
Authentication, Key Distribution, and Secure Broadcast in

Computer Networks Using No Encryption or Decryption

Li Gong

SRI International

Computer Science Laboratory

333 Ravenswood Avenue

Menlo Park, California 94025 U.S.A.

gong@csl.sri.com

May 23, 1994

Abstract. This paper describes Needham-Schroeder type authentication and key-distribution

protocols that do not use encryption or decryption. The new protocols use polynomial interpolation

instead, and one-way hash functions if necessary. These protocols are simple, elegant, and e�cient

when compared with conventional protocols based on encryption. One signi�cant advantage of this

new approach is that critical security properties of the protocols no longer depend on an underlying

cryptosystem being secure. Protocols for secure broadcast and for secure communication are also

developed using the same techniques.

1 Authentication

Authentication, the process of identifying entities such as users and machines, is a crucial element

in secure distributed systems and networks. The process of authentication is often coupled with key

distribution, and some argue that the two issues should be considered jointly rather than separately

[3, 14].

Research in authentication protocols has been signi�cantly in
uenced by the work of Needham

and Schroeder [14], and thus we con�ne this paper to the discussion of Needham-Schroeder type

authentication protocols. Typically, for two clients to authenticate each other, an authentication

server distributes a session key to both clients so that they will have a secure communication

channel. The protocols can be based on symmetric-key cryptosystems or asymmetric-key (e.g.,

public-key) cryptosystems [5, 14]. The server either shares a secret key with each client, or the

client (securely) registers a public key with the server in advance [14]. In the rest of our discussion,

we examine only the case in which server and clients share symmetric keys.

1

In an e�ort to reduce the use of encryption in authentication protocols (partly to increase protocol

e�ciency), Gong describes an authentication protocol that uses only secure keyed one-way hash

functions

1

[7]. Basically, for the server (call it S) to distribute a session key k to clients A and B,

S chooses k such that it is computable in a one-way hash fashion from the secret key that A and S

share, so that, instead of sending the key k toA, the server needs to send only additional information

for computing the one-way hash function. Because the hash function is one-way, the same process

cannot be repeated with B. But S can send k to B using a simple exclusive-or operation to hide

k. This technique was subsequently used elsewhere to design e�cient authentication protocols for

computer networks (e.g., [2]).

In this paper, we describe new authentication protocols that do not use encryption or decryption.

These protocols are symmetric in the sense that all clients use the same routine to compute the

session key. The protocols are novel in that they are based on polynomial interpolation [11, pp.484-

486]. Very signi�cantly, the new protocols (unlike existing ones) do not depend on the underlying

cryptosystem being secure. Moreover, the new protocols do not use techniques that are subject to

licensing or export controls.

The new techniques can also be used for developing secure broadcast protocols and for secure

communication. We discuss these topics in Sections 4 and 5.

2 Basic Techniques

In this section, we start by describing the basic technique for ensuring the secrecy of the distributed

session key. We then describe improvements that protect against attacks by insiders, attacks on

integrity, and replay attacks. For some applications, not all these improvements are necessary.

Due to the many ways in which these techniques can be combined, our full protocols in later sections

use only some of the techniques described here, although they are all applicable to authentication,

key distribution, and secure broadcast.

2.1 Secrecy

Suppose the server S shares a secret k

1

with client A and another secret k

2

with client B.

2

To

distribute a session key to the clients, S �rst selects a session key k, and then solves the following

equations for a

1

and a

2

:

k + a

1

� 1 + a

2

� (1)

2

= k

1

k + a

1

� 2 + a

2

� (2)

2

= k

2

All computations are performed mod(q) where q is a suitably large prime number [11]. Let f(x) =

k + a

1

� x+ a

2

� (x)

2

. Server S now calculates f(3) and f(4), and sends them to both A and B.

1

See [1] for a formulation of the concept and a proof of the existence of secure keyed one-way hash functions.

2

If k

1

= k

2

, then a

1

= a

2

= 0 and k = k

1

. Later we discuss how to avoid such situations.

2

The above procedure is like the \reverse calculation" of secret sharing in that, instead of calculating

some arbitrary \shadows" of a given secret [16], server S is given some pieces of \shadows" that

have been predetermined (e.g., k

1

and k

2

), and is then required to calculate what the rest of the

\shadows" should be.

A knows k

1

, and thus can use interpolation to solve the following equations to obtain k [11]:

8

>

<

>

:

k + a

1

� 1 + a

2

� (1)

2

= k

1

k + a

1

� 3 + a

2

� (3)

2

= f(3)

k + a

1

� 4 + a

2

� (4)

2

= f(4)

Similarly, B knows k

2

, and thus can obtain k by solving the following equations:

8

>

<

>

:

k + a

1

� 2 + a

2

� (2)

2

= k

2

k + a

1

� 3 + a

2

� (3)

2

= f(3)

k + a

1

� 4 + a

2

� (4)

2

= f(4)

An attacker who monitors network tra�c can gain absolutely no information of k, because for any

value of k, there is a pair of a

1

and a

2

(and therefore a pair of k

1

and k

2

) that will satisfy the above

equations. This argument is identical to that used in Shamir's secret-sharing scheme [16], and the

guarantee of k's secrecy is information theoretic. By the same argument, the attacker cannot gain

any information about k

1

or k

2

.

2.2 Prevention of Insi er ttac s

In the preliminary protocol described in the previous section, an insider can attack more e�ectively.

For example, after the authentication, A knows k, a

1

, and a

2

, and thus can easily compute k

2

, which

is f(2). An outsider can attack in the same way if k is later compromised through other means.

One solution is to use a one-way hash function h(), such as MD-5 [15] or Snefru [12], but in a keyed

fashion [1]. The server selects a random number r and solves the following equations instead:

k + a

1

� 1 + a

2

� (1)

2

= h(k

1

; r)

k + a

1

� 2 + a

2

� (2)

2

= h(k

2

; r)

The server then sends f(3), f(4), and r to the clients. Here, an outside attacker still cannot

compute k because he does not know either k

1

or k

2

and thus cannot compute h(k

1

; r) or h(k

2

; r),

given that h() is a secure keyed one-way hash function.

Moreover, A can compute only h(k

2

; r), which is used as a one-time pad and cannot lead to

the compromise of k

2

. Note that now the secrecy argument against insider attacks is no longer

information theoretic. This is because A can compute h(k

2

; r), and thus can guess a value of k

2

(call it k

0

2

) and verify the guess by computing h(k

0

2

; r) and then comparing it with h(k

2

; r). A

3

match indicates that k

2

= k

0

2

with a high probability. However, if we assume that the selection

of k

2

is from a su�ciently large space and by random means, then such an exhaustive attack is

computationally infeasible.

The number r should not be reused. Suppose r is �rst used to distribute a session to A and B,

and is later reused to distribute a session key to B and . Now since A is able to compute h(k

2

; r)

during the �rst protocol execution, A can obtain the new session key between B and .

We observe that if A can intercept the server's message toB and replace it with some other message,

then, because A knows h(k

2

; r), A can in theory sends a di�erent key k

0

to B by modifying f(3)

and f(4). This type of attack is often possible when the message delivery system is unreliable or

slow, especially when broadcast is simulated in software instead of implemented in hardware [9].

But since k is shared only between A and B, it is not unclear what advantages A gains by cheating

this way except that A can make B use a key favored by A. However, when we develop broadcast

protocols later in this paper, we see that it is desirable to ensure that A (or any other client) cannot

change k in any predictable way.

Another potential security problem is that, if A and B happen to share the same secret with the

server, i.e., k

1

= k

2

, then they will be able to discover this fact during authentication. As we

already argued, A can compute h(k

2

; r). If this value matches h(k

1

; r), then A will know that

k

1

= k

2

with a very high probability. Future sessions of authentication will be able to con�rm

whether k

1

= k

2

. One solution to this last problem is not to use the same nonce r, e.g., by using

h(k

1

; r) and h(k

2

; r+ 1) instead. Alternatively, we can include the identi�cations A and B in the

computation, e.g., by using h(k

1

; A; r), and h(k

2

; B; r).

A better protocol that solves all the above problems is to let the server solve the following equations:

k + a

1

� h(k

1

; r) + a

2

� (h(k

1

; r))

2

= k

1

k + a

1

� h(k

2

; r) + a

2

� (h(k

2

; r))

2

= k

2

Now, A cannot use f() to attack B because A does not know h(k

2

; r), the value for which B

computes f(). In particular, A, by modifying f(3) and f(4), cannot modify k in any predictable

fashion.

Because h() has collisions, in case no solution can be found for the above equations, S can select

another value for r and repeat the process. Alternatively, we can attach one more bit to the output

of hash functions, so that h(k

1

; r) j 0 = h(k

2

; r) j 1, where \x j y" denotes x concatenated with y.

This usage has the bene�t that even if k

1

happens to be equal to k

2

, the hash values cannot be

identical.

It seems a good practice not to use shared keys such as k

1

directly, so we can let the server solve

the following equations:

k + a

1

� h(k

1

; r) + a

2

� (h(k

1

; r))

2

= h(k

1

; r+ 1)

k + a

1

� h(k

2

; r) + a

2

� (h(k

2

; r))

2

= h(k

2

; r+ 1)

4

The reason for using h(k

1

; r+1) instead of h(k

1

; r) is again to preventB from solving a second-order

equation to compute h(k

1

; r).

Finally, we speculate that the use of one-way (hash) function (or another similar mechanism) cannot

be avoided, because otherwise for A to �nd out B's key k

2

, it is just a matter of solving a higher

order equation.

2.3 Inte rity

In the previous section, we discussed how to prevent an (inside) attacker from modifying k in any

predictable way. For many applications, this type of authentication is su�cient because as soon as

the session key is used in subsequent handshake or communication, a client will notice that the key

he received has been modi�ed.

In other applications, it is desirable or even vital for a client to know that the session key he receives

is genuine, before he uses it. To ensure key integrity, there are at least two solutions.

One solution is to add redundancy to the key that is sent, so that any modi�cation en route will

be detected. For example, typically k is 64 bit long and the hash function h() has an output size

of 128 bits. The server can distribute k j k instead of k. In other words, S solves the following

equations:

(k j k) + a

1

� h(k

1

; r) + a

2

� (h(k

1

; r))

2

= h(k

1

; r+ 1)

(k j k) + a

1

� h(k

2

; r) + a

2

� (h(k

2

; r))

2

= h(k

2

; r+ 1)

In this protocol, A (or B) solves the equations as before, checks that in the result the �rst half is

identical to the second half, and then accepts the �rst half as the session key. Any modi�cation

to the server's message highly likely will cause A (or B) to retrieve a value that is not of the form

k j k.

Another solution is to use a one-way hash function to introduce redundancy. For example, the

server can send A an additional data item, h(k

1

; k; r;A; B), as a secure checksum. After retrieving

the session key, A can recompute this checksum and compare it with the received value. In order

to forge a seemingly legitimate checksum, the attacker needs to know k

1

.

2.4 res ness

In protocols described in previous sections, an attacker may record the server's message from an

earlier run of the protocol and replay it later. If the session key k has been compromised between

the two runs, a successful replay attack will lead to a security breach.

To detect replay attacks, the server must include a freshness identi�er in his message, so that each

client can be convinced that the message is indeed fresh. The freshness identi�er must be securely

bound to the message in such a way that an attacker cannot modify the identi�er without being

detected.

5

A freshness identi�er can be the server's timestamp, if the server and the clients have securely and

closely synchronized clocks. It can also be a nonce, such as a random number, generated by the

intended recipient. Let f

id

denote a freshness identi�er. Then one possible protocol is to let the

server solve the following equations:

(k j k) + a

1

� h(k

1

; f

id1

; r) + a

2

� (h(k

1

; f

id1

; r))

2

= h(k

1

; f

id1

; r+ 1)

(k j k) + a

1

� h(k

2

; f

id2

; r) + a

2

� (h(k

2

; f

id2

; r))

2

= h(k

2

; f

id2

; r+ 1)

Here, f

id1

and f

id2

can be identical (when they are the server's timestamp) or di�erent (when they

are the clients' respective nonces). There are many other ways in which the freshness identi�ers can

be embedded. For example, the server can send A a secure checksum, h(k

1

; f

id1

; k; r;A;B) that is

also fresh. A timestamp needs to be sent as cleartext in the server's message, unless the recipients

can accurately predict its value.

e Authentication otoco s

Based on the basic techniques we have introduced so far, we now give concrete authentication

protocols. We �rst discuss the case where the authentication server distributes a key to two clients.

To avoid repetition, we give only a nonce-based protocol. In Section 3.2, we generalize the protocol

to the n-client case, for which we give a timestamp-based protocol. Other variations can be easily

derived. We call these protocols N D-A(n), for authentication with No ncryption or Decryption,

where n is the number of clients.

3.1 Protoco - 2 sin onces

Suppose the server S shares a secret k

1

with client A, and a secret k

2

with client B. Let

a

denote

A's identi�cation number, such as its Internet domain name or IP address (possibly hashed), and

similarly

b

for B. For ease of discussion, these identi�cation numbers are assumed to be distinct

values and neither of them are 1 or 2. Let

a

,

b

, and r denote the nonce chosen by A, B, and S

respectively. We use S A : x; y to denote that S sends A a message that is the concatenation of

x and y. The N D-A(2) protocol without handshake is as follows.

1. A B:

a

;

b

;

a

2. B S:

a

;

b

;

a

;

b

3. S B: r; f(1); f(2); h(k

2

;

b

; k; r;

b

;

a

)

4. S A: r; f(1); f(2); h(k

1

;

a

; k; r;

a

;

b

)

Informally, the protocol works in the following way. In message 1, A tells B that an authentication

protocol is initiated and sends along A's nonce. In message 2, B sends both clients' identi�ers and

nonces to the server. Server S then selects a key k and a nonce r, and solves the following equations

for a

1

and a

2

:

6

k + a

1

� h(k

1

;

a

; r) + a

2

� (h(k

1

;

a

; r))

2

= h(k

1

;

a

; r+ 1)

k + a

1

� h(k

2

;

b

; r) + a

2

� (h(k

2

;

b

; r))

2

= h(k

2

;

b

; r+ 1)

The reason for including

a

and

b

in formulae h(k

1

;

a

; r) and h(k

2

;

a

; r) in the equations is to

ensure that even if A and B happen to share the same secret with the server, i.e., k

1

= k

2

, the

equations are likely to have a solution.

Let f(x) = k + a

1

� x + a

2

� (x)

2

. Server S now calculates f(1) and f(2), computes the hash

functions, and sends messages 3 and 4. A then uses interpolation to solve the following equations

to obtain k.

8

>

<

>

:

k + a

1

� h(k

1

;

a

; r) + a

2

� (h(k

1

;

a

; r))

2

= h(k

1

;

a

; r+ 1)

k + a

1

� 1 + a

2

� (1)

2

= f(1)

k + a

1

� 2 + a

2

� (2)

2

= f(2)

A then uses this k to recompute h(k

1

;

a

; k; r;

a

;

b

) and compares it with the received value. A

match indicates that the message originates from the server S and has not been modi�ed during

transmission, and therefore k is indeed the session key the server has distributed. pon �nding a

mismatch, A terminates the protocol run or takes appropriate actions. B's action is the same as

A.

If A and B want to complete a two-way handshake, two optional messages can be added to the

protocol:

5. B A: h(k;

a

;

a

;

b

);

b

6. A B: h(k;

b

;

b

;

a

)

Note that B obtains A's nonce in message 2. Also, if timestamps are used instead of nonces,

the order of

a

and

b

in the calculation of h() in the two handshake messages must be di�erent

because otherwise, the two hash values could be identical (namely when A's and B's timestamps

are identical), in which case an attacker can playback B's own message 5 in place of message 6.

We can of course combine authentication and handshake to obtain a more compact protocol with

only �ve messages:

1. A B:

a

;

b

;

a

2. B S:

a

;

b

;

a

;

b

3. S B: r; f(1); f(2); h(k

1

;

a

; k; r;

a

;

b

); h(k

2

;

b

; k; r;

b

;

a

)

4. B A: r; f(1); f(2); h(k

1

;

a

; k; r;

a

;

b

); h(k;

a

;

a

;

b

);

b

5. A B: h(k;

b

;

b

;

a

)

The security arguments for this protocol are the same as those given in Section 2. In addition, in

an exhaustive cryptanalysis, the attacker may attempt to build up a dictionary of possible session

7

keys and hash values [6]. One way to increase the di�culty of this attack is to use longer texts

in the input to the hash function. This method is likely to greatly increase the search space with

little lost of e�ciency, because the computation of a hash function is extremely fast and the length

of the hash value remains constant.

3.2 Protoco - n sin i esta s

We now describe a protocol for the n-client case. Suppose server S is to distribute a secret to

n clients

i

, = 1; 2; : : : ; n, where

i

is

i

's identi�cation number, and

i

= when = . For

simplicity of discussion, we assume that these numbers are outside the range of 1 to n. Also suppose

that S and

i

share a secret k

i

. All computations are performed mod(q) where q is a suitably large

prime number. The protocol N D-A(n) is as follows.

The server selects a secret k and a random number r. It then solves the following equations for a

i

,

= 1; 2; : : : ; n.

8

>

>

>

<

>

>

>

:

k + a

1

� h(k

1

;

1

; r) + : : :+ a � (h(k

1

;

1

; r)) = h(k

1

;

1

; r+ 1)

k + a

1

� h(k

2

;

2

; r) + : : :+ a � (h(k

2

;

2

; r)) = h(k

2

;

2

; r+ 1)

: : : : : :

k + a

1

� h(k ; ; r) + : : :+ a � (h(k ; ; r)) = h(k ; ; r+ 1)

Let f(x) = k + a

1

� x+ : : :+ a � (x) . The server now calculates f(), = 1; 2; : : : ; n, and sends

the following messages, where

s

is S's timestamp:

. S

i

:

1

;

2

; : : : ; ; r;

s

; f(1); f(2); : : : ; f(n); h(k

i

;

1

;

2

; : : : ; ;

s

; r; k)

Similar to N D-A(2),

i

can use interpolation to retrieve k from the following equations:

8

>

>

>

>

>

<

>

>

>

>

>

:

k + a

1

� 1 + : : :+ a � (1) = f(1)

k + a

1

� 2 + : : :+ a � (2) = f(2)

: : : : : :

k + a

1

� n+ : : :+ a � (n) = f(n)

k + a

1

� h(k

i

;

i

; r) + : : :+ a � (h(k

i

;

i

; r)) = h(k

i

;

i

; r+ 1)

i

then recomputes h(k

i

;

1

;

2

; : : : ; ;

s

; r; k) to check that the message comes from S and has not

been modi�ed during transmission. Handshake messages can be added if required. The security

arguments are identical to that for N D-A(2).

The eliminate the need for sending the n additional hash values, S can solve

8

>

>

>

<

>

>

>

:

(k j k) + a

1

� h(k

1

;

1

; r) + : : :+ a � (h(k

1

;

1

; r)) = h(k

1

;

1

;

2

; : : : ; ;

s

; r; 1)

(k j k) + a

1

� h(k

2

;

2

; r) + : : :+ a � (h(k

2

;

2

; r)) = h(k

2

;

1

;

2

; : : : ; ;

s

; r; 2)

: : : : : :

(k j k) + a

1

� h(k ; ; r) + : : :+ a � (h(k ; ; r)) = h(k ;

1

;

2

; : : : ; ;

s

; r; n)

8

Here, the identities of the n clients are bound by the hash values h(k

i

;

1

;

2

; : : : ; ;

s

; r;), which

also have freshness identi�ers embedded. The use of k j k provides redundancy for integrity check.

In this protocol, the server needs to send only the following messages, which can be sent in a single

broadcast:

. S

i

:

1

;

2

; : : : ; ; r;

s

; f(1); f(2); : : : ; f(n)

The same technique can also be used to reduce message length in N D-A(2). Note that if nonces

are used and the server uses a single broadcast, then the amount of reduction may be decreased

because a client may need to know the nonces of other clients.

3.3 vanta es of t e e roac

The N D-A protocols o�er a number of signi�cant advantages:

� r ass t s ab t t cr t s st s. Most of previously published protocols

must depend on the assumption that the underlying cryptosystems are secure against crypt-

analysis. In our approach, the privacy of the distributed session key is protected because a

potential attacker cannot obtain any information about the session key, except by exhaustive

search. Here, the hash function must be one way, but it is not a serious problem if a small

number of collisions are known, because we can add more texts to the hash-function input in

order to avoid the collisions.

� c c . To distribute a session key to n clients, the server and the clients each computes

2n hash functions, and solves n equations with n unknowns, where the computational com-

plexity for polynomial interpolation is only (n(logn)

2

) [11]. In existing protocols, the server

does n encryptions and each client does one decryption. Since it is widely accepted that a

one-way hash function is much cheaper to compute than a traditional encryption algorithm

such as D S [17], the N D-A(n) protocols are more e�cient, especially when n is small. Note

that the size of q (in mod(q)) needs to increase only logarithmically when n increases.

� r . Since the protocols use polynomial interpolation and hash functions, which are in the

public domain, the protocols, together with related algorithms for secure broadcast and secure

communication described in Sections 4 and 5, are free of licensing and export controls.

� r ass t s ab t t - a as ct s. In previous works where the

use of a cryptosystem is replaced by the use of a one-way hash function, a bit-wise exclusive-

or operation is generally used to protect data secrecy [2, 7]. This usage implicitly requires

additional properties about the statistical distribution of the output from the one-way hash

function. These properties probably hold for well-designed hash functions, but they are not

required in the theoretical de�nition of a one-way hash function [12, 15]. For example, given

that h() is a one-way hash function, we de�ne (x) = h(x) j 1 � � �1, i.e., the output of h()

concatenated with a string of 1's. We can easily verify that () is also a one-way hash function,

but clearly it is not suitable for bit-wise exclusive-or operation. Our protocols do not require

these additional properties.

9

Other improvements are possible. For example, if we can assume that, in some environment, secrets

shared with the server are all distinct, then we can simplify some computations. We do not further

discuss the many possible variations of the protocols we present in this paper, which are mainly for

demonstrating the new principles and techniques.

ecu e B oa cast

If the server can distribute a session key to n clients, the server can also broadcast a (secret) message

to the n clients. For example, we can use the �rst N D-A(n) protocol and replace the session key

k with a message m. In such a broadcast, unlike in authentication, a client may not need to know

exactly all the identities of other clients. When m is long, it can be broken into smaller blocks. We

call such protocols N D-B, for Broadcast with No ncryption or Decryption.

The server solves the following equations to broadcast m:

8

>

>

>

<

>

>

>

:

m jm+ a

1

� h(k

1

;

1

; r) + : : :+ a � (h(k

1

;

1

; r)) = h(k

1

;

1

; r+ 1)

m jm+ a

1

� h(k

2

;

2

; r) + : : :+ a � (h(k

2

;

2

; r)) = h(k

1

;

1

; r+ 1)

: : : : : :

m j m+ a

1

� h(k ; ; r) + : : :+ a � (h(k ; ; r)) = h(k ; ; r+ 1)

Let f(x) = k + a

1

� x + : : :+ a � (x) . The server broadcasts r;

s

; f(1); f(2); : : : ; f(n).

Since the size of q (in mod(q)) is (logn), given a message m of (logn) bits, the overall length of

the broadcast message has (n logn) bits. In a typical point-to-point protocol using encryption,

not only the same message has to be encrypted n times (with n di�erent keys), the n pieces of

ciphertext of a total of (n logn) bits must also be sent. In some secure broadcast protocols (e.g.,

[4]), the broadcast message has (n logn) bits.

Nevertheless, in an environment such as where the recipients are scattered around in many corners

of a large network, the savings in terms of e�ciency in avoiding encryption may be outweight by

the increased total network tra�c and load.

ecu e o unication

If the server can securely convey a secret to a client using polynomial interpolation, then intuitively

the server can also securely communicate any message without using encryption or decryption. Our

protocol for such secure communication is as follows. We call it N D- , for ommunication with

No ncryption or Decryption.

Suppose A and B share a secret k. For A to send B a secret message m, A �rst selects a random

number r and solves the following equation for a

1

:

m+ a

1

� h(k; r) = h(k; r+ 1)

10

A then sends (r; x) to B, where x = m+ a

1

� h(k; r+ 2). In other words, A sends to B

m+ h(k; r+ 2)� (h(k; r+ 1)�m) h(k; r)

in additional to r. B then uses interpolation to compute m. A can include a nonce or a timestamp

in the message to prove its freshness, as we describe in Section 2.4.

All security arguments for N D-A(2) apply. For example, a known-plaintext attack on this com-

munication algorithm becomes a known-plaintext attack on the secure hash function h(), but of a

more complicated form. Securing a one-way hash function is generally thought to be much easier

than designing a secure encryption algorithm, at least in the practical sense. Also, r is a salt value

[13] that should not be reused.

One di�erence between N D- and N D-A(2) is that, if the hash function h() is an onto mapping

(also called a surjective function), and m does not contain redundancy, then an attacker who

eavesdrops on x cannot obtain any information onm. This secrecy property is information theoretic

because, for any m, there exists a k to satisfy the above equation.

To detect that the message has been modi�ed during transmission, either m has su�cient redun-

dancy or we can attach a secure checksum { for example, of the form h(k;m; r;), where is a

timestamp. In these cases, the secrecy argument becomes only computational.

Naturally, when m is long, we can divide it into blocks and encrypt them individually. One secure

checksum for the entire message is su�cient. It is generally not a good idea to use the same r for

every block, because of known-plaintext attacks. One solution is as follows. Suppose m can be

divided into blocks as m

i

, = 1; 2; : : : ; . We de�ne the ciphertext for m

i

to be:

m

i

+ (h(k; r+ 2;)� (h(k; r+ 1;)�m

i

) h(k; r;)

We can also use chaining methods. For example, we can change the ciphertext for m

i

to be:

m

i

+ (h(k; r+ 2;

i�1

)� (h(k; r+ 1;

i�1

)�m

i

) h(k; r;

i�1

)

where

i�1

is the ciphertext for block m

i�1

. The initial can be a salt value. This method

is commonly known as ciphertext feedback. Other modes of operation are possible but we do not

discuss them here.

e ate o

The earliest authentication protocol we are aware of that does not use encryption is [7]. The

protocols there use bit-wise exclusive-or operation and thus, compared with the N D-A protocols,

must make more assumptions about the one-way hash functions, as we explain in Section 3.3.

11

Polynomial interpolation has been used in secret-sharing schemes [16], which deal mainly with the

secrecy requirement. However, we are not aware of any previously proposed authentication protocol

that is based on polynomial interpolation instead of encryption. Since we develop authentication

and secure broadcast protocols, we must handle additional issues such as insider attacks, integrity,

and authenticity. The possibility of doing the \reverse calculation" in polynomial interpolation,

which is crucial for our new protocols, has been noted before (e.g., [8, Appendix B]). Other secret-

sharing schemes where a similar \reverse calculation" can be done are also potentially applicable

here.

We are not aware of any previous secure broadcast algorithms that do not use encryption. Some

of the previous algorithms, such as Secure Broadcast sing Secure Lock [4], also need to associate

one positive number with each of the n clients where the numbers must be relatively prime to each

other. Managing the allocation of such numbers to a large group of clients { for example, all the

hosts and users on the Internet { can be a serious problem in practice. Moreover, the arithmetic

in Secure Broadcast sing Secure Lock must be computed in a �eld containing the product of all

the n relatively prime numbers. Thus the size of �eld is at least (n

2

log n) bits long [10, pp.9{10]

and the broadcast message has (n log n) bits, whereas in N D-B protocols, the �eld size is only

(logn) and the broadcast message has (n logn) bits.

u a an utu e o

We describe Needham-Schroeder type authentication and key-distribution protocols that use poly-

nomial interpolation instead of encryption. These protocols are simple, elegant, and e�cient when

compared with conventional protocols based on encryption. We also show how to use the same

techniques for very e�cient secure broadcast and secure end-to-end communication.

For future work, it is an open question whether the N D techniques can be bene�cial when the

clients register public keys instead of shared secrets with the server.

Ac no e ent

During a discussion on April 8, 1994, Professor D. . Wheeler of the niversity of ambridge

pointed out the possibility of insider attack mentioned in Section 2.2. Peter G. Neumann of SRI

has provided important technical and editorial comments on drafts of this paper.

e e ences

[1] T.A. Berson, L. Gong, and T.M.A. Lomas. Secure, eyed, and ollisionful Hash Functions.

December 1993. Included in this technical report.

12

[2] B. Bird, I. Gopal, A. Herzberg, P. anson, S. utten, R. Molva, and M. ung. Systematic

Design of a Family of Attack-Resistant Authentication Protocols.

, 11(5):679{693, une 1993.

[3] M. Burrows, M. Abadi, and R.M. Needham. A Logic for Authentication.

, 8(1):18{36, February 1990.

[4] G.H. hiou and W.T. hen. Secure Broadcasting sing Secure Lock.

, 15(8):929{934, August 1989.

[5] W. Di�e and M. . Hellman. New Directions in ryptography. -

, IT-22(6):644{65, November 1976.

[6] W. Di�e and M. . Hellman. xhaustive ryptanalysis of the NBS Data ncryption Standard.

, 10(6):74{84, 1977.

[7] L. Gong. sing One-Way Functions for Authentication.

, 19(5):8{11, October 1989.

[8] L. Gong. . Phd dissertation, niversity of

ambridge, ngland, April 1990.

[9] L. Gong. On �cient and Secure Broadcasting. March 1992. Included in Technical Report SRI-

SL-94-03, omputer Science Laboratory, SRI International, Menlo Park, alifornia, March

1994.

[10] G.H. Hardy and .M. Wright. . Oxford niversity

Press, Oxford, ngland, 1979. First edition 1938, �fth edition 1979, reprinted (with corrections)

1983.

[11] D. nuth. . . Addison-

Wesley, Reading, Massachusetts, 1969.

[12] R. . Merkle. A Fast Software One Way Hash Function. , 3(1):43{58,

1990.

[13] R. Morris and . Thompson. Password Security: A ase History.

, 22(11):594{597, November 1979.

[14] R.M. Needham and M.D. Schroeder. sing ncryption for Authentication in Large Networks

of omputers. , 21(12):993{999, December 1978.

[15] R.L. Rivest. The MD5 Message-Digest Algorithm. Request for omments 1321, Internet

Activities Board, April 1992.

[16] A. Shamir. How to Share a Secret. , 22(11):612{613, November

1979.

[17] . .S. National Bureau of Standards, anuary 1977. .S. Federal

Information Processing Standards Publication, FIPS P B 46.

13

