Effective Theorem Proving for Hardware
Verification™™*

D. Cyrluk,! S. Rajan,? N. Shankar,® and M.K. Srivas®
{cyrluk, sree, shankar, srivas}@csl.sri.com

! Dept. of Computer Science, Stanford University, Stanford CA 94305 and
Computer Science Laboratory, SRI International, Menlo Park, CA 94025
? Integrated Systems Design Laboratory, Department of Computer Science,
University of British Columbia, Vancouver, Canada and
Computer Science Laboratory, SRI International, Menlo Park, CA 94025
® Computer Science Laboratory, SRI International, Menlo Park CA 94025 USA

Abstract. The attractiveness of using theorem provers for system de-
sign verification lies in their generality. The major practical challenge
confronting theorem proving technology is in combining this generality
with an acceptable degree of automation. We describe an approach for
enhancing the effectiveness of theorem provers for hardware verification
through the use of efficient automatic procedures for rewriting, arith-
metic and equality reasoning, and an off-the-shelf BDD-based propo-
sitional simplifier. These automatic procedures can be combined into
general-purpose proof strategies that can efficiently automate a number
of proofs including those of hardware correctness. The inference proce-
dures and proof strategies have been implemented in the PVS verifica-
tion system. They are applied to several examples including an N-bit
adder, the Saxe pipelined processor, and the benchmark Tamarack mi-
croprocessor design. These examples illustrate the basic design philoso-
phy underlying PVS where powerful and efficient low-level inferences are
employed within high-level user-defined proof strategies. This approach
is contrasted with approaches based on tactics or batch-oriented theorem
proving.

1 Introduction

The past decade has seen tremendous progress in the application of formal meth-
ods for hardware design and verification. Much of the early work was on apply-
ing proof checking and theorem proving tools to the modeling and verification

* This work was supported in part by the following funding sources: NASA Langley
Research Center contract NAS1-18969, ARPA Contract NAG2-891 administered by
NASA Ames Research Center, NSF Grant CCR-930044, the Semiconductor Research
Corporation contract 92-DJ-295 (to the University of British Columbia), and the
Philips Research Laboratories, Eindhoven, The Netherlands.

** This paper was presented at the Second International Conference on Theorem
Provers in Circuit Design, Theory, Practice, and Experience, Bad Herrenalb, Ger-
many, September 26-28, 1994.

of hardware designs [14,16]. Though these approaches were quite general, the
verification process required a significant human input. More recently, there has
been a large body of work devoted to the use of model-checking, language-
containment, and reachability analysis to finite-state machine models of hard-
ware [8]. The latter class of systems work automatically but they do not yet
scale up efficiently to realistic hardware designs. The challenge then is to com-
bine the generality of theorem proving with an acceptable and efficient level of
automation.

Our main thesis is that in order to achieve a balance between generality, au-
tomation, and efficiency, a verification system must provide powerful and efficient
primitive inference procedures that can be combined by means of user-defined,
general-purpose, high-level proof strategies. The efficiency of the inference pro-
cedures is important in order to verify complex designs with a greater level of
automation. To achieve efficiency, each individual primitive inference procedure
must itself perform a powerful and well-defined inference step using well-chosen
algorithms and data structures. A number of related deductive operations must
be tightly integrated into such a step. The efficiency resulting from a powerful
and tightly integrated inference procedure cannot typically be obtained by com-
posing very low-level inference steps by means of tactics. On the other hand,
a fully automatic batch-oriented theorem prover has the drawback of being a
toolkit with only a single tool. Doing exploratory proof development with such a
theorem prover is tedious because of the low bandwidth of interaction. It is dif-
ficult to reconcile efficiency with generality in a fully automated theorem prover
since a single proof strategy is being applied to all theorems.

The above design philosophy has formed the guiding principle for the im-
plementation of the Prototype Verification System (PVS) [22,23] developed at
SRI. PVS is designed to automate the tedious and obvious low-level inferences
while allowing the user to control the proof construction at a meaningful level.
Exploratory proofs are usually carried out at a level close to the primitive infer-
ence steps, but greater automation can be achieved by defining high-level proof
strategies.

In this paper, we present some automatic inference procedures used in the
PVS proof checker, show how these inference procedures can be combined into
general-purpose proof strategies, and examine the impact of these strategies on
the automation of hardware proofs. The primitive inference procedures in PVS
include arithmetic and equality decision procedures, an efficient hashing-based
conditional rewriter, and a propositional simplifier based on binary decision dia-
grams (BDDs). The interaction between rewriting, arithmetic, and BDD-based
propositional simplification yields a powerful basis for automation. The capabil-
ities of the inference procedures are available to the user of the proof checker
as primitive inference steps. These primitive inference steps can either be used
as part of an interactive proof attempt or embedded inside a high-level proof
strategy. We have developed a basic proof strategy in terms of these inference
steps that 1s particularly effective for automating proofs of microprocessors and
inductively defined hardware circuits. The core of this strategy consists of first

carrying out a symbolic execution of the hardware and its specification by ex-
panding and simplifying the relevant definitions; the case structure of the sym-
bolic execution is then brought to the surface, and BDD-based propositional
simplification is used to generate subgoals that are typically proved by means of
the decision procedures. We present the proof strategy and demonstrate its util-
ity on a number of examples including an N-bit ripple carry adder circuit, Saxe’s
pipelined microprocessor [24] and the Tamarack processor [18]. The point of
these examples is to illustrate efficiency and generality that can be derived from
the inference capabilities present in PVS. This work 1s still at a preliminary stage
and we feel that there 1s plenty of scope for obtaining even greater generality,
efficiency, and automation by pursuing the line of development indicated in this
paper.

The next section gives a brief overview of PVS. In section 3, we describe a
general-purpose strategy for hardware proofs in PVS and illustrate this strategy
with an N-bit adder circuit. Section 4 describes the use of the PVS inference pro-
cedures in the development of verification strategies for microprocessor designs.
We present our conclusions in the last section.

2 An Overview of PVS

PVS is an environment for writing specifications and developing proofs [23]. It
serves as a prototype for exploring new approaches to mechanized formal meth-
ods. The primary goal of PVS is to combine an expressive specification language
with a productive, interactive proof checker that has a reasonable amount of
theorem proving power. PVS has been strongly influenced by the observation
that theorem proving capabilities can be employed to enrich the type system of
a typed logic, and conversely, that an enriched type system facilitates expressive
specifications and effective theorem proving. PVS has also been guided by the
experience that much of the time and effort in verification is in debugging the
initial specification or proof idea. A high bandwidth of interaction is useful at
the exploratory level whereas more automated high-level proof strategies are de-
sirable at an advanced stage of proof development. PVS has been used to verify
several complex fault-tolerant algorithms, real-time and distributed protocols,
and several other applications [20].

2.1 The Specification Language

The PVS specification language builds on a classical typed higher-order logic.
The base types consist of booleans, real numbers, rationals, integers, nat-
ural numbers, lists, and so forth. The primitive type constructors include
those for forming function (e.g., [nat -> nat]), record (e.g., [# a : nat, b
: list[natl#]) , and tuple types (e.g., [int, list[nat]]). The type system
of PVS includes predicate subtypes that consist of exactly those elements of a

given type satisfying a given predicate. PVS contains a further useful enrich-
ment to the type system in the form of dependent function, record, and tuple
constructions where the type of one component of a compound value depends
on the value of another component. PVS terms include constants, variables, ab-
stractions (e.g., (LAMBDA (i : nat): i * 1)), applications (e.g., mod(i, 5)),
record constructions (e.g., (# a := 2, b := cons(1, null) #)), tuple con-
structions (e.g., (-5, cons(1, null))), function updates (e.g., £ WITH [(2)
:= 7]), and record updates (e.g., r WITH [a := 5, b := cons(3, b(r))]).
Note that the application a(r) is used to access the a field of record r, and the
application PROJ_2(t) is used to access the second component of a tuple t. PVS
specifications are packaged as theories.

2.2 The Proof Checker

The PVS proof checker is intended to serve as a productive medium for debugging
specifications and constructing readable proofs. The human verifier constructs
proofs in PVS by repeatedly simplifying a conjecture into subgoals using infer-
ence rules, until no further subgoals remain. A proof goal in PVS is represented
by a sequent. PVS differs from most proof checkers in providing primitive infer-
ence rules that are quite powerful, including decision procedures for ground linear
arithmetic. The primitive rules also perform steps such as quantifier instantia-
tion, rewriting, beta-reduction, and boolean simplification. PVS has a simple
strategy language for combining inference steps into more complicated proof
strategies. In interactive use, when prompted with a subgoal, the user types
in a proof command that either invokes a primitive inference rule or a com-
pound proof strategy. For example, the skolem command introduces Skolem
constants for universal-strength quantifiers while the inst command instanti-
ates an existential-strength quantifier with its witness. The 1ift-if command
invokes a primitive inference step that moves a block of conditionals nested
within one or more sequent formulas to the top level of the formula. The prop
command invokes a compound propositional simplification strategy (or tactic)
that is a less efficient alternative to the use of a BDD-based simplifier described
below. Various other commands are discussed below. Proofs and partial proofs
can be saved, edited, and rerun. It is possible to extend and modify specifications
during a proof; the finished proof has to be rerun to ensure that such changes
are benign.

While a number of other theorem provers do use decision procedures, PVS
is distinguishing in the aggressiveness with which it uses them. It is also unique
in the manner in which the decision procedures and automatic rewriting are
engineered to interact with each other in implementing the primitive inference
commands of PVS. The user can invoke the functionality provided by the in-
teracting decision procedures in its full power in a single command (assert)
or in limited forms by means of a number of smaller commands. Some of these
primitive commands are described in the following sections.

2.3 The Ground Decision Procedures

The ground decision procedures of PVS are used to simplify quantifier-free
Boolean combinations of formulas involving arithmetic and equality, and to
propagate type information. PVS makes extremely heavy use of these decision
procedures.

Consider a formula of the form £(x) = £(£(x)) IMPLIES £(£(£(x))) =
f(x), where the variable x is implicitly universally quantified. This 1s really a
ground (i.e., variable-free) formula since the universally quantified variable x can
be replaced by a newly chosen (Skolem) constant, say c¢. We can then negate
this formula and express this negation as the conjunction of literals: £(c) =
f(£(c)) AND NOT £(£(£(c))) = £(c). We can then prove the original formula
by refuting its negation. To refute the negation we can assert the information
in each literal into a data structure until a contradiction is found. In this case,
we can use a congruence closure data structure to rapidly propagate equality
information.

Congruence closure [12] plays a central role in several other systems includ-
ing the Stanford Pascal Verifier [21] and Ehdm [9]. This basic procedure can
be extended in several ways. One basic extension is to the case of ground lin-
ear inequalities over the real numbers. In the example, a < 2*%b AND b < 3*c
AND NOT 3*a < 18%*c, the refutation can be obtained by eliminating the vari-
able b in the second inequality in favor of a. Another extension is to the case
of ground arrays or functions. This is important in hardware examples where
memory can be represented as a function from addresses to data. For example,
the decision procedure can deduce (func WITH [(j) := vall) (i) to be equal
to func(i) under the assumption i < j. The PVS decision procedures combine
congruence closure over interpreted and uninterpreted functions and relations
with refutation procedures for ground linear inequalities over the real numbers
and arrays [26]. This procedure is also extended to integer inequalities in an
incomplete though effective manner. The ground decision procedures can, for
example, refute 1 > 1 AND 2*i < 5 AND NOT i = 2.

2.4 The Simplifier

The congruence closure data structure is used to maintain and update contex-
tual information. Any relevant subtype constraints on terms are also recorded
in these data structures. The beta-reduction of lambda-redexes, and datatype
tuple, record and update access are among the automatic simplifications sup-
ported by PVS. We do not describe the arithmetic simplifications except to say
that they evaluate expressions where the arithmetic operations (+, -, *, and
/) are applied to numerical values and reduce any arithmetic expressions to a
sum-of-products form. The Boolean simplifications are similarly straightforward
and they simplify expressions involving the constants TRUE and FALSE and the
operators NOT, OR, AND, IMPLIES, and IFF. In the simplification of conditional

expressions, the test part of the conditional is used in the simplification of the
then and else parts. These simplifications are shown below where ‘I simplifies to
r’ is shown as ‘Il = r’:

1. (IF A THEN
2. (IF A THEN

ELSE t ENDIF) — s, if A —> TRUE

ELSE t ENDIF) — t, if A —> FALSE

3. (IF A THEN ELSE s ENDIF) — s

4. (IF A THEN ELSE t ENDIF) — (IF A’ THEN s’ ELSE t’ ENDIF),
ifA— A’ s =— s’ assuming A’, and t = t’ assuming —A’

S
S
S
S

When the record command is invoked on a PVS sequent of the form
Ay, ...y Am b Bi,..., By, the simplified form of each atomic A; (or —B;) is
recorded in the congruence closure data structures. This information is then used
to simplify the remaining formulas in the sequent. The simplify command sim-
plifies the formulas using the ground decision procedures and simplifier without
recording any new information into the data structures.

2.5 The PVS Rewriter

A (conditional) rewrite rule is a formula of either the form A D p(by,...,by)
or A D | = r. The former case can be reduced to the latter form as A D
p(b1,...,by) = TRUE. In the latter case, the PVS rewriter then simplifies an in-
stance o(l) of [to o(r) provided the hypothesis instance o(A) simplifies (using
simplification with decision procedures and rewriting) to TRUE as must any type
correctness conditions (TCCs) generated by the substitution . The free vari-
ables in A and r must be a subset of those in [. The hypothesis can be empty
and definitions can also be used as rewrite rules.

There is also a restriction of rewriting where, if the right-hand side o(r) of
a rewrite 1s an IF-THEN-ELSE expression, then the rewrite is not applied unless
the test part of the conditional simplifies to TRUE or FALSE. This restricted
form of rewriting serves to prevent looping when recursive definitions are used
as rewrite rules and to control the size of the resulting expression. The above
heuristic restriction on rewriting relies on the effectiveness of the simplifications
given by the decision procedures. This heuristic is quite important in the context
of processor proofs where the next state of the processor should be computed as
long as there is an explicit clock tick available.

For efficiency, PVS maintains a hash-table where corresponding to a term a,
the result of the most recent rewriting of a is kept along with the logical context
at the time of the rewrite. A context consists of the congruence closure data
structures and the current set of rewrite rules stored internally at the time of
rewrite. This way, if the term a is encountered within the same logical context,
the result of the rewrite is taken from this hash-table and the rewriting steps
are not repeated. The information that an expression could not be rewritten in
a context is also cached. This information is perhaps the more heavily used than
the information about successful rewriting.

The context is modified by the proof tree structure and the IF-THEN-ELSE
structure of an expression. In case the term a is encountered in a strictly larger
logical context (facts have been added to the congruence closure data structures
or the set of rewrite rules has been expanded) then the result of the rewrite is
taken from the hash-table and further rewritten using the current larger logical
context.

The rewriter described above is used automatically in simplification. It can
be invoked by the do-rewrite command. The assert command combines the
functionality of record, simplify, and do-rewrite.

2.6 The Power of Interaction

The following example illustrates the power that a close interaction between
rewriting and the decision procedures can provide for the user in PVS. Such
a close interaction 1s not as easily accomplished if the decision procedures and
rewriting were implemented as separate tactics or strategies.

t: nat
s: VAR state
MAR_tO: AXIOM t /= 0 => dest(IR(s)) = MAR(s)

MDRE(s): data =
IF t <= 2
THEN IF p(t)
THEN MDR(s)
ELSE rf(s) WITH [(MAR(s)) := MDR(s)](dest(IR(s)))
ENDIF
ELSE somedata
ENDIF

property: THEOREM t < 3 & p(0) => MDR(s) = MDR5(s)

In the PVS specification shown above, the goal is to prove property from
the axioms MAR_tO and the definition of MDR5, where the constants p, MDR, MAR,
etc., are declared elsewhere. The constant rf is a function that maps addresses
to data. Assuming that the definition of MDR5 and MAR_tO have been entered as
rewrite rules (via the command auto-rewrite), property can be proved (after
skolemizing the variable s and flattening the implication) by simply using the
command assert on the resulting sequent twice. The first invocation of assert
is able to rewrite MDR5(s) to the IF-THEN-ELSE expression beginning at p(t)
since, when t is a nat, t <= 2 can be deduced from t < 3 by the decision
procedure.

A second invocation of assert attempts to rewrite each branch of the re-
sulting IF-THEN-ELSE expression. The p(t) case is trivially true. In the NOT
p(t) case, the decision procedures deduce that t = 0 is false from p(0). This
triggers the rewrite rule MAR_tO so that the goal becomes MDR(s) = rf(s)

WITH [(MAR(s)) := MDR(s)](MAR(s)), which the equality procedures simplify
to true.

2.7 BDD Simplifier

Binary decision diagrams (BDDs) are widely used in the design, synthesis, and
verification of digital logic. They provide an efficient representation for the sim-
plification of propositional formulas. A BDD-based propositional simplifier was
recently added to PVS as a primitive inference step. Prior to the introduction of
this simplifier, PVS used a propositional simplification tactic called prop that
was found to be unsatisfactory since it could generate subgoals that were just
permutations of other subgoals.

The basic idea behind the use of BDD-based simplificationin PVS is to trans-
form the goal sequent into a Boolean expression where the atomic formulas have
been replaced by propositional variables. This formula is given as input to an
off-the-shelf BDD package by means of an external function call. Note that PVS
i1s implemented in Common Lisp whereas the BDD package 1s a C program. The
BDD package simplifies the given formula into an equivalent formula in conjunc-
tive normal form that is easily translated into a collection of subgoal sequents
by replacing the propositional variables back to the corresponding atomic for-
mulas. It is also possible to provide the BDD simplifier with some contextual
information using the restriction operator, also known as cofactoring, provided
by the BDD package. The restriction operation is used to simplify one BDD
representation assuming another containing the contextual assumptions.

The BDD simplifier we use is an efficient implementation from EUT [17]. The
simplifier uses Reduced Ordered BDD (ROBDD), a canonical representation of
boolean expressions, with an associated set of algorithms [5]. The BDD simplifier
is invoked in a PVS proof with the command bddsimp.

3 The Nature of Hardware Proofs, and Our Thesis

We have described some of the built-in deductive capabilities of PVS. A PVS
proof is constructed by interactively (or automatically) invoking these infer-
ence steps to simplify the given goal into simpler subgoals until all the subgoals
are trivially true. At the highest level, the user directs the verification process
by elaborating and modifying the specification, providing relevant lemmas, and
backtracking on the fruitless paths in a proof attempt. At the next level of an
interactive PVS proof, particularly a hardware proof, the user provides the fol-
lowing crucial inputs:

Quantifier elimination: Since the decision procedures work on ground for-
mulas, the user must eliminate the relevant universal-strength quantifiers by
introducing Skolem constants or suggesting induction schemes. Existential-
strength quantifiers are eliminated by suitable instantiation.

Unfolding definitions: The user may have to simplify selected expressions and
defined function symbols in the goal by rewriting using definitions, axioms
or lemmas.

Case analysis: The user may have to split the proof based on selected boolean
expressions in the current goal.

The use of decision procedures for arithmetic and equality yields a significant
advantage in that the outcome of a proof attempt is not as logically sensitive
to the decisions made in performing the second and third tasks as i1s the case
in provers without decision procedures. However, decisions made during the sec-
ond and the third tasks critically impact the efficiency of the proof. For example,
the extent to which the defined function symbols are unfolded determines the
number of cases to be considered during case analysis. Performing case analysis
on selected boolean expressions before rewriting can make rewriting more pro-
ductive and reduce the size of the resulting expressions, whereas a naive case
analysis can lead to a needless combinatorial blowup in proof size.

In most of our experiments with hardware proofs, we found that we needed
to intervene manually during rewriting and case analysis tasks only to control
the complexity of the proof. Our experience suggested that the second and the
third tasks could be completely automated for most hardware proofs given an
efficient rewriting and propositional simplification engine used in conjunction
with the arithmetic decision procedures. In the next section, we illustrate the
above thesis on an N-bit ripple-carry adder example.

3.1 An N-bit Adder

The theory adder shown below describes the implementation and the correctness
statement of the adder. The theory is parameterized with respect to the length of
the bit-vectors. It imports the theory full_adder which contains a specification
of a full adder circuit with output carry bit fa_cout and the sum bit fa_sum,
and the theory bv which specifies the bit-vector type (bvec[N]) and related bit-
vector functions. An N-bit bit-vector is represented as an array, i.e., a function
from the type below[N] of natural numbers less than N to bool; the index 0
denotes the least significant bit. Note that the parameter N is constrained to be
a posnat since we do not permit bit-vectors of length 0.

The carry bit that ripples through the full adders is specified recursively
by means of the function nth_cin®. The function bv_cout and bv_sum define
the carry output and the bit-vector sum of the adder, respectively. The theorem
adder_correct expresses the conventional correctness statement of an adder cir-
cuit using bvec2nat, which returns the natural number equivalent of the least

* Recursive function definitions in PVS must have an associated MEASURE function to
ensure termination. The typechecker automatically generates type correctness proof
obligations to show that the measure of the argument to every recursive invocation
the function is less than the measure of the original argument.

significant n-bits of a given bit-vector and bool2bit converts the boolean con-
stants TRUE and FALSE into the natural numbers 1 and 0, respectively.

adder[N: posnat] : THEORY
BEGIN
IMPORTING bv[N], full_adder

n: VAR below[N]
bv, bvl, bv2: VAR bvec

nth_cin(n, cin, bvl, bv2): RECURSIVE bool =
IF n = 0 THEN cin
ELSE fa_cout(bv_cin(n - 1, cin, bvl, bv2),
bvi(n - 1),
bv2(n - 1))
ENDIF
MEASURE n

bv_sum(cin, bvl, bv2)(n): bvec =
fa_sum(bvi(n), bv2(n), nth_cin(n, cin, bvi, bv2))

bv_cout(n, cin, bvl, bv2): bool =
fa_cout(nth_cin(n, cin, bvl, bv2), bvi(n), bv2(n))

full_adder_correct:
LEMMA
bool2bit(a) + bool2bit(b) + bool2bit(c)
= 2 * bool2bit(fa_cout(c, a, b))
+ bool2bit(fa_sum(a, b, c¢))

adder_correct: LEMMA (FORALL n:
bvec2nat(n, bvl) + bvec2nat(n, bv2) + bool2bit(cin)
= exp2(n + 1) * bool2bit(bv_cout(n, cin, bvi, bv2))
+ bvec2nat(n, bv_sum(cin, bvl, bv2))

END adder

The proof of adder_correct proceeds by induction on the variable n using
an induction scheme for the type below[N]. This results in a base case that
is easily proved by assert and an induction case that is displayed below as a
sequent containing only one formula.

10

adder_correct2 :

r<pN-1
AND (FORALL (bv1l, bv2: bvec[N]), (cin: bool):
bvec2nat(r, bvl) + bvec2nat(r, bv2)
+ bool2bit(cin)
= exp2(r + 1)
* bool2bit(bv_cout(r, cin, bvl, bv2))
+
bvec2nat_rec(r, bv_sum(cin, bvl, bv2)))
IMPLIES (FORALL (bvl, bv2: bvecl[N]), (cin: bool):
bvec2nat(r + 1, bvl)
+ bvec2nat(r + 1, bv2)
+ bool2bit(cin)
= exp2(r + 1 + 1)
* bool2bit(bv_cout(r + 1, cin, bvi, bv2))
+
bvec2nat(r + 1,
bv_sum(cin, bvi, bv2))))

The general strategy to prove the above goal, as in any inductive proof, is
to first introduce skolem constants for the universal-strength variables in the
goal and flatten the sequent into a form where the inductive hypothesis is in the
antecedent. After that, one has to simplify the conclusion to a point where an
instance of the induction hypothesis can be used to discharge the conclusion. The
simplification of the conclusion can either be done under control or by brute-force
automation. We contrast the two approaches for the adder example below. In
both approaches, the first step (skosimp#*) performs the repeated skolemization
and flattening of the sequent required at the start of the proof.

Guided Proof Automatic Proof
(skosimpx*) (skosimpx*)

(expand "exp2" 1) (auto-rewrite—explicit)
(expand "bvec2nat" 1) (do-rewrite)

(expand "bv_sum" 1 1) (inst?)

(expand "bv_cout'") (repeat (lift-if))
(expand "nth_cin" 1) (simplify)

(lemma "full_adder _correct") |(then* (bddsimp)(assert))
(inst?)

(inst?)

(assert)

In the guided proof, shown on the left, we carefully control the rewriting
process by selecting a subset of the defined function symbols in the sequent

11

to unfold in order to keep the size of the proof tree under control. The PVS
command expand is used to expand function definitions in a controlled manner.
The optional second and the third argument to expand respectively specify the
formula and the occurrence of the symbol to be expanded.

At this point, a careful case analysis on the bool2bit values of the three
most significant boolean bits under consideration would lead to eight subgoals.
We construct a shorter proof by using the lemma full_adder_correct about
the full adder to eliminate the bit-level case analysis required. The inst? com-
mand attempts to find a suitable set of instantiations for existential-strength
quantifiers in the sequent formulas of a subgoal® which in this case include the
lemma as well as the induction hypothesis. In this case, it manages to instantiate
both the inductive hypothesis and the lemma to the desired substitutions. The
lemma full_adder_correct cannot be successfully applied as a rewriting rule
in this proof because the instances of bool2bit do not appear contiguously in
the expression to be simplified. The last step in the proof, assert, invokes the
arithmetic and equality decision procedures of PVS to complete the proof.

A More Automatic Proof

We now describe a more automatic proof of the same theorem, shown on the
right side of the above table, that takes a brute-force approach by employing
automated rewriting and BDD-based propositional simplification. This strat-
egy is part of a general strategy for proofs involving induction and rewriting
that has been used on several other examples. Using this strategy we were
able to verify the adder in 130 seconds. Every defined function symbol used
directly or indirectly in the sequent is set up as a rewrite rule by invoking
auto-rewrite-explicit. This set of function symbols includes not only those
appearing in the adder theory but also those in the theories full_adder and bv
imported by adder. The automatic rewriter of PVS is then invoked by means
of the do-rewrite command to rewrite all the expressions in the sequent using
the rewrite rules introduced above. The rewriting process simplifies the conclu-
sion into an equation on two nested conditional (IF-THEN-ELSE) expressions.
Not surprisingly, the size of the expressions resulting from the rewriting is much
larger here than in the intelligent proof.

To automate the case analysis, we repeatedly (using repeat®) lift all the
IF-THEN-ELSE conditionals to the topmost level (using lift-if). The lifting

5 It can be used either in a mode in which all possible instances of the lemma are
produced or only a single instance is produced.

6 Repeat and then* are among the tacticals provided by PVS for constructing proof
strategies from primitive inference steps and other predefined proof strategies. Repeat
applies a given proof step repeatedly until its application has no change on the current
goal; then* applies the first goal from the given list of proof steps to the current goal,
and the rest of the steps in the list to each of the subgoals, if any, resulting from the
first application.

12

process transforms the conclusion into a propositional expression in the form
of nested IF-THEN-ELSE expressions whose leaf nodes are equalities on uncon-
ditional expressions. The propositional expression is simplified using bddsimp.
Rewriting and decision procedures (using assert) are applied to any subgoals
generated by bddsimp.

The latter proof is automatic in the sense that it applies certain coarse-grain
inference steps under a simple control strategy without requiring any specific
information from the user to guide the proof. Three elements are crucial to mak-
ing the automatic proof successful. Firstly, we need efficient rewriting that can
rewrite large expressions while exploiting contextual information. Second, we
need an efficient propositional simplifier to perform the automatic case analy-
sis on very large formulas. The above automatic proof blows up if bddsimp is
replaced with the tactic-based simplifier (prop) of PVS. The third element is
the availability of powerful arithmetic decision procedures. This makes the ex-
act syntactic form of the expressions in the simplified sequent less relevant than
whether the sequent has enough (semantic) information to complete the proof.

The automatic proof used above can be packaged in a PVS proof strategy
and used on other hardware examples. The core of our strategy for automating
hardware proofs begins with the user suggesting the initial induction variable
and the induction scheme when this is not obvious from the type of induction
variable. An automatic strategy takes over from that point and completes the
proof in the following manner. First, the PVS rewriter is set up to automat-
ically rewrite every defined function symbol directly or indirectly used in the
the theorem to be proved until rewriting is no longer productive. In the next
step, all the boolean conditions appearing as the boolean part of conditional
expressions in the formulas are lifted to the topmost level. The resulting nested
boolean expression is propositionally simplified into a finite number of subgoals.
The last step consists of applying arithmetic and equality decision procedures
on each of the subgoals resulting from the propositional simplification. We have
applied this strategy to an n-bit ALU [7] that executes 12 microoperations. The
completely automatic verification took 90 seconds on a SPARC 10. The same
strategy is also effective on several non-hardware examples [25].

4 Microprocessor Verification

The automatic inference procedures used in the PVS proof checker have also
allowed us to highly automate the task of microprocessor verification. PVS is
a relatively new system that has been evolving over the course of our proces-
sor verification effort. As more automatic inference procedures have been added
to PVS, our effectiveness at automating microprocessor verification has signifi-
cantly increased. Here we illustrate the usefulness and importance of automatic
inference procedures in PVS from the point of view of processor verification.
These examples are quite different from the N-bit adder described in Section 3

13

but the basic idea underlying the proof strategy given there is easily adapted for
our present purpose.

We take the approach of describing the specification and implementation of
microprocessors in terms of state transition systems. The state of the micropro-
cessor consists of the state of the memory, register file, and internal registers
of the processor (these would generally include the program counter, memory
address register, and pipeline registers if the processor is pipelined, etc.).

The microprocessor verification problem is to show that the traces induced
by the implementation transition system are a subset of the traces induced by
the specification transition system, where subset has to be carefully defined by
use of an abstraction mapping. The details of this approach are beyond the
scope of this paper (see [2,11,24,27,29]7).

In this approach, the proof of correctness makes use of an abstraction func-
tion that maps an implementation state into a corresponding specification state.
Correctness can then be reduced to showing that for any execution trace of
the implementation machine there exists a corresponding execution trace of the
specification machine.

The implementation machine may run at a different rate than the specifica-
tion machine [11,27]. For example, in the case of the Saxe pipeline example [24],
the specification machine takes one state transition to execute each instruction,
but the implementation machine might take five cycles to execute branch in-
structions, but only one cycle for non-branch instructions. In the following we
assume that the specification machine always takes one cycle to execute an in-
struction. We also assume that the number of cycles that the implementation
machine takes to execute an instruction can be given as a function of the current
state and current input. (This restriction can be slightly relaxed to deal with
interrupts which might arrive a bounded number of cycles into the future.)

4.1 A Proof Strategy for Microprocessor Correctness

We denote the function that determines the number of cycles that the imple-
mentation machine takes to complete an instruction as num_cycles. We assume
that this information is provided by the hardware designer or verifier.

The first step in verifying the correctness of the microprocessor is to split
the proof into cases based on the definition of num_cycles. Thus for each case
we have a precise number through which we have to cycle the implementation
machine.

In the microprocessor verifications we have looked at, the state variables of
the specification state are simply a subset of the state variables of the imple-
mentation state. The abstraction mapping maps to each specification register
the corresponding implementation register, but not necessarily from the exactly

" The precise details followed in these papers are somewhat different.

14

corresponding state. For example, the abstraction mapping for the Saxe pipeline
is such that the specification program counter is mapped from the correspond-
ing implementation program counter and the specification register file is mapped
from the implementation register file, but three cycles into the future. See [11,24]
for details. If the abstraction mapping is given this way, then once the proof is
split according to the definition of num_cycles, the resulting statement of cor-
rectness is usually an instance of a decidable fragment of the theory Ground
Temporal Logic (GTL2) [10].

The problem is to come up with an effective procedure for deciding this
theory. One obvious strategy is to completely rewrite the next-state functions
and abstraction mapping until a large IF-THEN-ELSE is generated, then perform
a case analysis on the resulting expression and check that each resulting case is
valid. This naive strategy has proven to be ineffective for both the Saxe pipeline
and Tamarack microprocessors, let alone anything more complex. However, the
automatic inference procedures of PVS have allowed us to develop a less naive
strategy that is still highly automatic and does succeed in proving the correctness
of both the Saxe pipeline and Tamarack microprocessors:

(then* (skosimp*)
(auto-rewrite-all-theories)
(typepred-impl-state)
(record)
(cycle-split)
(record)
(rewrite-lift-if-simplify-and-assert)
(auto-rewrite-all-theories!)
(rewrite-lift-if-simplify-and-assert))

where the rewrite-lift-if-simplify-and-assert strategy is just:
(then* (assert) (repeat (lift-if)) (bddsimp) (assert)).

The above strategy consists of first skolemizing, then instructing PVS
to use the axioms and definitions of the processor as rewrite rules
(auto-rewrite-all-theories), then invoking the type predicate of the im-
plementation state-type ((typepred-impl-state)). This is necessary in case
there is a pipeline invariant associated with the machine state [11,27]. The
proof goal is then split (cycle-split) according to the num_cycles function.
The current case is recorded in the ground decision procedures and assert is
called which invokes automatic rewriting. The rewriting here will halt once it
is incapable of simplifying a right hand side that i1s an IF-THEN-ELSE. Any re-
sulting IF-THEN-ELSEs are then lifted and bddsimp is called to generate the
resulting cases. The assert command is used to finish up each of these cases.
Sometimes this is enough to complete the proof. If it is not then the (assert,
lift-if, bddsimp, assert) cycleisrepeated, but this time with PVS directed
to completely rewrite, even through unsimplifiable IF-THEN-ELSEs.

15

The intuition behind this strategy is that the first form of rewriting takes
care of the simple parts of the proof that require only rewriting and limited
amount of case analysis. The second, unrestricted, rewriting takes care of the
resulting cases that need to expand to large IF-THEN-ELSEs and require lots
of case analysis. In the Saxe pipeline this type of reasoning is needed to verify
the correctness of the register bypass logic. Note that this strategy, while not
identical to the basic hardware strategy described earlier, has the same core
strategy, namely the (do-rewrite, 1ift-if, bddsimp, assert) cycle.

We have also applied the same strategy to the Tamarack microprocessor first
verified by Joyce [18]. This microprocessor is microcoded but not pipelined. Only
the first restricted form of rewriting is necessary to finish the Tamarack’s proof
of correctness. This 1s because the case splitting generated by the num_cycles
function is sufficient to generate all the relevant cases and to direct the rewriter
through a single path through the microcode. In the Saxe pipeline more case
analysis 1s needed to deal with the register bypass logic.

Note that prior to adding hashing and bddsimp to PVS we had verified the
correctness of the Saxe pipeline, but only with manual assistance. The verifica-
tion originally done by Saxe et al [24] also required user assistance.

5 Experimental Results

The following table summarizes the performance of PVS’s automatic strategy
with and without the improvements to PVS’s automatic inference procedures.
The timings were made on a SPARC 10.

|Processor ||Hashing and BDDS|NO Hashing|Neither|

Adder 127 sec. 160 sec. unfin.
ALU 87 sec. 92 sec. unfin.
Saxe Pipeline||605 sec. 1400 sec. |unfin.
Tamarack 545 sec. unfin. unfin.

Note that hashing was much more important in the microprocessor examples.
These examples typically use more rewriting. In the ongoing verification of a
simplified version of the MIPS R3000 we find that we get exponential savings
due to hashing.

6 Related Work

The HOL system [13] is prototypical of the proof checkers that are based on
very simple primitive inference rules combined using tactics. The more powerful
primitive inference mechanisms of PVS can, in principle, be developed as tactics
in HOL. For example, Boulton [3] has implemented a decision procedure for
Presburger arithmetic as a tactic in HOL. However, this procedure does not

16

handle equality over uninterpreted function symbols and, unlike in PVS, is not
tightly integrated with the simplification and rewriting procedures. It would
be interesting to see if the same degree of integration can be accomplished as
effectively in a tactic-based approach and whether individual tactics can match
the performance of inference procedures that use specialized algorithms and
data structures. The HOL system favors tactics over special-purpose inference
procedures since the latter might introduce unsoundness. This 1s an important
consideration: the inference procedures of PVS do need to be scrutinized and
tested with great care and rigor, but once this is done, they do not need to be
justified down to basic inference steps with each application.

The “super-duper” tactic developed in [1] for hardware proofs is similar to
the core strategy described in this paper. The similarity lies in the fact that both
combine rewriting, case-splitting and simplifications in a loop for automating
hardware proofs. The main differences are in (1) our use of decision procedures
for congruence closure, arithmetic, and BDDs, and (2) our conditional rewriter
interacts very closely with the decisions procedures and uses several optimiza-
tions. This interaction allows rewriting to be more effective, i.e.; successful in
simplifying more often, and efficient. We have found that the efficiency and ef-
fectiveness of rewriting are very crucial in the core strategy being applicable for
large examples. The tactic in [1] is also designed to process predicative style of
hardware specifications, whereas ours is suited for functional style.

Kumar, Schneider, and Kropf have developed a system MEPHISTO and a
sequent calculus prover FAUST [19] which jointly can automatically verify a
class of bit-level hardware circuits specified in a relational style popularized by
Michael Gordon. Their system cannot automate proofs of complex circuits, such
as microprocessors, that use data types since they do not have rewriting and
arithmetic capability. This system does incorporate first-order BDD-based tech-
niques that can handle some data types and parameterized hardware. Although
our automatic strategy presented in this paper is designed for proving hardware
specified in a functional style, we were able to automatically prove all but two of
their eight circuits by modifying our strategy slightly to use the heuristic instan-
tiation capability supported by PVS. We had to provide manual instantiations
for the other two examples.

The Boyer-Moore theorem prover, Nqthm, is the best known of the batch-
oriented theorem proving systems used in hardware verification [4]. Many of
its deductive components are quite similar to those in PVS. The system uses
a fast propositional simplifier, and also includes a rewriter and a linear arith-
metic package. The latest release of the system has been heavily optimized for
efficiency. As an experiment, we used Nqthm without any libraries to prove the
N-bit adder. The Nqthm formalization of this theorem was slightly different from
that of PVS. We found that the theorem could not be proved automatically. It
took several hours of effort to fine-tune the definitions and to determine the
lemmas needed to help the theorem prover with its proof. Though a significant
human effort was required to complete the proof, Nqthm was eventually able to
prove the main theorem in about 14 seconds of CPU time (on a Sparc 10/41).

17

The same example was proved in PVS without any lemmas and very little human
input in about 130 seconds.

Burch and Dill [6] report on an automatic stand-alone strategy for micropro-
cessor verification. Although they have not attempted the two examples reported
here they report impressive timings for the automatic verification of a small ver-
sion of the DLX processor [15]. They also describe a method for automating the
generation of the abstraction mapping.

7 Conclusions

Automated theorem proving technology clearly has a great deal to contribute to
hardware verification since hardware proofs tend to fall into certain systematic
patterns. Our contention is that if theorem provers are to be effective in hard-
ware verification, we must employ powerful and efficient deductive components
within high-level strategies that capture the patterns of hardware proofs. More
specifically, we have argued that:

— Hardware proofs tend to fall into certain patterns so that it is possible to
obtain greater automation.

— Effective theorem proving is best achieved by mechanizing the tedious and
routine deductive steps so that the human effort can be concentrated on the
difficult parts of the proof.

— We can combine automation with efficiency by employing powerful and well-
integrated mechanized procedures as can be obtained through the use of
decision procedures and BDD-based propositional simplification.

— Batch-oriented theorem provers like Nqthm do contain tightly integrated
and highly mechanized inference procedures, but they require a significant
amount of tedious human effort in the exploratory phase of proof develop-
ment.

— PVS strikes a balance between the tactic-based approach and those based on
batch-oriented theorem proving. In PVS, efficient mechanization is used to
automate the tedious and obvious deductive steps. Proofs can be constructed
interactively under human control. Further mechanization can be obtained
by defining high-level strategies in terms of tactics.

We have shown how hardware proofs can be automated in PVS through
the use of a powerful mechanization of various useful inference steps and the
definition of simple proof strategies that invoke these inference steps. We have
illustrated the use of PVS an N-bit adder, a pipelined processor, and a simple
unpipelined processor. The basic approach shown here is being applied to the
mechanization of the correctness proofs of industrial-strength processors includ-
ing the MIPS R3000 architecture and a commercial avionics processor AAMP5.

AAMPS5 1s a microcoded pipelined processor built at the Collins Avionics
Division of Rockwell International for Avionics applications. It is a complex

18

CISC processor containing more than half a million transistors and is designed
to execute a stack-oriented machine. One of the main purposes in undertaking
this project [28], which is sponsored by NASA Langley Research Center and
Rockwell International, was to see how well techniques developed and tested on
small examples would scale to a commercial processor of significant complexity.
We have successfully used the core strategy described in the paper to verify
a number of instructions (identified by Rockwell engineers) of AAMP5. The
verification revealed several errors some unknown to Rockwell and some planted
by Rockwell engineers as a challenge to us.

Acknowledgements. John Rushby provided a great deal of support and encour-
agement for this work and supplied detailed comments on drafts of this paper.
Sam Owre answered a number of questions regarding PVS and also proofread
the paper. The N-bit ripple-carry adder example comes from a PVS library for
bit-vectors being developed by Rick Butler and Paul Miner of NASA.

References

1. Mark D. Aagard, Miriam E. Leeser, and Phillip J. Windley. Toward a super duper
hardware tactic. In Proceedings of the HOL User’s Group Workshop, pages 401—
414, 1993.

2. Martin Abadi and Leslie Lamport. The existence of refinement mappings. In
Third Annual Symposium on Logic in Computer Science, pages 165-175. I[EEE,
Computer Society Press, July 1988.

3. R. J. Boulton. The HOL arith library. Technical report, University of Cambridge
Computer Laboratory, 1992.

4. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
New York, NY, 1988.

5. K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD
package. In Proc. of the 27th ACM/IEEE Design Automation Conference, pages
40-45, 1990.

6. J. R. Burch and D. L. Dill. Automated verification of pipelined microprocessor
control. In David Dill, editor, Computer-Aided Verification "94, pages 68-80. Vol-
ume 818 of Lecture Notes in Computer Science, Springer-Verlag, 1994.

7. F. J. Cantu. Verifying an n-bit arithmetic logic unit. Blue book note 935, Univer-
sity of Edinburgh, June 1994.

8. E. M. Clarke and O. Griimberg. Research on automatic verification of finite-state
concurrent systems. In Joseph F. Traub, Barbara J. Grosz, Butler W. Lampson,
and Nils J. Nilsson, editors, Annual Review of Computer Science, Volume 2, pages
269-290. Annual Reviews, Inc., Palo Alto, CA, 1987.

9. User Guide for the EHDM Specification Language and Verification System, Version
6.1. Computer Science Laboratory, SRI International, Menlo Park, CA, February
1993. Three volumes.

10. D. Cyrluk and P. Narendran. Ground temporal logic—a logic for hardware ver-
ification. In David Dill, editor, Computer-Aided Verification '94, pages 247-259.
Volume 818 of Lecture Notes in Computer Science, Springer-Verlag, 1994.

19

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

David Cyrluk. Microprocessor verification in PVS: A methodology and simple
example. Technical Report SRI-CSL-93-12, SRI Computer Science Laboratory,
December 1993.

P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpres-
sions problem. Journal of the ACM, 27(4):758-771, October 1980.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge University Press, Cam-
bridge, UK, 1993.

Mike Gordon. Proving a computer correct. Technical Report TR 42, University of
Cambridge, Computer Laboratory, 1983.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 1990.

Warren A. Hunt, Jr. Microprocessor design verification. Journal of Automated
Reasoning, 5(4):429-460, December 1989.

G. Janssen. ROBDD Software. Department of Electrical Engineering, Eindhoven
University of Technology, October 1993.

J. Joyce, G. Birtwistle, and M. Gordon. Proving a computer correct in higher
order logic. Technical Report 100, Computer Lab., University of Cambridge, 1986.
R. Kumar, K. Schneider, and T. Kropf. Structuring and automating hardware
proofs in a higher-order therem proving environment. Formal Methods in System
Design, 2(2):165-223, 1993.

Patrick Lincoln, Sam Owre, John Rushby, N. Shankar, and Friedrich von Henke.
Fight papers on formal verification. Technical Report SRI-CS1.-93-4, Computer
Science Laboratory, SRI International, Menlo Park, CA, May 1993.

D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C.
Oppen, W. Polak, and W. L. Scherlis. Stanford Pascal Verifier user manual. CSD
Report STAN-CS-79-731, Stanford University, Stanford, CA, March 1979.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), pages 748752, Saratoga, NY, June 1992. Volume 607 of Lecture Notes
in Artificial Intelligence, Springer-Verlag.

S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS Specification
and Verification System, Language, and Proof Checker (Beta Release). Computer
Science Laboratory, SRI International, Menlo Park, CA, February 1993. Three
volumes.

James B. Saxe, Stephen J. Garland, John V. Guttag, and James J. Horning. Us-
ing transformations and verification in circuit design. Formal Methods in System
Design, 4(1):181-210, 1994.

N. Shankar. Abstract datatypes in PVS. Technical Report SRI-CSL-93-9, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, December 1993.
Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1-12, January 1984.

Mandayam Srivas and Mark Bickford. Formal verification of a pipelined micropro-
cessor. [EEE Software, 7(5):52-64, September 1990.

Mandayam Srivas and Steve Miller. Formal verification of the AAMPS5 micropro-
cessor: A case study in the industrial use of formal methods. Technical report. A
Forthcoming NASA Contractor Report.

P. Windley and M. Coe. A correctness model for pipelined microprocessors. In
Proceedings of Theorem Provers in Circuit Design, 1994.

20

