
Slightly expanded version of a paper presented at the Conference on Tools and Algorithms forthe Construction and Analysis of Systems (TACAS '97), Enschede, The Netherlands, April1997. Springer-Verlag Lecture Notes in Computer Science Vol. 1217, pp. 366{383.Integration in PVS:Tables, Types, and Model Checking?Sam Owre, John Rushby, Natarajan ShankarComputer Science Laboratory, SRI International,Menlo Park, CA 94025, USAAbstract. We have argued previously that the e�ectiveness of a veri�-cation system derives not only from the power of its individual featuresfor expression and deduction, but from the extent to which these capabil-ities are integrated: the whole is more than the sum of its parts [20, 21].Here, we illustrate this thesis by describing a simple construct for tabu-lar speci�cations that was recently added to PVS. Because this constructintegrates with other capabilities of PVS, such as typechecker-generatedproof obligations, dependent typing, higher-order functions, model check-ing, and general theorem proving, it can be used for a surprising varietyof purposes. We demonstrate this with examples drawn from hardwaredivision algorithms and requirements speci�cations.1 IntroductionPersuaded by the advocacy of David Parnas and others [15], we recently addeda construct for tabular speci�cation to PVS [12]. The construct generates proofobligations to ensure that the conditions labeling the rows and columns are dis-joint and exclusive. This simple capability has been found useful by colleaguesat NASA and Lockheed-Martin, who applied it in requirements analysis forSpace Shuttle
ight software [2,18]. The capability becomes rather richer in thepresence of dependent typing, and in this form it has been used to verify theaccessible region in a quotient lookup table for SRT division [19]. When com-bined with other features of the PVS speci�cation language, the table constructprovides some of the attractive attributes of the TableWise [8] and SCR [6] spec-i�cation methods. Because these constructions are performed in the context of afull veri�cation system, we are able to use its theorem prover and model checkerto establish invariant and reachability properties of the speci�cations concerned,and are able also to compose speci�cations described by separate tables and toestablish re�nement and equivalence relations between state machines speci�edin this manner.? This work was supported by the Air Force O�ce of Scienti�c Research, Air ForceMateriel Command, USAF, under contract F49620-95-C0044 and by the NationalScience Foundation under contract CCR-9509931.1

2 Basic TablesTables can be a convenient way to specify certain kinds of functions. An exampleis the function sign(x), which returns �1; 0; or 1 according to whether its integerargument is negative, zero, or positive. As a table, this can be speci�ed as follows.x < 0 x = 0 x > 0sign(x) = �1 0 +1This is an example of a piecewise continuous function that requires de�nition bycases, and the tabular presentation provides two bene�ts.{ It makes the cases explicit, thereby allowing checks that none of them overlapand that all possibilities are considered.{ It provides a visually attractive presentation of the de�nition that easescomprehension.The �rst of these bene�ts is a semantic issue that is handled in PVS by the CONDconstruct; the second is a syntactic issue that is handled in PVS by the TABLEconstruct, which builds on COND.Before we introduce these constructs, we should mention that the PVS spec-i�cation language is a higher-order logic that supports both predicate subtypesand dependent types, and that the system provides strong assurances that de�ni-tional constructs (such as recursive function de�nitions) are conservative [13,14].Some of the checks necessary to ensure type-correctness and conservative ex-tension are not algorithmically decidable; in these cases, PVS generates TypeCorrectness Conditions (TCCs), which are obligations that must be dischargedby theorem proving. PVS provides a powerful interactive theorem prover thatincludes decision procedures for linear arithmetic and other theories, and its de-fault strategies are often able to discharge TCCs automatically; in more di�cultcases, the user must guide the theorem prover interactively. Speci�cations withfalse TCCs are considered malformed and no meaning is ascribed to them. PVSallows proof obligations to be postponed, but keeps track of all unsatis�ed obli-gations; a speci�cation is not considered fully typechecked, and its theorems areconsidered provisional, until all TCCs have been proved.2.1 The PVS COND ConstructStandard PVS language constructions for speci�cation by cases are the tradi-tional IF-THEN-ELSE, and a pattern matching CASES expression for enumeratingover the constructors of an abstract data type. A COND construct has recentlybeen added to these. Its general form is shown in 1 , where the ci are Booleanexpressions and the ei are values of some type t. (PVS has subtypes and over-loading, so the types of the individual ei must be \uni�ed" to yield the commonsupertype t.) The keyword ELSE can be used in place of the �nal condition cn.The construct can appear anywhere that a value of the type of t is allowed.2

1COND c1 ! e1;c2 ! e2;� � �cn ! enENDCOND 2IF c1 THEN e1ELSIF c2 THEN e2� � �ELSE enENDIFExactly one of the ci is required to be true; because PVS already supports proofobligations in the form of TCCs, it is easy to enforce this requirement by causingeach COND to generate two TCCs as follows.{ Disjointness requires that each distinct ci, cj pair is disjoint.{ Coverage requires that the disjunction of all the ci is true.The coverage TCC is suppressed if the ELSE keyword is used; also the ci, cjcomponent of the disjointness TCC is suppressed when ei and ej are syntacticallyidentical.A COND has meaning only if its TCCs are true, in which case the generalCOND expression of 1 is assigned the same meaning as (and is treated internallyas) the IF-THEN-ELSE construction shown in 2 . Notice that the condition cndoes not appear in the IF-THEN-ELSE translation: if this condition was givenas an explicit ELSE in the COND, then the \fall through" default is exactly whatis required; otherwise, the coverage TCC ensures that cn is the negation of thedisjunction of the other ci, and the \fall through" is again correct. Because CONDis treated internally as an IF-THEN-ELSE, reasoning involving COND requires noextensions to the PVS theorem prover.Using COND, we can specify the sign function as follows.signs: TYPE = f x: int | x >= -1 & x <= 1gx: VAR intsign_cond(x): signs = CONDx < 0 -> -1,x = 0 -> 0,x > 0 -> 1ENDCONDThis generates the following TCCs, both of which are discharged by PVS's de-fault strategy for TCCs in fractions of a second.% Disjointness TCC generated (line 10) for% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCONDsign_cond_TCC2: OBLIGATION (FORALL (x: int):NOT (x < 0 AND x = 0)AND NOT (x < 0 AND x > 0)AND NOT (x = 0 AND x > 0));% Coverage TCC generated (line 10) for% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCONDsign_cond_TCC3: OBLIGATION (FORALL (x: int): x < 0 OR x = 0 OR x > 0);3

The variant speci�cation that uses an ELSE in place of the condition x > 0generates a simpler disjointness TCC (just the �rst of the three conjuncts insign cond TCC2), and no coverage TCC.2.2 The PVS TABLE ConstructPVS has TABLE constructs that provide a fairly attractive input syntax for one-and two-dimensional tables and that are LaTEX-printed as true tables (the ex-ample Parnas Fig1 that appears later illustrates this). Their semantic treatmentderives directly from the COND construct.2.2.1 One-Dimensional Tables. The simplest tables in PVS are one-dimensional. In their vertical format, they simply replace the -> and , of CONDcases by | and ||, respectively, and introduce each case with |; they also add a�nal || and change the keyword from COND to TABLE. The sign example is there-fore transformed from a COND to the TABLE shown in 3 . Note that the horizontallines are simply comments (comments in PVS are introduced by %).3sign_vtable(x): signs = TABLE%-------------%| x < 0 | -1 ||%-------------%| x = 0 | 0 ||%-------------%| x > 0 | 1 ||ENDTABLE %-------------% 4sign_htable(x): signs = TABLE%-------------------%|[x<0 | x=0 | x>0]|%-------------------%| -1 | 0 | 1 ||ENDTABLE %-------------------%One-dimensional horizontal tables present the information in a di�erent order,and use |[: : :]| to alert the parser to this fact, as illustrated in 4 .Both these tabular speci�cations are equivalent to sign cond, generate ex-actly the same TCCs, and are treated the same in proofs. Notice that tablesrequire no extensions to the PVS theorem prover, and the full repertoire ofproof commands may be applied to constructions involving tables|for example,it is possible to rewrite with an expression whose right hand side is a table.Note, however, that PVS remembers the syntactic form used in a speci�cationand always prints it out the same way it was typed in; thus, the prover will printa table as a table, even though it is treated semantically as a COND (which isitself treated as an IF-THEN-ELSE). Of course, the special syntactic treatment islost once a proof step (e.g., one that \lifts" IF-THEN-ELSE constructs to the toplevel) has transformed the structures appearing in a sequent.2.2.2 Blank Entries. Suppose we reformulated our sign example to take anatural number, rather than an integer, as its argument. The x < 0 case can nolonger arise and can be omitted from the table. In some circumstances, however,we may wish to make it patently clear that this case should not occur and wecan do this by including the case, but with a blank entry for the value of theexpression. 4

sign_htable(x: nat): signs = TABLE %-------------------%|[x<0 | x=0 | x>0]|%-------------------%| | 0 | 1 ||ENDTABLE %-------------------%The presence of blank entries changes the coverage TCC: this must now ensurethat the disjunction of all the conditions with non-blank entries is true. Noticethis requires a TCC to be generated even when an ELSE case is present.In one-dimensional tables, blank entries can always be removed by simplydeleting the entire case; this is not so with two-dimensional tables, however,where the accessibility of an entry may depend on the conditions labeling bothits row and column. We describe an example later.2.2.3 Enumeration Tables. These are a syntactic variation that providemore succinct representation when the conditions to a table are all of the formx = expression for some single identi�er x. In an enumeration table, the identi�erconcerned follows the TABLE keyword, and the conditions of the table simply listthe expressions; a two-dimensional example appears below in 5 .Enumeration tables are an important special case because their TCCs areoften easily decidable, and this allows some important optimizations. Observethat the number of conjuncts in a disjointness TCC grows as the square ofthe number of conditions; when enumerating over the values of an enumerationtype, it is not uncommon to have tens or hundreds of conditions, and thusthousands of conjuncts in the disjointness TCC. It is unwieldy and slow to displaysuch massive TCCs to the user. PVS therefore recognizes this case and treatsit specially: when the expressions in an enumeration table are all constructorsof a single datatype (and the values of an enumeration type are exactly these),the disjointness and coverage conditions are trivially decidable and are checkedinternally by the typechecker, which also translates such tables into a datatypeCASES expression, rather than a COND.2 Another special case arises when theexpressions of an enumeration table are all literal values of some type (the usualcase is values from some range of integers); again, the disjointness TCC is easilydecidable and can be checked internally by the typechecker (the coverage TCCcan require theorem proving and is generated normally). A table is immediately
agged as illegal if such internal checks reveal a false TCC.2.2.4 Two-Dimensional Tables. Two-dimensional tables are treated asnested COND (or CASES) constructs; more particularly, the columns are nestedwithin the rows. Here is a trivial example of a two-dimensional enumeration ta-ble in which the rows enumerate the values of a type state and the columnsenumerate the values of a type input.2 The prover can provide greater automation for the CASES expression. The user coulduse a CASES construct directly in the one-dimensional case; the main bene�t in pro-viding the translation automatically is with two-dimensional tables.5

5example(state,input): some_type = TABLE state , input%---------%|[x | y |]%-----------------%| a | p | q ||%-----------------%| b | q | q ||ENDTABLE %-----------------%This translates internally to the following.CONDstate = a -> COND input = x -> p, input = y -> q ENDCOND,state = b -> COND input = x -> q, input = y -> q ENDCONDENDCONDNotice that this translation causes disjointness and coverage TCCs for thecolumns to be generated several times|once for each row. For example, thecoverage TCCs generated for the two inner CONDs above have the following form.coverage a: OBLIGATION state = a IMPLIES input = x OR input = ycoverage a: OBLIGATION state = b IMPLIES input = x OR input = yThese appear redundant, so we might be tempted to use the following, apparentlyequivalent, translation.LET x1 = COND input = x -> p, input = y -> q ENDCOND,x2 = COND input = x -> q, input = y -> q ENDCONDIN COND state = a -> x1, state = b -> x2 ENDCONDThis generates the following single, simple coverage TCC for the columns.coverage_TCC: OBLIGATION input = x OR input = yThe problem with this translation is that there may be subtype TCCs gener-ated from the terms corresponding to p and q that must be conditioned on theexpressions corresponding to a and b in order to be provable. Here is an exampledue to Parnas [15, Figure 1] that illustrates this. We exhibit this example in theform output by the PVS LaTEX-printer.Parnas Fig1((y; x : real)) : real =y = 27 y > 27 y < 27x = 3 27 + p27 54 + p27 y2 + 3x < 3 27 + p � (x � 3) y + p � (x � 3) y2 + (x � 3)2x > 3 27 + px � 3 2 � y + px � 3 y2 + (3 � x)2The subtype constraint on the argument to the square root function (namely,that it be nonnegative) generates TCCs in the second and third rows that are trueonly when the corresponding row constraints are taken into account. The LETform translation loses this information. The advantage of the simple translation,which is the one used in PVS, is that it provides more precise (i.e., weaker butstill adequate) TCCs, and therefore admits more speci�cations.6

2.3 ApplicationsThe PVS table constructs described above have been used in several applicationsperformed by ourselves and others|indeed, some elements in the PVS treatmentof tables (notably, blank entries, and the optimizations for enumeration tables)evolved in response to these applications.In one application, PVS is being employed in analysis of new requirementsdocumented in \Change Requests" (CRs) for the
ight software of the SpaceShuttle. This work is undertaken as part of a project involving sta� from severalNASA Centers (Langley, Johnson, and JPL) and Requirements Analysts (RAs)from the team at Lockheed Martin (formerly IBM) that develops this software.Running alongside what is generally considered an exemplary (though manual)process for requirements review, this experiment provides useful data on thee�ectiveness of automated formal analyses [2,18].One of the CRs focused on improving the display of
ight information toShuttle pilots guiding the critical initial bank onto the \Heading AlignmentCylinder" (HAC) during descent. The CR documented key portions of the re-quired control logic in tabular form, and was readily formalized using PVS tables;a small representative example is reproduced in Appendix A. Attempts to dis-charge the TCCs generated by these tables immediately indicated the need todocument implicit \domain knowledge," including constraints such as \MajorMode = 305 or 603 implies iphase � 3," and \wowlon can be true only if MajorMode = 305 or 603." Such domain knowledge was incorporated into the speci-�cation using dependent predicate subtyping and was gradually extended andre�ned through an iterative process that relied on the automated strategies forproving TCCs that are built in to PVS.Observe that proofs of the HAC TCCs could be automated because neces-sary domain knowledge was supplied through the type system, using predicateand dependent subtyping. For example, the constraints mentioned above werespeci�ed as follows (iphase and wowlon are record �elds; notice that the latterhas a type that is a subtype of bool!).iphase: fp: iphase | (mode = mm602 => p >= 4) AND((mode = mm305 OR mode = mm603) => p <= 3)gwowlon: fb: bool | b => (mode = mm305 OR mode = mm603)gThe PVS prover can make very e�ective and automated use of information sup-plied in this way; a system lacking such a rich type system would probably requirean interactive proof to provide the domain knowledge in the form of axioms. (Ofcourse, PVS's decision procedures for linear arithmetic also contributed to theautomation of these proofs.)After incorporating all constraints identi�ed by the RAs, it was found thatthe conditions for several rows in one table still overlapped, and this led toidenti�cation of a missing conjunct in some of the conditions. In addition to7

discovery of this error, the requirements analysts felt that explicit identi�cationand documentation of the domain knowledge was a valuable product of theanalysis [18].Another application for PVS tables has been in veri�cation of fast hardwaredivision algorithms. The notorious Pentium FDIV bug, which is reported to havecost Intel $475 million, was due to bad entries in the quotient lookup table foran SRT divider. Triangular-shaped regions at top and bottom of these tables arenever referenced by the algorithm; the Pentium error was that certain entriesbelieved to be in this inaccessible region, and containing arbitrary data, were,in fact, sometimes referenced during execution [16].An SRT division algorithm similar to that used in the Pentium has been spec-i�ed and veri�ed in PVS [19]. The quotient lookup table for this algorithm wasspeci�ed as a PVS table (reproduced in Appendix B) which uses blank entriesto indicate those regions of the table that are believed to be inaccessible. PVSgenerates 23 coverage TCCs to ensure that these entries will never be encoun-tered; veri�cation of the algorithm (which can be done largely automatically inPVS) then ensures that all the nonblank table entries are correct. Injection ofan error similar to that in the Pentium leads to a failed TCC proof whose �nalsequent is a counterexample that highlights the error [19]. Miner and Leathrumhave used this capability of PVS to develop several new SRT tables [11], each inless than three hours.3 Decision TablesDecision tables associate Boolean expressions with the \decision" or output tobe generated when a particular expression is true. There are many kinds ofdecision tables; the ones considered here are from a requirements engineeringmethodology developed for avionics systems by Lance Sherry of Honeywell [22],and given mechanized support in TableWise, developed by Hoover and Chen atORA [8]. The following is a simple decision table (taken from [8, Table 2]).Operational ProcedureInput Variables Takeoff Climb Climb Int level CruiseFlightphase climb climb climb climb climb cruiseAC Alt > 400 true true * * * *compare(AC Alt, Acc Alt) LT LT GE GE * GTAlt Capt Hold false true false true true truecompare(Alt Target,prev Alt Target) * GT * GT * EQThis table describes the conditions under which each of the four \opera-tional procedures" Takeoff, Climb, Climb Int Level, and Cruise should beselected. Each of the columns beneath the name of an operational proceduregives a conjunction of conditions under which that procedure should be selected8

(where * indicates \don't care"). For example, the third and fourth columns inthe body of the table indicate that the operational procedure Climb should beused if the Flightphase is climb, AC Alt is greater than or equal to Acc Alt,and either Alt Capt Hold is false, or it is true and Alt Target is greater thanprev Alt Target. The columns forming a subtable beneath each operationalprocedure are similar to the AND/OR tables used in the RSML notation ofLeveson and colleagues [10].The PVS TABLE construct cannot represent this type of decision table di-rectly: we need some additional mechanism to represent a conjunction such as(Flightphase= climb) ^ (AC Alt � Acc Alt) ^ :Alt Capt Holdby the compact list given in the third column of the table.Now the list (climb, *, GE, false, *) from that column can be inter-preted as the argument list to a function X that treats the �rst element as afunction to be applied to Flightphase, the second as a function to be appliedto the expression AC Alt > 400 and so on, as follows.X(a,b,c,d,e): bool =a(Flightphase) & b(AC_Alt > 400) & c(AC_Alt,Acc_Alt)& d(Alt_Capt_Hold) & e(Alt_Target,prev_Alt_Target)We can then use this construction to specify the third column of the decisiontable as the following row from a vertical one-dimensional PVS table; the com-plete table is shown in Appendix C (taken from [12], where full details may befound).%----------|-------|-------|-------|-------|-----------------%| X(climb? , * , GE , false , *)| Climb ||%----------|-------|-------|-------|-------|-----------------%The functions appearing in the argument list to X are de�ned as follows (notethat * is overloaded and that climb? is a recognizer for an enumerated type).q: VAR bool x, y: VAR natfalse(q): bool = NOT q GE(x, y): bool = x >= y*(q): bool = TRUE *(x, y): bool = TRUEThe disjointness TCC from this table immediately identi�es two overlappingcases, while the coverage TCC identi�es four that are missing. For example, oneof the four unproved sequents3 from the coverage TCC is the following.3 PVS uses a sequent calculus presentation whose interpretation is that the conjunc-tion of formulas above the turnstile line (|------) should imply the disjunction offormulas below the line. The appearance of a formula on one side of the line isequivalent to its negation on the other, and this structural rule is used to eliminatetop-level negations. Names with embedded ! characters are Skolem constants derivedfrom variables with the same root name.9

6decision_table_TCC2.1 :|-------[1] AC_Alt!1 > 400[2] Alt_Capt_Hold!1[3] AC_Alt!1 >= Acc_Alt!1Unproven sequents such as this, with no formulas above the line, indicate thefailure to select an operational procedure when all the formulas below the lineare false. This one, for example, identi�es the failure to consider the case whenAC Alt is not greater than 400, Alt Capt Hold is false, and AC Alt is less thanAcc Alt. The six
aws identi�ed in this way are identical to those found in thisexample by the special-purpose tool TableWise [8].Unlike PVS, TableWise presents the anomalies that it discovers in a tabularform similar to that of the original decision table; TableWise can also generateexecutable Ada code and English language documentation from decision tables.These bene�ts are representative of those that can be achieved with a special-purpose tool. On the other hand, PVS's more powerful deductive capabilities alsoprovide bene�ts. For example, PVS can settle disjointness and coverage TCCsthat depend on properties more general than the simple Boolean and arithmeticrelations built in to TableWise and similar tools. The limitations of these toolsare illustrated by Heimdahl [3], who describes spurious error reports when acompleteness and consistency checking tool for the AND/OR tables of RSML(developed with Leveson [5]) was applied to TCAS II. These spurious reportswere due to the presence of arithmetic and de�ned functions whose propertiesare beyond the reach of the BDD-based tautology checker incorporated in thetool. As Heimdahl notes [3, page 81], a theorem prover is needed to settle suchproperties; he and Czerny are now experimenting with PVS for this purpose [4].A theorem prover such as PVS can also examine questions beyond simplecompleteness and consistency. For example, the incompleteness and inconsis-tencies detected in the example decision table can be remedied by adding anELSE clause and by replacing the second and third \don't care" entries underClimb Int level by false and LT, respectively. The TCC generated by thismodi�ed speci�cation is proved automatically by PVS, so we may proceed toexamine general properties of the decision table. To check that the speci�ca-tion matches our intent, we can use conjectures that we believe to be true as\challenges." For example, we may believe that when AC Alt = Acc Alt, theoperational procedure selected should match the Flightphase. We can checkthis in the case that the Flightphase is cruise using the following challenge.test: THEOREM AC_Alt = Acc_Alt =>decision_table(cruise, AC_Alt, Acc_Alt,Alt_Target, prev_Alt_Target, Alt_Capt_Hold) = CruiseThis is easily proved by PVS's standard (grind) strategy. However, when wetry the corresponding challenge for the case where Flightphase is climb, we10

discover that the conjecture is not proved, and actually is false in the case whereAlt Capt Hold is true and Alt Target <= prev Alt Target, thereby exposinga
aw in either our expectations or our formalization of the speci�cation. Me-chanically supported challenges of this kind illustrate the utility of undertak-ing the analysis of tabular speci�cations in a context that provides theoremproving. Special-purpose tools for tabular speci�cations generally provide onlycompleteness and consistency checking, and perhaps some form of simulation.Such tools would help identify the anomaly just described only if we happenedto choose to simulate a case where Alt Capt Hold is true and Alt Target <=prev Alt Target.4 Transition Relations and Model CheckingDecision tables provide a way to specify the selection of operational proceduresto be executed at each step. However, the model of computation that repeatedlyperforms these selection and execution steps is understood informally and isnot explicit in the PVS speci�cations. Consequently, it is not possible to poseand examine overall system properties|such as whether a certain property isinvariant, or another is reachable|without formalizing more of the underlyingmodel of computation. Transition relations provide a way to do this, and theSCR method is a way to present such relations in a tabular manner [7].The following is a typical SCR \mode transition table" (taken from Atleeand Gannon [1, Table 2]). This system, a simpli�ed automobile cruise control,has four modes (off, inactive, cruise, and override) and the table describesthe conditions under which it makes transitions from one mode to another.Current Conditions NextMode Ignited Running Toofast Brake Activate Deactivate Resume ModeO� @T - - - - - - InactiveInactive @F - - - - - - O�T T - F @T - - CruiseCruise @F - - - - - - O�- @F - - - - - Inactive- - @T - - - - Inactive- - - @T - - - Override- - - - - @T - OverrideOverride @F - - - - - - O�- @F - - - - - InactiveT T - F @T - - CruiseT T - F - - @T CruiseAn @T entry indicates the case where the condition labeling that column changesfrom false to true, while @F indicates the opposite transition; a T entry indicatesthe case where the condition labeling that column remains true through thetransition, F indicates the case where it remains false, and a dash indicates11

\don't care." Thus the third row indicates that the system transitions from theInactive mode to the Cruise mode if Activate goes true, while Ignited andRunning remain true and Brake remains false.To model this type of speci�cation in PVS, we specify a condition as apredicate on inputs to the system, then atT (which represents @T) is a higherorder function that takes a condition and returns a relation on pairs of inputs(namely, one that is true when the condition is false when applied to the �rstand true when applied to the second). The constructions for atF (representing@F), T, F, and dc (representing \don't care") are speci�ed similarly.scr[input, mode, output: TYPE]: THEORYBEGINcondition: TYPE = pred[input]p,q: VAR inputP: VAR conditionatT(P)(p,q): bool = NOT P(p) & P(q) % @T(P)atF(P)(p,q): bool = P(p) & NOT P(q) % @F(P)T(P)(p,q): bool = P(p) & P(q)F(P)(p,q): bool = NOT P(p) & NOT P(q)dc(P)(p,q): bool = true % don't care: : :With these constructions, the mode transition table shown earlier can berepresented in PVS as follows (for brevity, we show only the transitions from theInactive mode, corresponding to the second and third rows of the table; thecomplete table is shown in Appendix D, and full details are given in [12]).event_constructor: TYPE = [condition -> event]EC: TYPE = event_constructorPC(A,B,C,D,E,F,G)(a,b,c,d,e,f,g)(p,q):bool = A(a)(p,q) & B(b)(p,q)& C(c)(p,q) & D(d)(p,q) & E(e)(p,q) & F(f)(p,q) & G(g)(p,q)% Note: PC stands for "pairwise conjunction"original(s: modes, (p, q: monitored_vars)): modes =LETx = (ignited, running, toofast, brake, activate, deactivate, resume),X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))IN TABLE s: : :|inactive| TABLE %----|----|----|----|----|----|----|-----|----------|||X(atF , dc , dc , dc , dc , dc , dc)| off ||%----|----|----|----|----|----|----|-----|----------|||X(T , T , dc , F ,atT , dc , dc)| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | inactive ||ENDTABLE || %----|-----------------------------------|----------||: : : 12

Typechecking this speci�cation generates several TCCs; those for the tran-sitions from mode inactive are proved automatically, but those from modescruise and override are not. These unproved TCCs yield subgoals that pin-point problems in the speci�cation, rather in the way that 6 identi�ed problemsin the decision table. For example, the successor to cruisemode is ambiguous inthe case where toofast and deactivate both go from false to true: the �rst ofthese causes a transition to inactivemode, while the second causes a transitionto override mode. Repairing these
aws requires several changes to the tableand|as with the Space Shuttle example|adding some \domain knowledge"(such as that toofast implies running).Because a mode transition table speci�es how the system proceeds from onemode to another, we can examine properties of the computations that this in-duces. To do this, we �rst need to derive the transition relation on states that isimplicit in a mode table. We identify the instantaneous state of the system withits current mode and the current values of its input variables. We specify this asa record in PVS; a transition relation is a predicate on pairs of such states.state: TYPE = [# mode: mode, vars: input #]transition_relation: TYPE = pred[[state, state]]Recall that a mode transition table has the following signature.mode_table: TYPE = [mode, input, input -> mode]We can therefore de�ne a function trans that takes a mode table and returnsthe corresponding state transition relation.trans(mt: mode_table): transition_relation =(LAMBDA (s,t: state): mode(t) = mt(mode(s), vars(s), vars(t)))The branching time temporal logic CTL provides a convenient way to specifycertain properties of the computations induced by a transition relation, andPVS can automatically verify CTL formulas for transition relations over �nitetypes by using a decision procedure for Park's �-calculus to provide CTL modelchecking [17]. An example of a property about this speci�cation that can bespeci�ed in CTL is the following invariant.In cruisemode, the engine is running, the vehicle is not going toofast,the brake is not on, and deactivate is not selected.We can examine this property with PVS in the following manner.13

IMPORTING MU@ctlops, cruise_tabp,q,r: var statetrans: transition_relation = trans(deterministic)init(p): bool = off?(p) & NOT ignited(p)safe4: THEOREM init(p) => AG(trans,(LAMBDA q:cruise?(q)=> running(q) & NOT (toofast(q) OR brake(q) OR deactivate?(q))))(p)safe5: THEOREM init(p)=> AG(trans, (LAMBDA q: override?(q) => running(q)))(p)Here, cruise tab is the PVS theory that de�nes the mode table deterministic(formed by correcting the errors found in the table original discussed above),and ctlops is the PVS theory (from the library MU) that de�nes the CTLoperators. The function trans introduced above is applied to the mode tabledeterministic to construct a transition relation (also called trans). We char-acterize the initial state as one whose mode is off and in which the engine is notignited, and specify (as safe4) the invariant mentioned above (AG is the CTLoperator meaning \in every reachable state"). Another plausible invariant prop-erty is speci�ed by the formula safe5. The PVS model-check command veri�esformula safe5 but fails on safe4. This prompts closer examination of the spec-i�cation and reveals that, although cruise mode is exited when toofast goestrue, the transitions into cruisemode neglect to check that toofast is false be-fore making the transition. The correction is to add the condition F(toofast)to the three transitions into cruisemode, and PVS is able to verify the formulasafe4 for the corrected speci�cation.Similar to the TableWise tool for decision tables, Heitmeyer and colleagueshave developed the SCR* tool for checking consistency of SCR tabular speci-�cations [6], while Atlee and colleagues have developed a translator that turnsSCR tables into a form acceptable to the SMV model checker [23]. These special-purpose tools have the advantage of being closely tailored to their intended usesand are scalable to larger examples than is convenient for the PVS treatment.On the other hand, the PVS treatment required no customized development: itsimply builds on capabilities such as tables, higher-order logic, theorem proving,and model checking that are already present in PVS.Furthermore, the PVS treatment can draw on the full resources of the lan-guage and system to combine methods in novel ways, or to conduct customizedanalyses. For example, we have used a variant of PVS's treatment of SCR ta-bles to specify the nondeterministic mode transitions of interacting \climb" and\level" components in the requirements for a simple \autopilot" [12, section4.3]. The transitions of the components were speci�ed as separate tables andcombined by disjunction (representing interleaving concurrency). The combinedspeci�cation was then tested against a number of challenge properties usingmodel checking. A deterministic \implementation" speci�cation of the autopi-lot was constructed from two \phases" using relational composition to specify14

sequential execution. This speci�cation was also tested against the challengeproperties using model checking. Finally, model checking was used to show thatthe behaviors induced by the requirements and the implementation speci�cationsare equivalent (this property can be expressed as a CTL formula).5 ConclusionWe have described PVS's capabilities for representing tabular speci�cations,illustrated how these interact synergistically with other capabilities such astypechecker-generated proof obligations, dependent typing, higher-order func-tions, model checking, and general theorem proving, and described some ap-plications. We demonstrated how these capabilities of the PVS language andveri�cation system can be used in combination to provide customized supportfor existing methodologies for documenting and analyzing requirements. Becausethey use only the standard capabilities of PVS, users can adapt and extend thesecustomizations to suit their own needs.The generic support provided for tables and for model checking in PVSmay be compared with the more specialized support provided in tools such asORA's TableWise [8], NRL's SCR* [6, 7], and Leveson and Heimdahl's consis-tency checker for RSML [5]. Dedicated, lightweight tools such as these are likelyto be superior to a heavyweight, generic system such as PVS for their chosenpurposes. Our goal in applying PVS to these problems is not to compete withspecialized tools but to complement them. The generic capabilities of PVS canbe used to prototype some of the capabilities of specialized tools (this was donein the development of TableWise), and can also be used to supplement theircapabilities when comprehensive theorem proving and model checking power isneeded.AcknowledgmentsExamples undertaken by Ricky Butler, Ben Di Vito, and Paul Miner of NASALangley Research Center, Steve Miller of Collins Commercial Avionics and Har-ald Rue� of Universit�at Ulm, and suggestions by Connie Heitmeyer of the NavalResearch Laboratory, were instrumental in shaping the PVS table constructs.Comments by the anonymous referees improved the presentation of this paper.ReferencesPapers by SRI authors are generally available from http://www.csl.sri.com/fm.html.1. Joanne M. Atlee and John Gannon. State-based model checking of event-drivensystem requirements. In SIGSOFT '91: Software for Critical Systems, pages 16{28, New Orleans, LA, December 1991. Published as ACM SIGSOFT EngineeringNotes, Volume 16, Number 5. 15

2. Judith Crow and Ben L. Di Vito. Formalizing space shuttle software requirements:Four case studies. Submitted for publication, 1997.3. Mats P. E. Heimdahl. Experiences and lessons from the analysis of TCAS II. InSteven J. Zeil, editor, International Symposium on Software Testing and Analysis(ISSTA), pages 79{83, San Diego, CA, January 1996. Association for ComputingMachinery.4. Mats P. E. Heimdahl and Barbara J. Czerny. Using PVS to analyze hierarchi-cal state-based requirements for completeness and consistency. In IEEE High-Assurance Systems Engineering Workshop (HASE '96), pages 252{262, Niagaraon the Lake, Canada, October 1996.5. Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency anal-ysis of state-based requirements. In 17th International Conference on SoftwareEngineering, pages 3{14, Seattle, WA, April 1995. IEEE Computer Society.6. Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw. SCR*: Atoolset for specifying and analyzing requirements. In COMPASS [9], pages 109{122.7. Constance Heitmeyer, Bruce Labaw, and Daniel Kiskis. Consistency checking ofSCR-style requirements speci�cations. In International Symposium on Require-ments Engineering, York, England, March 1995. IEEE Computer Society.8. D. N. Hoover and Zewei Chen. Tablewise, a decision table tool. In COMPASS [9],pages 97{108.9. COMPASS '95 (Proceedings of the Tenth Annual Conference on Computer Assur-ance), Gaithersburg, MD, June 1995. IEEE Washington Section.10. Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon DamonReese. Requirements speci�cation for process-control systems. IEEE Transactionson Software Engineering, 20(9):684{707, September 1994.11. Paul S. Miner and James F. Leathrum, Jr. Veri�cation of IEEE compliant sub-tractive division algorithms. In Mandayam Srivas and Albert Camilleri, editors,Formal Methods in Computer-Aided Design (FMCAD '96), volume 1166 of Lec-ture Notes in Computer Science, pages 64{78, Palo Alto, CA, November 1996.Springer-Verlag.12. Sam Owre, John Rushby, and Natarajan Shankar. Analyzing tabular and state-transition speci�cations in PVS. Technical Report SRI-CSL-95-12, Computer Sci-ence Laboratory, SRI International, Menlo Park, CA, July 1995. Available, withspeci�cation �les, at http://www.csl.sri.com/csl-95-12.html.13. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formalveri�cation for fault-tolerant architectures: Prolegomena to the design of PVS.IEEE Transactions on Software Engineering, 21(2):107{125, February 1995.14. Sam Owre and Natarajan Shankar. The formal semantics of PVS. TechnicalReport SRI-CSL-97-2, Computer Science Laboratory, SRI International, MenloPark, CA, August 1997.15. David Lorge Parnas. Tabular representation of relations. Technical Report CRLReport 260, Telecommunications Research Institute of Ontario (TRIO), Faculty ofEngineering, McMaster University, Hamilton, Ontario, Canada, October 1992.16. Vaughan Pratt. Anatomy of the Pentium bug. In TAPSOFT '95: Theory andPractice of Software Development, volume 915 of Lecture Notes in Computer Sci-ence, pages 97{107, Aarhus, Denmark, May 1995. Springer-Verlag.17. S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking withautomated proof checking. In Pierre Wolper, editor, Computer-Aided Veri�cation,16

CAV '95, volume 939 of Lecture Notes in Computer Science, pages 84{97, Liege,Belgium, June 1995. Springer-Verlag.18. Larry W. Roberts and Mike Beims. Using formal methods to assist in the require-ments analysis of the Space Shuttle HAC Change Request (CR 90960E). TechnicalReport JSC-27599, NASA Johnson Space Center, Houston, TX, September 1996.19. H. Rue�, N. Shankar, and M. K. Srivas. Modular veri�cation of SRT division.In Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided Veri�cation,CAV '96, volume 1102 of Lecture Notes in Computer Science, pages 123{134, NewBrunswick, NJ, July/August 1996. Springer-Verlag.20. John Rushby. Mechanizing formal methods: Opportunities and challenges. InJonathan P. Bowen and Michael G. Hinchey, editors, ZUM '95: The Z FormalSpeci�cation Notation; 9th International Conference of Z Users, volume 967 ofLecture Notes in Computer Science, pages 105{113, Limerick, Ireland, September1995. Springer-Verlag.21. Natarajan Shankar. Unifying veri�cation paradigms. In Bengt Jonsson andJoachim Parrow, editors, Formal Techniques in Real-Time and Fault-Tolerant Sys-tems, volume 1135 of Lecture Notes in Computer Science, pages 22{39, Uppsala,Sweden, September 1996. Springer-Verlag.22. Lance Sherry. A structured approach to requirements speci�cation for software-based systems using operational procedures. In 13th AIAA/IEEE Digital AvionicsSystems Conference, pages 64{69, Phoenix, AZ, October 1994.23. Tirumale Sreemani and Joanne M. Atlee. Feasibility of model checking softwarerequirements. In COMPASS '96 (Proceedings of the Eleventh Annual Conferenceon Computer Assurance), pages 77{88, Gaithersburg, MD, June 1996. IEEE Wash-ington Section.The views and conclusions contained herein are those of the authors and should not be in-terpreted as necessarily representing the o�cial policies or endorsements, either expressed orimplied, of the Air Force O�ce of Scienti�c Research or the U.S. Government.
17

AppendixA HAC Requirements Table Expressed in PVSswitch_position: TYPE = flow, medium, highgmajor_mode: TYPE = fmm301, mm302, mm303, mm304, mm305, mm602, mm603giphase: TYPE = fn: nat | n <= 6g CONTAINING 0ADI_error_inputs: TYPE =[# mode: major_mode,switch_position: switch_position,iphase: fp: iphase | (mode = mm602 => p >= 4) AND((mode = mm305 OR mode = mm603) => p <= 3)g,wowlon: fb: bool | b => (mode = mm305 OR mode = mm603)g #]ADI_error_scale_deflection(A: ADI_error_inputs) : [real, real, real] =LET mode = mode(A), switch_position = switch_position(A),iphase = iphase(A), wowlon = wowlon(A) INTABLE % Result is of form: [roll error, pitch error, yaw error], switch_position%---%|[high | medium | low]|%--%| mode = mm301 ORmode = mm302 ORmode = mm303 | (10, 10, 10) | (5, 5, 5) | (1, 1, 1) ||%--%| mode = mm304 OR(mode = mm602 AND(iphase = 4 ORiphase = 6)) | (25, 5, 5/2) | (25, 2, 5/2) | (10, 1, 5/2) ||%--%| mode = mm602 ANDiphase = 5 | (25, 5/4, 5/2) | (25, 5/4, 5/2) | (10, 1/2, 5/2) ||%--%| (mode = mm305 ORmode = mm603) ANDNOT wowlon | (25, 5/4, 5/2) | (25, 5/4, 5/2) | (10, 1/2, 5/2) ||%--%| wowlon | (20, 10, 5/2) | (5, 5, 5/2) | (1, 1, 5/2) ||%--%ENDTABLE 18

B Quotient Lookup Table for SRT Dividerq(D: bvec[3], (P: bvec[7] | estimation_bound?(valD(D), valP(P)))):subrange(-2, 2) =LET a = -(2 - P(1) * P(0)),b = -(2 - P(1)),c = 1 + P(1),d = -(1 - P(1)),e = P(1),Dp:nat = bv2pattern(D),Ptruncp:nat = bv2pattern(P^(6,2))IN TABLE Ptruncp, Dp|[000| 001| 010| 011| 100| 101| 110| 111]|%--%|01010| | | | | | | | 2 |||01001| | | | | | 2 | 2 | 2 |||01000| | | | | 2 | 2 | 2 | 2 |||00111| | | 2 | 2 | 2 | 2 | 2 | 2 |||00110| | 2 | 2 | 2 | 2 | 2 | 2 | 2 |||00101| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |||00100| 2 | 2 | 2 | 2 | c | 1 | 1 | 1 |||00011| 2 | c | 1 | 1 | 1 | 1 | 1 | 1 |||00010| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |||00001| 1 | 1 | 1 | 1 | e | 0 | 0 | 0 |||00000| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |||11111| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |||11110| -1 | -1 | d | d | 0 | 0 | 0 | 0 |||11101| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |||11100| a | b | -1 | -1 | -1 | -1 | -1 | -1 |||11011| -2 | -2 | -2 | b | -1 | -1 | -1 | -1 |||11010| -2 | -2 | -2 | -2 | -2 | -2 | b | -1 |||11001| -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 |||11000| | | -2 | -2 | -2 | -2 | -2 | -2 |||10111| | | | -2 | -2 | -2 | -2 | -2 |||10110| | | | | | -2 | -2 | -2 |||10101| | | | | | | -2 | -2 ||%--%ENDTABLE
19

C Example Decision Tableq:VAR booltrue(q): bool = qfalse(q): bool = NOT q*(q): bool = TRUEx,y:VAR natGT(x, y): bool = x > y LT(x, y): bool = x < yGE(x, y): bool = x >= y LE(x, y): bool = x <= y ;EQ(x, y): bool = x = y *(x, y): bool = TRUEoperational_procedures: TYPE = fTakeoff, Climb, Climb_Int_Level, Cruisegflight_phases: TYPE = fclimb, cruisegFlightphase: VAR flight_phasesAC_Alt, Acc_Alt, Alt_Target, prev_Alt_Target: VAR natAlt_Capt_Hold: VAR booldecision_table(Flightphase, AC_Alt, Acc_Alt, Alt_Target,Prev_Alt_Target, Alt_Capt_Hold): operational_procedures=LET X = (LAMBDA (a: pred[flight_phases]), (b: pred[bool]),(c: pred[[nat,nat]]), (d: pred[bool]), (e: pred[[nat,nat]]):a(Flightphase) &b(AC_Alt > 400) &c(AC_Alt,Acc_Alt) &d(Alt_Capt_Hold) &e(Alt_Target,prev_Alt_Target))INTABLE% | | | | |% | | | | |% v v v v v Operational Procedure%----------|-------|-------|-------|-------|------------- ----%| X(climb? , true , LT , false , *) | Takeoff ||%----------|-------|-------|-------|-------|------------------%| X(climb? , true , LT , true , GT) | Takeoff ||%----------|-------|-------|-------|-------|------------------%| X(climb? , * , GE , false , *) | Climb ||%----------|-------|-------|-------|-------|------------------%| X(climb? , * , GE , true , GT) | Climb ||%----------|-------|-------|-------|-------|------------------%| X(climb? , * , * , true , *) | Climb_Int_Level ||%----------|-------|-------|-------|-------|------------------%| X(cruise?, * , GT , true , EQ) | Cruise ||%----------|-------|-------|-------|-------|------------------%ENDTABLE 20

D Example SCR Tableevent_constructor: TYPE = [condition -> event]EC: TYPE = event_constructorPC(A,B,C,D,E,F,G)(a,b,c,d,e,f,g)(p,q):bool = A(a)(p,q) & B(b)(p,q)& C(c)(p,q) & D(d)(p,q) & E(e)(p,q) & F(f)(p,q) & G(g)(p,q)% Note: PC stands for "pairwise conjunction"original(s: modes, (p, q: monitored_vars)): modes =LETx: conds7 = (ignited, running, toofast, brake, activate, deactivate, resume),X = (LAMBDA (a,b,c,d,e,f,g:EC): PC(a,b,c,d,e,f,g)(x)(p,q))IN TABLE s|off| TABLE%----|----|----|----|----|----|----|-----|----------|||X(atT , dc , dc , dc , dc , dc , dc)| inactive ||%----|----|----|----|----|----|----|-----|----------||| ELSE | off ||%----|-----------------------------------|----------||ENDTABLE |||inactive| TABLE%----|----|----|----|----|----|----|-----|----------|||X(atF , dc , dc , dc , dc , dc , dc)| off ||%----|----|----|----|----|----|----|-----|----------|||X(T , T , dc , F ,atT , dc , dc)| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | inactive ||%----|-----------------------------------|----------||ENDTABLE |||cruise| TABLE%----|----|----|----|----|----|----|-----|----------|||X(atF, dc, dc, dc, dc, dc, dc)| off ||%----|----|----|----|----|----|----|-----|----------|||X(dc ,atF , dc , dc , dc , dc , dc)| inactive ||%----|----|----|----|----|----|----|-----|----------|||X(dc , dc ,atT , dc , dc , dc , dc)| inactive ||%----|----|----|----|----|----|----|-----|----------|||X(dc , dc , dc ,atT , dc , dc , dc)| override ||%----|----|----|----|----|----|----|-----|----------|||X(dc , dc , dc , dc , dc ,atT , dc)| override ||%----|----|----|----|----|----|----|-----|----------||| ELSE | cruise ||%----|-----------------------------------|----------||ENDTABLE |||override| TABLE%----|----|----|----|----|----|----|-----|----------|||X(atF , dc dc , dc , dc , dc , dc)| off ||%----|----|----|----|----|----|----|-----|----------|||X(dc ,atF , dc , dc , dc , dc , dc)| inactive ||%----|----|----|----|----|----|----|-----|----------|||X(T , T , dc , F ,atT , dc , dc)| cruise ||%----|----|----|----|----|----|----|-----|----------|||X(T , T , dc , F , dc , dc ,atT)| cruise ||%----|----|----|----|----|----|----|-----|----------||| ELSE | override ||% ---|-----------------------------------|----------||ENDTABLE ||ENDTABLEThis article was processed using the LaTEX macro package with LLNCS style21

