
Prin
iples and Pragmati
s of Subtyping in PVS?Invited paper at the 1999 Workshop on Abstra
t DatatypesNatarajan Shankar and Sam OwreComputer S
ien
e LaboratorySRI InternationalMenlo Park CA 94025 USAfshankar, owreg�
sl.sri.
omURL: http://www.
sl.sri.
om/~shankar/Phone: +1 (650) 859-5272 Fax: +1 (650) 859-2844Abstra
t. PVS (Prototype Veri�
ation System) is a me
hanized frame-work for formal spe
i�
ation and intera
tive proof development. ThePVS spe
i�
ation language is based on higher-order logi
 enri
hedwith features su
h as predi
ate subtypes, dependent types, re
ursivedatatypes, and parametri
 theories. Subtyping is a 
entral 
on
ept inthe PVS type system. PVS admits the de�nition of subtypes 
orrespond-ing to nonzero integers, prime numbers, inje
tive maps, order-preservingmaps, and even empty subtypes. We examine the prin
iples underlyingthe PVS subtype me
hanism and its implementation and use.The PVS spe
i�
ation language is primarily a medium for 
ommuni
atingformal mathemati
al des
riptions. Formal PVS spe
i�
ations are meant for bothma
hine and human 
onsumption. The spe
i�
ation language of PVS extendssimply typed higher-order logi
 with features su
h as predi
ate subtypes, depen-dent types, re
ursive datatypes, and parametri
 theories. These features are 
rit-i
al for fa
ile mathemati
al expression as well as symboli
 manipulation. Thoughthe language has been designed to be used in 
onjun
tion with a theorem prover,it has an existen
e independent of any spe
i�
 theorem prover.The 
ore spe
i�
ation language of PVS is quite small yet poses a number ofserious implementation 
hallenges. We outline the diÆ
ulties in realizing thesefeatures in a usable implementation. Our observations might be useful to design-ers and implementors of other spe
i�
ation languages with similar features.There is a long history of formal foundational languages for mathemati
s.Frege's Begri�ss
hrift [Fre67a℄ was presented as a system of axioms and rulesfor logi
al reasoning in the s
ien
es. Frege's use of fun
tion variables was foundto be in
onsistent by Russell [Rus67,Fre67b℄. Poin
are attributed the problem toa vi
ious 
ir
le, or impredi
ativity, that allowed an entity to be de�ned by quan-ti�
ation over a domain that in
luded the entity itself. There were two initialresponses to this. Zermelo's solution was to 
raft an untyped set theory where
omprehension was restri
ted to extra
ting subsets of existing sets. Russell and? This work was funded by NSF Grants No. CCR-9712383 and CCR-9509931.



Whitehead's system of Prin
ipia Mathemati
a [WR27℄ 
onsisted of a simple the-ory of types whi
h strati�ed the universe into the type of individuals, 
olle
tionsof individuals, 
olle
tions of 
olle
tions of individuals, et
., and a rami�ed the-ory of types that strati�ed the elements within a type to rule out impredi
ativede�nitions.1In 
omputing, spe
i�
ation languages are meant to formalize what is being
omputed rather than how it is 
omputed. There are many dis
ernible divisionsa
ross these spe
i�
ation languages in
luding{ Set theory (Z [Spi88℄, VDM [Jon90℄) versus type theory (HOL [GM93℄,Nuprl [CAB+86℄, Coq [DFH+91℄, PVS [ORSvH95℄){ Constru
tive (Coq, Nuprl) versus 
lassi
al foundations (Z, HOL, PVS){ First-order (OBJ [FGJM85b℄, Maude [CDE+99℄, VDM, CASL [Mos98℄2)versus higher-order logi
 (HOL, Nuprl, Coq, PVS){ Model-oriented (Z, VDM) versus property-oriented (OBJ, Maude, CASL){ Total fun
tion (HOL, PVS) versus partial fun
tion (OBJ, Maude, VDM,CASL)The PVS spe
i�
ation language is based on a strongly typed higher-orderlogi
 of total fun
tions that builds on Chur
h's simply typed higher-orderlogi
 [Chu40,And86℄. Higher-order logi
 
aptures only a modest fragment of settheory, but it is one that is reasonably expressive and yet e�e
tively me
haniz-able. Types impose a useful dis
ipline within a spe
i�
ation language. They alsolead to the early dete
tion of a large 
lass of synta
ti
 and semanti
 errors. PVSadmits only total fun
tions but this is mitigated by the presen
e of subtypessin
e a partial fun
tion 
an be introdu
ed as a total fun
tion when its domainof de�nition 
an be 
aptured as a subtype. For example, the division operation
an be introdu
ed with the domain given as the subtype of numbers 
onsistingof the nonzero numbers. If applied to a term not known to be nonzero, a proofobligation is generated. PVS is based on a 
lassi
al foundation as opposed toa 
onstru
tive one sin
e 
onstru
tive proofs impose a substantial 
ost in proof
onstru
tion for a modest gain in the information that 
an be extra
ted from asu

essful proof.We fo
us primarily on subtyping and the surrounding issues sin
e this is oneof the 
ore features of PVS. We also 
ompare PVS with other spe
i�
ation lan-guages. The paper 
ondenses material from reports: The Formal Semanti
s ofPVS [OS97℄ (URL: www.
sl.sri.
om/reports/posts
ript/
sl-97-2.ps.gz) and Ab-stra
t Datatypes in PVS [OS93℄ (URL: www.
sl.sri.
om/reports/ posts
ript/
sl-93-9.ps.gz). These reports should be 
onsulted for further details. Rushby, Owre,and Shankar [ROS98℄ motivate the need for PVS-style subtyping in spe
i�
ationlanguages.Following the style of the formal semanti
s of PVS [OS97℄, we present anidealized 
ore of the PVS language in small in
rements by starting from the1 Rushby [Rus93℄ has a lengthy dis
ussion of foundational issues and their impa
t onspe
i�
ation language features.2 CASL also has a higher-order extension.2



simple type system, and adding predi
ate subtypes, dependent types, typingjudgements, and abstra
t datatypes.1 The Simply Typed FragmentThe base types in PVS 
onsist of the booleans bool and the real number typereal.3 From types T1 and T2, a fun
tion type is 
onstru
ted as [T1!T2℄ and aprodu
t type is 
onstru
ted as [T1; T2℄.The preterms t 
onsist of{ 
onstants: 
, f{ variables: x{ pairs: ht1; t2i{ proje
tions: pi t{ abstra
tions: �(x : T ) t{ appli
ations: ftThe type
he
king of a preterm a is 
arried out with respe
t to a de
laration
ontext � by an operation �(� )(a) that returns the 
anoni
al type. A 
ontext isa sequen
e of bindings of names to types, kinds, and de�nitions. For an identi�ers, kind(� (s)) returns the kind CONSTANT, VARIABLE, or TYPE. Sin
e the 
ontextsand types also need to be type
he
ked, we have{ �()(� ) = CONTEXT for well-formed 
ontext � .{ �(� )(A) = TYPE for well-formed type A.The de�nition of �(� )(a) is�(� )(s) = type(� (s));if kind(� (s)) 2 fCONSTANT; VARIABLEg�(� )(f a) = B; if �(� )(f) = [A!B℄ and �(� )(a) = A�(� )(�(x : T ) a) = [T!�(�; x : VAR T )(a)℄; if � (x) is unde�nedand �(� )(T ) = TYPE�(� )(ha1; a2i) = [�(� )(a1); �(� )(a2))℄�(� )(pi a) = Ti; where�(� )(a) = [T1; T2℄Type rules [Car97℄ are 
onventionally given as inferen
e rules of the form� ` f : [A!B℄ � ` a : A� ` f a : B3 The a
tual base number type is an unspe
i�ed supertype of the reals 
alled numberwhi
h is there to a

ommodate possible extensions of the reals su
h as the extendedreals (with +1 and �1) or the 
omplex numbers.3



We have adopted a fun
tional style of type 
omputation, as opposed to therelational style of type derivation above, sin
e ea
h PVS expression has a 
anon-i
al type given by the type de
larations of its 
onstants and variables.4 Withsubtypes, a single expression, su
h as 2, 
an have multiple types su
h as real,rat (rational number), int (integer), nat (natural number), and even. The fun
-tional 
omputation of a 
anoni
al type removes any possibility for nondetermin-ism without loss of 
ompleteness (every typeable term is assigned a 
anoni
altype, e.g., the 
anoni
al type of 2 is real). The soundness argument for the typesystem follows the de�nition of the � operation and is therefore quite straight-forward [OS97℄.The a
tual PVS spe
i�
ation language di�ers from the 
ore PVS presentedabove. PVS also has re
ord types whi
h 
an be 
aptured by produ
t types andare therefore omitted from the 
ore language. PVS has n-ary produ
ts instead ofthe binary produ
ts used in the 
ore language. In this extended abstra
t, we areignoring features of PVS su
h as type-dire
ted 
onversions, parametri
 theories,and re
ursive and indu
tive de�nitions.If we let 2 represent a two-element set for interpreting the type bool, andR represent the set of real numbers, the semanti
s for the simple type system isgiven with respe
t to a universe U = Si<! Ui, whereU0 = f2;RgUi+1 = Ui [ fX � Y j X;Y 2 Uig[ fXY j X;Y 2 UigAn assignment for a 
ontext � is a list of bindings of the form fx1  y1g : : : fxn  yng that asso
iates the type, 
onstant, and variable de
larationsof � with subsets and elements of the universe U . A valid assignment is one inwhi
h the assignment of a 
onstant or variable is an element of the assignment ofits de
lared type. The meaning of a well-formed type A in a 
ontext � is given asM(� j 
)(A). Correspondingly, the meaning of a well-typed term a with respe
tto a 
ontext � and 
 is given as M(� j 
)(a). The de�nitions and proofs ofsoundness 
an be found in the PVS semanti
s report [OS97℄.The soundness theorem asserts that for a well-formed 
ontext � , and validassignment 
, a well-formed type A, and a type-
orre
t term a,1. M(� j 
)(A) 2 U , and2. M(� j 
)(a) 2M(� j 
)(�(� )(a)).PVS is quite liberal about overloading so that the same symbol 
an be de-
lared multiply and 
an also be reused as a 
onstant, variable, type, or theoryname. Names de
lared within parametri
 theories 
an also be used without sup-plying the a
tual parameters. The type 
he
ker uses 
ontextual type informationto resolve ambiguities arising from overloading and to determine the pre
ise the-ory parameters for the resolved names. Other than resolving overloaded namesand determining theory parameters, the simple type system does not pose anyserious implementation 
hallenges.4 This is also the style followed in the PVS Semanti
s Report [OS97℄.4



2 Predi
ate subtypingPredi
ate subtypes are perhaps the most important feature of the PVS typesystem. The subtype of elements of a type T satisfying the predi
ate p is writtenas fx : T j p(x)g. Here p(x) 
an be an arbitrary PVS formula. As examples, thetype of nonzero real numbers nzreal is given as fx : real jx 6= 0g, and thetype of division is given as [real; nzreal!real℄. Subtypes thus allow partialfun
tions to be expressed as total fun
tions over a restri
ted domain spe
i�ed asa subtype.5Partial fun
tions do have the advantage of being more expressive. The subpexample from Cheng and Jones [CJ90℄ is given bysubp(i; j) = if i = j then 0 else subp(i; j + 1) + 1 endifand is unde�ned if i < j (when i � j; subp(i; j) = i� j). The formula(subp(i; j) = i� j) OR (subp(j; i) = j � i)is perfe
tly meaningful in most treatments for partial fun
tions, but sin
e itgenerates unprovable obligations, it is not 
onsidered type-
orre
t in PVS. Inpra
ti
e, we have yet to en
ounter a need for this kind of expressiveness.Subtypes have many other uses. They 
an be used to spe
ify intervals andsubranges of the integers. Thus arrays 
an be de
lared as fun
tions over anindex type that is a subrange. If below(10) represents the subtype of naturalnumbers below 10, then a ten-element integer array a 
an be given the type[below(10)!int℄. Subtypes are also useful for re
ording properties within thetype of an expression. For example, the type of the absolute value fun
tion abs
an be given as [real!nonnegreal℄, where nonnegreal is the type of nonneg-ative real numbers.Predi
ate subtypes 
orrespond to subsets of the parent type. The equalityrelation remains the same from a type to a subtype. One might think thatpredi
ate subtypes 
ould be translated away sin
e any subtype 
onstraints onquanti�ed variables 
an be moved into the body of the quanti�
ation. However,this is not the 
ase for lambda-expressions sin
e �(x : A) a where A is a subtype,is not expressible in the system without subtypes.Predi
ate subtyping on higher-order types is espe
ially useful for introdu
ingtypes 
orresponding to{ Inje
tive, surje
tive, bije
tive, and order-preserving maps{ Re
exive, transitive, symmetri
, anti-symmetri
, partially ordered, well-ordered relations{ Monotone predi
ate transformers. This is at least a third-order 
on
ept.5 Note that in PVS, unlike in Maude or CASL, on
e division is de
lared to be ofthis type, no further de
larations may extend its domain. Any use of division whosedenominator is not known to be nonzero will generate a proof obligation when type-
he
ked. 5



Predi
ate subtyping is orthogonal to stru
tural subtyping used in type sys-tems for obje
t-oriented languages [Car97℄. In parti
ular, with predi
ate subtyp-ing, subtyping on fun
tion types is not 
ontravariant on the domain type. Thefun
tion type [A!B℄ is a predi
ate subtype of [A0!B0℄ i� B is a predi
ate sub-type of B0, and A � A0. Sin
e A and A0 may 
ontain predi
ate subtypes, typeequivalen
e 
an also generate proof obligations 
orresponding to the equivalen
eon predi
ates.The proof obligations generated by the PVS type
he
ker are 
alled type-
orre
tness 
onditions (TCCs). Subtype TCCs take into a

ount the logi
al 
on-text within whi
h a subtype proof obligation is generated. For example, the ex-pression x 6= y � (x+ y)=(x� y) generates proof obligation x 6= y � (x� y) 6= 0
orresponding to the subtype nonnegreal for the denominator of the divisionoperation. The logi
al 
ontext of the subtype 
ondition is in
luded as the an-te
edent to the proof obligation.The most signi�
ant feature of subtyping in PVS is the division of type
he
k-ing into1. Simple type 
orre
tness whi
h is established algorithmi
ally by the type-
he
ker, and2. Proof obligations 
orresponding to the subtype predi
ates that are 
onje
-tures that have to be proved within a proof system.As a 
onsequen
e, type
he
king in PVS is unde
idable insofar as the generatedproof obligations may not always fall within a de
idable fragment of the logi
.This is the only sour
e of unde
idability in the PVS type system. For example,the type fx : bool jxg is the subtype of booleans that are TRUE. Naturally, anytheorem has this type and it is easy to see that type
he
king with respe
t tosu
h a subtype is equivalent to theorem proving in general.Unde
idability is not a serious drawba
k in pra
ti
e. The type
he
ker ismerely generates proof obligations without a
tually trying to verify them. Typ-i
al proof obligations do fall within an eÆ
iently de
idable fragment of the logi
and 
an be dis
harged by simple proof strategies that rely heavily on the PVSde
ision pro
edures. The proliferation of type-
orre
tness proof obligations is apotentially serious drawba
k, but is mitigated by other features of the PVS typesystem, parti
ularly,{ Subsumption whi
h ensures that when a stronger proof obligation alreadyexists, a weaker one is never generated. For example, a TCC x 6= y � x�y 6=0 would be subsumed by a TCC of the form x� y 6= 0 and would thereforebe suppressed.{ Typing judgements that 
an 
a
he subtype information about spe
i�
 ex-pressions. These are dis
ussed below in greater detail.There are two basi
 operations asso
iated with type
he
king in the typesystem with subtypes. One operation �(A) returns the maximal supertype ofa type A, and the other �(A) returns the predi
ate 
onstraints in the type Awith respe
t to the maximal supertype �(A). A variant �0(A) returns the dire
t6



supertype so that �0(fx : T j ag) = �0(T ), and otherwise, �0(T ) = T . In 
ontrastto �0, �([A!B℄) is de�ned to be [A!�(B)℄.Two types A and B are 
ompatible i� �(A) and �(B) are equivalent. Whentype
he
king an appli
ation f a where the 
anoni
al type of f is [A!B℄ andthe 
anoni
al type of a is A0, we have to ensure that A and A0 are 
ompatible(whi
h might generate type equivalen
e proof obligations) and dis
harge anyproof obligations 
orresponding to the subtype predi
ates imposed by A on a.For example, the type of positive integers posint and the type of nonzero naturalnumbers nznat are equivalent. The 
ompatibility proof obligations in the 
ontext� are represented as (A � A0)� . The type rules are given by�(� )(fx : T j ag) = TYPE; if � (x) is unde�ned;�(� )(T ) = TYPE; and �(�; x : VAR T )(a) = bool�(� )(f a) = B; where �0(�(� )(f)) = [A!B℄;�(� )(a) = A0;(A � A0)� ;`� �(A)(a)�(� )(pi a) = Ai; where �0(�(� )(a)) = [A1; A2℄For example, let g: ff: [nat -> nat℄ | f(0) = 0g, and x: int. Then�0(�(� )(g)) = [nat -> nat℄;�(� )(x) = int; andint � nat; sin
e �(int) = �(nat) = number; hen
e�(� )(g(x)) = nat; with the proof obligation �(nat)(x) = (x >= 0)The type rules with subtyping are quite a bit more 
ompli
ated than thoseof the simple type system. The implementation of these rules within the PVStype
he
ker has to 
ope with the intera
tion between subtyping and name res-olution sin
e there is no longer an exa
t mat
h between the domain type of afun
tion and its argument type.For the interpretation of subtyping, the semanti
 universe has to be expandedto in
lude subsets.U0 = f2;RgUi+1 = Ui [ fX � Y j X;Y 2 Uig[ fXY j X;Y 2 Uig[ [X2Ui }(X)The semanti
s of a predi
ate subtype is given by the de�nitionM(� j 
)(fx : T j ag)= fy 2 M(� j 
)(T ) j M(�; x : VAR T j 
fx yg)(a) = 1g:Subtyping is one of several sour
es of proof obligations in PVS. Other sour
esof proof obligations in
lude 7



1. Re
ursive fun
tions, 
orresponding to termination.2. Parametri
 theory instan
es, 
orresponding to the assumptions in the theoryabout its parameters.3. Constant de�nitions, sin
e the de
lared type must be shown to be nonempty.This 
he
k is not stri
tly ne
essary sin
e su
h a de
laration 
orresponds toan in
onsistent axiom. However, the 
he
k is there to prevent in
onsisten
iesfrom being introdu
ed through 
onstant de
larations.4. Indu
tive relation de�nitions, sin
e these must be de�ned as �xed points ofmonotone predi
ate transformers.In general, proof obligations are used in PVS to implement 
omplete, or relatively
omplete, semanti
 
he
ks instead of in
omplete synta
ti
 
he
ks on the well-formedness of PVS spe
i�
ations.3 Dependent TypingThe 
ombination of dependent typing with predi
ate subtyping is extremelypowerful and 
an be used to 
apture the relationship between the output and theinput of a fun
tion. This allows the spe
i�
ation of an operation to be 
apturedwithin the type system. The type below(n) is a
tually a dependent type and isde
lared as below(n) : TYPE = fs : nat j s < ng:The de�nition of binomial 
oeÆ
ients �nk� serves as a good illustration of de-pendent typing.First, the fa
torial operation is de�ned re
ursively. Predi
ate subtyping isused to note that the result of fa
torial(n) is always a positive integer.n: VAR natfa
torial(n):RECURSIVE posnat =(IF n > 0 THEN n * fa
torial(n - 1)ELSE 1 ENDIF)MEASURE nThen �nk� given by 
hooses0(n, k) is 
omputed using the fa
torial op-eration.
hooses0(n, (k : upto(n))) : rat =fa
torial(n)/(fa
torial(k) * fa
torial(n-k))In the de�nition of 
hooses0, the domain type of the operation is a dependenttuple type where the type of the se
ond 
omponent upto(n) depends on the �rst
omponent n, where upto(n) is de�ned as fs: nat | s <= ng. The predi
ate8



subtyping on the se
ond argument is identi
al to the informal restri
tion givenin textbook de�nitions [Lev90℄.The type of 
hooses0(n, (k : upto(n))) has been given as rat instead ofthe more a

urate posnat. This is be
ause it is ne
essary to establish that theright-hand side of the de�nition is a positive integral quantity. This nontrivialproof obligation is typi
ally overlooked in textbook presentations. In the PVSdevelopment, the de�nition of 
hooses0 is used to prove the basi
 re
urren
e�n+ 1k + 1� = �nk�+� nk + 1�, for 0 � k < n. This is stated below as the lemma
hooses0 re
urren
e.
hooses0_re
urren
e: LEMMA(FORALL (k:upto(n)):
hooses0(n, k) =(IF (k = 0 OR n = k) THEN 1ELSE 
hooses0(n-1, k) + 
hooses0(n-1, k-1)ENDIF))The above re
urren
e 
an be used to show that the de�nition of �nk� always
omputes a positive integral quantity.
hooses(n, (k : upto(n))): posnat =
hooses0(n, k)The de�nition of 
hooses, when type
he
ked, generates a proof obligation 
orre-sponding to the 
laim that �nk� returns a positive integral quantity. This proofobligation is dis
harged using the re
urren
e by an intera
tive indu
tive proof.6PVS admits only a very restri
ted form of type dependen
y. In a dependenttype T (n), the parameter n 
an o

ur only within subtype predi
ates in T (n).This means that the stru
ture of T (n) is invariant with respe
t to n. All possibleways of introdu
ing type dependen
ies in PVS preserve this invariant. It followsthat there is no way of de�ning a type T (n), where T (n) is An, i.e., the n-tupleover the type A. Similarly, the D1 model of lambda-
al
ulus [Bar78℄ is also notde�nable as a type sin
e its 
onstru
tion involves a dependent type T (n) whereT (n+ 1) = [T (n)!T (n)℄.Dependent typing adds quite a bit of 
omplexity to the type rules. The sub-stitution operation is needed in the de�nition of the type rules. The de�nitionof type equivalen
e and maximal supertype is not straightforward. The PVSformal semanti
s report [OS97℄ 
an be 
onsulted for further details. The imple-mentation of the type
he
ker for dependent typing is also 
orrespondingly morediÆ
ult sin
e it requires more 
ontextual information and quite heavy use ofsubstitution. We intend to investigate whether a representation of types using6 Note that 
hooses0 
ould be de�ned as a posnat to begin with, but the resultingproof obligation is not trivial to prove. It was in attempting to prove this obligationthat the 
hooses0 re
urren
e lemma was developed.9



expli
it substitutions might be more eÆ
ient for type
he
king with dependenttypes.4 JudgementsWith subtyping, the same term 
an have more than one type. As we have alreadyseen, the term 2 has the types real, rat, int, nat, posnat, even, and prime. Anoperation 
an return a result of a more re�ned subtype than its de
lared rangetype, if it is given arguments of a more re�ned domain type than its de
lareddomain type. The arithmeti
 operation of multipli
ation is a good example here.The produ
t of two positive numbers or two negative numbers is positive. Su
hsubtype propagation information 
an be spe
i�ed using a JUDGEMENT de
lara-tion. Typing judgements generate proof obligations 
orresponding to the validityof the judgement. The judgements are used by the type
he
ker in a proa
tivemanner to propagate subtype information whi
h minimizes the generation ofredundant proof obligations.There are two kinds of judgements in PVS. Typing judgements assert that agiven operation propagates type information in a spe
i�
 manner. For example,two simple judgements about the propagation of sign information by the additionoperation are re
orded below.px, py: VAR posrealnx, ny: VAR negrealnnx, nny: VAR nonneg_realnnreal_plus_posreal_is_posreal: JUDGEMENT +(nnx, py) HAS_TYPE posrealnegreal_plus_negreal_is_negreal: JUDGEMENT +(nx, ny) HAS_TYPE negrealThe �rst judgement asserts that the sum of a nonnegative and a positive realis a positive real. The se
ond judgement asserts that the sum of two negativereals is negative. When the type
he
ker is applied to a term, say (�2 +�5), itis able to 
on
lude that the term has the type negative real number. Strongerjudgements allow the type
he
ker to 
on
lude that the term (�2 +�5) has thetype of negative integers. This, in turn, allows the type
he
ker to 
on
lude that(�2 +�5) +�3 has the type negreal.Judgements thus allow 
ertain 
lasses of proof obligations to be proved on
eand for all. The type
he
ker uses judgements to propagate type information fromsubterms to the terms in a proa
tive manner. The re�ned type information 
om-puted by the type
he
ker not only minimizes the number of proof obligations,it is also used by the PVS proof 
he
ker in simpli�
ation. For example, judge-ments fa
ilitate the 
omputation of sign information for arithmeti
 terms. Su
hsign information is re
orded in the data stru
tures of the de
ision pro
eduresand is employed in arithmeti
 simpli�
ation. The PVS de
ision pro
edures areonly modestly e�e
tive at nonlinear arithmeti
 so the stati
ally inferred signinformation 
omes in quite handy during simpli�
ation.10



5 Abstra
t DatatypesPVS, like many other spe
i�
ation languages, has a de�nition me
hanism for a
ertain 
lass of re
ursive datatypes given by 
onstru
tors, a

essors, and re
og-nizers. The list datatype is given in terms of the 
onstru
tors{ null with re
ognizer null? and with no a

essors, and{ 
ons with re
ognizer 
ons? and a

essors 
ar and 
dr.list [T: TYPE℄: DATATYPEBEGINnull: null?
ons (
ar: T, 
dr:list):
ons?END listThe datatype is parametri
 in the element type T. This de�nition generatesvarious PVS theories that 
ontain the relevant datatype axioms and a numberof useful operators for de�ning operations over datatype terms.The predi
ate subtype of the datatype 
orresponding to the re
ognizer 
ons?is represented by the type expression (
ons?). Then the a

essor 
ar has thetype [(
ons?)!T℄ and the a

essor 
dr has the type [(
ons?)!list℄.Whenever an a

essor is used in an expression, as in 
ar(
dr(x)), the type-
he
ker generates proof obligations requiring that 
ons?(x) and 
ons?(
dr(x))hold in the 
ontext of any 
onditions given by the 
ontext.Predi
ate subtypes allow mutually re
ursive datatypes to be introdu
ed us-ing the same me
hanism as re
ursive datatypes. For a simple example, supposewe wish to 
onstru
t datatypes 
onsisting of arithmeti
 expressions 
onstru
tedfrom numbers by means of addition and bran
hing, and boolean expressions thatare equalities between arithmeti
 expressions. This 
ould be expressed asexpr: DATATYPEBEGINeq(t1: term, t2: term): eq?END exprterm: DATATYPEBEGINnum(n:int): num?sum(t1:term,t2:term): sum?ift(e: expr, t1: term, t2: term): ift?END termBut now the indu
tion s
hema for ea
h of these datatypes relies on the other,making it diÆ
ult to work with.7 We 
hose a simpler approa
h that relies onsubtypes:7 This is similar to the problem of des
ribing measures that de
rease a
ross mutuallyre
ursive fun
tion de�nitions. 11



arith: DATATYPE WITH SUBTYPES expr, termBEGINnum(n:int): num? :termsum(t1:term,t2:term): sum? :termeq(t1: term, t2: term): eq? :exprift(e: expr, t1: term, t2: term): ift? :termEND arithIn this datatype, term is the subtype fx: arith | num?(x) OR sum?(x) ORift?(x)g, and a single indu
tion s
hema is generated that simultaneously in-du
ts over terms and exprs.Ordered binary trees are another demonstration of the intera
tion ofdatatypes and predi
ate subtyping. The type of ordered binary trees 
an bede�ned as a subtype of the binary trees datatype that satis�es the ordering
ondition.6 ComparisonsLamport and Paulson [LP99℄ argue that types are harmful in a spe
i�
ationlanguage. They a
knowledge that predi
ate subtypes remedy some of the ex-pressiveness limitations of type systems, but argue that subtypes are inherently
ompli
ated. Indeed, a sizable fra
tion of the bugs in early implementations ofPVS were due to predi
ate subtyping in parti
ular, and proof obligation gen-eration, in general. However, these bugs stem largely from minor 
oding errorsrather than foundational issues or 
omplexities. The re
ently released PVS ver-sion 2.3 over
omes most of these problems is quite robust and eÆ
ient. Mu
hof the popularity of PVS as a spe
i�
ation framework stems from its e�e
tivetreatment of predi
ate subtyping. Predi
ate subtyping is not a trivial additionto a spe
i�
ation language, but the payo� in terms of expressiveness more thanjusti�es the implementation 
ost.The spe
i�
ation language VDM [Jon90℄ has a notion of data type invari-ants where types 
an be de�ned with 
onstraints that are similar to those ofpredi
ate subtypes. Type
he
king expressions with respe
t to types 
onstrainedwith invariants generates proof obligations.8 In VDM, su
h invariants are partof the type de�nition me
hanism rather than the type system itself. Sin
e VDMis based on a �rst-order logi
, there is nothing 
orresponding to a higher-orderpredi
ate subtype. Dependent types are absent from the VDM type system.VDM treats partiality with a 3-valued logi
 instead of subtyping.8 To quote Jones [Jon90℄:This [the 
on
ept of data type invariants℄ has a profound 
onsequen
e for thetype me
hanism of the notation. In programming languages, it is normal toasso
iate type 
he
king with a simple 
ompiler algorithm. The in
lusion ofa sub-typing me
hanism whi
h allows truth-valued fun
tions for
es the type
he
king here to rely on proofs. 12



Systems like HOL [GM93℄ and Isabelle/HOL [Pau94℄ are based on Chur
h'ssimply typed higher-order logi
 [Chu40℄. These have the advantage that theimplementations are simple and reliable. PVS extends the simple type system ina number of ways, but these extensions are well supported by means of the proofautomation in PVS. PVS has been 
ompared with HOL by Gordon [Gor95℄ andwith Isabelle by GriÆoen and Huisman [GH98℄. The type systems of PVS andNuprl [CAB+86℄ have been 
ompared by Ja
kson [Ja
96℄.Dependent type theories were introdu
ed as a formalization of 
onstru
tivelogi
s based on the Curry-Howard isomorphism. Constru
tive logi
s like AU-TOMATH [dB80℄, Nuprl [CAB+86℄, and Coq [DFH+91℄ feature dependent typ-ing in their type system. The dependen
ies in these logi
s are di�erent fromthose in the PVS type system. In PVS, the dependen
ies 
an only a�e
t thepredi
ates in a type but not its stru
ture. For example, the type [n : nat!An℄
annot be de�ned in PVS. Whereas, the 
onstru
tive type theories admit de-pendent types where the stru
ture of the range 
an depend on the value of theargument. Nuprl also has a form of predi
ate subtyping but it does not separatetype
he
king into an algorithmi
 
omponent and proof obligation generation: alltype
he
king is 
arried out within a proof by invoking the type rules. Coq hasa fully polymorphi
 type system whereas PVS features only a limited degree ofpolymorphism through type parametri
ity at the theory level. Nuprl also has ahierar
hy of type universes where the terms at ea
h level are assigned types atthe next level in the hierar
hy. PVS on the other hand admits no reasoning atthe level of types so that even type equivalen
e is algorithmi
ally redu
ed to anordinary proof obligation.Algebrai
 spe
i�
ation languages [FGJM85a,Mos98℄ typi
ally employ multi-sorted �rst-order logi
s. In 
ontrast, PVS is based on a more expressive higher-order logi
. In algebrai
 spe
i�
ation languages, subsorting is analogous to sub-typing in PVS. However, the subsorting is not enfor
ed so that, e.g., divisionby zero is allowed, and in the 
ase of programming languages su
h as OBJ andMaude simply results in a runtime error. In the 
ase of spe
i�
ation languagessu
h as CASL, proofs involving partial terms tend to require de�nedness argu-ments. In prin
ipal, this is the same as dealing with PVS proof obligations, butin pra
ti
e the PVS judgement me
hanism greatly redu
es the burden on theuser.7 Con
lusionsWe have argued that predi
ate subtypes are a fundamental and important exten-sion to a spe
i�
ation language. They allow partial operations su
h as divisionto be given as total operations over a subtype. Properties of the result of an op-eration 
an be 
a
hed in the type. For example, mod(a; b) 
an be de�ned so thatb must be positive, and the result mod(a; b) is at most b. In PVS, there are norestri
tions on the predi
ates that 
an be used to 
onstru
t predi
ate subtypes.Type
he
king with predi
ate subtypes is unde
idable in general. PVS separatestype
he
king in the presen
e of predi
ate subtypes into simple type
he
king and13



proof obligation generation. An expression is not 
onsidered type-
orre
t unlessall generated proof obligations have been dis
harged.Dependent typing allows the predi
ates in one 
omponent of a 
ompoundtype to be de�ned in terms of the other 
omponents. With the 
ombination ofpredi
ate subtyping and dependent typing, a substantial part of the spe
i�
ationof an operation 
an be embedded in its type.With re
ursive datatypes, several problems asso
iated with the use ofmultiple-
onstru
tor datatypes 
an be avoided through the use of predi
ate sub-typing. Proof obligations ensure that an a

essor is never improperly applied.A substantial fragment of the PVS language is exe
utable. An exe
utionengine has been implemented for PVS by means of 
ode generation from PVS toCommon Lisp [Sha99℄. The PVS type system ensures that the exe
ution of everywell-typed ground term is safe, i.e., the only possible runtime error o

urs whensome resour
e bound has been exhausted. Annotations derived from subtypeinformation also yield an eÆ
ien
y improvement of about 30%. For example,if the type of a PVS ground term is known to be positive and smaller thanthe Common Lisp fixnum type, a de
laration may be added to the generated
ode that allows the 
ompiler to omit some runtime 
he
ks. On some hardwaresimulation examples, the generated 
ode exe
utes at roughly a �fth of the speedof hand-
rafted C.In summary, PVS is an experimental e�ort aimed at supporting the devel-opment of expressive spe
i�
ations for both human and ma
hine 
onsumption.Experiments with PVS reveal that subtyping is a 
ru
ial language feature thatsupports expressiveness, 
larity, safety, and dedu
tive automation. It merits 
lose
onsideration for programming languages as well as spe
i�
ation languages.Referen
es[And86℄ Peter B. Andrews. An Introdu
tion to Logi
 and Type Theory: To Truththrough Proof. A
ademi
 Press, New York, NY, 1986.[Bar78℄ H. P. Barendregt. The Lambda Cal
ulus, its Syntax and Semanti
s. North-Holland, Amsterdam, 1978.[CAB+86℄ R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-mer, R. W. Harper, D. J. Howe, T. B. Knoblo
k, N. P. Mendler, P. Panan-gaden, J. T. Sasaki, and S. F. Smith. Implementing Mathemati
s with theNuprl Proof Development System. Prenti
e Hall, Englewood Cli�s, NJ,1986.[Car97℄ Lu
a Cardelli. Type systems. In Handbook of Computer S
ien
e and En-gineering, 
hapter 103, pages 2208{2236. CRC Press, 1997. Available athttp://www.resear
h.digital.
om/SRC.[CDE+99℄ M. Clavel, F. Dur�an, S. Eker, P. Lin
oln, N. Mart��-Oliet, J. Meseguer,and J. F. Quesada. Maude: Spe
i�
ation and programming in rewritinglogi
. Te
hni
al Report CDRL A005, Computer S
ien
e Laboratory, SRIInternational, Mar
h 1999.[Chu40℄ A. Chur
h. A formulation of the simple theory of types. Journal of Symboli
Logi
, 5:56{68, 1940. 14



[CJ90℄ J. H. Cheng and C. B. Jones. On the usability of logi
s whi
h handle partialfun
tions. In Carroll Morgan and J. C. P. Wood
o
k, editors, Pro
eedings ofthe Third Re�nement Workshop, pages 51{69. Springer-Verlag Workshopsin Computing, 1990.[dB80℄ N. G. de Bruijn. A survey of the proje
t Automath. In To H. B. Curry:Essays on Combinatory Logi
, Lambda Cal
ulus and Formalism, pages 589{606. A
ademi
 Press, 1980.[DFH+91℄ Gilles Dowek, Amy Felty, Hugo Herbelin, G�erard Huet, Christine Paulin-Mohring, and Benjamin Werner. The COQ proof assistant user's guide:Version 5.6. Rapports Te
hniques 134, INRIA, Ro
quen
ourt, Fran
e, De-
ember 1991.[FGJM85a℄ Koki
hi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jos�eMeseguer. Prin
iples of OBJ2. In Brian K. Reid, editor, 12th ACM Sympo-sium on Prin
iples of Programming Languages, pages 52{66. Asso
iationfor Computing Ma
hinery, 1985.[FGJM85b℄ M. Futatsugi, J. Goguen, J-P. Jouanaud, and J. Meseguer. Prin
iplesof OBJ2. In Pro
eedings of the 12th ACM Symposium on Prin
iples ofProgramming, 1985.[Fre67a℄ G. Frege. Begri�ss
hrift, a formula language, modeled upon that of arith-meti
, for pure thought, 1967. First published 1879.[Fre67b℄ G. Frege. Letter to Russell, 1967. Written 1902.[GH98℄ David GriÆoen and Marieke Huisman. A 
omparison of PVS and Is-abelle/HOL. In Jim Grundy and Mal
olm Newey, editors, Theorem Provingin Higher Order Logi
s: 11th International Conferen
e, TPHOLs '98, vol-ume 1479 of Le
ture Notes in Computer S
ien
e, pages 123{142, Canberra,Australia, September 1998. Springer-Verlag.[GM93℄ M. J. C. Gordon and T. F. Melham, editors. Introdu
tion to HOL: A The-orem Proving Environment for Higher-Order Logi
. Cambridge UniversityPress, Cambridge, UK, 1993.[Gor95℄ Mike Gordon. Notes on PVS from a HOL perspe
tive. Available athttp://www.
l.
am.a
.uk/users/mj
g/PVS.html, August 1995.[Ja
96℄ Paul Ja
kson. Unde
idable typing, abstra
t theories and ta
ti
s in Nuprland PVS (tutorial). In Joakim von Wright, Jim Grundy, and John Har-rison, editors, Theorem Proving in Higher Order Logi
s: 9th InternationalConferen
e, TPHOLs '96, volume 1125 of Le
ture Notes in Computer S
i-en
e, Turku, Finland, August 1996. Springer-Verlag.[Jon90℄ Cli� B. Jones. Systemati
 Software Development Using VDM. Prenti
e HallInternational Series in Computer S
ien
e. Prenti
e Hall, Hemel Hempstead,UK, se
ond edition, 1990.[Lev90℄ William J. Leveque. Elementary Theory of Numbers. Dover, 1990. Origi-nally published by Addison-Wesley, 1962.[LP99℄ Leslie Lamport and Lawren
e C. Paulson. Should your spe
i�
ation lan-guage be typed? ACM Transa
tions on Programming Languages and Sys-tems, 21(3):133{169, May 1999.[Mos98℄ Peter D. Mosses. Casl: A guided tour of its design. In Jos�e Luiz Fiadeiro,editor, Re
ent Trends in Algebrai
 Spe
i�
ation Languages, number 1589 inLe
ture Notes in Computer S
ien
e, pages 216{240. Springer Verlag, 1998.[ORSvH95℄ Sam Owre, John Rushby, Natarajan Shankar, and Friedri
h von Henke.Formal veri�
ation for fault-tolerant ar
hite
tures: Prolegomena to the de-sign of PVS. IEEE Transa
tions on Software Engineering, 21(2):107{125,February 1995. 15



[OS93℄ Sam Owre and Natarajan Shankar. Abstra
t datatypes in PVS. Te
hni
alReport SRI-CSL-93-9R, Computer S
ien
e Laboratory, SRI International,Menlo Park, CA, De
ember 1993. Extensively revised June 1997; Alsoavailable as NASA Contra
tor Report CR-97-206264.[OS97℄ Sam Owre and Natarajan Shankar. The formal semanti
s of PVS. Te
hni
alReport SRI-CSL-97-2, Computer S
ien
e Laboratory, SRI International,Menlo Park, CA, August 1997.[Pau94℄ L. C. Paulson. Isabelle: A Generi
 Theorem Prover, volume 828 of Le
tureNotes in Computer S
ien
e. Springer-Verlag, 1994.[ROS98℄ John Rushby, Sam Owre, and N. Shankar. Subtypes for spe
i�
ations:Predi
ate subtyping in PVS. IEEE Transa
tions on Software Engineering,24(9):709{720, September 1998.[Rus67℄ Bertrand Russell. Letter to Frege, 1967. Written 1902.[Rus93℄ John Rushby. Formal methods and the 
erti�
ation of 
riti
al systems.Te
hni
al Report SRI-CSL-93-7, Computer S
ien
e Laboratory, SRI Inter-national, Menlo Park, CA, De
ember 1993. Also issued under the titleFormal Methods and Digital Systems Validation for Airborne Systems asNASA Contra
tor Report 4551, De
ember 1993.[Sha99℄ N. Shankar. EÆ
iently exe
uting PVS. Proje
t report, Computer S
ien
eLaboratory, SRI International, Menlo Park, CA, November 1999. Availableat http://www.
sl.sri.
om/shankar/PVSeval.ps.gz.[Spi88℄ J. M. Spivey. Understanding Z: A Spe
i�
ation Language and its FormalSemanti
s. Cambridge Tra
ts in Theoreti
al Computer S
ien
e 3. Cam-bridge University Press, Cambridge, UK, 1988.[vH67℄ Jean van Heijenoort, editor. From Frege to G�odel. Harvard UniversityPress, Cambridge, MA, 1967.[WR27℄ A. N. Whitehead and B. Russell. Prin
ipia Mathemati
a. CambridgeUniversity Press, Cambridge, revised edition, 1925{1927. Three volumes.The �rst edition was published 1910{1913.

16


