswere automatically generated from the record labels, and record updating can be used toconcisely de�ne the pop operation.There is a problem with both versions of newstacks that has to do with stack equal-ity. If we consider newstacks[nat], i.e., stacks of natural numbers, then both (# size :=0, elements := (LAMBDA i: 1) #) and (# size := 0, elements := (LAMBDA i: 2) #) rep-resent empty stacks, but they are unequal since they di�er on their elements �eld. Similarly,with this representation, the formula pop(push(x, s)) = s fails to be a theorem, since theelements array may di�er at elements beyond size. We defer the discussion of this problemand its solution to Section 3.8.To summarize the discussion of the PVS language so far, we have examined theories,declarations and de�nitions of types and constants, declarations of axioms and formulas,predicate subtypes and the generation of type correctness conditions, and the de�nition,construction and use of tuple and record types. So far we have only made limited use ofhigher-order logic by using a function object to model the array that is used to contain theelements of a stack. We next examine the use of theories in PVS.3.4 Using Theories: Partial and Total OrdersThere are several reasons for structuring speci�cations into (parameterized) theories as isdone in PVS. The primary ones are that it provides for modularization, and the use ofparameters allows more generic speci�cations, as we saw with stacks. In this section, wefocus on the use and parameterization of theories.A preliminary example of theory is that of partial orders as transcribed in PVS below.2727This is built in to PVS in a di�erent form; again, the development here is for pedagogical purposes.Note the use of \;" to terminate the de�nition of antisym. Semicolons are optional, except in circumstancessuch as this when the parser needs more information. In this case, the semicolon informs the parser thatthe operator < is a declaration rather than part of the preceding expression.46

Using PVS The PVS Languagepartial order [t: TYPE] : THEORYBEGIN<= : PRED[[t,t]]x, y, z: VAR trefl: AXIOM x <= xtrans: AXIOM x <= y AND y <= z IMPLIES x <= zantisym: AXIOM x <= y AND y <= x IMPLIES x = y;< : PRED[[t,t]] = (LAMBDA x, y: x <= y AND x /= y)END partial orderNote that the type of a binary relation, such as <=, can be given either as [t, t -> bool],or as a predicate on the tuple [t, t], as illustrated above. For any type t, the theorypartial order introduces a partial order relation `<=' with the axioms of re
exivity, transi-tivity, and antisymmetry. It also introduces a strict partial order relation `<' along with itsde�nition.The next example is the theory of total ordering which extends the original theorypartial order.total order [t: TYPE] : THEORYEXPORTING ALL WITH partial order[t]BEGINIMPORTING partial order[t]x, y: VAR ttotal: AXIOM x <= y OR y <= xEND total orderThere are several points to note with total order. It imports the theory partial order[t]with the IMPORTING construct. It would have also been acceptable to import the generictheory partial order since the typechecker is able to resolve the type of the occurrences of<= in total order as belonging to partial order[t]. The EXPORTING clause that precedesthe body of the theory (as marked by BEGIN) causes every type, constant, and formuladeclaration in total order to be visible in any theory that imports total order. In additionto the declarations in total order, the EXPORTING clause also makes visible those declarationsin partial order[t] that are externally visible. When there is no EXPORTING clause, thedefault is that all declarations28 are visible, including all instances of imported theoriesthat were referenced.29 Generic theories cannot be exported, i.e., it is not possible toreplace partial order[t] in the EXPORTING clause with partial order.3.5 Using Theories: SortThe next series of examples illustrate the use of the partial order and total order theoriesin several ways. These examples provide a generic speci�cation of what it means for anarray to be sorted.sort [domain, range: TYPE] : THEORYBEGINIMPORTING partial order[range], total order[domain]28With the exception of variable declarations.29When a generic theory is imported, the typechecker determines the instance for each reference to anentity declared in the generic theory|it is these instances that are exported.47

The PVS Language Using PVSArray type: TYPE = ARRAY[domain -> range]A, B, C: VAR Array typesorted?(A): bool =(FORALL (x, y: domain): x < y IMPLIES NOT (A(y) <= A(x)))END sortThe above theory is parameterized with respect to the types domain and range. It importsthe theories partial order[range] and total order[domain]. The predicate sorted? onarrays of element type range and index type domain is de�ned to check that the partialordering on the elements never violates the total ordering on the indices. Note that thetypes of the predicates < and <= are potentially ambiguous since they could come fromeither partial order[range] and total order[domain] but the typechecker resolves theirtypes from the context of their application. If it was not possible to resolve the ambiguityfrom the context, then it would have been necessary to write < as total order[domain].<in order to distinguish it from partial order[domain].<.One immediate problem with the above speci�cation of sortedness is that it is speci�edwith respect to a �xed total ordering on the indices and a �xed partial order on the elementsof the array. It is therefore not su�ciently generic. The following revised speci�cation ofthe theory sort �xes this problem. It does this by taking the domain and range orderings asparameters but then places restrictions that constrain the domain ordering to be total andthe range ordering to be partial. These restrictions are listed in the ASSUMING part betweenthe keywords ASSUMING and ENDASSUMING. The assuming part can only contain variable dec-larations and assumptions. These assumptions have to be discharged whenever the theoryis instantiated with actual parameters. These proof obligations are automatically generatedby the typechecker.sorta [domain, range: type,d order: PRED[[domain, domain]],r order: PRED[[range, range]]] : THEORYBEGINASSUMINGx, y, z: VAR domainu, v, w: VAR ranged refl: ASSUMPTION d order(x,x)d trans: ASSUMPTION d order(x, y) & d order(y, z) => d order(x, z)d antisym: ASSUMPTION d order(x, y) & d order(y, x) => x = yd total: ASSUMPTION d order(x, y) OR d order(y, x)r refl: ASSUMPTION r order(u, v)r trans: ASSUMPTION r order(u, v) & r order(v, w) => r order(u, w)r antisym: ASSUMPTION r order(u, v) & r order(v, u) => u = vENDASSUMINGArray type: TYPE = ARRAY[domain->range]A, B, C: VAR Array typesorted?(A): bool =(FORALL (x, y: domain):(d order(x, y) & x /= y) => NOT r order(A(y), A(x)))END sortaThe above speci�cation of sortedness might seem a little tedious given that we havealready speci�ed partial and total orderings. This points to di�culties in the originalspeci�cations for partial order and total order. In the �rst place, the constant `<=' isdeclared in the partial order theory; in general there is already a relation at hand, and the48

Using PVS The PVS Languagedesire is to check that it is a partial order. So we would like `<=' to be a parameter to thetheory. But now the axioms are inappropriate; if the theory is parameterized with `/=', forexample, then we have an inconsistency. There are two possible approaches to this. One isto only allow the theory to be parameterized with relations that satisfy the axioms. Thisis done by means of an ASSUMING part:partial order1 [t: TYPE, <=: PRED[[t,t]]] : THEORYBEGINASSUMINGx, y, z: VAR trefl: ASSUMPTION x <= xtrans: ASSUMPTION x <= y AND y <= z IMPLIES x <= zantisym: ASSUMPTION x <= y AND y <= x IMPLIES x = yENDASSUMING< : PRED[[t,t]] = (LAMBDA x, y: x <= y AND x /= y)END partial order1Now if the theory is instantiated with `/=', the typechecker will generate proof obligationswhich will be impossible to prove; thus such an instantiation is disallowed.The alternative is to declare higher-order predicates instead of axioms:partial order2 [t: TYPE] : THEORYBEGIN<= : VAR PRED[[t,t]]x, y, z: VAR treflexive?(<=): bool = (FORALL x: x <= x)transitive?(<=): bool =(FORALL x,y,z: x <= y AND y <= z IMPLIES x <= z)antisymmetric?(<=): bool =(FORALL x,y: x <= y AND y <= x IMPLIES x = y)END partial order2The advantage of this theory is that it allows us to test directly the properties of a givenrelation. The disadvantage is the the `<' relation must be de�ned outside. The real advan-tage comes in being able to combine properties, and use them as types. For example wecan add the declarationpartial order?(<=): bool =reflexive?(<=) AND transitive?(<=) AND antisymmetric?(<=)and declare a relation R to be a variable ranging over partial orders on the type integer:R: VAR (partial order?[int])We exploit this in the next theory speci�cation, which describes the various orderingrelations as predicates on relations. The orderings theory introduces an in�x variable <=which is a reasonable thing to do in a higher-order logic. Now notice that the predicatesreflexive?, antisymmetric?, transitive?, etc., are higher-order operations since they arepredicates on predicates. The important concept of well-foundedness is also introduced inthe theory below. A partial order <= is said to be well-founded on a set A if A containsno in�nitely descending chain of elements : : :<=xn<= : : :<=x1<=x0. Another way of statingthis is that every nonempty subset of A must contain a minimal element with respect to<=. In terms of higher-order logic, for every predicate qq on t that holds somewhere (i.e.,is nonempty), there is a minimal element that satis�es qq.49

The PVS Language Using PVSorderings[t: TYPE] : theoryBEGINx, y, z: VAR tpp, qq: VAR PRED[t]<= : VAR PRED[[t,t]]reflexive?(<=): bool = (FORALL x: x <= x)antisymmetric?(<=): bool = (FORALL x, y: x <= y AND y <= x IMPLIES x = y)transitive?(<=): bool =(FORALL x, y, z: x <= y AND y <= z IMPLIES x <= z)partial order?(<=): bool =reflexive?(<=) AND antisymmetric?(<=) AND transitive?(<=)linear?(<=): bool = (FORALL x, y: x <= y OR y <= x)total order?(<=): bool = partial order?(<=) AND linear?(<=)well founded?(<=): bool =(FORALL qq: (EXISTS y: qq(y))IMPLIES (EXISTS y: (FORALL x: qq(x) IMPLIES NOT x<=y)))END orderingsNow we can give yet another speci�cation of sortedness. The interesting thing to notehere is the occurrence of an IMPORTING clause in the parameter list of the theory to bring inthe information that is needed to typecheck the remaining parameters.sorto [domain, range: type,(IMPORTING orderings[t])d order: (total order?[domain]),r order: (partial order?[range])] : THEORYBEGINArray type: TYPE = ARRAY[domain->range]A, B, C: VAR Array typesorted?(A): bool =(FORALL (x, y: domain): (d order(x, y) AND x/=y)IMPLIES NOT r order(A(y), A(x)))END sortoAnother thing one can do with the orderings theory is de�ne well-founded inductionwhich is a standard proof technique for proving properties of programs. The key idea isthat if we are trying to prove pp(x) for all x of type t, and there is a well-founded ordering<= on t, then we can reason as follows. Consider the subset of elements y of t such thatNOT pp(y) holds. Suppose that this set is nonempty, then by well-foundedness, this subsetmust contain a minimal element z, but the hypothesis of well founded induction can beused to derive pp(z) since (FORALL y: y <= z AND y /= z IMPLIES pp(y)) holds trivially fora minimal element z. Thus both pp(z) and NOT pp(z) hold, contradicting the assumptionthat the set of y such that NOT pp(y) is nonempty.well founded induction [t: type,(IMPORTING orderings[t])<= : (well founded?)] : THEORYBEGINx, y, z: VAR tpp: VAR PRED[t]wf induction: AXIOM(FORALL x: (FORALL y: y<=x AND y/= x IMPLIES pp(y))IMPLIES pp(x))IMPLIES (FORALL x: pp(x)) 50

Using PVS The PVS LanguageEND well founded inductionThe well founded induction theory makes use of higher-order logic to assert the givenordering <= to be well-founded, and to state induction as an axiom for any predicate pp.As we did in the case of ordering relations, we can build a theory de�ning variousproperties of functions in order to further illustrate the capabilities of higher-order logic asformalized by PVS.30functions [domain, range : type] : THEORYBEGINfun : VAR [domain -> range]x, y : VAR domaininjective?(fun): bool = (FORALL x, y : fun(x) = fun(y) IMPLIES x=y)surjective?(fun): bool = (FORALL (u : range): (EXISTS x : fun(x) = u))bijective?(fun): bool = injective?(fun) AND surjective?(fun)END functionsIf we then introduce a function as an injection, the PVS typechecker will require that wedemonstrate that its de�nition indeed satis�es the predicate injective?. For examplesquare [(IMPORTING functions) domain, range : TYPE] : THEORYBEGINx: VAR intsquare: (injective?[int, nat]) = (LAMBDA (x): x * x)END squaresquare generates an unprovable TCC thereby revealing an error in this construction.Summarizing, we have examined some more advanced capabilities of the language andlogic of PVS. The parameterization and use of theories was illustrated in all the examplesin this section. The theories orderings, well founded induction, and functions illustratethe higher-order aspects of the logic as well. We also noted the capability of the typecheckerin resolving ambiguities in naming from the application context.3.6 Sets in Higher-order LogicIn this section, we expand on the capabilities of higher-order logic with a naive encodingof the various set-theoretic operations. We stay consistent with the higher-order logicview of sets as predicates. In this case the theory sets is parameterized so that we aretalking about predicates over a type T. The element x is a member of a set a if and onlyif a(x) is TRUE. The union and add operation is de�ned in terms of disjunction (OR), andthe intersection and di�erence operations are de�ned in terms of conjunction (AND). Theextensionality axiom asserts that if sets a and b have exactly the same members, then theyare equal. Extensionality for sets can be proved from extensionality for functions so it isstated below as a lemma.sets [T: TYPE] : THEORYBEGINset: TYPE = SETOF[T]member(x:T,a:set): bool = a(x)union(a,b:set): set = fx:T | member(x,a) OR member(x,b)g30Both well-founded induction and functions are built in to the PVS prelude (theories wf induction andfunctions, respectively) and may not be rede�ned, hence the name variations introduced here.51

The PVS Language Using PVSintersection(a,b:set): set = fx:T | member(x,a) AND member(x,b)gdifference(a,b:set) : set = fx:T | member(x,a) AND NOT member(x,b)gadd(x:T,a:set) : set = fy:T | x = y OR member(y,a)gsingleton(x:T) : set = fy:T | y = xgsubset?(a,b:set) : bool = (FORALL (z:T) : member(z,a) => member(z,b))strict subset?(a,b:set) : bool = subset?(a,b) AND a /= bempty?(a:set) : bool = (FORALL (x:T) : NOT member(x,a))emptyset: set = fx:T | FALSEgfullset: set = fx:T | TRUEgextensionality: LEMMAFORALL (a,b: set):(FORALL (x:T): member(x,a) = member(x,b)) => (a = b)END setsSequences provide yet another nice illustration of the power of the PVS higher-orderlogic. We can formalize in�nite sequences of elements from some type T as functions of type[nat -> T], where nat is the type of natural numbers. Then the nth element of a sequenceseq is just seq(n). The sequence that is obtained from seq by removing the �rst n elementsis de�ned as suffix(seq, n).sequences [T: TYPE] : THEORYBEGINsequence : TYPE = [nat->T]nth(seq: sequence, n: nat): T = seq(n)suffix(seq:sequence, n:nat): sequence =(LAMBDA (i:nat): seq(i+n))first(seq: sequence): T = nth(seq, 0)rest(seq: sequence): sequence = suffix(seq, 1)END sequencesBoth sets and sequences are employed heavily in speci�cation writing and are built in tothe PVS prelude.313.7 RecursionIn this section we discuss recursive declarations. We start with a simple example, thefactorial function:factorial(x:nat): RECURSIVE nat =IF x = 0 THEN 1 ELSE x * factorial(x - 1) ENDIFMEASURE (LAMBDA (x:nat): x)This is similar to a constant declaration, except that the de�ning expression referencesfactorial, which is the function being de�ned. In addition, there is a MEASURE functionspeci�ed. In PVS, all de�nitions are total, and form a conservative extension.32 In orderto guarantee these conditions, a MEASURE function is required. This function has the samedomain as the de�nition, but its range is nat.33 The MEASURE function is used to show thatthe de�nition terminates, by generating an obligation that the MEASURE decreases with eachcall:31PVS prelude theories may be viewed via the command M-x view-prelude-theory (M-x vpt). Thecommand M-x view-prelude-file (M-x vpf) displays the entire prelude.32This means that (new) inconsistencies are not introduced as a result of adding a new de�nition.33The range may be the constructive ordinals instead, but we will not be discussing that further here.52

Using PVS The PVS Languagefactorial_TCC2: OBLIGATION(FORALL (x: nat): NOT x = 0 IMPLIES x - 1 < x)Note that the context `NOT x = 0' is included in the termination TCC. PVS does not allowmutual recursion directly, although the same e�ect may be had by using axioms or bytranslating the mutually recursive forms to higher order, so this is not a real restriction.3.8 Dependent TypingIn this section, we illustrate a more sophisticated form of typing that can involve dependen-cies between the components of a tuple or a record type, and also between the range anddomain of a function type. As we have already seen, predicate subtyping makes it possibleto express properties within the type language, and dependent typing signi�cantly enhancesthis capability.To explore dependent typing, we return to the example of newstacks. There the typestack was de�ned as the record type [# size: nat, elements : ARRAY[nat -> t] #]. Wenoted that this speci�cation would distinguish between two empty stacks simply becausethey contained di�erent elements arrays, even though the contents of the elements arrayare irrelevant when the the size �eld is 0. What we would like is to specify a record withtwo �elds, size and elements, where the type of the elements �eld varied according to thecontents of the size �eld. We can in fact express such a record type in PVS so that thede�nition of the type stack becomesstack : TYPE =[# size: nat, elements : ARRAY[fi| i<sizeg -> t] #]Note that the index type of the elements array has been restricted to the natural numbersbelow the contents of the size �eld. Such a record type is an instance of a dependent type.With this form of dependent typing, the newstacks speci�cation can be written in PVS asfollows.newstacks [t: TYPE] : THEORYBEGINi: VAR natstack : TYPE = [# size: nat, elements: ARRAY[fi| i<sizeg -> t] #]s: VAR stackx,y: VAR te: tnonemptystack?(s) : bool = (size(s) > 0)empty: stack =(# size := 0, elements := (LAMBDA (j: fi|i<0g): e) #)push(x,s): (nonemptystack?) =(# size:= size(s)+1,elements := elements(s) WITH [(size(s)):=x] #)ns: VAR (nonemptystack?)pop(x,ns): stack =(# size := size(ns) -1,elements := (LAMBDA (j: i|i<size(ns)-1):elements(ns)(j)) #)top(ns): t = (elements(ns)(size(ns)-1))END newstacks 53

The PVS Language Using PVSThere are a number of subtleties to the above speci�cation. The empty stack containsan elements array with an empty index type. Now any two stacks with the size �eld setto zero will be equal since any element arrays will be treated as equal when compared overthe empty index type.The value returned by the push operation is a stack where the size �eld is one greaterthan that of the input stack. The type of the elements �eld of this stack is therefore di�erentfrom that of the input stack. There is an additional index where the elements array mustbe de�ned, and the update operation (using the WITH construct) ensures that the elements�eld is in fact de�ned on this additional index.The value returned by the pop operation is a stack in which the size �eld is one lessthan that of the input stack and the elements array is de�ned on one fewer indices.34 Giventhese de�nitions, the formula pop(push(x, s)) = s is provable.3.9 Abstract Datatypes: StacksIn this section we describe one of the more powerful features of the PVS language: abstractdatatypes. We will once again be using stacks for illustrative purposes.The abstract stacks theory of Section 3.2 contains axioms providing the usual algebraicspeci�cation of stacks. However, PVS has a mechanism for automatically generating a com-plete axiomatization for such a theory from a very succinct description. Thus an alternativespeci�cation for stacks would bestack [t: TYPE]: DATATYPEBEGINempty: emptystack?push(top: t, pop: stack) : nonemptystack?END stackNotice that the keyword DATATYPE distinguishes this from an ordinary THEORY. In this spec-i�cation, empty and push are constructors , top and pop are accessors , and emptystack? andnonemptystack? are recognizers of the parameterized stack type. In addition to generatingthe signatures given in the previous stacks theory, this speci�cation automatically generatesa new theory (and �le) called stack adt containing35:� Extensionality axioms for the constructors, e.g.,stack_push_extensionality: AXIOM(FORALL (nonemptystack?_var: (nonemptystack?),nonemptystack?_var2: (nonemptystack?)):top(nonemptystack?_var) = top(nonemptystack?_var2)AND pop(nonemptystack?_var) = pop(nonemptystack?_var2)IMPLIES nonemptystack?_var = nonemptystack?_var2);34A slightly abbreviated form of the LAMBDA expression:(LAMBDA (i|i<size(ns)-1): elements(ns)(i))is also possible. To appreciate the subtlety of this example, note the considerable care necessary whenconstructing a new record of type stack to insure that the domains of elements match properly.35Disjointness and inclusion axioms are not explicitly generated, but are built in to the prover (principallythrough the semantics of induction and the case construct).54

Using PVS The PVS Language� An eta axiom:stack_push_eta: AXIOM(FORALL (nonemptystack?_var: (nonemptystack?)):push(top(nonemptystack?_var), pop(nonemptystack?_var))= nonemptystack?_var);� Accessor/constructor axioms, e.g.,stack_pop_push: AXIOM(FORALL (push1_var: t, push2_var: stack):pop(push(push1_var, push2_var)) = push2_var);� An induction scheme:stack_induction: AXIOM(FORALL (p: [stack -> boolean]):p(empty) AND(FORALL (push1_var: t, push2_var: stack):p(push2_var) IMPLIES p(push(push1_var, push2_var)))IMPLIES (FORALL (stack_var: stack): p(stack_var)));� Functions distributing predicates over the stack base type36:every(p: PRED[t])(a: stack): boolean =CASES a OFempty: TRUE,push(push1_var, push2_var):p(push1_var) AND every(p)(push2_var)ENDCASESsome(p: PRED[t])(a: stack): boolean =CASES a OFempty: FALSE,push(push1_var, push2_var):p(push1_var) OR some(p)(push2_var)ENDCASES� A subterm function:<<(x: stack, y: stack): boolean =CASES y OFempty: FALSE,push(push1_var, push2_var): x = push2_var OR x << push2_varENDCASES� A well-foundedness axiom:stack_well_founded: AXIOM well_founded?[stack](<<);� A recursive combinator37:36These functions are available both in curried form (shown above) and uncurried form.37Another function, reduce ordinal, that reduces a stack to an ordinal rather than a natural number isalso generated. 55

The PVS Language Using PVSreduce_nat(emptystack?_fun: nat, nonemptystack?_fun: [[t, nat] -> nat]):[stack -> nat] =LAMBDA (stack_var: stack):CASES stack_var OFempty: emptystack?_fun,push(push1_var, push2_var):nonemptystack?_fun(push1_var,reduce_nat(emptystack?_fun,nonemptystack?_fun)(push2_var))ENDCASESThe recursive combinator allows the speci�cation of functions such as length38:length(s:stack): nat =reduce_nat(0, (LAMBDA (x:t, n:nat): n + 1))(s)� In addition to the recursive combinator used above (which is specialized to the con-struction of measure functions), a fully general recursive combinator is generated in aseparate parameterized theory named stack adt reduce.� Another separate parameterized theory, providing a mapping function on stacks, isalso generated39:stack_adt_map[t: TYPE, t1: TYPE]: THEORYBEGINIMPORTING stack_adtmap(f: [t -> t1])(a: stack[t]): stack[t1] =CASES a OFempty: empty[t1],push(push1_var, push2_var):push[t1](f(push1_var), map(f)(push2_var))ENDCASESEND stack_adt_map3.10 Abstract Datatypes: TermsMore complicated examples of abstract datatypes may be given. For example, an abstractterm structure may be de�ned as belowterm [id, varid: TYPE] : DATATYPEBEGINconst(cid: id): const?variable(vid : varid) : var?lamb(bnd:(var?), body:term) : lamb?38In order to preserve soundness, PVS requires all user-de�ned recursive functions to include a measure,which is used to generate termination conditions. The primary use of the recursive combinator is to buildmeasure functions for recursive de�nitions. (Measure functions themselves cannot usually be de�ned byrecursive de�nitions, since those de�nitions require an existing measure function.)39The map function is also available in curried form (shown above) and uncurried form.56

Using PVS The PVS Proof Checkerapp(op: term, args: list[term]): app?END termNote that the args accessor is of type list[term]. There are restrictions on the typesallowed for accessors; in this case the only allowable types available for accessors involvingthe type term are: term, list[term], setof[term], sequence[term], or pred[term]. There isno restriction on type expressions that do not reference term. Some of the axioms generatedfor abstract datatypes are modi�ed when accessors are of complex types; here, in particular,the induction axioms and recursive combinators generated are modi�ed to handle the listargument.4 The PVS Proof CheckerThe PVS Proof Checker is also referred to as an interactive theorem prover. It is much moreautomated than the low-level \proof editors" that support some speci�cation notations, butoperates under the user's direction and is therefore more controllable than purely automatictheorem provers.4.1 IntroductionJust as we execute programs to check if they return the desired result, we subject high-level functional descriptions of a system to challenges by demanding proofs of desirableproperties. We call such challenges putative theorems. Here are some simple examples:� If a function that reverses a list has been correctly speci�ed, then we should be ableto prove that we get the original list by reversing a list twice.� When a train is allowed into a railroad crossing the gates must be down.� If the operational semantics is correct, then it should conform to the denotationalsemantics.The point of these challenges is that the process of proving putative theorems quicklyhighlights the gaps, errors, and inadequacies in the functional description. In some cases,such a proof could also prove that the system as described meets its complete speci�cation,in other words, that it is correct . But it is the rare proof that succeeds. The typical proofattempt fails, but such failure usually yields valuable insights that can be used to correctoversights in the speci�cation or formulation of the challenge. A useful automated proofassistant must therefore play the role of an intelligent but implacable skeptic in rejecting anyargument that is not entirely watertight. Furthermore, in rejecting these arguments, sucha skeptic must pinpoint the source of the failure so that the argument can be corrected andthe dialogue resumed. The PVS proof checker is intended to serve as the skeptical partyin such a dialogue. The user supplies the steps in the argument and PVS applies themto the goal of the proof progressively breaking them into simpler subgoals or to obvioustruths or falsehoods. If all of the subgoals are reduced to obvious truths, the proof attempt57

The PVS Proof Checker Using PVShas succeeded. Otherwise, the proof attempts fails either because the argument or theconjecture is incorrect.The central design assumptions in PVS are therefore that� The purpose of an automated proof checker is not merely to prove theorems but also toprovide useful feedback from failed and partial proofs by serving as a rigorous skeptic.� The most straightforward mechanizable criterion for a rigorous argument is that of aformal proof.� Automation serves to minimize the tedious aspects of formal reasoning while main-taining a high level of accuracy in the book-keeping and formal manipulations.� Automation should also be used to capture repetitive patterns of argumentation.� The end product of a proof attempt should be a proof that, with only a small amountof work, can be made humanly readable so that it can be subjected to the socialprocess of mathematical scrutiny.In following these design assumptions, the PVS proof checker is more automated thana low-level proof checker such as AUTOMATH [dB80], LCF [GMW79], Nuprl [Const86],Coq [CH85], and HOL [Gor88], but provides more user control over the structure of theproof than highly automated systems such as Nqthm [BM79,BM88] and Otter [McC90].We feel that the low-level systems over-emphasize the formal correctness of proofs at theexpense of their cogency, and the highly automated systems emphasize theorems at theexpense of their proofs.What is unusual about PVS is the extent to which aspects of the language, the type-checker, and proof checker are intertwined. The typechecker invokes the proof checkerin order to discharge proof obligations that arise from typechecking expressions involvingpredicate subtypes or dependent types. The proof checker also makes heavy use of thetypechecker to ensure that all expressions involved in a proof are well-typed. This use ofthe typechecker can also generate proof obligations that are either discharged automaticallyor are presented as additional subgoals. Several aspects of the language, particularly thetype system, are built into the proof checker. These include the automatic use of typeconstraints by the decision procedures, the simpli�cations given by the abstract datatypeaxioms, and forms of beta-reduction and extensionality, Another less unusual aspect ofPVS is the extent to which decision procedures involving equalities and linear arithmeticinequalities are employed.40 The most direct consequence of this is that the trivial, obvious,or tedious parts of the proof are often entirely hidden from the displayed proof so that theuser can focus on the intellectually demanding parts of the proof, and the resulting proofis also easier to read.As with much else in PVS, the implementation philosophy of the proof checker has beenguided by the 80-20 rule, namely that 80% of the functionality of a nearly perfect systemcan be built with 20% of the e�ort, and the remaining 20% of the functionality can take40The Ontic system [McA89] is a proof checker where decision procedures are ubiquitously used.Nqthm [BM79,BM88], Eves [PS89], and IMPS [FGT91] also rely heavily on the use of decision procedures.58

Using PVS The PVS Proof Checkerup the remaining 80% of the e�ort. PVS attempts to provide much of the 80% of thefunctionality that is easily implemented. Each PVS proof commands performs the functionthat, in our experience, is typically required of it. To some reasonable extent, the less typicalfunctionality can be obtained by providing optional arguments to these proof commands.In atypical instances, the burden of carrying out some manipulation falls squarely on theuser. Even in these instances, it is not too tedious to achieve one's ends with the existingproof commands in some fairly simple ways. The reader should let us know if any of ourdesign decisions are found to be ill-considered.In order to learn how to use the PVS proof checker, one must �rst understand thesequent representation used by PVS to represent proof goals, the commands used to movearound and undo parts of the proof tree, and the commands used to get help. One mustthen understand the syntax and e�ects of proof commands used to build proofs. Manyof these commands are extremely powerful even in their simplest usage. Several of thesecommands can be more carefully directed by supplying them with one or more optionalarguments. The advanced user will also need to understand how to de�ne proof strategiesthat capture repetitive patterns of proof commands, and commands used for displaying,editing, and replaying proofs.Section 4.2 provides the basic information needed to get started with the PVS proofchecker. The remaining sections give a collection of typical examples of how the proofchecker is used. The PVS Proof Checker Reference Manual [SOR93] contains detaileddescriptions of the PVS proof commands.4.2 PreliminariesSequent Representation of Proof Goals. Each goal or subgoal in a PVS proof attemptis a sequent of the form � ` �, where � is a sequence of antecedent formulas and � is asequence of consequent formulas. The actual displayed form of a PVS sequent isf-1g A1f-2g A2[-3] A3...|-------[1] B1f2g B2f3g B3...where each Ai is an antecedent formula and each Bi is a consequent formula. The intuitivereading of such a sequent is as the formula(A1 ^A2 ^ A3 ^ : : :) � (B1 _ B2 _B3 _ : : :):Note that the antecedent formulas are numbered with negative integers and the consequentformulas with positive integers. These numberings are used in directing the PVS proof59

The PVS Proof Checker Using PVScommands. If a formula number n appears as [n] in the sequent, it is an indication thatthe formula was una�ected by the proof step that created the sequent. It is a good heuristicis to examine the new formulas (i.e., the formulas whose number appears as fng) in thesequent to formulate the next proof step.Starting and Quitting Proofs. As indicated earlier, the PVS Emacs command M-xpr initiates a proof with the cursor on the formula to be proved. This brings up the *pvs*bu�er with the goal sequent and a Rule? prompt. Typing the PVS Emacs command M-xhelp-pvs-prover brings up help on the prover commands. To quit out of an existing proofattempt, type q or quit at the Rule? prompt. You will be asked whether you wish to savethe partial proof. Remember that if you answer yes, the old proof will be overwritten, andif you answer no, you will lose the partial proof that you have developed up to this point.Since PVS proof construction is carried out in a Lisp bu�er, there is a small chance thatyou could �nd yourself at a Lisp breakpoint with a `->' prompt. Typing (restore) at thispoint should almost always take you back to the nearest sensible proof goal and a Rule?prompt.The Structure of PVS Proofs. In the course of a proof, PVS builds up a tree ofsequents where each sequent is a subgoal generated from its parent sequent by a PVS proofcommand. At any point in a proof attempt, the control is at a leaf sequent of such a prooftree. At this point a PVS proof command can either� cause control to be transferred to next proof sequent in the tree (postpone)� undo a subtree by causing control to move up to some ancestor node in the proof tree(undo)� prove the current sequent causing control to move to the next remaining leaf sequentin the tree� generate subgoals so that control moves to the �rst of these subgoals, or� leave the proof tree unchanged while providing some useful status information.A proof is completed when there are no remaining unproved leaf sequents in the prooftree. The resulting proof is saved and can be edited and rerun on the same or a di�erentconjecture.4.3 Using the Proof CheckerPropositional Proof CommandsNow that we have gotten past the preliminaries, we can look at examples of some simpleinteractions with the PVS proof checker. We start with the following PVS theory namedpropositions that declares three Boolean constants A, B, and C, and states a theoremnamed prop asserting that the conjunction of (A � (B � C)) and (A � B) and A implies C.60

Using PVS The PVS Proof Checkerpropositions : THEORYBEGINA, B, C: boolprop: THEOREM (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND AIMPLIES CEND propositionsThe proof script displayed below is the result of typing the PVS Emacs command M-xpr on the formula prop and typing the inputs (shown in bold-face) in response to the Rule?prompt or to other queries from PVS. The (flatten) command eliminates the disjunctiveconnectives in the formula so as to
atten the formula out into the sequent. The next proofcommand (split) picks the �rst available conjunctive formula, in this case (A IMPLIES(B IMPLIES C)), and generates the three subgoals resulting from the conjunctive splittingof this formula. PVS then observes that the �rst of these subgoals is trivially true since ithas C in both the antecedent and consequent. The (split) command applied to the secondsubgoal generates two further subgoals which are both recognized as being trivially true,as is the remaining subgoal from the earlier (split) command. The proof has now beensuccessfully completed generating the Q.E.D. message, and the new proof is automaticallysaved. The system inquires whether the user would like to see an abbreviated version ofthe proof which is then printed out following the yes response. For space reasons, we onlydisplay a few lines of this printout in the script below. The two timings printed out at theend provide the machine time and the human time for the proof attempt, respectively. TheEmacs command M-x show-last-proof can be used to bring up an abbreviated version ofthe most recently completed proof that can be used as a guide in developing an informalpresentation of the proof. It displays the sequents at the branch points in the proof andthe commentary in between.prop :|-------f1g (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A IMPLIES CRule? (flatten)Applying disjunctive simplification to flatten sequent,this simplifies to:prop :f-1g (A IMPLIES (B IMPLIES C))f-2g (A IMPLIES B)f-3g A|-------f1g CRule? (split)Splitting conjunctions,this yields 3 subgoals:prop.1 :f-1g C 61

The PVS Proof Checker Using PVS[-2] (A IMPLIES B)[-3] A|-------[1] Cwhich is trivially true.This completes the proof of prop.1.prop.2 :[-1] (A IMPLIES B)[-2] A|-------f1g B[2] CRule? (split)Splitting conjunctions,this yields 2 subgoals:prop.2.1 :f-1g B[-2] A|-------[1] B[2] Cwhich is trivially true.This completes the proof of prop.2.1.prop.2.2 :[-1] A|-------f1g A[2] B[3] Cwhich is trivially true.This completes the proof of prop.2.2.This completes the proof of prop.2.prop.3 :[-1] (A IMPLIES B)[-2] A|-------f1g A[2] Cwhich is trivially true.This completes the proof of prop.3.Q.E.D.Run time = 0.52 secs.Real time = 14.32 secs. 62

Using PVS The PVS Proof CheckerSummary. The PVS Emacs command M-x pr is used to invoke the PVS proof checker.Proof goals are represented as sequents with the formulas numbered. The command(flatten)
attens the top-level disjunctive structure of all of the sequent formulas so thatthere are no disjunctive formulas in the resulting subgoal sequent. (Variations: (flatten*) is the same as (flatten). (flatten +)
attens only the consequent formulas, and(flatten -) the antecedent formulas. (flatten -2 3 4)
attens formulas numbered -2,3, and 4 in the goal sequent.) The command (split) picks the �rst top-level conjunctivesequent formula and generates the subgoals that result from splitting this conjunction. Aswith flatten, (split *) is the same as (split), (split -) splits the �rst antecedent con-junction, (split +) the �rst consequent conjunction, and (split -3) splits the formulanumbered -3.With the same example, we can now attempt to repeat the proof in order to exploresome other commands. When we now type M-x pr at the formula prop in the theoryproposition, PVS informs us that the formula has already been proved and asks whetherwe wish to retry proving the formula. If we respond that we do, then PVS inquires whetherthe existing proof should be rerun. If we choose to rerun the existing proof, the followingscript is automatically generated.prop :|-------f1g (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A IMPLIES CRerunning step: (FLATTEN)Applying disjunctive simplification to flatten sequent,this simplifies to:prop :f-1g (A IMPLIES (B IMPLIES C))f-2g (A IMPLIES B)f-3g A|-------f1g CRerunning step: (SPLIT)Splitting conjunctions,this yields 3 subgoals:prop.1 :f-1g C[-2] (A IMPLIES B)[-3] A|-------[1] Cwhich is trivially true.This completes the proof of prop.1.... 63

The PVS Proof Checker Using PVSSummary. Proofs can be rerun by responding suitably to the mini-bu�er query whenM-x pr is invoked on a formula that has a proof or a partial proof. Another way to rerunthe existing proof is to type (rerun) as the �rst step in a manual proof.We can retry the same example to explore some further proof commands. In this version,we choose not to rerun the existing proof. Typing the inappropriate command (split)results in No change to the proof state since there is no top level conjunctive formula in thesequent. We then type (flatten) which
attens the formula followed by (split) whichgenerates three subgoals, the �rst of which is trivially true. We then type (postpone)at the second subgoal. This causes the control to shift to the third subgoal which is alsotrivially true. The control now returns to the second subgoal. A further (postpone) bringsus back to the same subgoal since there are no other pending subgoals. At this point, wesimply choose to quit the proof by typing q at the Rule? prompt. At the query, we chooseto save the partial proof from the current proof attempt.prop :|-------f1g (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A IMPLIES CRule? (split)No change on: (SPLIT)prop :|-------f1g (A IMPLIES (B IMPLIES C)) AND (A IMPLIES B) AND A IMPLIES CRule? (flatten)Applying disjunctive simplification to flatten sequent,this simplifies to:prop :f-1g (A IMPLIES (B IMPLIES C))f-2g (A IMPLIES B)f-3g A|-------f1g CRule? (split)Splitting conjunctions,this yields 3 subgoals:prop.1 :f-1g C[-2] (A IMPLIES B)[-3] A|-------[1] Cwhich is trivially true.This completes the proof of prop.1.prop.2 :[-1] (A IMPLIES B)[-2] A|------- 64

Using PVS The PVS Proof Checkerf1g B[2] CRule? (postpone)Postponing prop.2.prop.3 :[-1] (A IMPLIES B)[-2] A|-------f1g A[2] Cwhich is trivially true.This completes the proof of prop.3.prop.2 :[-1] (A IMPLIES B)[-2] A|-------f1g B[2] CRule? (postpone)Postponing prop.2.prop.2 :[-1] (A IMPLIES B)[-2] A|-------f1g B[2] CRule? qDo you really want to quit? (Y or N): yWould you like the partial proof to be saved?(***Old proof will be overwritten.***)(Yes or No) yesUse M-x revert-proof to revert to previous proof.Run time = 0.77 secs.Real time = 22.63 secs.We can again type M-x pr and this time we can rerun the partial proof that we saved.Notice that we are back at the subgoal where we quit the proof since this is the onlyun�nished subgoal in the proof.Summary. The command (postpone) is used to navigate cyclically around the unprovedsubgoals in a proof. The PVS Emacs command M-x siblings displays all those subgoalsthat share the same parent goal as the current subgoal in the proof. The PVS Emacscommand M-x ancestry displays the chain of goals leading back from the current goalback to the root node of the proof tree. A q or quit can be used to quit out of a proof-in-progress with the option of saving the partial proof. If a previous proof is overwritten65

The PVS Proof Checker Using PVSas a result, then the PVS Emacs command M-x revert-proof can be used to recover theearlier proof. The PVS Emacs command M-x show-proof can be used to display a proofin progress in such a way that parts of it can be edited and used as input to the rerunproof command. The PVS Emacs command M-x edit-proof with the cursor positionedon a formula in a theory brings up a bu�er containing the proof of the formula displayedas a tree of commands. This displayed proof can also be edited and rerun.Quanti�er Proof CommandsWe now consider a simple example involving quanti�ers displayed in the theory predicatebelow.predicate: THEORYBEGINT : TYPEx, y, z: VAR TP, Q : [T -> bool]pred_calc: THEOREM(FORALL x: P(x) AND Q(x))IMPLIES (FORALL x: P(x)) AND (FORALL x: Q(x))END predicateThe proof script for this example starts with the application of (flatten) to the givenconjecture followed by the (split) command to break the consequent conjunction. Inthe �rst branch of the proof, we use the (skolem) command to replace the universallyquanti�ed variable x in the consequent formula numbered 1 with the (Skolem) constant X,where X is new (i.e., undeclared) in the present context. The next step is to instantiate theuniversally quanti�ed variable x in the antecedent formula numbered -1 with the constantX using the (inst) command. The �rst branch of the proof is then easily completed bypropositional reasoning. Note that the two quanti�er steps, skolem and inst, only a�ectthe outermost quanti�er of a formula in the sequent. Also, universally quanti�ed variablesin consequent formulas are replaced by new constants, whereas antecedent universally quan-ti�ed variables are instantiated with terms. Existentially quanti�ed variables behave dually.The second branch of the proof employs minor variants of the skolem and inst. Here the(skolem!) command picks the �rst \skolemizable" sequent formula and replaces the quan-ti�ed variables with internally generated constants (containing exclamations). The (inst?)command picks the �rst instantiable sequent formula and tries to �nd an instantiation forthe quanti�ed variables by matching against the rest of the sequent.pred_calc :|-------f1g (FORALL x: P(x) AND Q(x)) IMPLIES (FORALL x: P(x)) AND (FORALL x: Q(x))Rule? (flatten) 66

Using PVS The PVS Proof CheckerApplying disjunctive simplification to flatten sequent,this simplifies to:pred_calc :f-1g (FORALL x: P(x) AND Q(x))|-------f1g (FORALL x: P(x)) AND (FORALL x: Q(x))Rule? (split)Splitting conjunctions,this yields 2 subgoals:pred_calc.1 :[-1] (FORALL x: P(x) AND Q(x))|-------f1g (FORALL x: P(x))Rule? (skolem 1 "X")For the top quantifier in 1, we introduce Skolem constants: Xthis simplifies to:pred_calc.1 :[-1] (FORALL x: P(x) AND Q(x))|-------f1g P(X)Rule? (inst -1 "X")Instantiating the top quantifier in -1 with the terms:Xthis simplifies to:pred_calc.1 :f-1g P(X) AND Q(X)|-------[1] P(X)Rule? (prop)By propositional simplification,This completes the proof of pred_calc.1.pred_calc.2 :[-1] (FORALL x: P(x) AND Q(x))|-------f1g (FORALL x: Q(x))Rule? (skolem!)Skolemizing,this simplifies to:pred_calc.2 :[-1] (FORALL x: P(x) AND Q(x))|-------f1g Q(x!1)Rule? (inst?)Found substitution:x gets x!1,Instantiating quantified variables,this simplifies to:pred_calc.2 :f-1g P(x!1) AND Q(x!1) 67

The PVS Proof Checker Using PVS|-------[1] Q(x!1)Rule? (prop)By propositional simplification,This completes the proof of pred_calc.2.Q.E.D.Summary. The command (skolem 1 "X") is used to introduce a new constant X inplace of the universally quanti�ed variable in the formula numbered 1. (skolem 1 ("X"" " "Z")) is to be used if there are three variables bound by the universal quanti�er andonly the �rst and third are to be replaced by constants. (skolem + "X") carries out theskolemization step for the �rst consequent universally quanti�ed formula, and (skolem -"X") for the �rst antecedent existentially quanti�ed formula. The variations of the instan-tiation command inst are similar to those of skolem. The command forms (skolem!),(skolem! 1), (skolem! -), etc., are variants of skolem where the new constant namesare internally generated. The command (inst?) is a version of inst that tries to �nda matching substitution for a chosen quanti�ed formula. It can also be supplied a partialsubstitution to disambiguate the matching process as in (inst? - :subst ("x" "X")).Both inst and inst? take an optional :copy? argument that can be given as T in orderto retain a copy of the original quanti�ed formula in the sequent in case further instancesof the formula are needed, as in (inst + ("x" "X") :copy? T). The PVS rule inst-cpis a version of the inst that automatically copies the quanti�ed formula, and inst is thenon-copying variant. Note that optional arguments to PVS proof commands can be givenby order or by keyword. To �nd out the order, the keywords, and defaults for each of theproof commands, use M-x help-pvs-prover.Decision ProceduresThe equality and linear inequality decision procedures are the workhorses of almost anynontrivial PVS proof. The theory decisions displayed below illustrates some of thepower of these decision procedures. The formulas marked THEOREM are those that canbe proved using the decision procedures, and the ones marked CONJECTURE are either truebut cannot be proved solely by the decision procedures (like badarith1) or false (likebadarith and badarith2) and hence unprovable. The reader should invoke M-x pr oneach of the formulas in decisions and type either (then (skolem!)(ground)) or (then*(skolem!)(flatten)(assert)) to the Rule? prompt to observe the e�ects of the decisionprocedures. The command assert is used to either record equality or inequality informa-tion into the data-structures used by the decision procedures, or to simplify propositional orIF-THEN-ELSE structures in a formula, or carry out the automatic rewrites (to be describedbelow). The command (ground) is a combination of (prop) and (assert).68

Using PVS The PVS Proof Checkerdecisions: THEORYBEGINx,y,v: VAR numberf: [number -> number]eq1: THEOREM x = f(x) IMPLIES f(f(f(x))) = xg : [number, number -> number]eq2: THEOREM x = f(y) IMPLIES g(f(y + 2 - 2), x + 2) = g(x, f(y) + 2)arith: THEOREM %Proved by decision proceduresx < 2*y AND y < 3*v IMPLIES 3*x < 18*vbadarith: CONJECTURE %Not proved; statement is false.x < 2*y AND y < 3*v IMPLIES 3*x < 17*vbadarith1: CONJECTURE %Not proved; statement true but non-linearx<0 AND y<0 IMPLIES x*y>0i, j, k: VAR intintarith: THEOREM %Proved by decision procedures2*i < 5 AND i > 1 IMPLIES i = 2badarith2: CONJECTURE %Not proved; stmt. true of integers but not reals.2*x < 5 AND x > 1 IMPLIES x = 2range : THEOREM %Proved by decision proceduresi > 0 AND i < 3 IMPLIES i = 1 OR i = 2END decisionsWe now consider an example proof that further illustrates the use of decision procedures.The theory stamps below contains the formula asserting that any postage requirement of8 cents or more can be met solely with 3 and 5 cent stamps, i.e., is the sum of some multipleof 3 and some multiple of 5.stamps: THEORYBEGINi, three, five: VAR natstamps: LEMMA (FORALL i: (EXISTS three, five: i + 8 = 3 * three + 5 * five))END stampsIn abstract terms, the proof proceeds by induction on i. In the base case, when i is 0,the left-hand side is 8. Letting m and n both be 1 ful�lls the equality. In the induction case,we know that that i + 8 can be expressed as 3*M + 5*N for some M and N and we needto �nd m and n such that i + 8 + 1 is 3*m + 5*n. If N = 0, then M is at least 3. We thenlet m be M - 3 and n be 2, i.e., we remove three 3 cent stamps and add two 5 cent stampsto get postage worth i + 8 + 1. If N > 0, then we simply remove a 5 cent stamp and addtwo 3 cent stamps to prove the induction conclusion.69

The PVS Proof Checker Using PVSIn the proof script below, the �rst command (induct "i") directs PVS to use inductionon i. PVS deduces from the type nat of i that natural number induction is to be usedand formulates an induction predicate based on the formula number 1 in the sequent. Thecommand induct, like prop and ground, is a compound step or a proof strategy . Twosubgoals are generated corresponding to the base and induction cases. In the base case,the inst command is used to instantiate three with 1 and five with 1. The decisionprocedures are invoked to prove the resulting trivial arithmetic equality. In the inductioncase, the skolem command followed by flatten results in a sequent containing the inductionhypothesis in its antecedent and the conclusion in its consequent part. The witnessescorresponding to the induction hypothesis are produced by the skolem! command. Thecase-split according to five!1 = 0 is created by the case command. In the �rst five!1 =0 case, we instantiate the existential quanti�ers in the conclusion as required by the abstractproof. Since the bound variable three has type nat (which is a subtype of the integertype consisting of the non-negative integers), the inst command generates a second (typecorrectness) subgoal demanding proof that three!1 - 3 is at least 0. Both subgoals aredischarged through the use of assert. In the case when five!1 = 0 is false, note that theassumption of falsity is indicated by the formula five!1 = 0 appearing in the consequentpart of the goal sequent. We now follow an approach that is slightly di�erent from that ofthe previous branch; we use assert at this point. This has no visible e�ect on the sequentto be proved, but the falsity of five!1 = 0 is noted by the decision procedures for usedeeper in the proof. Now note that the inst command instantiating five with five!1 -1 does not generate the type correctness subgoal that was generated in the previous branchsince the decision procedures were able to automatically demonstrate that five!1 - 1 wasnon-negative from the known information.stamps :|-------f1g (FORALL i: (EXISTS three, five: i + 8 = 3 * three + 5 * five))Rule? (induct "i")Inducting on i,this yields 2 subgoals:stamps.1 :|-------f1g (EXISTS (three: nat), (five: nat): 0 + 8 = 3 * three + 5 * five)Rule? (inst 1 1 1)Instantiating the top quantifier in 1 with the terms:1, 1,this simplifies to:stamps.1 :|-------f1g 0 + 8 = 3 * 1 + 5 * 1Rule? (assert)Simplifying, rewriting, and recording with decision procedures,This completes the proof of stamps.1.stamps.2 : 70

Using PVS The PVS Proof Checker|-------f1g (FORALL (j: nat):(EXISTS (three: nat), (five: nat): j + 8 = 3 * three + 5 * five)IMPLIES(EXISTS (three: nat), (five: nat):j + 1 + 8 = 3 * three + 5 * five))Rule? (skolem + "JJ")For the top quantifier in +, we introduce Skolem constants: JJ,this simplifies to:stamps.2 :|-------f1g (EXISTS (three: nat), (five: nat): JJ + 8 = 3 * three + 5 * five)IMPLIES(EXISTS (three: nat), (five: nat):JJ + 1 + 8 = 3 * three + 5 * five)Rule? (flatten)Applying disjunctive simplification to flatten sequent,this simplifies to:stamps.2 :f-1g (EXISTS (three: nat), (five: nat): JJ + 8 = 3 * three + 5 * five)|-------f1g (EXISTS (three: nat), (five: nat): JJ + 1 + 8 = 3 * three + 5 * five)Rule? (skolem!)Skolemizing,this simplifies to:stamps.2 :f-1g JJ + 8 = 3 * three!1 + 5 * five!1|-------[1] (EXISTS (three: nat), (five: nat): JJ + 1 + 8 = 3 * three + 5 * five)Rule? (case "five!1 = 0")Case splitting onfive!1 = 0,this yields 2 subgoals:stamps.2.1 :f-1g five!1 = 0[-2] JJ + 8 = 3 * three!1 + 5 * five!1|-------[1] (EXISTS (three: nat), (five: nat): JJ + 1 + 8 = 3 * three + 5 * five)Rule? (inst + "three!1 - 3" 2)Instantiating the top quantifier in + with the terms:three!1 - 3, 2,this yields 2 subgoals:stamps.2.1.1 :[-1] five!1 = 0[-2] JJ + 8 = 3 * three!1 + 5 * five!1|-------f1g JJ + 1 + 8 = 3 * (three!1 - 3) + 5 * 2Rule? (assert)Simplifying, rewriting, and recording with decision procedures,This completes the proof of stamps.2.1.1. 71

The PVS Proof Checker Using PVSstamps.2.1.2 (TCC):[-1] five!1 = 0[-2] JJ + 8 = 3 * three!1 + 5 * five!1|-------f1g three!1 - 3 >= 0Rule? (assert)Simplifying, rewriting, and recording with decision procedures,This completes the proof of stamps.2.1.2.This completes the proof of stamps.2.1.stamps.2.2 :[-1] JJ + 8 = 3 * three!1 + 5 * five!1|-------f1g five!1 = 0[2] (EXISTS (three: nat), (five: nat): JJ + 1 + 8 = 3 * three + 5 * five)Rule? (assert)Simplifying, rewriting, and recording with decision procedures,this simplifies to:stamps.2.2 :f-1g 8 + JJ = 5 * five!1 + 3 * three!1|-------[1] five!1 = 0f2g (EXISTS (three: nat), (five: nat): 9 + JJ = 5 * five + 3 * three)Rule? (inst + "three!1 + 2" "five!1 - 1")Instantiating the top quantifier in + with the terms:three!1 + 2, five!1 - 1,this simplifies to:stamps.2.2 :[-1] 8 + JJ = 5 * five!1 + 3 * three!1|-------[1] five!1 = 0f2g 9 + JJ = 5 * (five!1 - 1) + 3 * (three!1 + 2)Rule? (assert)Simplifying, rewriting, and recording with decision procedures,This completes the proof of stamps.2.2.This completes the proof of stamps.2.Q.E.D.Summary. PVS proofs make heavy use of decision procedures to simplify tedious equal-ity and arithmetic reasoning so that the number of trivial subgoals can be minimized and tokeep the sequent formulas simple. The equality decision procedure employs congruence clo-sure to propagate equality information along the term structure to quickly decide whether a72

Using PVS The PVS Proof Checkersequent containing equalities and other propositions is true. An antecedent formula P thatis not an equality can be treated as P= TRUE, and a consequent formula P as the equal-ity P= FALSE. The assert rule is the most powerful form in which decision proceduresare applied. It is a combination of the record rule which records sequent formulas in thedata-structures used by the decision procedures, simplify which simpli�es branching andpropositional structure using the decision procedures, beta which beta-reduces record, tu-ple, function-update, LAMBDA, and abstract datatype redexes, and do-rewritewhich appliesthe rewrites speci�ed by auto-rewrite and auto-rewrite-theory.The (case hformulai�) command used in the above proof is extremely useful for case-splitting on a formula. For example, if there is no straightforward way to simplify a formulaA to another formula A0, then one can case-split on A0 so that we can use A0 on one branchand prove it from A on the other branch. The case command can also be used to replacea term s by s0 by case-splitting on s = s0 and using the replace proof command (which isnot explained here) to carry out the replacement.Using De�nitions and LemmasFor the purpose of this discussion, we use the following very simple example of a recursivefunction that halves a given natural number.half: THEORYBEGINi, j, k: VAR nathalf(i): RECURSIVE nat =(IF i = 0 THEN 0 ELSIF i = 1 THEN 0 ELSE half(i - 2) + 1 ENDIF)MEASURE (LAMBDA i: i)half_halves: THEOREM half(2 * i) = ihalf_half: THEOREM half(2 * half(2 * i)) = iEND halfWe show a segment of the proof of half halves where the de�nition of half is expanded.Notice that the �rst use of expand brings in an unsimpli�ed expansion of the de�nition ofhalf. When we undo this proof step and retry the same expand step following an assert,not only is the expansion simpli�ed, but the equality is itself reduced to TRUE....half_halves.2 :f-1g half(2 * J) = J|-------f1g half(2 * (J + 1)) = J + 1Rule? (expand "half" +) 73

The PVS Proof Checker Using PVSExpanding the definition of halfthis simplifies to:half_halves.2 :[-1] half(2 * J) = J|-------f1g (IF 2 * (J + 1) = 0 THEN 0 ELSE half(2 * (J + 1) - 2) + 1 ENDIF) = J + 1Rule? (undo)This will undo the proof to:half_halves.2 :f-1g half(2 * J) = J|-------f1g half(2 * (J + 1)) = J + 1Sure? (Y or N): yhalf_halves.2 :f-1g half(2 * J) = J|-------f1g half(2 * (J + 1)) = J + 1Rule? (assert)Invoking decision procedures,this simplifies to:half_halves.2 :[-1] half(2 * J) = J|-------[1] half(2 * (J + 1)) = J + 1Rule? (expand "half" +)Expanding the definition of halfthis simplifies to:half_halves.2 :[-1] half(2 * J) = J|-------f1g TRUEwhich is trivially true....The rewrite command is an alternative to expand, though rewrite can be used torewrite with both formulas and de�nitions. In the script below, the rewrite step replacesthe second of the above applications of expand. Notice that rewrite behaves slightly dif-ferently from expand, but it too is sensitive to the facts recorded by the decision proceduresfrom a previous assert....half_halves.2 :[-1] half(2 * J) = J|-------[1] half(2 * (J + 1)) = J + 1Rule? (rewrite "half" +) 74

Using PVS The PVS Proof CheckerRewriting using half,this simplifies to:half_halves.2 :[-1] half(2 * J) = J|-------f1g half(2 * (J + 1) - 2) + 1 = J + 1Rule? (assert)Invoking decision procedures,This completes the proof of half_halves.2....In summary, expand is used to expand de�nitions, and rewrite is used to rewrite usingde�nitions and formulas. Both employ decision procedures for simpli�cation during rewrit-ing. Decision procedures are also used to discharge any conditions (arising from a condi-tional rewrite rule) and the type-correctness conditions arising from the lemma instantiationapplied by rewrite. The expand step is the preferred way to expand de�nitions.Other Commands. We have described some typical commands, but have not mentionedmany others. A partial account of some of those we've omitted is given below; a complete,annotated list of prover commands can be found in The PVS Prover Checker ReferenceManual [SOR93]. The lemma command is used to bring in an instance of a lemma as an an-tecedent sequent formula. The extensionality proof command is similarly used to bringin the extensionality scheme given a suitable type expression, i.e., a function, record, ortuple type or an abstract datatype. The beta rule is used to carry out beta-reduction ofredexes including those involving LAMBDA-abstraction, record access, tuple access, functionupdates, and datatype expressions. The command delete can be used to drop irrelevantsequent formulas; hide is a more conservative form of delete where the formula can berestored using the reveal command. The PVS Emacs command M-x show-hidden showsthe hidden formulas. The command typepred can be used to make the subtype predi-cates on a given expression explicit as sequent formulas. The lift-if command lifts IF-branching to the top-level of a sequent formula through F(IF A THEN s ELSE t ENDIF)being transformed to (IF A THEN F (s) ELSE F (t) ENDIF). The commands auto-rewriteand auto-rewrite-theory are used to install rewrite rules to be used automatically by theassert command.Proof Checker PragmaticsThe PVS proofs in the tutorial examples re
ect a very low level of automation and should beviewed merely as pedagogical exercises. The proof checker actually provides several powerfulcommands for the advanced user that make it possible to verify large classes of theoremsusing only a small number of steps. For example, the grind command is usually a goodway to complete a proof that only requires de�nition expansion, and arithmetic, equality,and quanti�er reasoning. The decision procedure command assert is used very frequently75

Two Hardware Examples Using PVSsince it does simpli�cation, automatic rewriting, and records the sequent formulas in thedecision procedure database. The inst? command is the most e�ective way to automaticallyinstantiate quanti�ers of existential strength. The induct-and-simplify command is apowerful way to construct proofs by induction. The commands induct-and-rewrite andinduct-and-rewrite! are variants of induct-and-simplify. These induction commandsare able to automatically complete a fairly large class of induction proofs.It is not necessary to master all the proof commands in order to use the PVS proofchecker e�ectively. In general, it is advisable to learn the most powerful commands �rstand only rely on the simpler commands when the powerful ones fail. For example, theinitial step in a proof is usually skolemization, and the preferred and most powerful formhere is skosimp*. Similarly, induct-and-simplify or one of its variants should be used toinitiate induction proofs.Typically, the creative choices in a proof are:1. The induction scheme: One of the above induction commands should be employedhere.2. The case analysis: If the case analysis is not explicit in the propositional structure,then it might be implicit in an embedded IF-THEN-ELSE or CASES structure in whichcase the lift-if command should be used to bring the case analyses to the surface ofthe sequent where they can be propositionally simpli�ed. Otherwise, the case analysishas to be supplied explicitly using the case command.3. The quanti�er instantiations: The instantiation of antecedent universal and succedentexistential quanti�ers is done automatically by the inst? command. When this fails,the more manual inst and inst-cp commands should be used.The bddsimp command is the most e�cient way to do propositional simpli�cation, butprop will do when e�ciency is not important. Propositional simpli�cation has to be usedwith care because it can generate many subgoals that share the same proof. The flattenand split commands are used to do the propositional simpli�cation more delicately.User-de�ned proof strategies , similar to the tactics and tacticals of LCF, can be employedby more advanced PVS users. A �le containing de�nitions of basic strategies is distributedwith PVS and provides a good introduction to this topic. The PVS Prover Checker Ref-erence Manual [SOR93] can be consulted for additional information on user-de�ned proofstrategies.Finally, it is helpful to be familiar with the PVS prelude theories, which provide veryuseful background mathematics, as well as a rich source of examples.5 Two Hardware ExamplesIn this �nal section, we develop two hardware examples that illustrate a more sophisti-cated use of PVS and suggest the intellectual discipline involved in specifying and provingindustrial-strength applications. The pipelined microprocessor and n-bit ripple-carry adder76

Using PVS Two Hardware Examplesexamples provide an opportunity to touch on modeling issues, speci�cation styles, and hard-ware proof strategies, as well as a chance to review many of the PVS language and proverfeatures described in earlier sections of this tutorial.415.1 A Pipelined MicroprocessorWe �rst develop a complete proof of a correctness property of the controller logic of asimple pipelined processor design described at a register-transfer level. The design and theproperty veri�ed are both based on the processor example given in [BCM+90]. The examplehas been used as a benchmark for evaluating how well �nite state-enumeration based tools,such as model checkers, can handle datapath-oriented circuits with a large number of statesby varying the size of the datapath. From the perspective of a theorem prover, the sizeof the datapath is irrelevant because the speci�cation and proof are independent of thedatapath size. As a theorem proving exercise, the challenge is to see if the proof can bedone as automatically as a model checker proof.Informal DescriptionFigure 11 shows a block diagram of the pipeline design. The processor executes instructionsof the form (opcode src1 src2 dstn), i.e., \destination register dstn in the register �leREGFILE becomes some ALU function determined by opcode of the contents of source regis-ters src1 and src2. Every instruction is executed in three stages (cycles) by the processor:41One point worth noting that may not be apparent in reading these examples is that the process ofspeci�cation and veri�cation is an iterative one in which proof is used not to certify a completed speci�cation,but as an aid to developing the speci�cation.
ccc###......................................-- -?6 ----.?. ?...-- 66 �--- -stall REGFILEopcode ULACONTROLdsntdddstnd stalld stallddwbregopreg2opreg1dstn opcodedsrc2src1

Figure 11: A Pipelined Microprocessor77

Two Hardware Examples Using PVS1. Read: Obtain the proper contents of the register �le at src1 and src2 and clock theminto opreg1 and opreg2, respectively.2. Compute: Perform the ALU operation corresponding to the opcode (remembered inopcoded) of the instruction and clock the result into wbreg.3. Write: Update the register �le at the destination register (remembered in dstndd) ofthe instruction with the value in wbreg.The processor uses a three-stage pipeline to simultaneously execute distinct stages of threesuccessive instructions. That is, the read stage of the current instruction is executed alongwith the compute stage of the previous instruction and the write stage of the previous-to-previous instruction. Since the REGFILE is not updated with the results of the previous andprevious-to-previous instructions while a read is being performed for the current instruction,the controller \bypasses" REGFILE, if necessary, to get the correct values for the read. Theprocessor can abort, i.e., treat as NOP, the instruction in the read stage by asserting thestall signal true. An instruction is aborted by inhibiting its write stage by rememberingthe stall signal until the write stage via the registers stalld and stalldd. We verify thatan instruction entering the pipeline at any time gets completed correctly, i.e., will writethe correct result into the register �le, three cycles later, provided the instruction is notaborted.Formal Speci�cationPVS speci�cations consist of a number of �les, each of which contains one or more theories.The microprocessor speci�cation is organized into three theories, selected parts of whichare shown in Figures 12 and 13. (The complete speci�cation can be found in [SSR95].)The theory pipe (Figure 12) contains a speci�cation of the design and a statement of thecorrectness property to be proved. The theories signal and time, (Figure 13) imported bypipe, declares the types signal and time used in pipe.The theory pipe is parameterized with respect to the types of the register address,data, and the opcode �eld of the instructions. A theory parameter in PVS can be eithera type parameter or a parameter belonging to a particular type, such as nat. Since pipedoes not impose any restriction on its parameters, other than the requirement that theybe nonempty, which is stated in the ASSUMING part of the theory, one can instantiate themwith any type. Every entity declared in a parameterized theory is implicitly parameterizedwith respect to the parameters of the theory. For example, the type signal declared in theparameterized theory signal is a parametric type denoting a function that maps time (asynonym for nat) to the type parameter T. (The type signal is used to model the wires inour design.) By importing the theory signal uninstantiated in pipe, we have the freedomto create any desired instances of the type signal.In this example, we use a functional style of speci�cation to model register-transfer-level digital hardware in logic. In this style, the inputs to the design and the outputs ofevery component in the design are modeled as signals. Every signal that is an output of acomponent is speci�ed as a function of the signals appearing at the inputs to the component.78

Using PVS Two Hardware Examplespipe[addr: TYPE, data: TYPE, opcodes: TYPE]: THEORYBEGINIMPORTING signal, timeASSUMINGaddr_nonempty: ASSUMPTION (EXISTS (a: addr): TRUE)data_nonempty: ASSUMPTION (EXISTS (d: data): TRUE)opcodes_nonempty: ASSUMPTION (EXISTS (o: opcodes): TRUE)ENDASSUMINGt: VAR time%% Signal declarationsopcode: signal[opcodes]src1, src2, dstn: signal[addr]stall: signal[bool]aluout: signal[data]regfile: signal[[addr -> data]]...%% Specification of constraints on the signalsdstnd_ax: AXIOM dstnd(t+1) = dstn(t)dstndd_ax: AXIOM dstndd(t+1)= dstnd(t).....regfile_ax: AXIOM regfile(t+1) =IF stalldd(t) THEN regfile(t)ELSE regfile(t)WITH [(dstndd(t)) := wbreg(t)]ENDIFopreg1_ax: AXIOM opreg1(t+1) =IF src1(t) = dstnd(t) & NOT stalld(t)THEN aluout(t)ELSIF src1(t) = dstndd(t) & NOT stalldd(t)THEN wbreg(t)ELSE regfile(t)(src1(t)) ENDIFopreg2_ax: AXIOM ...aluop: [opcodes, data, data -> data]ALU_ax: AXIOM aluout(t) = aluop(opcoded(t), opreg1(t),opreg2(t))correctness: THEOREM (FORALL t:NOT(stall(t)) IMPLIES regfile(t+3)(dstn(t)) =aluop(opcode(t), regfile(t+2)(src1(t)),regfile(t+2)(src2(t))))END pipe Figure 12: Microprocessor Speci�cationThis style should be contrasted with a predicative style, which is commonly used inmost HOL applications. In the predicative style every hardware component is speci�edas a predicate relating the input and output signals of the component and a design isspeci�ed as a conjunction of the component predicates, with all the internal signals usedto connect the components hidden by existential quanti�cation. A proof of correctness fora predicative style speci�cation usually involves executing a few additional steps at thestart of the proof to essentially transform the predictative speci�cation into an equivalentfunctional style. After that, the proof proceeds similar to that of a proof in a functionalspeci�cation. The additional proof steps required for a predicative speci�cation essentially79

Two Hardware Examples Using PVSsignal[val: TYPE]: THEORYBEGINsignal: TYPE = [time -> val]END signaltime: THEORYBEGINtime: TYPE natEND signal Figure 13: Signal Speci�cationunwind the component predicates using their de�nitions and then appropriately instantiatethe existentially quanti�ed variables. An automatic way of performing this translation isdiscussed in [SSR95], which illustrates more examples of hardware design veri�cation usingPVS.Returning to our example, the microprocessor speci�cation in pipe consists of two parts.The �rst part declares all the signals used in the design|the inputs to the design and theinternal wires that denote the outputs of components. The composite state of REGFILE,which is represented as a function from addr to data, is modeled by the signal regfile.The signals are declared as uninterpreted constants of appropriate types. The second partconsists of a set of AXIOMs that specify the the values of the signals over time. (To conservespace, we have only shown the speci�cation of a subset of the signals in the design.) Forexample, the signal value at the output of the register dstnd at time t+1 is de�ned to be thatof its input a cycle earlier. The output of the ALU, which is a combinational component,is de�ned in terms of the inputs at the same time instant.In PVS, we can use a descriptive style of de�nition, as illustrated in this example,by selectively introducing properties of the constants declared in a theory as AXIOMs.Alternatively, we can use the de�nitional forms provided by the language to de�ne theconstants. An advantage of using the de�nitions is that a speci�cation is guaranteed tobe consistent. A disadvantage is that the resulting speci�cation may be overly speci�c(i.e., overspeci�ed). An advantage of the descriptive style is that it gives better controlover the degree to which an entity is de�ned For example, we could have speci�ed dstndprescriptively, using the conventional function de�nition mechanism of PVS, which wouldhave forced us to specify the value of the signal at time t = 0 to ensure that the functionis total. In the descriptive style used, we have left the value of the signal at 0 unspeci�ed.In the present example, the speci�cations of the signals opreg1 and opreg2 are the mostinteresting of all. They have to check for any register collisions that might exist between theinstruction in the read stage and the instructions in the later stages and bypass reading fromthe register �le in case of collisions. The regfile signal speci�cation is recursive since theregister �le state remains the same as its previous state except, possibly, at a single registerlocation. The WITH expression is an abbreviation for the result of updating a function ata given point in the domain value with a new value. Note that the function aluop thatdenotes the operation ALU performs for a given opcode is left completely unspeci�ed sinceit is irrelevant to the controller logic. 80

Using PVS Two Hardware ExamplesThe theorem (correctness) to be proved states a correctness property about the execu-tion of the instruction that enters the pipeline at t, provided the instruction is not aborted,i.e., stall(t) is not true. The equation in the conclusion of the implication compares theactual value (left hand side) in the destination register three cycles later, when the resultof the instruction would be in place, with the expected value. The expected value is theresult of applying the aluop corresponding to the opcode of the instruction to the valuesat the source �eld registers in the register �le at t+2. We use the state of the register �leat t+2 rather than t to allow for the results of the two previous instructions in the pipelineto be completed.Proof of CorrectnessOnce the speci�cation is complete, the next step is to typecheck the �le, which parses andchecks for semantic errors, such as undeclared names and ambiguous types. As we havealready seen, typechecking may build new �les or internal structures such as type correctnessconditions (TCCs) that represent proof obligations that must be discharged before the pipetheory can be considered typechecked. The typechecker does not generate any TCCs in thepresent example. If, for example, one of the assumptions, say for addr, in the ASSUMINGpart of the theory was missing, the typechecker would generate the following TCC to showthat the addr type is nonempty. The declaration of the signal src1 forces generation ofthis TCC because a function is nonexistent if its range is empty.% Existence TCC generated (line 17) for src1: signal[addr]% May need to add an assuming clause to prove this.% unprovedsrc1_TCC1: OBLIGATION (EXISTS (x1: signal[addr]): TRUE);By way of review, the basic objective of developing a proof in PVS as in other subgoal-directed proof checkers (e.g., HOL), is to generate a proof tree in which all of the leaves aretrivially true. The nodes of the proof tree are sequents, and in the prover you are alwayslooking at an unproved leaf of the tree. The current branch of a proof is the branch leadingback to the root from the current sequent. When a given branch is complete (i.e., ends in atrue leaf), the prover automatically moves on to the next unproved branch, or, if there areno more unproven branches, noti�es you that the proof is complete.The primitive inference steps in PVS are a lot more powerful than in HOL; it is notnecessary to build complex tactics to handle tedious lower level proofs in PVS. A knowl-edgeable PVS user can typically get proofs to go through mostly automatically by makinga few critical decisions at the start of the proof. However, as noted previously, PVS doesprovide the user with the equivalent of HOL's tacticals, called strategies, and other featuresto control the desired level of automation in a proof.The proof of the microprocessor property shown below follows a certain general patternthat works successfully for most hardware proofs. This general proof pattern, variantsof which have been used in other veri�cation exercises [KSK93, ALW93], consists of thefollowing sequence of general proof tasks. 81

Two Hardware Examples Using PVSQuanti�er elimination: Since the decision procedures work on ground formulas, the usermust eliminate the relevant universal quanti�ers by skolemization or selecting variableson which to induct and existential quanti�ers by suitable instantiation.Unfolding de�nitions: The user may have to simplify selected expressions and de�nedfunction symbols in the goal by rewriting using de�nitions, axioms or lemmas. Theuser may also have to decide the level to which the function symbols have to rewritten.Case analysis: The user may have to split the proof based on selected boolean expressionsin the current goal and simplify the resulting goals further.Each of the above tasks can be accomplished automatically using a short sequenceof primitive PVS proof commands. The complete proof of the theorem is shown below.Selected parts of the proof session are reproduced below as we describe the proof.1: (then* (skosimp)2: (auto-rewrite-theory ``pipe'' :always? t)3: (repeat (do-rewrite))4: (apply (then* (repeat (lift-if))5: (bddsimp)6: (assert))))In the proof, the names of strategies are shown in italics and the primitive inferencesteps in type-writer font. (We have numbered the lines in the proof for reference.)Then* applies the �rst command in the list that follows to the current goal; the rest ofthe commands in the list are then applied to each of the subgoals generated by the �rstcommand application. The apply command used in line 5 makes the application of acompound proof step implemented by a strategy behave as an atomic step.The �rst goal in the proof session is shown below. It consists of a single formula (labeledf1g) under a dashed line. This is a sequent ; formulas above the dashed lines are calledantecedents and those below are called succedents . The interpretation of a sequent is thatthe conjunction of the antecedents implies the disjunction of the succedents.correctness :|-------f1g (FORALL t: NOT (stall(t))IMPLIES regfile(t + 3)(dstn(t)) =aluop(opcode(t), regfile(t + 2)(src1(t)),regfile(t + 2)(src2(t))))The quanti�er elimination task of the proof is accomplished by the command skosimp,which skolemizes all the universally quanti�ed variables in a formula and
attens the sequentresulting in the following goal. Note that stall(t!1) has been moved to the succedent inthe sequent because PVS displays every atomic formula in its positive form.82

Using PVS Two Hardware ExamplesRule? (skosimp)Skolemizing and flattening, this simplifies to:correctness :|-------f1g (stall(t!1))f2g regfile(t!1 + 3)(dstn(t!1))=aluop(opcode(t!1), regfile(t!1 + 2)(src1(t!1)),regfile(t!1 + 2)(src2(t!1)))The next task|unfolding de�nitions|is performed by the commands in lines 2 through3. PVS provides a number of ways of unfolding de�nitions ranging from unfolding onestep at a time to automatic rewriting that performs unfolding in a brute-force fashion.Brute-force rewriting usually results in larger expressions than controlled unfolding and,hence, potentially larger number of cases to consider. If a system provides automatic ande�cient rewriting and case analysis facilities, then the automatic approach is viable, asillustrated here. In PVS automatic rewriting is performed by �rst entering the de�nitionsand AXIOMs to be used for unfolding as rewrite rules. Once entered, the commands thatperform rewriting as part of their repertoire, such as do-rewrite and assert, repeatedlyapply the rewrite rules until none of the rules is applicable. To control the size of theexpression resulting from rewriting and the potential for looping, the rewriter uses thefollowing restriction for stopping a rewrite: If the right-hand-side of a rewrite is a conditionalexpression, then the rule is applied only if the condition simpli�es to true or false.Here our aim is to unfold every signal in the sequent so that every signal expressioncontains only the start time t!1. So, we make a rewrite rule out of every AXIOM in thetheory pipe by means of the command auto-rewrite-theory on line 2. We also forcean over-ride of the default restriction for stopping rewriting by setting the tag42 always?to true in the auto-rewrite-theory command and embed do-rewrite inside a repeatloop to force maximum rewriting. In the present example, the rewriting is guaranteed toterminate because every feedback loop is cut by a sequential component.At the end of automatic rewriting, the succedent we are trying to prove is in the form ofan equation on two deeply nested conditional expressions as shown below in an abbreviatedfashion. The various cases in conditional expression shown above arise as a result of thedi�erent possible con
icts between instructions in the pipeline. The equation we are tryingto prove contains two distinct, but equivalent conditional expressions, as in IF a THENb ELSE c ENDIF = IF NOT a THEN c ELSE b ENDIF, that can only be proved equal byperforming a case-split on one or more of the conditions. While assert simpli�es the leavesof a conditional expression assuming every condition along the path to the leaves holds,it does not split propositions. One way to perform the case-splitting task automaticallyis to \lift" all the IF-THEN-ELSEs to the top so that the equation is transformed into apropositional formula with unconditional equalities as atomic predicates. After performingsuch a lifting, we can try to reduce the resulting proposition to true using the propositional42Tags are one of the ways in which PVS permits the user to modify the functionality of proof commands.83

Two Hardware Examples Using PVSsimpli�cation command bddsimp. If bddsimp does not simplify the proposition to true,then it is most likely the case that equations at one or more of the leaves of the propositionneed to be further simpli�ed, e.g., by assert, using the conditions along the path. If thepropositional formula does not reduce to true or false, bddsimp produces a set of subgoalsto be proved. In the present case, each of these goals can be discharged by assert. Thecompound proof step appearing on lines 4 through 6 of the proof accomplishes the case-splitting task.correctness :|-------[1] (stall(t!1))f2g aluop(opcode(t!1),IF src1(t!1) = dstnd(t!1) & NOT stalld(t!1)THEN aluop(opcoded(t!1), opreg1(t!1), opreg2(t!1))ELSIF src1(t!1) = dstndd(t!1) & NOT stalldd(t!1)THEN wbreg(t!1)ELSE regfile(t!1)(src1(t!1)) ENDIF,....ENDIF)= aluop(opcode(t!1),IF stalld(t!1) THEN IF stalldd(t!1) THEN regfile(t!1)ELSE regfile(t!1) WITH [(dstndd(t!1)) := wbreg(t!1)]ENDIFELSE ...ENDIF(src1(t!1)),IF stalld(t!1) THEN IF stalldd(t!1) THEN regfile(t!1)ELSE ... ENDIFELSE ...ENDIF(src2(t!1)))We have found that the sequence of steps shown above works successfully for provingsafety properties of �nite state machines that relate states of the machine that are �nitedistance apart. If the strategy does not succeed, the most likely cause is that either theproperty is not true or that a certain property about some of the functions in the speci�-cation unknown to the prover needs to be proved as a lemma. In either case, the unprovengoals remaining at the end of the proof provide information about the probable cause.5.2 An N-bit Ripple-Carry AdderThe second example we consider is the veri�cation of a parametrized N-bit ripple-carryadder circuit. The theory adder, shown in Figure 14, speci�es a ripple-carry adder circuitand a statement of correctness for the circuit.The theory is parameterized with respect to the length of the bit-vectors. It importsthe theories (not shown here) full adder, which contains a speci�cation of a full addercircuit (fa cout and fa sum), and bv, which speci�es the bit-vector type (bvec[N]) andfunctions. An N-bit bit-vector is represented as an array, i.e., a function, from the the type84

Using PVS Two Hardware Examplesadder[N: posnat] : THEORYBEGINIMPORTING bv[N], full_addern: VAR below[N]bv, bv1, bv2: VAR bveccin: VAR boolnth_cin(n, cin, bv1, bv2): RECURSIVE bool =IF n = 0 THEN cinELSE fa_cout(nth_cin(n - 1, cin, bv1, bv2), bv1(n - 1), bv2(n - 1))ENDIFMEASURE nbv_sum(cin, bv1, bv2): bvec =(LAMBDA n: fa_sum(bv1(n), bv2(n), nth_cin(n, cin, bv1, bv2)))bv_cout(n, cin, bv1, bv2): bool =fa_cout(nth_cin(n, cin, bv1, bv2), bv1(n), bv2(n))adder_correct_n: LEMMAbvec2nat_rec(n, bv1) + bvec2nat_rec(n, bv2) + bool2bit(cin)= exp2(n + 1) * bool2bit(bv_cout(n, cin, bv1, bv2))+ bvec2nat_rec(n, bv_sum(cin, bv1, bv2))adder_correct: THEOREMbvec2nat(bv1) + bvec2nat(bv2) + bool2bit(cin)= exp2(N) * bool2bit(bv_cout(N - 1, cin, bv1, bv2))+ bvec2nat(bv_sum(cin, bv1, bv2))END adder Figure 14: Adder Speci�cationbelow[N], a subtype of nat ranging from 0 through N-1, to bool; the index 0 denotes theleast signi�cant bit. Note that the parameter N is constrained to be a posnat since we donot permit bit vectors of length 0. The adder theory contains several declarations includinga set of initial variable declarations.The carry bit that ripples through the full adder is speci�ed recursively by means ofthe function nth cin. The function bv cout and bv sum de�ne the carry output and thebit-vector sum of the adder, respectively. The theorem adder correct expresses the con-ventional correctness statement of an adder circuit using bvec2nat, which returns the nat-ural number equivalent of an N-bit bit-vector. Note that variables that are left free ina formula are assumed to be universally quanti�ed. We state and prove a more generallemma adder correct rec of which adder correct is an instance. For a given n < N,bvec2nat rec returns the natural number equivalent of the least signi�cant n-bits of agiven bit-vector and bool2bit converts the boolean constants TRUE and FALSE into thenatural numbers 1 and 0, respectively.TypecheckingThe typechecker generates several TCCs (shown in Figure 15 below) for adder.85

Two Hardware Examples Using PVS% Subtype TCC generated (line 13) for n - 1% unprovednth_cin_TCC1: OBLIGATION (FORALL n: NOT n = 0 IMPLIES n - 1 >= 0 AND n - 1 < N)% Subtype TCC generated (line 31) for N - 1% unprovedadder_correct_TCC1: OBLIGATION N - 1 >= 0Figure 15: TCCs for Theory adderThe �rst TCC is due to the fact that the �rst argument to nth cin is of type below[N],but the type of the argument (n-1) in the recursive call to nth cin is integer, since below[N]is not closed under subtraction. Note that the TCC includes the condition NOT n = 0, whichholds in the branch of the IF-THEN-ELSE in which the expression n - 1 occurs. A TCCidentical to this one is generated for each of the two other occurrences of the expression n-1because bv1 and bv2 also expect arguments of type below[N]. These TCCs are not retainedbecause they are subsumed by the �rst one.The second TCC is generated by the expression N-1 in the de�nition of the theo-rem adder correct because the �rst argument to bv cout is expected to be the subtypebelow[N].There is yet another TCC that is internally generated by PVS but is not even included inthe TCCs �le because it can be discharged trivially by the typechecker, which calls the proverto perform simple normalizations of expressions. This TCC is generated to ensure that therecursive de�nition of nth cin terminates. PVS does not directly support partial functions,although its powerful subtyping mechanism allows PVS to express many operations that aretraditionally regarded as partial. As discussed earlier, the measure function is used to showthat recursive de�nitions are total by requiring the measure to decrease with each recursivecall. For the de�nition of nth cin, this entails showing n-1 < n, which the typecheckertrivially deduces.In the present case, all the remaining TCCs are simple, and in fact can be dischargedautomatically by using the typecheck-prove command, which attempts to prove all TCCsthat have been generated using a prede�ned proof strategy called tcc.Proof of Adder correct nThe proof of the lemma uses the same core strategy as in the microprocessor proof except forthe quanti�er elimination step. Since the speci�cation is recursive in the length of the bit-vector, we need to perform induction on the variable n. As we've seen in earlier proofs, theuser invokes an inductive proof in PVS by means of the command induct with the variableto induct on (n) and the induction scheme to be used (below induction[N]) as arguments.The induction used in this case is de�ned in the PVS prelude and is parameterized, as isthe type below[N], with respect to the upper limit of the subrange.This command generates two subgoals: the subgoal corresponding to the base case,which is the �rst goal presented to prove, is shown in Figure 16.The goal corresponding to the inductive case is shown below.86

Using PVS Two Hardware Examplesadder_correct.1 :|-------1 (N > 0IMPLIES(FORALL(bv1: bvec[N], bv2: bvec[N], cin: bool):bvec2nat_rec(0, bv1) + bvec2nat_rec(0, bv2)+ bool2bit(cin)= exp2(0 + 1) * bool2bit(bv_cout(0, cin, bv1, bv2))+ bvec2nat_rec(0, bv_sum(cin, bv1, bv2))))Figure 16: Base StepThe remaining siblings are:adder_correct_n.2 :|-------f1g (FORALL (r: below[N]):r < N - 1AND (FORALL (bv1, bv2: bvec[N]), (cin: bool):bvec2nat_rec(r, bv1) + bvec2nat_rec(r, bv2)+ bool2bit(cin)= exp2(r + 1) * bool2bit(bv_cout(r, cin, bv1, bv2))+ bvec2nat_rec(r, bv_sum(cin, bv1, bv2)))IMPLIES (FORALL (bv1, bv2: bvec[N]), (cin: bool):bvec2nat_rec(r + 1, bv1)+ bvec2nat_rec(r + 1, bv2)+ bool2bit(cin)= exp2(r + 1 + 1)* bool2bit(bv_cout(r + 1, cin, bv1, bv2))+bvec2nat_rec(r + 1,bv_sum(cin, bv1, bv2))))Figure 17: Inductive StepThe base and the inductive steps can be proved automatically using essentially the samestrategy used in the microprocessor proof. A complete proof of adder correct n is shownin Figure 17.1: (spread (induct ``n'' 1 ``below_induction[N]'')2: ((then* (skosimp*)3: (auto-rewrite-defs :always? t)4: (do-rewrite)5: (repeat (lift-if))6: (apply (then* (bddsimp)(assert))))7: (then* (skosimp*)8: (inst?)9: (auto-rewrite-defs :always? t)10: (do-rewrite)11: (repeat (lift-if))12: (apply (then* (bddsimp)(assert))))))The strategy spread used on line 1 applies the �rst proof step (induct) and then appliesthe ith element of the list of commands that follow to the ith subgoal resulting from the87

Exercises Using PVSapplication of the �rst prof step. Thus, the proof steps listed on lines 2 through 6 provethe base case of induction, the steps on lines 7 through 12 prove the inductive case, and theproof step on line 13 takes care of the third TCC subgoal.We consider the base case �rst. The induct command has already instantiated thevariable n to 0. The remaining variables are skolemized away by skosimp*. To unfold thede�nitions in the resulting goal, we use the command auto-rewrite-defs, which makesrewrite rules out of the de�nition of every function either directly or indirectly used in thegiven formula. The rest of the proof proceeds exactly as for the microprocessor.The proof of the inductive step follows exactly the same pattern except that we needto instantiate the induction hypothesis and use it in the process of unfolding and case-analysis. PVS provides a command inst? that tries to �nd instantiations for existential-strength variables in a formula by searching for possible matches between terms involvingthese variables with ground terms inside formulas in the rest of the sequent. This command�nds the desired instantiations in the present case. The rest of the proof proceeds as in thebasis case.Since the inductive proof pattern shown above is applicable to any iteratively gen-erated hardware designs, we have packaged it into a general proof strategy calledname-induct-and-bddrewrite. The strategy is parameterized with respect to an inductionscheme and the set of rewrite rules to be used for unfolding. We have used the strategy toprove an N-bit ALU [Can94] that executes 12 microoperations by cascading N 1-bit ALUslices.6 ExercisesProblem 1 Based on the discussion of the speci�cation of stacks, try to specify a PVStheory formalizing queues. Can the PVS abstract datatype facility be used for specifyingqueues?Problem 2 Specify binary trees with value type T as a parametric abstract datatype in PVS.Problem 3 Specify a PVS theory formalizing ordered binary trees with respect to a typeparameter T and a given total-ordering relation, i.e., de�ne a predicate ordered? that checksif a given binary tree is ordered with respect to the given total ordering.Problem 4 Prove the stack axioms for the de�nitions stated in newstacks.Problem 5 Prove the theorems in the theory half (Page 73).Problem 6 De�ne the operation for carrying out the ordered insertion of a value into anordered binary tree. Prove that the insertion operator applied to an ordered binary treereturns an ordered binary tree. 88

Part IIIPVS Reference

89

90

PVS Reference Reference to PVS Version 2.0�PVS FilesPVS Filesfoo.pvs Speci�cation �le (contains theories)foo.bin Binary form of the typed speci�cation �lefoo.prf Saved proofs for foo.pvs.pvscontext Context informationfoo-alltt.tex Alltt-printed version of foofoo.tex LATEX-printed version of foopvs-�les.tex LATEX �le generated for testing Allttand LATEX-printed �lesLATEX Substitution FilesLATEX Substitutions for �le foo.pvs may come from any of the following �les.File name Locationfoo.sub the directory of the current contextpvs-tex.sub the directory of the current contextpvs-tex.sub user's home directorypvs-tex.sub the main PVS directoryExamples of substitution entries|numbers refer to the number of arguments; thus thethird entry translates f2[3,G] (to Gf3) but not f2[int], and the last entry translates,e.g., f4(G)(1,n) (to Pni=1G(i; 1)). Length is an estimation of the size of the translation,ignoring the size of the arguments.Identi�er Type Length SubstitutionTHEORY key 9 {\large\bf Theory}f1 id 3 {\rm bar}f2 id[2] 2 {#2_{#1}^{f}}f3 2 2 {#1^#2}f4 (1 2) 3 {\sum_{i=#2}^{#3}#1(i,#2)}
91

PVS Language Summary PVS ReferencePVS Language SummaryTheoriesfunction_properties [D, R: TYPE]: THEORYBEGINf, g: VAR [D -> R]x, x1, x2: VAR Dy: VAR Rinjective?(f): bool = (FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))END function_propertiesfinite[t: TYPE]: THEORYBEGINIMPORTING function_propertiesis_finite_type: bool = (EXISTS (n:nat), (f:[upto[n] -> t]): surjective?(f))is_finite_type_alt: LEMMAis_finite_type IFF (EXISTS (n:nat), (g:[t -> upto[n]]): injective?(g))END finitebest_choice[t: TYPE, meas: TYPE FROM real]: THEORYBEGINASSUMINGIMPORTING finite[t]finite: ASSUMPTION is_finite_type[t]ENDASSUMINGbest: [[t -> meas], setof[t] -> t]f: VAR [t -> meas]s: VAR setof[t]best_ax: AXIOMnonempty?(s) => member(best(f, s), s)AND (FORALL (x: t): member(x, s) => f(x) <= f(best(f, s)))END best_choiceLexical RulesComments start with % and go to the end of the lineIdenti�ers are composed of letters, digits, question mark,and underscores; they must beginwith a letter and are case-sensitive.Numbers are composed of digits|no
oating point numbers.92

PVS Reference PVS Language SummaryStrings are enclosed in double quotes "Reserved WordsReserved words are not case sensitive.AND CONTAINING FALSE LEMMA SUBTYPE OFANDTHEN CONVERSION FORALL LET TABLEARRAY COROLLARY FORMULA LIBRARY THENASSUMING DATATYPE FROM MEASURE THEOREMASSUMPTION ELSE FUNCTION NONEMPTY TYPE THEORYAXIOM ELSIF HAS TYPE NOT TRUEBEGIN END IF O TYPEBUT ENDASSUMING IFF OBLIGATION TYPE+BY ENDCASES IMPLIES OF VARCASES ENDCOND IMPORTING OR WHENCHALLENGE ENDIF IN ORELSE WHERECLAIM ENDTABLE INDUCTIVE POSTULATE WITHCLOSURE EXISTS JUDGEMENT PROPOSITION XORCOND EXPORTING LAMBDA RECURSIVECONJECTURE FACT LAW SUBLEMMASpecial Symbols!! $ (* - /= := <= == >> []]| |) |[# $$ (# ** -> /\ ; <=> ==> @ [| ^ |- |]## % (: + . : < <> => @@ [||] ^^ |-> ||#) & (| ++ / :) <- <| > [\/ { |= }#] &&) , // :: << = >= [#] | |>Type Declarations� Uninterpreted types� foo: TYPE� bar: NONEMPTY_TYPE % same as TYPE+� some_nums: NONEMPTY_TYPE FROM number� Subtypes� nat_to_10: TYPE = {x:nat | x <= 10}� posint: TYPE = {x:integer | x > 0} CONTAINING 1� ptype: TYPE = (pred?) % same as {x | pred?(x)}� rtype: TYPE = {x, y: nat | x < y} % subtype of [nat, nat]� Function types� intf: TYPE = FUNCTION[int, int -> int]� altf: TYPE = [int, int -> int] % same as above� inta: TYPE = ARRAY[int,int -> int] % same as above93

PVS Language Summary PVS Reference� Tuple Types� tuptype: TYPE = [int, bool, [int -> int]]� Record types� stack: TYPE = [# pointer: nat,astack: [nat -> t] #]� Dependent Types� pfun: TYPE = [# dom: predicate[t1], pfn:[(dom)->t2] #]� date: TYPE = [y,m:nat, {d:nat | d <= days(m,y)}]� tmod: TYPE = [n,m:int -> {x:nat | x < m}]� Enumeration types� color: TYPE = {red, green, blue}� Datatypes� list[t:TYPE] : DATATYPEBEGINnull: null?cons (car: t, cdr :list) :cons?END listLibraries, Importings, Exportings, and Theory Abbreviations� fsets: LIBRARY = "/homes/pvs/lib/finite_sets"� IMPORTING orderings[int], set[foo[nat]], fsets@finite_sets[nat]� EXPORTING foo, bar WITH set[foo]� pset: THEORY = sets[list[nat]]Constants and Recursive De�nitions� some_int: int� max: int = 10� abs: [int -> nat] =(LAMBDA x: IF x < 0 THEN -x ELSE x ENDIF)� abs(x:int): nat = IF x < 0 THEN -x ELSE x ENDIF� sum(f,x,y): int % f,x,y prev declared VAR� sum(f,(x,y:int)): int % f prev declared VAR94

PVS Reference PVS Language Summary� fac(n): RECURSIVE nat =(IF n = 0 THEN 1 ELSE n*fac(n-1) ENDIF)MEASURE (LAMBDA n: n)� length(l:list): RECURSIVE nat =CASES l OFnull: 0,cons(x, y): length(y) + 1ENDCASESMEASURE l BY << % Subterm measureVariable Declarations� x, y, z: VAR int� f: VAR [int -> [int -> int]]Formula Declarations� transitive: AXIOM x < y AND y < z IMPLIES x < z� nonzero_fac: THEOREM fac(n) /= 0� poset: ASSUMPTION poset?(T,<=) % Only in ASSUMINGsJudgements� JUDGEMENT {x :int | x > 10} SUBTYPE_OF posint� JUDGEMENT c HAS_TYPE (even?)� JUDGEMENT +, -, * HAS_TYPE [(even?), (even?) -> (even?)]Conversions� C: [int -> bool] = (LAMBDA (i:int): i=0)CONVERSION Cfoo: FORMULA d + 1 % � foo: FORMULA C(d + 1)� state: TYPEK: [int -> [state -> int]] = (LAMBDA i: (LAMBDA s: i))f: [[state -> int] -> [state -> int]]x: [state -> int]B: [[state -> int] -> bool] = (LAMBDA si: FORALL i: si(i))CONVERSION K, Bbar: LEMMA f(x+1) % � bar: LEMMA B(f(LAMBDA s: x(s)+1))95

PVS Language Summary PVS ReferenceExpressions� Equality | (=, /=)De�ned for any type; both sides must be the same type. With boolean, = is treatedas IFF.� x * y = 4� true /= 1 % Illegal� Arithmetic | (+, -, *, /, <, <=, >, >=, 0, 1, : : :)� ((x + 1) * x) / 2 < x * x� Lists and Strings� (: 1, 2 :) % � cons(1, cons(2, null))� "A string" % A finite sequence of characters� Logical | (true, false, AND, &, OR, IMPLIES, =>, WHEN, NOT, IFF, <=>, FORALL, ALL,EXISTS, SOME)� (FORALL e: (EXISTS d:abs(f(x) - f(y)) < d) IMPLIES abs(x - y) < e)� IF-THEN-ELSE | The THEN and ELSE parts must have compatible types.� IF x=0 THEN 1 ELSIF y=0 THEN 2 ELSE y/x ENDIF� CASES | Pattern matching on datatypes.� CASES x OFcons(x,y): append(reverse(y), cons(x, null))ELSE nullENDCASES� COND | generates coverage and disjointness TCCs� COND m = n -> m,m > n -> gcd(m-n, n),m < n -> gcd(m, n-m)ENDCOND� Same as above, but no coverage TCCCOND m = n -> m,m > n -> gcd(m-n, n),ELSE -> gcd(m, n-m)ENDCOND 96

PVS Reference PVS Language Summary� Function application, lambda-abstraction & function update� f(1,2)(0)� (lambda x: x + 1)� f WITH [(0) := 1, (1) := 0]� foo ! (x:int): e % � foo(LAMBDA (x: int): e)� Set expressions� {x: int | x < 10} % same as (LAMBDA (x: int): x < 10)� Record construction, �eld selection & record update� (# pointer := 1, astack := (LAMBDA x: 0) #)� astack(r) % r.astack NOT allowed� r WITH [pointer := 2, (astack)(1) := 1]� Tuple construction, projection, and update� (1, true, (LAMBDA (x:int) x + 37))� proj_3(tup)� tup WITH [2 := false]� LET & WHERE� LET x = 2, y:nat = x*x IN f(x,y) % � f(2,4)� f(x,y) WHERE x = 2, y:nat = x*x % same� LET (x, y, z) = t IN x + y * z % same as next line� LET x=PROJ_1(t), y=PROJ_2(t), z=PROJ_3(t) IN x + y * z� Coercion | Coercion indicates the expected type to the typechecker to resolve ambi-guity.� a + b:natural� (LAMBDA n -> nat: n - m) % LAMBDA coercion� Names | If foo is declared in theory bar, then the following are allowable references(the �rst two may be ambiguous).� foo� foo[int]� bar[int].foo 97

PVS Emacs Commands PVS ReferencePVS Emacs CommandsThe commands which appear below are given with their abbreviations and keybindings, ifany. For example, the command Prove with aliases pr and C-c p indicates that the parsecommand can be invoked by the Emacs extended commands M-x prove or M-x pr, or thekey binding C-c p.Entering and Exiting PVSTo enter PVS just cd to a working directory (PVS context) and type pvs.suspend-pvs C-x C-zexit-pvs C-x C-cGetting Helphelp-pvs C-c hhelp-pvs-language C-c C-h lhelp-pvs-prover C-c C-h phelp-pvs-prover-command C-c C-h chelp-pvs-prover-strategy C-c C-h shelp-pvs-prover-emacs C-c C-h eEditing PVS Filesforward-theory M-}backward-theory M-{�nd-unbalanced-pvs C-c]comment-region C-c ;Parsing and Typecheckingparse M-x patypecheck M-x tc, C-c ttypecheck-importchain M-x tcitypecheck-prove M-x tcptypecheck-prove-importchain M-x tcpi
98

PVS Reference PVS Emacs CommandsProver Invocation Commandsprove M-x pr, C-c px-prove M-x xpr, C-c C-p xstep-proof M-x prs, C-c C-p sx-step-proof M-x xsp, C-c C-p Xredo-proof M-x prr, C-c C-p rprove-theory M-x prt, C-c C-p tprove-pvs-�le M-x prf, C-c C-p fprove-importchain M-x pri, C-c C-p iprove-proofchain M-x prp, C-c C-p pProof Editing Commandsedit-proof, show-proofinstall-proof C-c C-irevert-proofremove-proofshow-proof-�leshow-orphaned-proofsshow-proofs-theoryshow-proofs-pvs-�leshow-proofs-importchaininstall-pvs-proof-�leload-pvs-strategiesset-print-depthset-print-lengthset-rewrite-depthset-rewrite-lengthProof Information Commandsshow-current-proofexplain-tccshow-last-proofancestrysiblingsshow-hidden-formulasshow-auto-rewritesshow-expanded-sequentshow-skolem-constants 99

PVS Emacs Commands PVS ReferenceAdding and Modifying Declarationsadd-declarationmodify-declarationPrettyprinting Commandsprettyprint-theory M-x ppt, C-c C-q tprettyprint-pvs-�le M-x ppf, C-c C-q fprettyprint-declaration M-x ppd, C-c C-q dprettyprint-region M-x ppr, C-c C-q rViewing TCCsprettyprint-expanded M-x ppe, C-c C-q eshow-tccs M-x tccs, C-c C-q sPVS File and Theory Commands�nd-pvs-�le M-x ff, C-c C-f�nd-theory M-x ftview-prelude-�le M-x vpfview-prelude-theory M-x vptnew-pvs-�le M-x nfnew-theory M-x ntimport-pvs-�le M-x imfimport-theory M-x imtdelete-pvs-�le M-x dfdelete-theory M-x dtsave-pvs-�le C-x C-ssave-some-pvs-�les M-x ssfsmail-pvs-�lesrmail-pvs-�lesdump-pvs-�lesundump-pvs-�les
100

PVS Reference PVS Emacs CommandsPrinting Commandspvs-print-bu�erpvs-print-regionprint-theory M-x pttprint-pvs-�le M-x ptfprint-importchain M-x ptialltt-theory M-x alt, C-c C-a talltt-pvs-�le M-x alf, C-c C-a falltt-importchain M-x ali, C-c C-a ialltt-proof M-x alp, C-c C-a platex-theory M-x ltt, C-c C-l tlatex-pvs-�le M-x ltf, C-c C-l flatex-importchain M-x lti, C-c C-l ilatex-proof M-x ltp, C-c C-l platex-theory-view M-x ltv, C-c C-l vlatex-set-linelengthDisplay Commandsx-theory-hierarchyx-show-proofx-show-current-proofx-prover-commandsContext Commandslist-pvs-�les M-x lflist-theories M-x ltchange-context M-x ccsave-context M-x scpvs-remove-bin-�lespvs-dont-write-bin-�lespvs-do-write-bin-�lescontext-path M-x cpLibrary Commandsload-prelude-libraryremove-prelude-libraryBrowsing Commandsshow-declaration M-.�nd-declaration M-,whereis-declaration-used M-;list-declarations M-:101

PVS Emacs Commands PVS ReferenceStatus Commandsstatus-theory M-x stt, C-c C-s tstatus-pvs-�le M-x stf, C-c C-s fstatus-importchain M-x sti, C-c C-s istatus-importbychain M-x stb, C-c C-s bstatus-proof M-x spstatus-proof-theory M-x sptstatus-proof-pvs-�le M-x spfstatus-proof-importchain M-x spistatus-proofchain M-x spcstatus-proofchain-theory M-x spctstatus-proofchain-pvs-�le M-x spcfstatus-proofchain-importchain M-x spciEnvironment Commandswhereis-pvspvs-versionpvs-modepvs-logstatus-displaypvs-statusremove-popup-bu�er C-z 1pvspvs-load-patchespvs-interrupt-subjob C-c C-creset-pvs C-z z
102

PVS Reference PVS Prover CommandsPVS Prover CommandsProver commands are entered in the *pvs* bu�er at the Rule? prompt. Commands areinterpreted by Lisp, so must be surrounded by parentheses, and arguments are separatedby whitespace (Space, Tab, or Return). Some commands require PVS names or expres-sions; these must be surrounded by double quotes ("). Return enters the command, unlessparentheses or strings are unbalanced.The arguments are shown in emphasized font. Optional arguments follow the keyword &optand may be omitted. They may be provided in the order listed, or followed by a keywordwhose name is derived form the argument name preceded by a colon, e.g., (expand "foo":beta-reduce t). An &rest keyword indicates that one or more of the following argumentmay be provided, and may also be given in keyword form.Help(help &opt name[*])Control(fail)(postpone &opt print?)(quit)(rewrite-msg-off)(rewrite-msg-on)(skip)(skip-msg msg)(undo &opt to[1])(time strat)Structural Rules(copy fnum)(delete &rest fnums)(hide &rest fnums)(reveal &rest fnums)Propositional Rules(bddsimp &opt fnums[*] dynamic-ordering?)(case &rest formulas)(flatten &rest fnums[*])(iff &rest fnums)(lift-if &rest fnums[*] updates?[t])(prop)(propax)(split &opt fnum[*]) 103

PVS Prover Commands PVS ReferenceQuanti�er Rules(inst &opt fnum[*] &rest terms)(instantiate fnum[*] terms &opt copy?)(inst-cp &opt fnum[*] &rest terms)(inst? &opt fnums[*] subst where[*] copy? if-match)(skolem fnum constants)(skolem! &opt fnums[*])(skolem-typepred &opt fnum[*])(skosimp &opt fnum[*])(skosimp*)Equality Rules(beta &opt fnums rewrite-flag)(case-replace formula)(name name expr)(name-replace name expr &opt hide?[T])(name-replace* name-and-exprs &opt hide?[T])(replace fnum &opt fnums[*] dir hide?)(replace* &rest fnums)(same-name name1 name2 &opt type)De�nition and Lemma Rules(expand name &opt fnum[*] occurrence if-simplifies assert?)(forward-chain name)(lemma name &opt subst)(rewrite lname &opt fnums[*] subst target-fnums[*] dir[LR] order[IN])(rewrite-lemma lemma subst &opt fnums[*] dir[LR])(simplify-with-rewrites &opt defs theories rewrites)(use lname &opt subst if-match[best])Extensionality Rules(apply-eta term &opt type)(apply-extensionality &opt fnum[+] keep? hide?)(eta type)(extensionality type)(replace-eta term &opt type keep?)(replace-extensionality expr expr &opt expected keep?)104

PVS Reference PVS Prover CommandsInduction Rules(induct var &opt fnum[1] name)(induct-and-rewrite var &opt fnum &rest rewrites)(induct-and-rewrite! var &opt fnum &rest rewrites)(induct-and-simplify var &opt fnum[1] name defs[T] if-match[best] theoriesrewrites exclude)(measure-induct measure vars &opt fnum[1])(name-induct-and-rewrite var &opt fnum[1] name &rest rewrites)Decision Procedure and Rewriting Rules(assert &opt fnums[*] rewrite-flag flush? linear? cases-rewrite?)(bash &opt if-match[T] updates?[T])(do-rewrite &opt fnums[*] rewrite-flag flush? linear? cases-rewrite?)(grind &opt defs[!] theories rewrites exclude if-match[T] updates?[T])(ground)(record &opt fnums[*] rewrite-flag flush? linear?)(reduce &opt if-match[T] updates?[T])(simplify &opt fnums[*] record? rewrite? rewrite-flag flush? linear?cases-rewrite?)(smash &opt updates?[T])Installation of Rewrite Rules(auto-rewrite &rest names)(auto-rewrite! &rest names)(auto-rewrite-defs &opt explicit? always? exclude-theories)(auto-rewrite-explicit &opt always?)(auto-rewrite-theories &rest names)(auto-rewrite-theory name &opt exclude defs always? tccs?)(install-rewrites &opt defs theories rewrites exclude-theories exclude)Removing Installed Rewrite Rules(stop-rewrite &rest names)(stop-rewrite-theory &rest names)Tracking Rewrite Rules(trace &rest names)(track-rewrite &rest names)(untrace &rest names)(untrack-rewrite &rest names) 105

PVS Prover Commands PVS ReferenceType Constraint Rules(skolem-typepred &opt fnum[*])(typepred &rest exprs)Mu Calculus Rules(musimp &opt fnums[*] dynamic-ordering?)(model-check &opt dynamic-ordering?[T] cases-rewrite?[T])Convert Strategy to a Rule(apply strategy &opt comment)Proof Strategies(branch strat strats)(else strat strat)(if condition strat strat)(let ((var1 expr1)� � �(varn exprn)) strat)(query*)(quote strat)(repeat strat)(repeat* strat)(rerun &opt proof recheck? break?)(spread strat strats)(spread! strat strats)(spread@ strat strats)(tcc &opt defs[!])(then &rest steps)(then@ &rest strats)(try strat strat strat)(try-branch strat strats strat)
106

PVS Reference PVS Prover Emacs CommandsProver Emacs CommandsThese commands are only available when a proof is in progress, and the *pvs* bu�er iscurrent.Prover Emacs Help TAB hProver Command Help TAB HAny Command TAB TABapply-extensionality TAB Eassert TAB aauto-rewrite TAB Aauto-rewrite-theory TAB C-abddsimp TAB Bbeta TAB bcase TAB ccase-replace TAB Ccopy TAB 2delete TAB ddo-rewrite TAB Dexpand TAB eextensionality TAB x
atten TAB fgrind TAB Gground TAB ghide TAB C-hi� TAB Finduct TAB Iinduct-and-simplify TAB C-sinst TAB iinst? TAB ?lemma TAB Llift-if TAB lmodel-check TAB Mmusimp TAB mname TAB npostpone TAB Pprop TAB pquit TAB C-qreplace TAB rreplace-eta TAB 8rewrite TAB Rskolem! TAB !skosimp TAB Sskosimp* TAB *split TAB stcc TAB T107

PVS Prover Emacs Commands PVS Referencethen TAB C-ttypepred TAB tundo TAB uRun Proof Step TAB 1Undo Proof Step TAB USkip Proof Step TAB #Insert Quotes TAB 'Wrap with Parens TAB C-j

108

ReferencesReferences[AJ90] Heather Alexander and Val Jones. Software Design and Prototyping using metoo. Prentice Hall International, Hemel Hempstead, UK, 1990.[ALW93] Mark D. Aagard, Miriam E. Leeser, and Phillip J. Windley. Toward a superduper hardware tactic. In Proceedings of the HOL User's Group Workshop,pages 401{414, 1993.[BCM+90] J. R. Burch, E. M. Clarke, K. L McMillan, D. L. Dill, and L. J. Hwang. Symbolicmodel checking: 1020 states and beyond. In 5th Annual IEEE Symposium onLogic in Computer Science, pages 428{439, Philadelphia, PA, June 1990. IEEEComputer Society.[BJ93] Ricky W. Butler and Sally C. Johnson. Formal methods for life-critical software.In Computing in Aerospace Conference, pages 319{329, San Diego, CA, October1993.[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, NewYork, NY, 1979.[BM88] R. S. Boyer and J S. Moore. A Computational Logic Handbook. AcademicPress, New York, NY, 1988.[But93] Ricky W. Butler. An elementary tutorial on formal speci�cation and veri�ca-tion using PVS. NASA Technical Memorandum 108991, NASA Langley Re-search Center, Hampton, VA, June 1993. Available through www or ftp fromftp://air16.larc.nasa.gov/pub/fm/larc/PVS-tutorial/pvs-tutorial.ps.[Can94] F. J. Cantu. Verifying an n-bit arithmetic logic unit. Blue book note 935,University of Edinburgh, June 1994.[CH85] T. Coquand and G. P. Huet. Constructions: A higher order proof system formechanizing mathematics. In Proceedings of EUROCAL 85, Linz (Austria),Berlin, 1985. Springer-Verlag.[Const86] R. L. Constable, et al . Implementing Mathematics with the Nuprl. Prentice-Hall, New Jersey, 1986.[Cou93] Costas Courcoubetis, editor. Computer-Aided Veri�cation, CAV '93, volume697 of Lecture Notes in Computer Science, Elounda, Greece, June/July 1993.Springer-Verlag.[CRSS94] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. E�ective theorem provingfor hardware veri�cation. In Kumar and Kropf [KK94], pages 203{222.[dB80] N. G. de Bruijn. A survey of the project Automath. In To H. B. Curry:Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 589{606. Academic Press, 1980. 109

References[EGMS79] B. Elspas, M. Green, M. Moriconi, and R. Shostak. A JOVIAL veri�er. Tech-nical report, Computer Science Laboratory, SRI International, January 1979.[FGT91] W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An interactive math-ematical proof system. Technical Report M90-19, Mitre Corporation, 1991.[GHW85] John V. Guttag, James J. Horning, and Jeannette M. Wing. The Larch familyof speci�cation languages. IEEE Software, 2(5):24{36, September 1985.[GMW79] M. Gordon, R. Milner, and C.Wadsworth. Edinburgh LCF: A Mechanized Logicof Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.[Gor88] M. J. C. Gordon. HOL: A proof generating system for higher-order logic. InG. Birtwistle and P. A. Subrahmanyam, editors, VLSI Speci�cation, Veri�ca-tion and Synthesis, pages 73{128. Kluwer, Dordrecht, The Netherlands, 1988.[HI88] Sharam Hekmatpour and Darrel Ince. Software Prototyping, Formal Methods,and VDM. International Computer Science Series. Addison-Wesley, Woking-ham, England, 1988.[Hoo94] Jozef Hooman. Correctness of real time systems by construction. In Langmaacket al. [LdV94], pages 19{40.[JMC94] Steven D. Johnson, Paul S. Miner, and Albert Camlleri. Studies of the single-pulser in various reasoning systems. In Kumar and Kropf [KK94], pages 126{145.[KK94] Ramayya Kumar and Thomas Kropf, editors. Theorem Provers in CircuitDesign (TPCD '94), volume 910 of Lecture Notes in Computer Science, BadHerrenalb, Germany, September 1994. Springer-Verlag.[KSK93] R. Kumar, K. Schneider, and T. Kropf. Structuring and automating hard-ware proofs in a higher-order therem proving environment. Formal Methods inSystem Design, 2(2):165{223, 1993.[LdV94] H. Langmaack, W.-P. de Roever, and J. Vytopil, editors. Formal Techniques inReal-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in Com-puter Science, L�ubeck, Germany, September 1994. Springer-Verlag.[LR93a] Patrick Lincoln and John Rushby. Formal veri�cation of an algorithm forinteractive consistency under a hybrid fault model. In Courcoubetis [Cou93],pages 292{304.[LR93b] Patrick Lincoln and John Rushby. A formally veri�ed algorithm for interactiveconsistency under a hybrid fault model. In Fault Tolerant Computing Sympo-sium 23, pages 402{411, Toulouse, France, June 1993. IEEE Computer Society.110

References[LR94] Patrick Lincoln and John Rushby. Formal veri�cation of an interactive consis-tency algorithm for the Draper FTP architecture under a hybrid fault model.In COMPASS '94 (Proceedings of the Ninth Annual Conference on ComputerAssurance), pages 107{120, Gaithersburg, MD, June 1994. IEEE WashingtonSection.[McA89] D. A. McAllester. ONTIC: A Knowledge Representation System for Mathe-matics. MIT Press, 1989.[McC90] W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9, ArgonneNational Laboratory, 1990.[MPJ94] Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interaction offormal design systems in the development of a fault-tolerant clock synchro-nization circuit. In 13th Symposium on Reliable Distributed Systems, pages128{137, Dana Point, CA, October 1994. IEEE Computer Society.[MS95] Steven P. Miller and Mandayam Srivas. Formal veri�cation of the AAMP5microprocessor: A case study in the industrial use of formal methods. InWIFT '95: Workshop on Industrial-Strength Formal Speci�cation Techniques,pages 2{16, Boca Raton, FL, 1995. IEEE Computer Society.[MSR85] P. Michael Melliar-Smith and John Rushby. The Enhanced HDM system forspeci�cation and veri�cation. In Proc. VerkShop III, pages 41{43, Watsonville,CA, February 1985. Published as ACM Software Engineering Notes, Vol. 10,No. 4, Aug. 85.[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formalveri�cation for fault-tolerant architectures: Prolegomena to the design of PVS.IEEE Transactions on Software Engineering, 21(2):107{125, February 1995.[OSR93a] S. Owre, N. Shankar, and J. M. Rushby. The PVS Speci�cation Language.Computer Science Laboratory, SRI International, Menlo Park, CA, February1993. A new edition for PVS Version 2 is expected in early 1995.[OSR93b] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Speci�cationand Veri�cation System. Computer Science Laboratory, SRI International,Menlo Park, CA, February 1993. A new edition for PVS Version 2 is expectedin early 1995.[Pra92] Sanjiva Prasad. Veri�cation of numerical programs using Penelope/Ariel. InCOMPASS '92 (Proceedings of the Seventh Annual Conference on ComputerAssurance), pages 11{24, Gaithersburg, MD, June 1992. IEEE WashingtonSection.[PS89] W. Pase and M. Saaltink. Formal veri�cation in m-EVES. In G. Birtwistle andP. A. Subrahmanyam, editors, Current Trends in Hardware Veri�cation andTheorem Proving, pages 268{302, New York, NY, 1989. Springer-Verlag.111

References[Raj94] P. Sreeranga Rajan. Transformations in high-level synthesis: Formal speci�-cation and e�cient mechanical veri�cation. Technical Report SRI-CSL-94-10,Computer Science Laboratory, SRI International, Menlo Park, CA, October1994. Revised version of Technical Report NL-TN 118/94, Philips ResearchLaboratories, Eindhoven, The Netherlands, April 1994.[RL76] Lawrence Robinson and Karl N. Levitt. Proof techniques for hierarchicallystructured programs. Communications of the ACM, 20(4):271{283, April 1976.[RLS79] L. Robinson, K. N. Levitt, and B. A. Silverberg. The HDM Handbook. Com-puter Science Laboratory, SRI International, Menlo Park, CA, June 1979.Three Volumes.[Rus95] John Rushby. Proof Movie II: A proof with PVS. Technical report, ComputerScience Laboratory, SRI International, Menlo Park, CA, 1995. Forthcoming.[RvHO91] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formalspeci�cation and veri�cation using Ehdm. Technical Report SRI-CSL-91-2,Computer Science Laboratory, SRI International, Menlo Park, CA, February1991.[Sha93a] N. Shankar. Abstract datatypes in PVS. Technical Report SRI-CSL-93-9,Computer Science Laboratory, SRI International, Menlo Park, CA, December1993.[Sha93b] Natarajan Shankar. Veri�cation of real-time systems using PVS. In Courcou-betis [Cou93], pages 280{291.[SOR93] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A ReferenceManual. Computer Science Laboratory, SRI International, Menlo Park, CA,February 1993. A new edition for PVS Version 2 is expected in early 1995.[SS94] Jens U. Skakkeb�k and N. Shankar. Towards a Duration Calculus proof assis-tant in PVS. In Langmaack et al. [LdV94], pages 660{679.[SSMS82] R. E. Shostak, R. Schwartz, and P. M. Melliar-Smith. STP: A mechanizedlogic for speci�cation and veri�cation. In D. Loveland, editor, 6th InternationalConference on Automated Deduction (CADE), New York, NY, 1982. Volume138 of Lecture Notes in Computer Science, Springer-Verlag.[SSR95] Mandayam Srivas, Natarajan Shankar, and Sreeranga Rajan. Hardware veri�-cation using PVS: A tutorial. Technical report, Computer Science Laboratory,SRI International, Menlo Park, CA, 1995. Forthcoming.112

