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Abstract. PVS (Prototype Verification System) is a mechanized frame-
work for formal specification and interactive proof development. The
PVS specification language is based on higher-order logic enriched
with features such as predicate subtypes, dependent types, recursive
datatypes, and parametric theories. Subtyping is a central concept in
the PVS type system. PVS admits the definition of subtypes correspond-
ing to nonzero integers, prime numbers, injective maps, order-preserving
maps, and even empty subtypes. We examine the principles underlying
the PVS subtype mechanism and its implementation and use.

The PVS specification language is primarily a medium for communicating
formal mathematical descriptions. Formal PVS specifications are meant for both
machine and human consumption. The specification language of PVS extends
simply typed higher-order logic with features such as predicate subtypes, depen-
dent types, recursive datatypes, and parametric theories. These features are crit-
ical for facile mathematical expression as well as symbolic manipulation. Though
the language has been designed to be used in conjunction with a theorem prover,
it has an existence independent of any specific theorem prover.

The core specification language of PVS is quite small yet poses a number of
serious implementation challenges. We outline the difficulties in realizing these
features in a usable implementation. Our observations might be useful to design-
ers and implementors of other specification languages with similar features.

There is a long history of formal foundational languages for mathematics.
Frege’s Begriffsschrift [Fre67a] was presented as a system of axioms and rules
for logical reasoning in the sciences. Frege’s use of function variables was found
to be inconsistent by Russell [Rus67,Fre67b]. Poincare attributed the problem to
a vicious circle, or impredicativity, that allowed an entity to be defined by quan-
tification over a domain that included the entity itself. There were two initial
responses to this. Zermelo’s solution was to craft an untyped set theory where
comprehension was restricted to extracting subsets of existing sets. Russell and
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Whitehead’s system of Principia Mathematica [WR27] consisted of a simple the-
ory of types which stratified the universe into the type of individuals, collections
of individuals, collections of collections of individuals, etc., and a ramified the-
ory of types that stratified the elements within a type to rule out impredicative
definitions.!

In computing, specification languages are meant to formalize what is being
computed rather than how it is computed. There are many discernible divisions
across these specification languages including

— Set theory (Z [Spi88], VDM [Jon90]) wersus type theory (HOL [GM93]
Nuprl [CAB*86], Coq [DFHT91], PVS [ORSvH95])

— Constructive (Coq, Nuprl) versus classical foundations (Z, HOL, PVS)

— First-order (OBJ [FGJMS85b], Maude [CDE*99], VDM, CASL [Mos98]?)
versus higher-order logic (HOL, Nuprl, Coq, PVS)

— Model-oriented (Z, VDM) versus property-oriented (OBJ, Maude, CASL)

— Total function (HOL, PVS) wversus partial function (OBJ, Maude, VDM,

CASL)
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The PVS specification language is based on a strongly typed higher-order
logic of total functions that builds on Church’s simply typed higher-order
logic [Chu40,And86]. Higher-order logic captures only a modest fragment of set
theory, but it is one that is reasonably expressive and yet effectively mechaniz-
able. Types impose a useful discipline within a specification language. They also
lead to the early detection of a large class of syntactic and semantic errors. PVS
admits only total functions but this is mitigated by the presence of subtypes
since a partial function can be introduced as a total function when its domain
of definition can be captured as a subtype. For example, the division operation
can be introduced with the domain given as the subtype of numbers consisting
of the nonzero numbers. If applied to a term not known to be nonzero, a proof
obligation is generated. PVS is based on a classical foundation as opposed to
a constructive one since constructive proofs impose a substantial cost in proof
construction for a modest gain in the information that can be extracted from a
successful proof.

We focus primarily on subtyping and the surrounding issues since this is one
of the core features of PVS. We also compare PVS with other specification lan-
guages. The paper condenses material from reports: The Formal Semantics of
PVS [0897] (URL: www.csl.sri.com/reports/postscript/csl-97-2.ps.gz) and Ab-
stract Datatypes in PVS [0S93] (URL: www.csl.sri.com/reports/ postscript /csl-
93-9.ps.gz). These reports should be consulted for further details. Rushby, Owre,
and Shankar [ROS98] motivate the need for PVS-style subtyping in specification
languages.

Following the style of the formal semantics of PVS [0S97], we present an
idealized core of the PVS language in small increments by starting from the

! Rushby [Rus93] has a lengthy discussion of foundational issues and their impact on
specification language features.
2 CASL also has a higher-order extension.



simple type system, and adding predicate subtypes, dependent types, typing
judgements, and abstract datatypes.

1 The Simply Typed Fragment

The base types in PVS consist of the booleans bool and the real number type
real.? From types T} and Tb, a function type is constructed as [Ty —T5] and a
product type is constructed as [T, Ts].

The preterms t consist of

— constants: ¢, f

— variables: z

— pairs: (t1,t2)

— projections: p; t

— abstractions: A(z : T') ¢
— applications: ft

The typechecking of a preterm a is carried out with respect to a declaration
context I" by an operation 7(I")(a) that returns the canonical type. A context is
a sequence of bindings of names to types, kinds, and definitions. For an identifier
s, kind(I'(s)) returns the kind CONSTANT, VARIABLE, or TYPE. Since the contexts
and types also need to be typechecked, we have

— 7()(I") = CONTEXT for well-formed context I'.
— 7(I')(A) = TYPE for well-formed type A.

The definition of 7(I")(a) is

T(I')(s) = type(I'(s)),
if kind(I'(s)) € {CONSTANT, VARIABLE}
T(O)(f a) =B, it 7(I')(f) =[A—=B] and 7(I')(a) = A
T(O)Y Az : T) a) = [T—=7(,x : VAR T')(a)], if I'(x) is undefined
and 7(I')(T) = TYPE
7(I)({a1, a2)) = [7(I')(a1), 7(I")(a2))]
7(I)(p; a) = T;, where
T(I)(a) = [Th, TY]

Type rules [Car97] are conventionally given as inference rules of the form

I'f:[A»B] T'Fa:A
I'fa:B
3 The actual base number type is an unspecified supertype of the reals called number
which is there to accommodate possible extensions of the reals such as the extended

reals (with +00 and —o0) or the complex numbers.



We have adopted a functional style of type computation, as opposed to the
relational style of type derivation above, since each PVS expression has a canon-
ical type given by the type declarations of its constants and variables.* With
subtypes, a single expression, such as 2, can have multiple types such as real,
rat (rational number), int (integer), nat (natural number), and even. The func-
tional computation of a canonical type removes any possibility for nondetermin-
ism without loss of completeness (every typeable term is assigned a canonical
type, e.g., the canonical type of 2 is real). The soundness argument for the type
system follows the definition of the 7 operation and is therefore quite straight-
forward [0S97].

The actual PVS specification language differs from the core PVS presented
above. PVS also has record types which can be captured by product types and
are therefore omitted from the core language. PVS has n-ary products instead of
the binary products used in the core language. In this extended abstract, we are
ignoring features of PVS such as type-directed conversions, parametric theories,
and recursive and inductive definitions.

If we let 2 represent a two-element set for interpreting the type bool, and
R represent the set of real numbers, the semantics for the simple type system is
given with respect to a universe U = (J,_,, U;, where

Uy ={2,R}
U =U; | JIX xY | X,V eU} [ J{XY | X,V €U}

An assignment for a context I' is a list of bindings of the form {z; <+
y1}...{xn < yn} that associates the type, constant, and variable declarations
of I with subsets and elements of the universe U. A walid assignment is one in
which the assignment of a constant or variable is an element of the assignment of
its declared type. The meaning of a well-formed type A in a context I" is given as
M(I" | v)(A). Correspondingly, the meaning of a well-typed term a with respect
to a context I' and 7 is given as M(I" | ¥)(a). The definitions and proofs of
soundness can be found in the PVS semantics report [0S97].

The soundness theorem asserts that for a well-formed context I', and valid
assignment -y, a well-formed type A, and a type-correct term a,

1. M(I'| v)(A) € U, and
2. M(I" | y)(a) € M(I" [ 7)(T(I")(a)).

PVS is quite liberal about overloading so that the same symbol can be de-
clared multiply and can also be reused as a constant, variable, type, or theory
name. Names declared within parametric theories can also be used without sup-
plying the actual parameters. The type checker uses contextual type information
to resolve ambiguities arising from overloading and to determine the precise the-
ory parameters for the resolved names. Other than resolving overloaded names
and determining theory parameters, the simple type system does not pose any
serious implementation challenges.

* This is also the style followed in the PVS Semantics Report [0S97].



2 Predicate subtyping

Predicate subtypes are perhaps the most important feature of the PVS type
system. The subtype of elements of a type T satisfying the predicate p is written
as {z : T'|p(z)}. Here p(z) can be an arbitrary PVS formula. As examples, the
type of nonzero real numbers nzreal is given as {z : real|z # 0}, and the
type of division is given as [real,nzreal—real]. Subtypes thus allow partial
functions to be expressed as total functions over a restricted domain specified as
a subtype.?

Partial functions do have the advantage of being more expressive. The subp
example from Cheng and Jones [CJ90] is given by

subp(i,j) = if i = j then 0 else subp(i,j + 1) + 1 endif
and is undefined if i < j (when i > j, subp(i,j) =i — j). The formula
(subp(i,j) =i —j) OR (subp(j,i) = j — 1)

is perfectly meaningful in most treatments for partial functions, but since it
generates unprovable obligations, it is not considered type-correct in PVS. In
practice, we have yet to encounter a need for this kind of expressiveness.

Subtypes have many other uses. They can be used to specify intervals and
subranges of the integers. Thus arrays can be declared as functions over an
index type that is a subrange. If below(10) represents the subtype of natural
numbers below 10, then a ten-element integer array a can be given the type
[below(10)—int]. Subtypes are also useful for recording properties within the
type of an expression. For example, the type of the absolute value function abs
can be given as [real—nonnegreal], where nonnegreal is the type of nonneg-
ative real numbers.

Predicate subtypes correspond to subsets of the parent type. The equality
relation remains the same from a type to a subtype. One might think that
predicate subtypes could be translated away since any subtype constraints on
quantified variables can be moved into the body of the quantification. However,
this is not the case for lambda-expressions since A(z : A) a where A is a subtype,
is not, expressible in the system without subtypes.

Predicate subtyping on higher-order types is especially useful for introducing
types corresponding to

— Injective, surjective, bijective, and order-preserving maps

— Reflexive, transitive, symmetric, anti-symmetric, partially ordered, well-
ordered relations

— Monotone predicate transformers. This is at least a third-order concept.

5 Note that in PVS, unlike in Maude or CASL, once division is declared to be of
this type, no further declarations may extend its domain. Any use of division whose
denominator is not known to be nonzero will generate a proof obligation when type-
checked.



Predicate subtyping is orthogonal to structural subtyping used in type sys-
tems for object-oriented languages [Car97]. In particular, with predicate subtyp-
ing, subtyping on function types is not contravariant on the domain type. The
function type [A—B] is a predicate subtype of [A'—B'] iff B is a predicate sub-
type of B', and A = A’. Since A and A’ may contain predicate subtypes, type
equivalence can also generate proof obligations corresponding to the equivalence
on predicates.

The proof obligations generated by the PVS typechecker are called type-
correctness conditions (TCCs). Subtype TCCs take into account the logical con-
text within which a subtype proof obligation is generated. For example, the ex-
pression z # y D (z +y)/(x — y) generates proof obligation z #y D (z —y) # 0
corresponding to the subtype nonnegreal for the denominator of the division
operation. The logical context of the subtype condition is included as the an-
tecedent to the proof obligation.

The most significant feature of subtyping in PVS is the division of typecheck-
ing into

1. Simple type correctness which is established algorithmically by the type-
checker, and

2. Proof obligations corresponding to the subtype predicates that are conjec-
tures that have to be proved within a proof system.

As a consequence, typechecking in PVS is undecidable insofar as the generated
proof obligations may not always fall within a decidable fragment of the logic.
This is the only source of undecidability in the PVS type system. For example,
the type {z : bool |z} is the subtype of booleans that are TRUE. Naturally, any
theorem has this type and it is easy to see that typechecking with respect to
such a subtype is equivalent to theorem proving in general.

Undecidability is not a serious drawback in practice. The typechecker is
merely generates proof obligations without actually trying to verify them. Typ-
ical proof obligations do fall within an efficiently decidable fragment of the logic
and can be discharged by simple proof strategies that rely heavily on the PVS
decision procedures. The proliferation of type-correctness proof obligations is a
potentially serious drawback, but is mitigated by other features of the PVS type
system, particularly,

— Subsumption which ensures that when a stronger proof obligation already
exists, a weaker one is never generated. For example,a TCCz #y Dx—y #
0 would be subsumed by a TCC of the form 2 — y # 0 and would therefore
be suppressed.

— Typing judgements that can cache subtype information about specific ex-
pressions. These are discussed below in greater detail.

There are two basic operations associated with typechecking in the type
system with subtypes. One operation p(A) returns the maximal supertype of
a type A, and the other w(A) returns the predicate constraints in the type A
with respect to the maximal supertype u(A). A variant pg(A) returns the direct



supertype so that uo({z : T'| a}) = po(T), and otherwise, uo(7) = T'. In contrast
to po, p([A—B]) is defined to be [A—u(B)].

Two types A and B are compatible iff u(A) and p(B) are equivalent. When
typechecking an application f a where the canonical type of f is [A—B] and
the canonical type of a is A’, we have to ensure that A and A’ are compatible
(which might generate type equivalence proof obligations) and discharge any
proof obligations corresponding to the subtype predicates imposed by A on a.
For example, the type of positive integers posint and the type of nonzero natural
numbers nznat are equivalent. The compatibility proof obligations in the context
I' are represented as (A ~ A')r. The type rules are given by

7(L)({z : T | a}) = TYPE, if I'(x) is undefined,
7([)(T) = TYPE, and 7(I',z : VAR T')(a) = bool
T(I')(f a) = B, where po(7(I')(f)) = [A—=B],
T(I)(a) = A',
(A~ Ar,
Fr w(A)(a)
7(I')(pi a) = Ay, where po(7(1')(a)) = [A1, As]

For example, let g: {f: [nat -> nat] | £(0) = 0}, and x: int. Then

po(7(I')(g)) = [nat -> natl,
7(I')(x) = int, and
int ~ nat, since u(int) = pu(nat) = number, hence

7(I')(g(x)) = nat, with the proof obligation 7(nat)(x) = (x >= 0)

The type rules with subtyping are quite a bit more complicated than those
of the simple type system. The implementation of these rules within the PVS
typechecker has to cope with the interaction between subtyping and name res-
olution since there is no longer an exact match between the domain type of a
function and its argument type.

For the interpretation of subtyping, the semantic universe has to be expanded
to include subsets.

Uo = {2= R}

U =Ui | JIXxY [ X,V eU} XY Xy et} | oX)
XeU;

The semantics of a predicate subtype is given by the definition

M [ y)({z: T | a})
={y e M(I" [ N(T) | M(I'z : VAR T' | y{z = y})(a) = 1}.

Subtyping is one of several sources of proof obligations in PVS. Other sources
of proof obligations include



1. Recursive functions, corresponding to termination.

2. Parametric theory instances, corresponding to the assumptions in the theory
about its parameters.

3. Constant definitions, since the declared type must be shown to be nonempty.
This check is not strictly necessary since such a declaration corresponds to
an inconsistent axiom. However, the check is there to prevent inconsistencies
from being introduced through constant declarations.

4. Inductive relation definitions, since these must be defined as fixed points of
monotone predicate transformers.

In general, proof obligations are used in PVS to implement complete, or relatively
complete, semantic checks instead of incomplete syntactic checks on the well-
formedness of PVS specifications.

3 Dependent Typing

The combination of dependent typing with predicate subtyping is extremely
powerful and can be used to capture the relationship between the output and the
input of a function. This allows the specification of an operation to be captured
within the type system. The type below(n) is actually a dependent type and is
declared as

below(n) : TYPE = {s : nat|s < n}.

The definition of binomial coefficients <n> serves as a good illustration of de-

k
pendent typing.

First, the factorial operation is defined recursively. Predicate subtyping is
used to note that the result of factorial(n) is always a positive integer.

n: VAR nat

factorial(n):
RECURSIVE posnat =
(IF n > 0 THEN n * factorial(n - 1)
ELSE 1 ENDIF)
MEASURE n

Then ( "

k) given by choosesO(n, k) is computed using the factorial op-

eration.

choosesO(n, (k : upto(n))) : rat =
factorial(n)/(factorial(k) * factorial(mn-k))

In the definition of chooses0, the domain type of the operation is a dependent
tuple type where the type of the second component upto(n) depends on the first
component n, where upto(n) is defined as {s: nat | s <= n}. The predicate



subtyping on the second argument is identical to the informal restriction given
in textbook definitions [Lev90].

The type of chooses0(n, (k : upto(n))) has been given as rat instead of
the more accurate posnat. This is because it is necessary to establish that the
right-hand side of the definition is a positive integral quantity. This nontrivial
proof obligation is typically overlooked in textbook presentations. In the PVS
development, the definition of choosesO is used to prove the basic recurrence

n+1\ (n n -
(k_l_l)_<k>+<k+1>7f0r0§k<n.Thlslsstatedbelowasthelemma

choosesO_recurrence.

choosesO_recurrence: LEMMA
(FORALL (k:upto(n)):
choosesO(n, k) =
(IF (k = 0 OR n = k) THEN 1
ELSE choosesO(n-1, k) + choosesO(n-1, k-1)
ENDIF))

The above recurrence can be used to show that the definition of (Z) always

computes a positive integral quantity.

chooses(n, (k : upto(n))): posnat =
choosesO(n, k)

The definition of chooses, when typechecked, generates a proof obligation corre-
n
k
obligation is discharged using the recurrence by an interactive inductive proof.®

PVS admits only a very restricted form of type dependency. In a dependent
type T'(n), the parameter n can occur only within subtype predicates in T'(n).
This means that the structure of T'(n) is invariant with respect to n. All possible
ways of introducing type dependencies in PVS preserve this invariant. It follows
that there is no way of defining a type T'(n), where T'(n) is A", i.e., the n-tuple
over the type A. Similarly, the D, model of lambda-calculus [Bar78] is also not
definable as a type since its construction involves a dependent type T'(n) where
T(n+1) =[T(n)—T(n)].

Dependent typing adds quite a bit of complexity to the type rules. The sub-
stitution operation is needed in the definition of the type rules. The definition
of type equivalence and maximal supertype is not straightforward. The PVS
formal semantics report [OS97] can be consulted for further details. The imple-
mentation of the typechecker for dependent typing is also correspondingly more
difficult since it requires more contextual information and quite heavy use of
substitution. We intend to investigate whether a representation of types using

sponding to the claim that returns a positive integral quantity. This proof

6 Note that choosesO could be defined as a posnat to begin with, but the resulting
proof obligation is not trivial to prove. It was in attempting to prove this obligation
that the choosesO_recurrence lemma was developed.



explicit substitutions might be more efficient for typechecking with dependent
types.

4 Judgements

With subtyping, the same term can have more than one type. As we have already
seen, the term 2 has the types real, rat, int, nat, posnat, even, and prime. An
operation can return a result of a more refined subtype than its declared range
type, if it is given arguments of a more refined domain type than its declared
domain type. The arithmetic operation of multiplication is a good example here.
The product of two positive numbers or two negative numbers is positive. Such
subtype propagation information can be specified using a JUDGEMENT declara-
tion. Typing judgements generate proof obligations corresponding to the validity
of the judgement. The judgements are used by the typechecker in a proactive
manner to propagate subtype information which minimizes the generation of
redundant proof obligations.

There are two kinds of judgements in PVS. Typing judgements assert that a
given operation propagates type information in a specific manner. For example,
two simple judgements about the propagation of sign information by the addition
operation are recorded below.

PX, Py: VAR posreal

nx, ny: VAR negreal

nnx, nny: VAR nonneg_real

nnreal_plus_posreal_is_posreal: JUDGEMENT +(nnx, py) HAS_TYPE posreal
negreal_plus_negreal_is_negreal: JUDGEMENT +(nx, ny) HAS_TYPE negreal

The first judgement asserts that the sum of a nonnegative and a positive real
is a positive real. The second judgement asserts that the sum of two negative
reals is negative. When the typechecker is applied to a term, say (—2 + —5), it
is able to conclude that the term has the type negative real number. Stronger
judgements allow the typechecker to conclude that the term (—2 + —5) has the
type of negative integers. This, in turn, allows the typechecker to conclude that
(—2 + —5) + —3 has the type negreal.

Judgements thus allow certain classes of proof obligations to be proved once
and for all. The typechecker uses judgements to propagate type information from
subterms to the terms in a proactive manner. The refined type information com-
puted by the typechecker not only minimizes the number of proof obligations,
it is also used by the PVS proof checker in simplification. For example, judge-
ments facilitate the computation of sign information for arithmetic terms. Such
sign information is recorded in the data structures of the decision procedures
and is employed in arithmetic simplification. The PVS decision procedures are
only modestly effective at nonlinear arithmetic so the statically inferred sign
information comes in quite handy during simplification.

10



5 Abstract Datatypes

PVS, like many other specification languages, has a definition mechanism for a
certain class of recursive datatypes given by constructors, accessors, and recog-
nizers. The 1list datatype is given in terms of the constructors

— null with recognizer null? and with no accessors, and
— cons with recognizer cons? and accessors car and cdr.

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?
END list

The datatype is parametric in the element type T. This definition generates
various PVS theories that contain the relevant datatype axioms and a number
of useful operators for defining operations over datatype terms.

The predicate subtype of the datatype corresponding to the recognizer cons?
is represented by the type expression (cons?). Then the accessor car has the
type [(cons?)—T] and the accessor cdr has the type [(cons?)—1list].

Whenever an accessor is used in an expression, as in car (cdr (x)), the type-
checker generates proof obligations requiring that cons? (x) and cons? (cdr (x))
hold in the context of any conditions given by the context.

Predicate subtypes allow mutually recursive datatypes to be introduced us-
ing the same mechanism as recursive datatypes. For a simple example, suppose
we wish to construct datatypes consisting of arithmetic expressions constructed
from numbers by means of addition and branching, and boolean expressions that
are equalities between arithmetic expressions. This could be expressed as

expr: DATATYPE

BEGIN

eq(tl: term, t2: term): eq?
END expr

term: DATATYPE

BEGIN

num(n:int): num?

sum(tl:term,t2:term): sum?

ift(e: expr, tl: term, t2: term): ift?
END term

But now the induction schema for each of these datatypes relies on the other,
making it difficult to work with.” We chose a simpler approach that relies on
subtypes:

" This is similar to the problem of describing measures that decrease across mutually
recursive function definitions.

11



arith: DATATYPE WITH SUBTYPES expr, term
BEGIN
num(n:int): num? :term
sum(tl:term,t2:term): sum? :term
eq(tl: term, t2: term): eq? rexpr
ift(e: expr, tl: term, t2: term): ift? :term
END arith

In this datatype, term is the subtype {x: arith | num?(x) OR sum?(x) OR
ift?(x)}, and a single induction schema is generated that simultaneously in-
ducts over terms and exprs.

Ordered binary trees are another demonstration of the interaction of
datatypes and predicate subtyping. The type of ordered binary trees can be
defined as a subtype of the binary trees datatype that satisfies the ordering
condition.

6 Comparisons

Lamport and Paulson [LP99] argue that types are harmful in a specification
language. They acknowledge that predicate subtypes remedy some of the ex-
pressiveness limitations of type systems, but argue that subtypes are inherently
complicated. Indeed, a sizable fraction of the bugs in early implementations of
PVS were due to predicate subtyping in particular, and proof obligation gen-
eration, in general. However, these bugs stem largely from minor coding errors
rather than foundational issues or complexities. The recently released PVS ver-
sion 2.3 overcomes most of these problems is quite robust and efficient. Much
of the popularity of PVS as a specification framework stems from its effective
treatment of predicate subtyping. Predicate subtyping is not a trivial addition
to a specification language, but the payoff in terms of expressiveness more than
justifies the implementation cost.

The specification language VDM [Jon90] has a notion of data type invari-
ants where types can be defined with constraints that are similar to those of
predicate subtypes. Typechecking expressions with respect to types constrained
with invariants generates proof obligations.® In VDM, such invariants are part
of the type definition mechanism rather than the type system itself. Since VDM
is based on a first-order logic, there is nothing corresponding to a higher-order
predicate subtype. Dependent types are absent from the VDM type system.
VDM treats partiality with a 3-valued logic instead of subtyping.

¥ To quote Jones [Jon90]:

This [the concept of data type invariants] has a profound consequence for the
type mechanism of the notation. In programming languages, it is normal to
associate type checking with a simple compiler algorithm. The inclusion of
a sub-typing mechanism which allows truth-valued functions forces the type
checking here to rely on proofs.

12



Systems like HOL [GM93] and Isabelle/HOL [Pau94] are based on Church’s
simply typed higher-order logic [Chu40]. These have the advantage that the
implementations are simple and reliable. PVS extends the simple type system in
a number of ways, but these extensions are well supported by means of the proof
automation in PVS. PVS has been compared with HOL by Gordon [Gor95] and
with Isabelle by Griffioen and Huisman [GH98]. The type systems of PVS and
Nuprl [CAB*86] have been compared by Jackson [Jac96].

Dependent type theories were introduced as a formalization of constructive
logics based on the Curry-Howard isomorphism. Constructive logics like AU-
TOMATH [dB80], Nuprl [CAB*86], and Coq [DFH*91] feature dependent typ-
ing in their type system. The dependencies in these logics are different from
those in the PVS type system. In PVS, the dependencies can only affect the
predicates in a type but not its structure. For example, the type [n : nat— A"
cannot be defined in PVS. Whereas, the constructive type theories admit de-
pendent types where the structure of the range can depend on the value of the
argument. Nuprl also has a form of predicate subtyping but it does not separate
typechecking into an algorithmic component and proof obligation generation: all
typechecking is carried out within a proof by invoking the type rules. Coq has
a fully polymorphic type system whereas PVS features only a limited degree of
polymorphism through type parametricity at the theory level. Nuprl also has a
hierarchy of type universes where the terms at each level are assigned types at
the next level in the hierarchy. PVS on the other hand admits no reasoning at
the level of types so that even type equivalence is algorithmically reduced to an
ordinary proof obligation.

Algebraic specification languages [FGJM85a,Mos98] typically employ multi-
sorted first-order logics. In contrast, PVS is based on a more expressive higher-
order logic. In algebraic specification languages, subsorting is analogous to sub-
typing in PVS. However, the subsorting is not enforced so that, e.g., division
by zero is allowed, and in the case of programming languages such as OBJ and
Maude simply results in a runtime error. In the case of specification languages
such as CASL, proofs involving partial terms tend to require definedness argu-
ments. In principal, this is the same as dealing with PVS proof obligations, but
in practice the PVS judgement mechanism greatly reduces the burden on the
user.

7 Conclusions

We have argued that predicate subtypes are a fundamental and important exten-
sion to a specification language. They allow partial operations such as division
to be given as total operations over a subtype. Properties of the result of an op-
eration can be cached in the type. For example, mod(a, b) can be defined so that
b must be positive, and the result mod(a,b) is at most b. In PVS, there are no
restrictions on the predicates that can be used to construct predicate subtypes.
Typechecking with predicate subtypes is undecidable in general. PVS separates
typechecking in the presence of predicate subtypes into simple typechecking and
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proof obligation generation. An expression is not considered type-correct unless
all generated proof obligations have been discharged.

Dependent typing allows the predicates in one component of a compound
type to be defined in terms of the other components. With the combination of
predicate subtyping and dependent typing, a substantial part of the specification
of an operation can be embedded in its type.

With recursive datatypes, several problems associated with the use of
multiple-constructor datatypes can be avoided through the use of predicate sub-
typing. Proof obligations ensure that an accessor is never improperly applied.

A substantial fragment of the PVS language is executable. An execution
engine has been implemented for PVS by means of code generation from PVS to
Common Lisp [Sha99]. The PVS type system ensures that the execution of every
well-typed ground term is safe, i.e., the only possible runtime error occurs when
some resource bound has been exhausted. Annotations derived from subtype
information also yield an efficiency improvement of about 30%. For example,
if the type of a PVS ground term is known to be positive and smaller than
the Common Lisp fixnum type, a declaration may be added to the generated
code that allows the compiler to omit some runtime checks. On some hardware
simulation examples, the generated code executes at roughly a fifth of the speed
of hand-crafted C.

In summary, PVS is an experimental effort aimed at supporting the devel-
opment of expressive specifications for both human and machine consumption.
Experiments with PVS reveal that subtyping is a crucial language feature that
supports expressiveness, clarity, safety, and deductive automation. It merits close
consideration for programming languages as well as specification languages.
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