
Phone Book Example

John Rushby

Computer Science LaboratorySRI InternationalMenlo Park CA USA

Phone Book 1

Phone Book ExampleRequirements for an electronic phone book� Phone book shall store the phone numbers of a city� It shall be possible to retrieve a phone number given a name� It shall be possible to add and delete entries from the phonebook
Phone Book 2

Formal Requirements Speci�cationHow do we represent the phone book mathematically?1. A set of (name, number) pairs.Adding and deleting entries via set addition and deletion2. A total function (i.e., array) whose domain is the space ofpossible names and whose range is the space of all phonenumbers.Adding and deleting entries via modi�cation of function values3. A partial function whose domain is just the names currently inphone book and whose range is the space of all phone numbers.Adding and deleting entries via modi�cation of the functiondomain and valuesLet's start with approach 2Phone Book 3

Specifying the Book� In traditional mathematical notation, we would write:Let N : type (of names)P : type (of phone numbers)book : type (of functions) [N ! P]� How do we indicate that we do not have a phone number forall possible names, only for names of real people?Decide to use a special number, that could never reallyoccur in real life, e.g. 000-0000; don't have to specify thevalue of this number we can just give it a name (e.g., n0)� Now can de�ne an empty phone book:emptybook : [N ! P]n0 : Pnm : var Naxiom : 8 nm : emptybook(nm) = n0Phone Book 4

Accessing an Entry

N : type (of names)P : type (of phone numbers)B : type (of functions) [N ! P]FindPhone : [B �N ! P]nm : var Nbk : var Baxiom : FindPhone(bk; nm) = bk(nm)Note that FindPhone is a higher-order function since its �rstargument is a function

Phone Book 5

Specifying Adding/Deleting an Entry

N : type (of names)P : type (of phone numbers)B : type (of functions) [N ! P]n0 : Nnm; x : var Npn : var Pbk : var BAddPhone : [B �N � P ! B]axiom : AddPhone(bk; nm; pn)(x) = 8<: bk(x) if x 6= nmpn if x = nmDelPhone : [B �N ! B]axiom : DelPhone(bk; nm)(x) = 8<: bk(x) if x 6= nmn0 if x = nmPhone Book 6

PVS Notationphone_1: THEORYBEGINN: TYPE % namesP: TYPE % phone numbersB: TYPE = [N -> P] % phone booksn0: Pemptybook: Bemptyax: AXIOM FORALL (nm: N): emptybook(nm) = n0FindPhone: [B, N -> P]Findax: AXIOM FORALL (bk: B), (nm: N): FindPhone(bk, nm) = bk(nm)nm: VAR Npn: VAR Pbk: VAR BAddPhone: [B, N, P -> B]Addax: AXIOM AddPhone(bk, nm, pn) = bk WITH [(nm) := pn]DelPhone: [B, N -> B]Delax: AXIOM DelPhone(bk, nm) = bk WITH [(nm) := n0]END phone_1Phone Book 7

Challenging the Requirement Speci�cation� If you add a name and number and then look it up, do you getthe right answer?lemma : FindPhone(AddPhone(bk; nm; pn); nm) = pn� If you add an entry and then delete it, is the phone bookunchanged?lemma : DelPhone(AddPhone(bk; nm; pn); nm) = bk� Not true unless bk(name) = n0 beforehand� Is this what was intended?� Should we modify the speci�cation of AddPhone?� Do we need a function ChangePhone?� Should we allow multiple numbers per name?Phone Book 8

An Aside on Axioms� Suppose we want to separate the functions of adding andchanging a number� To de�ne these, useful to have a predicateKnown? : [B �N ! bool]axiom : Known?(bk; nm) i� bk(nm) 6= n0� Suppose we also had axiomaxiom : Known?(AddPhone(bk; nm; pn); nm)� We get an inconsistency|can prove anything� Use axioms only where necessary; best to use de�nitional formsof speci�cation (guaranteed not to introduce inconsistencies)� PVS may generate proof obligations (TCCs) to ensure thisguaranteePhone Book 9

Some De�ciencies of First Speci�cation1. Our speci�cation does not rule out the possibility of someonehaving a \n0" phone number2. We have not allowed multiple phone numbers per name3. Our speci�cation does not say anything about whether or notwe should warn the user if AddPhone results in the samenumber being assigned to two peopleHow do we remedy these de�ciencies?

Phone Book 10

De�ciency 1Our speci�cation does not rule out the possibility of someonehaving a \n0" phone numberThere are several ways to overcome this problem� Use a \disjoint union" for the range type of the phone book, sothat n0 is not an ordinary number� Use a \predicate subtype" to identify the phone numbersdi�erent to n0 and allow only the subtype in AddPhone� Use one of the other representations for the phone book (e.g.,partial functions|requires a di�erent speci�cation language)� Reconsider requirements

Phone Book 11

Predicate Subtypes� Can de�ne the type GP of Good Phone Numbers:GP : type = fpn : P jpn 6= n0g� Then de�ne AddPhone de�nitionally as:gp : var GPAddPhone(bk; nm; gp) : B =if Known?(bk; nm) then bk else bk with [(nm):=gp] endif� Notice the awed axiom we had before is no longer admissibleaxiom : Known?(AddPhone(bk; nm; pn); nm)(PVS generates the impossible proof obligation 8pn : pn 6= n0)� But the following is a provably trueKnown?(AddPhone(bk; nm; gp); nm)Phone Book 12

De�ciency 2� We have not allowed multiple phone numbers per name� The original requirements did not specify whether this isneeded or not� Suppose, after conferring with the customer, we decide toallow multiple numbers� Change the range type of the phone book to a set of numbers� This solves De�ciency 1 as well(empty set of numbers indicates name not in the book)

Phone Book 13

New Speci�cation (sets)

N : type (of names)P : type (of phone numbers)B : type (of functions) [N ! setof[P]]nm; x : var Nemptybook(nm) : setof[P] = �Ppn : var Pbk : var BFindPhone(bk; nm) : setof[P] = bk(nm)AddPhone(bk; nm; pn) : B = bk with [(nm):=bk(nm) [fpng]DelPhone(bk; nm) : B = bk with [(nm):=�P]

Phone Book 14

Some Observations� Our speci�cation is abstract; the functions are de�ned overuninterpreted domains.� The axioms and de�nitions used here are constructive|wecould execute them(could also use pseudocode for these kinds of speci�cations,but would lack an assertion language for challenges, and thedeductive apparatus to formally check their proofs)� Other speci�cations and representations may involvenonconstructive axiomse.g., set of pairs: FindPhone(bk; nm) = fpnj(nm; pn) 2 bkg� And more sophisticated (not directly implementable) typesPhone Book 15

More Observations� As requirements are formalized, many things that are usuallyleft out of English speci�cations are encountered and explicitlydocumented� The formal process exposes ambiguities and de�ciencies in therequirements|must chose betweenbook : [N ! P]book : [N ! setof [P]]� Challenges and scrutiny reveal de�ciencies in the formalspeci�cation� The process of formalizing the requirements can revealproblems and de�ciencies and lead to a better Englishrequirements document as wellPhone Book 16

De�ciency 3� Suppose we wish to avoid ever assigning the same number totwo people� Could \program" this into the speci�cation of each functionthat changes the phone book� But really want to establish the property as an invariant of thespeci�cation� Could systematically generate the proof obligations to ensurethis is so, but the activity would be error-prone� Could build a tool to do it, but that would be special-purpose� Solution: do it with predicate subtypesPhone Book 17

PVS Notation: subtype invariant

phone_4 : THEORYBEGINN: TYPE % namesP: TYPE % phone numbersB: TYPE = [N -> setof[P]] % phone booksVB: TYPE = fb:B | (FORALL (x,y:N): x /= y => disjoint?(b(x), b(y)))gnm, x: VAR Npn: VAR Pbk: VAR VBFindPhone(bk,nm): setof[P] = bk(nm)UnusedPhoneNum(bk,pn): bool =(FORALL nm: NOT member(pn,FindPhone(bk,nm)))AddPhone(bk,nm,pn): VB =IF UnusedPhoneNum(bk,pn) THEN bk WITH [(nm) := add(pn, bk(nm))]ELSE bkENDIF
Phone Book 18

PVS Notation: Proof Obligation

AddPhone_TCC1: OBLIGATION(FORALL (bk: VB, nm: N, pn: P):UnusedPhoneNum(bk, pn) IMPLIES(FORALL (x, y: N):x /= y =>disjoint?[P](bk WITH [(nm) := add[P](pn, bk(nm))](x),bk WITH [(nm) := add[P](pn, bk(nm))](y))));

Phone Book 19

Yet More Observations� There are many di�erent ways to write formal speci�cations� Some ways of writing them bias the feasible implementationmore than others� One goal is to minimize this bias, and yet be complete� Abstract speci�cations are more likely to highlight substancethan those cluttered with implementation concerns� But requires real judgment and experience to pick right level� Constructive speci�cations may be executable asprototypes|useful in some domains, distraction in others� Mechanized support allows powerful checks on consistency, andactive validation through \challenges" to the speci�cationPhone Book 20

