
Formal Veri�
ation of Fun
tional Properties ofan SCR-style Software RequirementsSpe
i�
ation using PVS ?Pro
eedings of Tools and Algorithms for the Constru
tion and Analysis ofSystems, 8th International Conferen
e (TACAS 2002), LNCS 2280Taeho Kim1;2, David Stringer-Calvert2 and Sungdeok Cha11 Department of Ele
tri
al Engineering and Computer S
ien
e andAdvan
ed Information Te
hnology Resear
h Center (AITr
),Korea Advan
ed Institute of S
ien
e and Te
hnology (KAIST)Taejon 305-701, Koreafthkim,
hag�salmosa.kaist.a
.kr2 Computer S
ien
e Laboratory, SRI InternationalMenlo Park CA 94025, USAdave s
�
sl.sri.
omAbstra
t. Industrial software
ompanies developing safety-
riti
al sys-tems are required to use rigorous safety analysis te
hniques to demon-strate
omplian
e to regulatory bodies. While analysis te
hniques basedon manual inspe
tion have been su

essfully applied to many industrialappli
ations, we demonstrate that inspe
tion has limitations in lo
ating
omplex errors in software requirements.In this paper, we des
ribe the formal veri�
ation of a shutdown systemfor a nu
lear power plant that is
urrently operational in Korea. Theshutdown system is an embedded real-time safety-
riti
al software, andhas a des
ription in a Software Cost Redu
tion (SCR) style spe
i�
ationlanguage. The key
omponent of the work des
ribed here is an automati
method for translating SCR-style Software Requirements Spe
i�
ations(SRS) into the language of the PVS spe
i�
ation and veri�
ation system.A further
omponent is the use of property templates to translate naturallanguage Program Fun
tional Spe
i�
ations (PFS) into PVS, allowingfor high-assuran
e
onsisten
y
he
king between the translated SRS andPFS, thereby verifying the required fun
tional properties.1 Introdu
tionVarious approa
hes have been suggested for developing high-quality require-ments spe
i�
ations and
ondu
ting
ost-e�e
tive analysis. Although inspe
tion[1℄
an, in prin
iple, dete
t all types of errors in requirements, experien
e in
ondu
ting inspe
tions on the Software Requirements Spe
i�
ation (SRS) for? This work was supported by the Korea S
ien
e and Engineering Foundation throughthe Advan
ed Information Te
hnology Resear
h Center and by the National S
ien
eFoundation under grants CCR-00-82560 and CCR-00-86096.1

the Wolsung 1 shutdown system number 2 (SDS2) revealed that inspe
tion haspotentially lethal limitations in demonstrating safety.The Wolsung SDS2 is designed to
ontinuously monitor the rea
tor state(e.g., temperature, pressure, and power) and to generate a trip signal (e.g., shut-down
ommand, and display) if the monitored variables ex
eed predeterminedsafety parameters. The SDS2 SRS spe
i�es 30 monitored variables (inputs fromthe environment), 59
ontrolled variables (outputs to the environment), and 129
omputational fun
tions relating them. The SRS is 374 pages in length and wassubje
t to four relatively minor releases in less than a year. Inspe
tion of the ini-tial release of the SRS,
ondu
ted by four sta� members, to validate
onsisten
ybetween the SRS and the natural language Program Fun
tional Spe
i�
ation(PFS) took about 80 sta� hours of formal inspe
tion meetings, during whi
honly 17 trivial notational errors and in
omplete de�nitions in the PFS and SRSwere dis
overed.This experien
e with manual inspe
tion motivated resear
h to explore morerobust and rigorous methods of analysis. To this end, (1) we provide an auto-mati
 method for translating SRS into the language of the PVS spe
i�
ation andveri�
ation system [2℄, and we implemented a tool for editing and translating,and (2) we translate from PFS into PVS using property templates and
rossreferen
e. Last, (3) we verify the
onsisten
y between translated SRS and PFS.In this
ase study, we
on
entrate on one trip
ondition (PDL trip), among threetrip
onditions, for whi
h SRS is 22 pages, and PFS is 4 pages. The whole SRSfor SDS2 is 374 pages, and the whole PFS is 21 pages.Even though our example
ase study is in the nu
lear domain, we believe theveri�
ation pro
edures we propose are general and appli
able to wide range ofsafety-
riti
al systems.The rest of our paper is organized as follows. In Se
tion 2, we review how anSCR-style software requirements spe
i�
ation, whi
h is used in Wolsung SDS2, isorganized. Se
tion 3 des
ribes the veri�
ation pro
edure developed, detailing the
ase study of the Wolsung SDS2, and Se
tion 4 dis
usses results and
omparisonswith other approa
hes. Finally, Se
tion 5
on
ludes this paper.2 Ba
kground2.1 SCR-style SRSAn SCR-style formal spe
i�
ation [3℄ has four key attributes:{ Variable de�nitions{ Fun
tional overview diagrams (FODs){ Stru
tured de
ision tables (SDTs){ Timing fun
tionsIt is slightly di�erent from the SCR spe
i�
ation language developed by re-sear
hers at the Naval Resear
h Laboratory and supported by the SCR� toolset1 The Wolsung nu
lear power plant in Korea, used as a
ase study in this paper, isequipped with a software-implement emergen
y shutdown system.2

[4℄. The di�eren
e lies in how primitive fun
tions are des
ribed - where SCRstyle uses a time-triggered AND-OR table, the SCR� uses an event-a
tion tableformat. A system written in SCR-style requirements is designed to read monitorvariables for an external environment (e.g., temperature, pressure, and power)and to generate
ontrol values (e.g., a shutdown
ommand).The detailed des
ription of the attributes of an SCR-style SRS as follows:Variable de�nitions : The interfa
e between the
omputer system and its en-vironment is des
ribed in terms of monitored and
ontrolled variables. Mon-itored variables, whose names start with the m pre�x, refer to the inputs tothe
omputer system, and
ontrolled variables, whose names start with the
 pre�x, refer to the outputs from the
omputer system. A variable may beanalog or digital.Fun
tional Overview Diagrams (FODs) : An FOD illustrates, in a nota-tion similar to data
ow diagrams, a hierar
hi
al organization of fun
tions.A group, denoted by the g pre�x,
onsists of subgroups or basi
 fun
tions.Ea
h basi
 fun
tion name starts with the f pre�x. For example, the groupg Overview, illustrated in �gure 1.(a), is re�ned into g Pro
essInputs,g PDL, g PZL, g SLL groups as shown in �gure 1.(b). The g Pro
essInputsis a prepro
essor for the system. g PDL, g PZL, and g SLL are trip signals forreturning the system to a safe state.Similarly, the group g PDL is
omposed of six basi
 fun
tions and two timingfun
tions as shown in �gure 1.(
). A basi
 fun
tion is a mathemati
al fun
tionwith zero delay and are spe
i�ed in a stru
tured de
ision table. Outputs aresyn
hronous with inputs in a basi
 fun
tion. The s pre�x denotes a statename, used to store the previous value of a fun
tion, that is, with one
lo
kdelay. Timing fun
tions are drawn as a bar (j), for example, t Pending andt Trip in �gure 1.(
).In addition to the hierar
hi
al relations, the FOD spe
i�es inputs, outputs,and internal data dependen
ies among various
omponents. Su
h data depen-den
ies impli
itly di
tate the proper order of
arrying out a set of fun
tions.For example, in �gure 1.(
), the output of the f PDLSnrI fun
tion is used asan input to the f PDLTrip fun
tion, and the latter fun
tion therefore may beinvoked only when the former is
ompleted. This is the same
on
ept usedin data
ow languages su
h as LUSTRE [5℄.Stru
tured De
ision Table (SDT) : The required behavior of ea
h basi
fun
tion is expressed in a tabular notation,
alled SDT, as shown in �g-ure 2. The fun
tion f PDLCond produ
es an output, whose value is eitherk CondOut or k CondIn. The k pre�x indi
ates a
onstant value.Condition ma
ros are a substitution for spe
i�

onditions. For example,lines 2{5 of the
ondition ma
ros in �gure 2 de�ne the ma
ro w FlogPDLCondLo[f Flog℄. If f Flog<k FlogPDLLo-k CondHys, w FlogPDLCondLo[f Flog℄is denoted \a" a

ording to line 3.As shown in the se
ond
olumn in the SDT, this fun
tion returns the valuek CondOut when the value m PDLCond is equal to k CondSwLo andw FlogPDLCondLo[f Flog℄ is equal to a. The `-' entries denote the `don't
are'
ondition. 3

m_PDLCond

m_PHTD[i], i=1..4

m_PrzL

m_SGL[i], i=1..4

m_Flin

m_Flog

c_PDLTrip

c_PZLTrip

c_SLLTrip

c_FlogM

g_Overview

c_PZLTrip

c_SLLTrip

c_FlogM

m_PHTD[i], i=1..4

m_PDLCond

c_PDLTrip

m_PrzL

m_Flin

m_SGL[i], i=1..4

m_Flog
(a) A part of the FOD for SDS2
m_PDLCond

m_PHTD[i], i=1..4

m_PrzL

m_SGL[i], i=1..4

c_PDLTrip

c_PZLTrip

c_SLLTrip
g_SLL

f_PDLTrip

f_PZLTrip

f_SLLTrip

m_Flin

m_Flog

c_FlogM

c_FlogM

m_PHTD[i], i=1..4

f_PumpMde

f_Flog

f_FaveC

m_PDLCond
����g_PDL

g_PZL

f_Flog

m_PrzL

f_FaveC

f_PumpMde

m_SGL[i],i=1..4

f_FaveC

f_Flog

g_Process

Inputs

m_PrzL

m_SGL[i],i=1..4

m_Flin

m_Flog

m_PHTD
(b) A lower-level FOD of g Overview
m_PDLCond

f_Flog

f_PDLSpI[

i], i=1..4
�f_PDLCon

d

f_PDLSnrI

[i], i=1..4
 ��f_PDLTrip

f_PDLDly

f_PDLSnr

Dly[i],

i=1..4

c_PDLTrip

m_PHTD[i], i=1..4

s_PDLDly

s_PDLCond

f_PumpMde

f_FaveC

m_PDLCond

f_Flog

f_PDLSnrDly[i],

i=1..4

f_PumpMde

m_PHTD[i],

i=1..4

f_FaveC

f_PDLSpI[i],

i=1..4

m_PHTD[i],

i=1..4

f_PDLSnrDly[i],

i=1..4

t_Trip

s_Pending

t_Pending

s_PDLDly

f_PDLCond

f_FaveC

f_PDLSnrI[i],

i=1..4

s_PDLDly

f_PDLDly

f_PDLTrip

(
) A lower-level FOD of g PDLFig. 1. Examples of the fun
tion overview diagram4

1: Condition Ma
ros:2: w FlogPDLCondLo[f Flog℄3: a f Flog < k FlogPDLLo - k CondHys4: b f FlogPDLLo - k CondHys <= f Flog < k FlogPDLLo5:
 f Flog >= k FlogPDLLo6: w FlogPDLCondHi[f Flog℄7: a f Flog < k FlogPDLHi - k CondHys8: b f FlogPDLHi - k CondHys <= f Flog < k FlogPDLHi9:
 f Flog >= k FlogPDLHiStru
tured De
ision Table:CONDITION STATEMENTSm PDLCond = k CondSwLo T T T T F F F Fw FlogPDLCondLo[f Flog℄ a b b
 - - - -w FlogPDLCondHi[f Flog℄ - - - - a b b
s PDLCond = k CondOut - T F - - T F -ACTION STATEMENTSf PDLCond = k CondOut X X X Xf PDLCond = k CondIn X X X XFig. 2. The SDT for f PDLCondTiming fun
tion : Timing fun
tions are used for spe
ifying timing
onstraintsand real-time behavior. A prototype of a timing fun
tion is t Wait is t Wait(C (t), Time value, tol), where C (t) is a logi
al
ondition at time t, theTime value is a time interval, and tol is an a

eptable time deviation.Intuitively speaking, the fun
tion stays true during Time value when theimmediately previous value of the fun
tion is false and C (t) is true at timet. The t Wait at time 0 is FALSE. The formal semanti
 de�nition of a timingfun
tion ist Wait(C(t); Time value; tol)= 8<:true if there exists an instant in time; t s 2 [t� Timer value; t℄su
h that C(t s) AND :t Wait(C(t s��); Time value; tol)false otherwise; in
luding at t = 0For example, t Trip in �gure 1.(
) is de�ned su
h thatt Trip = t Wait(C, k PDLTrip, k PDLTripTol)where C = (f FaveC >= k FaveCPDL ANDt Pending = false AND s Pending = true)This means that t Trip is true between time t and time t + k PDLTripwhen t Trip is false at time t-�, and f FaveC >= k FaveCPDL AND t Pending= false AND s Pending = true. The k PDLTripTol is the toleran
e ofk PDLTrip.2.2 Program Fun
tional Spe
i�
ation (PFS)A program fun
tional spe
i�
ation (PFS) is a system spe
i�
ation written innatural language (English for Wolsung SDS2), as prepared by domain experts.The stru
ture is highly intuitive, and an example is shown in �gure 3. The PFSfor SDS2 is 21 pages, and PDL trip in this
ase study a

ounts for 4 pages.5

PHT Low Core Di�erential Pressure (PDL)1: The PHT Low Core Di�erential Pressure (�P) trip parameter in
ludes both2: an immediate and a delayed trip setpoint. Unlike other parameters, the �P3: parameter immediate trip low power
onditioning level
an be sele
ted by the4: operator. A handswit
h is
onne
ted to a D/I, and the operator
an
hoose5: between two predetermined low power
onditioning levels.6: The PHT Low Core Di�erential Pressure trip requirements are:7: � � � � � �8: e. Determine the immediate trip
onditioning status from the
onditioning level9: D/I as follows:10: 1. If the D/I is open, sele
t the 0:3%FP (Full Power)
onditioning level.11: If �LOG < 0:3%FP � 50mV ,
ondition out the immediate trip.12: If �LOG >= 0:3%FP , enable the trip.13: � � � � � �14: g. If no PHT �P delayed trip is pending or a
tive then exe
ute a delayed15: trip as follows:16: 1. Continue normal operation without opening the parameter trip D/O for17: nominally three se
onds.18: 2. After the delay period has expired, open the parameter trip D/O19: if fAV EC equals or ex
eeds 80%FP .20: Do not open the parameter trip D/O if fAV EC is below 80%FP .21: 3. On
e the delayed parameter trip has o

urred,22: keep the parameter trip D/O open for one se
ond.23: � � � � � �24: h. Immediate trips and delayed trips (pending and a
tive)
an o

ur simultaneously.25: � � � � � � Fig. 3. Example of program fun
tional spe
i�
ation3 Veri�
ation of SCR-style SRS3.1 Translation from SCR-style SRS to PVSWe des
ribe a translation pro
edure of SCR-style SRS as embodied in our tool,and its appli
ation to the spe
i�

ase study of the Wolsung SDS2 SRS. Thetranslation pro
edure
onsists of �ve steps :1. De�nition of time (ti
k) model elements2. De�nition of types and
onstants3. De�nitions of types for monitored and
ontrolled variables4. Translation of SDTs5. De�nition and translation of timing fun
tionsStep 1. De�nition of time model elements:Time in
reases by a �xed period, so time
an be spe
i�ed using a ti
k, apositive number. A time is represented by the set of su

essive multiples of thatperiod, starting from 0. This part is
ommon through di�erent spe
i�
ationsand is denoted in �gure 4.2 Time is des
ribed in the type ti
k de�nition in line2 The numbering on the left is merely a line number for referen
e in this paper, andis not part of the translation pro
edure or translated spe
i�
ation.6

1, being de
lared as a nat (natural number). Line 2 de�nes t, representing avariable of type ti
k. In line 3, a
onstant init is de�ned to be 0, for use asthe initial value of ti
k.1: ti
k : TYPE+ = nat CONTAINING 02: t : VAR ti
k3: init : ti
k = 0Fig. 4. Step 1. De�nition of model elementsStep 2. De�nition of types and
onstants:The type of a variable in SCR-style SRS is di�erent for analog variables anddigital variables. The type for an analog variable is de
lared to be a real number(or subtypes of real), and the type for a digital variable is a given enumeration.Traje
tories of the value of variables with time are de
lared as fun
tions fromti
k to the variable type.Figure 5 shows the types and
onstant de�nitions used in the Wolsung SDS2.Line 1 shows the de�nition of millivolt, de�ned in the SCR style as an analogvariable, so it is translated to the real type. Line 2 is a de�nition of t Millivoltas a fun
tion from ti
k to millivolt. Line 4 is a de�nition of the zero onetype for a digital variable, de�ned as set type whose membership in
ludes 0and 1. In line 5, undef will be used for
onstants whose values are unde�ned.An unde�ned value will be assigned a value during later phases of the softwaredevelopment pro
ess. k Trip and k NotTrip in lines 6 and 7 are
onstants ofthe digital variable type. Line 11 de�nes to TripNotTrip as an enumeration ofk Trip and k NotTrip. Lines 12 and 13 de�ne a fun
tion t TripNotTrip fromti
k to to TripNotTrip. This type in
ludes the trivial fun
tion mapping fromany ti
k value t to the
onstant k Trip. to CondInOut is a enumeration typewhose members are k CondIn and k CondOut. Line 15 is a fun
tion t CondInOutfrom ti
k to to CondInOut. Line 17 de�nes enumab
 used within SDT. enumab
is an enumerative type for a, b, and
.Step 3. De�nition of types for monitored and
ontrolled variables:This step de�nes the types of the monitored and
ontrolled variables usingthe de�nitions from step 2. The variables are de�ned in the form variable :type. Figure 6 is an example for monitored variable m Flog and
ontrolled vari-able
 PDLTrip. m Flog is a type t Milivolt in line 1 and
 PDLTrip is a typet TripNotTrip.Step 4. Translation of SDTs:Fun
tions in an SCR-style SRS are stru
tured in a hierar
hy. The lowest levelof the hierar
hy is an internal
omputation fun
tion expressed as an SDT or atiming fun
tion. The hierar
hi
al information is not needed in the translationfor
he
king fun
tional
orre
tness; hen
e, this step translates only the SDT andtiming fun
tions.There are two kinds of fun
tion. One is a fun
tion that reads values at ti
kt and writes values at ti
k t. The other is a fun
tion whi
h reads both valuesat ti
k t and at t-1 and writes values at ti
k t. SCR-style SRS assumes that ittakes zero time to exe
ute a fun
tion. 7

1: millivolt : TYPE = real % analog variable2: t_Millivolt : TYPE = [ti
k -> millivolt℄3:4: zero_one : TYPE+ = fx:int | x=0 OR x=1g CONTAINING 0 % digital var.5: undef : TYPE+ % undefined-value
onstant6: k_Trip : zero_one = 07: k_NotTrip : zero_one = 18: k_CondIn : undef9: k_CondOut : undef10:11: to_TripNotTrip : TYPE = fx:zero_one | x = k_Trip OR x = k_NotTripg12: t_TripNotTrip : TYPE+ = [ti
k -> to_TripNotTrip℄% fun
tion type from13: CONTAINING lambda (t:ti
k) : k_Trip % ti
k to_TripNotTrip14: to_CondInOut : TYPE = fk_CondIn, k_CondOutg % in
l. t->k_Trip15: t_CondInOut : TYPE = [ti
k -> to_CondInOut℄16:17: enumab
 : TYPE = fa,b,
gFig. 5. Step 2. De�nition of types and
onstants1: m_Flog : t_Milivolt % Type definition for monitored variable2:
_PDLTrip : t_TripNotTrip % Type definition for
ontrolled variableFig. 6. Step 3. De�nition of types for monitored and
ontrolled variablesLet f output, f input1, f input2, and s output be fun
tion names or variablenames. The �rst kind of fun
tion isf output(t) =
ompute(f input1 (t), f input2 (t))To
ompute f output, it reads the values of the f input1 and f input2 at ti
k tand then
ompute f output at ti
k t. For this fun
tion, the translation templateis1: f_output(t:ti
k):value_type =
ompute(f_input1(t),f_input2(t))If the
ondition ma
ro is de�ned within
ompute, the ma
ro should be lo
allyde�ned by the LET � � � IN
onstru
t. In this
ase, the translation template is31: f_output(t:ti
k) : value_type =2: LET3: w_
ondition_ma
ro : enumeration_type =
ondition_ma
ro4: IN5:
ompute(f_input1(t), f_input2(t))The se
ond kind of fun
tion isf output(t) =
ompute(f input1 (t), s output(t))s output(t) = � initial value when t = 0f output(t� 1) when t 6= 03 In SCR-style SRS, fun
tions and
ondition ma
ros are de�ned as tabular notation,so
ondition ma
ro and
omputes in translated PVS spe
i�
ation are expressed asa TABLE � � � ENDTABLE
onstru
t. 8

In the se
ond kind of a fun
tion, there is a
ir
ular dependen
y among thef output and the s output. The type
he
king of PVS does not admit
ir
ulardependen
ies in an expli
it manner, so we use a de�nitional style with lo
alde�nitions embedded within a re
ursive fun
tion, in this paper. The transla-tion template for this kind of fun
tion introdu
es a lo
al
opy of the mutuallydependent fun
tion.1: f_output(t:ti
k) : RECURSIVE value_type =2: LET3: s_output:[ti
k->value_type℄=LAMBDA (tt:ti
k):4: IF tt = 0 THEN initial_value5: ELSE f_output(tt-1)6: ENDIF7: IN8: output(f_input1(t), s_output(t))9: MEASURE t10: s_output(t:ti
k) : value_type = IF t = 0 THEN initial_value11: ELSE f_output(t-1)12: ENDIFThe de�nition of f output is given in lines 1{9. Line 8 refers to s output,but as s output is not de�ned until lines 10{12, so a lo
al de�nition of s outputis given within the fun
tion f output at lines 3{6. The keyword RECURSIVE isused to indi
ate a re
ursive fun
tion, and a MEASURE fun
tion provided to allowthe type
he
ker to generate proof obligations to show termination.The translation of f PDLCond in �gure 2 is shown in �gure 7. f PDLCond atline 4 is re
ursively de�ned, so we de�ne f PDLCond as a re
ursive fun
tion usingRECURSIVE. And we de�ne
ondition ma
ro w FlogPDLCond and w FlogPDLCondHiin lines 6{11.We also explored an approa
h using AXIOMs to introdu
e mutually re
ursivefun
tions. The approa
h separates the de�nition part and de
laration part in away similar to high-level languages, so it does not need lo
al de�nition. However,a step-by-step proof may be required for safety auditing, so there is a tradeo�between automation and auditability. We
hose to prefer automation, as an aidto �nding errors qui
kly, rather than fully auditable veri�
ation.The translated spe
i�
ation in this paper is more
omplex than the de
lar-ative style be
ause of the lo
al de�nition and re
ursive de�nition for
ir
ulardependent fun
tions. The major advantage of the de�nitional style is that it en-ables greater automation of proofs. However, the step-by-step proof that may berequired for safety auditing is sometimes diÆ
ult. The de
larative style supportsless automation for proving, but allows for auditing the proof. We re
ommendthe de
larative style for early prototyping and the de�nitional style for full spe
-i�
ations.Step 5. De�nition and translation of timing fun
tions:The semanti
s of timing fun
tions in SCR-style SRS is given in �gure 8.The fun
tion twf at lines 1{7 de�nes the output as FALSE when ti
k t = 0 and9

1: f_PDLCond(t:ti
k) : RECURSIVE to_CondInOut =2: LET3: s_PDLCond : t_CondInOut = LAMBDA (tt:ti
k):IF tt=0 THEN k_CondIn4: ELSE f_PDLCond(tt-1)5: ENDIF,6: w_FlogPDLCondLo : enumab
 = TABLE7: ... % similar to if-then-else8: ENDTABLE,9: w_FlogPDLCondHi :enumab
 = TABLE10: ... % similar to if-then-else11: ENDTABLE,12: X = (LAMBDA (x1: pred[bool℄),13: (x2: pred[enumab
℄),14: (x3: pred[enumab
℄),15: (x4: pred[bool℄) :16: x1(m_PDLCond(t) = k_CondSwLo) &17: x2(w_FlogPDLCondLo) &18: x3(w_FlogPDLCondHi) &19: x4(s_PDLCond(t) = k_CondOut)) IN TABLE20: % | | | |21: % v v v v22: %-------|----|----|----|------------%23: | X(T , a? , d
 , ~)| k_CondOut ||24: %-------|----|----|----|------------%25: | X(T , b? , d
 , T)| k_CondOut ||26: %-------|----|----|----|------------%27: | X(T , b? , d
 , F)| k_CondIn ||28: %-------|----|----|----|------------%29: | X(T ,
? , d
 , ~)| k_CondIn ||30: %-------|----|----|----|------------%31: | X(F , d
 , a? , ~)| k_CondOut ||32: %-------|----|----|----|------------%33: | X(F , d
 , b? , T)| k_CondOut ||34: %-------|----|----|----|------------%35: | X(F , d
 , b? , F)| k_CondIn ||36: %-------|----|----|----|------------%37: | X(F , d
 ,
? , ~)| k_CondIn ||38: %-------|----|----|----|------------%39: ENDTABLE40: MEASURE t41:42: s_PDLCond(t:ti
k):to_CondInOut = IF t = 0 THEN k_CondIn43: ELSE f_PDLCond(t-1)44: ENDIFFig. 7. Example of de�nitional style of SRS (f PDLCond and s PDLCond)
10

TRUE for a spe
i�ed time interval tv after triggering a
ondition to TRUE (i.e.,that ts is a
urrent ti
k, the output at ts-1 is FALSE, and the
ondition at tsis TRUE). The fun
tion twfs at lines 9{10 spe
i�es a fun
tion from ti
k to anoutput(bool) to spe
ify a sequen
e of the fun
tion twf1: twf(C:pred[ti
k℄, t:ti
k, tv:ti
k): RECURSIVE bool =2: IF t = 0 THEN FALSE % initial value is FALSE3: ELSE EXISTS (ts: ft:ti
k | 0 < tg):4: (t-tv+1) <= ts AND ts <= t AND % During a time interval5: (C(ts) AND NOT twf(ts-1)) % if it starts TRUE6: ENDIF % with just before FALSE,7: MEASURE t % output is TRUE8:9: twfs(C:pred[ti
k℄, tv:ti
k) : pred[ti
k℄ =10: (LAMBDA (t:ti
k):twf(C,t,tv))Fig. 8. Step 5 (1). The semanti
s of timing fun
tionsAn example of translating a spe
i�
 timing fun
tion is given in �gure 9. Lines1{2 de�ne the
ondition used in timing fun
tion t Trip.
y
letime in line 3 isan interval between two
onse
utive exe
utions.1: C_Trip(t:ti
k) : bool = f_FaveC(t) >= k_FaveCPDL AND2: (NOT t_Pending(t)) AND s_Pending(t)3: t_Trip(t:ti
k) : bool = twfs(C_Trip,k_trip/
y
letime)(t)Fig. 9. Step 5 (2). Translation of timing fun
tion3.2 Translation from PFS to PVSThe Program Fun
tional Spe
i�
ation (PFS) is translated into PVS to
he
k
onsisten
y between the PFS and the SRS. In this paper, we extra
t propertiesto be
he
ked from the PFS, but generally they are not limited to those from thePFS. FMEA (Failure Mode and E�e
ts Analysis) results and domain experts'knowledge also
ould be used to generate putative theorems that may be provenof the system under analysis.The PFS is written in un
onstrained natural language, so the translation
an-not be easily automated. However, we propose a systemati
 two-phase pro
ess|the �rst phase is to de�ne a
ross-referen
e between terms in PFS and SRS.The se
ond phase is to translate senten
es in PFS into PVS. During the �rstphase, we
an often �nd in
onsistent terms, that must be resolved by the origi-nal spe
i�
ation authors. The se
ond phase also
annot be automated, but thereare three distin
t
lasses, or `patterns,' in the text of the PFS. Be
ause of thereal-time
onstraints involved, these patterns
annot be des
ribed in temporallogi

lasses su
h as LTL (Linear Temporal Logi
) or CTL (Computational TreeLogi
), so we dire
tly en
ode in a
lassi
al logi
. Many resear
hes have proposedreal-time extension of temporal logi
s, but there is no standard notation for this.(Pattern 1) Input-Output spe
i�
ations are requirements relating the in-put and output of fun
tions. If f
ondition(t) = k
ondition at ti
k t, the output11

f output is k output. They
an be des
ribed as an impli
ation (with impli
ituniversal quanti�
ation over ti
k t) as a relation:theorem_input_output : THEOREM(f_
ondition(t) = k_
ondition) => f_output(t) = k_output(Pattern 2) Time-Duration spe
i�
ations are real-time requirements su
hthat if
ertain inputs are satis�ed, the
ertain outputs should be maintained fora spe
i�ed duration. If f
ondition(t) = k
ondition at ti
k t, the output of thef output is k output between ti
k t and t + duration.theorem_duration : THEOREM FORALL (t:fts:ti
k|ts>0g) :(f_
ondition(t) = k_
ondition) =>(FORALL (ti: ti
k): (t <= ti and ti <= t+duration) =>f_output(ti) = k_output)(Pattern 3) Time-Expiration spe
i�
ations are real-time requirements su
hthat if
ertain inputs are satis�ed and a spe
i�ed duration has elapsed, then a
ertain output should be generated. If f
ondition(t) = k
ondition at ti
k t andti
k duration has elapsed, the output of the f output is
hanged to k output.theorem_expiration : THEOREM FORALL (t:fts:ti
k|ts>0g) :(f_
ondition(t) = k_
ondition) =>((0 <= duration) => f_output(t+duration+1) = k_output)The translation from PFS to PVS THEOREMs follows the example in �gure 10,whi
h shows the translation of the items from �gure 3. Item e.1 in �gure 3 is `Ifthe D/I is open, sele
t the 0:3%FP (Full Power)
onditioning level. If �LOG <0:3%FP�50mV ,
ondition out the immediate trip. If �LOG >= 0:3%FP , enablethe trip.' This senten
e mat
hes (Pattern 1), input-output spe
i�
ations. `TheD/I' is des
ribed as `hand swit
h' and `low power
onditioning level' in lines3 and 4 in �gure 3. So `the D/I' is mapped to `m PDLCond.' And `the D/I isopen' means that m PDLCond(t) = k CondSwLo. In this state, `immediate trip'is `
ondition out' when �LOG < 0:3%FP � 50mV . �LOG is mapped f Flog and0:3%FP is 2739 mv, that is, k FlogPDLLo. This information is des
ribed in anappendix of PFS and SRS. In this state, immediate trip should not operate(
ondition out). It
an be written as f PDLCond = k CondOut. In a similar way,`enable trip' when �LOG >= 0:3%FP translates THEOREM th e 1 2.th_e_1_1 : THEOREM (m_PDLCond(t) = k_CondSwLo AND f_Flog(t) < 2739-50)=>f_PDLCond(t) = k_CondOutth_e_1_2 : THEOREM (m_PDLCond(t) = k_CondSwLo AND f_Flog(t) >= 2739) =>f_PDLCond(t) = k_CondInFig. 10. Example of translation from PFS to PVS THEOREMs3.3 Veri�
ationThe translated spe
i�
ation is stored in a �le for veri�
ation by PVS. The veri�-
ation in PVS
annot be entirely automated, but we found that there is a pattern12

when we prove similar properties. A proof template is (expand* ": : :")(grind:ex
lude (": : :")) or (grind :ex
lude (": : :")). The : : : is related to thefun
tions or de�nitions on the paths of data
ows. The PVS proof strategy grindtries to rewrite the de�nitions in all possible
ases, and for
ir
ular de�nitionit rewrites in�nitely. So : : : in ex
lude are de�nitions are
ir
ular dependen
yrelations. expand is used for rewriting only one expansion of a de�nition. Whenwe prove THEOREM th e 1 1 and THEOREM th e 1 2 in �gure 3.2, f PDLCond is are
ursive de�nition. So we
an prove them by (expand "f PDLCond") (grind:ex
lude ("f PDLCond")).4 Dis
ussionDuring our veri�
ation experien
e, we dis
overed notational errors, di�erentterms for the same
on
epts, and hidden assumptions.First, we found that di�erent terms were used in PFS during the
onstru
tionof the
ross-referen
es. For example, the m PDLCond is used as hand swit
h,low power
onditioning level, and
onditioning level. The m PHTD is used asCore Di�erential Pressure measurement, �Pi, and DP signal. The f PDLTrip, isused as the state of PHT low
ore di�erential pressure parameter trip, �Ptrip,and parameter trip(D/O). Our method
an be therefore valuable in en
ouragingthat the PFS use terms in the same way that the SRS does.Se
ond, other di�erent terms in the PFS are `
ondition out the immediatetrip' and `enable trip.' The `
ondition out' is a
tually the opposite of `enable',but this is far from
lear. Our analysis highlights su
h obfus
ated wording, in�gure 11. We present a modi�ed PFS term, e.`the low power
onditioning level'from `the
onditioning level' in �gure 3. The `
ondition in - enable' is also mod-i�ed to `disable - enable'.e. Determine the immediate trip
onditioning status from the low power
onditioninglevel D/I as follows:1. If the D/I is open, sele
t the 0:3%FP
onditioning level. If �LOG < 0:3%FP �50mV , disable the immediate trip. If �LOG >= 0:3%FP , enable the immediatetrip. Fig. 11. Unambiguous PFSThird, there are hidden assumptions, su
h as in the following PFS. The g.2and g.3 in �gure 3 are translated into �gure 12 in PVS. But we
ould not provethe THEOREM th inappropriate g 3.We investigated the reason and we
on
luded that there were hidden assump-tions. Items g.2 and g.3 in �gure 3 are not independent. In other words, the itemg.3
an be true only if the item g.2 is true. `On
e the delayed parameter triphas o

urred' does not mean `the delayed parameter trip has o

urred' dire
tly,but it means `fAV EC equals or ex
eeds 80%FP and then the delayed parametertrip has o

urred'. So the assumption the delayed parameter trip has o

urredin item g.3 should be strengthened with items g.2.1 and g.2.2. As a result of this13

th_appropriate_g_2_1 : THEOREM FORALL (t:fts:ti
k|ts>0g) :f_FaveC(t)>= 80 AND t_Pending(t) = false ANDs_Pending(t) = true AND t_Trip(t-1) = false=> t_Trip(t)th_appropriate_g_2_2 : THEOREM FORALL (t:fts:ti
k|ts>0g) :f_FaveC(t)< 80 AND t_Pending(t) = false ANDs_Pending(t) = true AND t_Trip(t-1) = false=> t_Trip(t)th_inappropriate_g_3 : THEOREM FORALL (t:fts:ti
k|ts>0g):t_Trip(t-1) = false AND t_Trip(t) = true =>FORALL(t1 : ti
k): ((t <= t1 and t1 <= 1000/
y
letime +t) =>t_Trip(t1) = true)Fig. 12. Example of inappropriate translation of PFSinvestigation, we translated the above PFS into PVS spe
i�
ations again, su
h asin �gure 13. Then we su

eeded in the proof of THEOREM th appropriate g 3.This error was not found through inspe
tion, and is the kind of error that isdiÆ
ult to �nd without formal analysis.th_appropriate_g_3 : THEOREM FORALL (t:fts:time|ts>0g):t_Trip(t-1) = false AND t_Trip(t) = true AND%% strengthen assumption from th_appropriate_g_2_1~g_2_2f_FaveC(t) >= 80 AND t_Pending(t)=false AND s_Pending(t)=true =>FORALL(t1 : time): ((t <= t1 and t1 <= 1000/
y
letime + t) =>t_Trip(t1) = true)Fig. 13. Example of appropriate translationRelated workThe work presented here is
omplemented by ongoing work at M
Master Uni-versity by Lawford et al. [6℄. Using a similar
ase study, their work
on
entrateson veri�
ation of the re�nement of the requirements in the SRS into design el-ements, also expressed in SCR, in the software design des
ription (SDD). Theyuse an extension of the 4-variable model of Parnas [7℄ into a relational setting,and
laim that their approa
h is more intuitive for system engineers. Our goalin the present work is essentially the same - to develop easier-to-use veri�
a-tion approa
hes - for appli
ation to the earlier part of the software developmentpro
ess.Another approa
h for formal validation of requirements from PFS is done byGervasi and Nuseibeh [8℄. It provides a systemati
 and automated method to
onstru
t a model from a PFS, and then
he
king some stru
tural properties (forexample, fun
tion's domain is
orre
t) of the
onstru
ted model. We think thattheir extra
tion te
hnique
an help in extra
ting fun
tional properties; however,they do not
he
k fun
tional properties.14

5 Con
lusionBased on our experien
e of inspe
ting the Wolsung SDS2 SRS, we have demon-strated that inspe
tion has limitations. To verify fun
tional properties, we de-veloped a software tool with a graphi
al user interfa
e that
onverts SCR-stylerequirements spe
i�
ations into the PVS language. In addition, we provide amethod for verifying fun
tional properties in PFS using PVS. We believe thatthe pro
edure helps to
onstru
t high-quality safety-
riti
al software.Users of our approa
h need not be experts on formal methods or power usersof PVS. Our graphi
al editor provides a user-friendly interfa
e to allow edit-ing of SCR-style spe
i�
ations and automates the translation pro
ess. However,the proof pro
ess
an be
ompleted with a limited study of the proof pattern.The spe
i�er translates PFS into PVS theorems manually, even though we
antranslate systemati
ally using a
ross-referen
e table.Although we strongly believe that our approa
h delivers signi�
ant bene�tsto pra
titioners, the following further enhan
ements seem to be desirable:{ Development of translation rules so that a formal spe
i�
ation written instate
harts or mode
harts
an be veri�ed using the same approa
h{ More systemati
 method of translating from PFS to PVS theorems, to en-han
e
ompleteness of the
urrent
ross-referen
e methods{ Additional study of proof patterns, to the veri�
ation{ Enhan
ements to the SRS-style editor, su
h as XML translation, to in
reaseits pra
ti
al utilityReferen
es1. M. Fagan, \Advan
es in Software Inspe
tions," IEEE Transa
tions on SoftwareEngineering, 12(7), pp. 133-144, 1986.2. S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert, PVS System Guide, PVSLanguage Referen
e, and PVS Prover Guide Version 2.4 , Computer S
ien
e Lab-oratory, SRI International, 2001.3. AECL CANDU, Software Work Pra
ti
e, Pro
edure for the Spe
i�
ation of SoftwareRequirements for Safety Criti
al Systems, Wolsung NPP, 00-68000-SWP-002, 1991.4. C. Heitmeyer, J. Kirby, and B. Labaw, \The SCR Method for Formally Spe
ifying,Verifying and Validating Software Requirements: Tool Support," Pro
eedings of the19th International Conferen
e on Software Engineering (ICSE '97), pp. 610-611,1997.5. N. Halbwa
hs, P. Caspi, P. Raymond, and D. Pilaud, \The Syn
hronous Data FlowProgramming Language LUSTRE," Pro
eedings of the IEEE, 79(9), pp. 1305-1320,1991.6. M. Lawford, J. M
Dougall, P. Froebel, and G. Moum, \Pra
ti
al appli
ation offun
tional and relational methods for the spe
i�
ation and veri�
ation of safety
riti
al software," Pro
eedings of Algebrai
 Methodology and Software Te
hnology,8th International Conferen
e (AMAST 2000), LNCS 1816, pp. 73-88, 2000.7. D. Parnas and J. Madey, \Fun
tional do
umentation for
omputer systems engi-neering," Te
hni
al Report CRL No. 273, Tele
ommuni
ations Resear
h Instituteof Ontario, M
Master University, 1991.8. V. Gervasi and B. Nuseibeh, \Lightweight Validation of Natural Language Require-ments: a
ase study," Pro
eedings of 4th IEEE International Conferen
e on Re-quirements Engineering (ICRE 2000), 2000.15

