
Implementing Adaptive Fault-Tolerant Services for Hybrid Faults�Li Gong and Jack GoldbergSRI InternationalComputer Science LaboratoryMenlo Park, California 94025 U.S.A.fgong,goldbergg@csl.sri.comMarch 22, 1994(Revised September 30, 1994)Abstract. The two major approaches to building fault-tolerant services are commonly knownas the Primary-Backup approach (PB) and the State-Machine approach (SM). PB can toleratecrash and omission faults and runs more economically than SM, but SM can tolerate more seriousfaults, including arbitrary or Byzantine faults. Instead of selecting one or the other approach, thuseither incurring a high running cost or risking the service becoming incorrect when unexpectedfaults occur, we advocate the approach of adaptive fault tolerance. We present algorithms thatintelligently adapt between PB and SM, thus retaining (almost) the best of both worlds. Ouradaptive approach is modular in that any PB or SM protocol can be used, and is also practical inthat it can be easily incorporated into some existing systems.Index Terms. Fault tolerance, primary backup, state machine, manifest faults, Byzantine faults,hybrid faults, adaptivity, distributed systems services, algorithm complexity.1 IntroductionIn building fault tolerance services in a distributed system, there are two major approaches, namely,the Primary-Backup approach (PB) (e.g., [1, 9]) and the State-Machine approach (SM) (e.g.,[19, 16]). Each approach has its distinctive advantages. To tolerate simple faults such as crashand omission, PB protocols are generally signi�cantly cheaper than SM protocols in terms of thenumbers of processors, messages, and rounds (which directly a�ects the service response time). PBprotocols are also much simpler than SM protocols, and thus the e�orts of debugging or formalveri�cation of PB protocols are also easier. On the other hand, in choosing to run a PB protocolinstead of a SM protocol, one risks providing incorrect service functions or values, which may causethe overall system to fail, in the face of more serious types of faults such as arbitrary (Byzantine)�This work was supported in part by the U.S. Air Force under USAF contract F30602-92-C-0098.1



faults1. Therefore, it is common practice for critical applications to run a SM protocol, possiblyusing Byzantine agreement [13]. The high cost of running such a protocol is compensated by thebelief that all possible faults (up to a certain number) are adequately tolerated.Instead of being forced to make a design choice between using SM or PB, thus either incurring ahigh running cost or risking system failure when unexpected faults occur, we advocate an approachof adaptive fault tolerance [12]. Given that in many situations Byzantine or other nontrivial faultsoccur only relatively infrequently, we develop intelligent adaptive algorithms, using PB and SMprotocols as building blocks, that runs typically at a cost close to that of a PB protocol andswitches to a more expensive SM protocol only as complicated faults (which cannot be toleratedby a PB protocol) occur. This adaptive approach thus has the potential to retain the best of bothworlds. In addition, our adaptive approach is modular in that any PB or SM protocol can be used.For noncritical applications, our approach may be seen as a way of extending PB to cover morecomplex faults at low additional cost. For critical applications, our approach may be seen as a wayof allowing some of the processing resources required for SM to be used for other services whenfull SM functionality is not needed. For example, when only manifest faults occur, an adaptivealgorithm runs in the PB mode and can thus tolerate a maximum number of such benign faults.The adaptation can also be viewed as between an optimistic algorithm and a pessimistic one wherethe former is the default mode of operation and the latter is invoked only when necessary.In the rest of this paper, we �rst outline a general strategy of adaptation for handling hybrid faults.We then present two adaptive fault tolerance algorithms, analyze their correctness and complexity,and compare them with nonadaptive approaches. We conclude with a summary and suggestionsfor future research.2 An Adaptation StrategySystem functions can be concentrated in some central location or distributed around a network,and the software for these functions can consist of modules on separate processors or can be moreclosely integrated. Conceptually, however, a fault-tolerant service generally contains some or all ofthe following functions: processing of requests, fault forecast, fault detection, fault masking, faultdiagnosis, fault removal, repair, and reintegration of repaired components.To explain our general adaptation strategy, suppose that in the course of operations, faults of twotypes, A and B, may occur. Also suppose that type A faults occur more frequently and are lessexpensive to tolerate than type B faults. If both types of faults must be tolerated, the traditionalapproach has been to assume the worst and constantly run an (expensive) algorithm that canhandle both types of faults.We observe that detecting a fault is in general less expensive than tolerating it. Based on thispremise, our strategy is to run, as a default, an algorithm that can tolerate type A faults andcan also reliably detect the occurrences of type B faults. When type B faults occur, the default1Any given system con�guration can tolerate only up to a certain number of faults. The emphasis here is on thedistinction that a PB protocol cannot tolerate Byzantine faults.2



algorithm switches to a more expensive one that can tolerate both type A and type B faults. Somedecision procedure then decides when to switch back to the default algorithm. For example, whenthe occurrences of type B faults are bursty according to a fault forecast, it may be wise to continuerunning the expensive algorithm for some period of time.If the di�erence in the cost of tolerating the two types of faults is signi�cant, such as in the caseof simple crash faults versus Byzantine faults, then an adaptive strategy gains a great deal byreducing the average running cost. The strategy is at its best if (1) the cost of adding the extrafault detection mechanism to an algorithm that tolerates type A faults is negligible (so that theservice e�ciency is near optimal when type B faults do not occur) and (2) the default algorithmor the fault detection algorithm forms the initial segment of the more expensive algorithm (so thatnothing is lost when type B faults do occur). The next section gives adaptive algorithms thatexhibit such desirable behaviours. The strategy can be extended to handle faults of multiple types,in this case a more elaborate fault diagnosis mechanism (especially the online variety) is needed todetermine the exact types of fault in order to direct the adaptation.3 Two Adaptive Fault Tolerance AlgorithmsTwo algorithms are described that adapt between the primary-backup approach and the state-machine approach. But �rst, we need to explain the assumptions we make about the executionenvironment of our adaptive algorithms.3.1 System ModelThe environment we assume is the following. Clients send their requests to the servers who processthe requests and respond, all by exchanging messages. For simplicity, we assume that the com-munication channel between a client and any server is reliable and FIFO, and we aim to toleratefaulty servers but not faulty clients. We also assume that the servers are deterministic { becausein the state-machine approach it is usually undesirable to allow nondeterministic behaviours in the(correct) servers. Moreover, we assume that the system is synchronous, and thus we can use amodel of computation based on rounds. The reason for this limitation is that it is impossible toguarantee both safety and liveness in asynchronous systems [6, p.19].Following the literature, we classify faults into three categories [14]:� Manifest fault { one that produces detectably missing values (e.g., crash and omission faults)or that produces a value that all nonfaulty recipients can detect as bad (e.g., it fails checksumor format or typing tests).� Symmetric fault { one that delivers the same wrong value to every nonfaulty receiver.22It will become clear later that we can weaken this de�nition to that all nonfaulty recipients receive some wrongvalues, although they may not receive the same wrong value.3



� Asymmetric fault { an arbitrary fault with no constraints, also known as Byzantine fault.We assume that the reader is familiar with both primary-backup and state-machine approaches, andomit non-essential details of the algorithms. Briey, in PB, one and at most one server is designatedas the primary at any time. A client sends a request to the primary, who processes it and thenbroadcasts the necessary state change to all backup servers. In a nonblocking PB protocol, theprimary server responds to the client before receiving acknowledgements to its broadcast whereasin a blocking protocol, the primary blocks until all backups have acknowledged or after a timeoutperiod. The schema for a server consists of three modules for: (1) deciding whether it is a primaryor a backup, (2) processing requests, and (3) fault detection and recovery [6, p.56]. It is apparentthat the PB approach can tolerate only manifest faults. For example, an incorrect primary canbroadcast an incorrect state change and backup servers cannot detect this fact because they do notknow the client's service request.In a SM protocol, a client broadcasts its request to all servers, and then takes a vote on theresponses it receives. Therefore, the client will decide on the correct response if a majority of theservers are nonfaulty. For correctness, all nonfaulty servers must process requests (possibly frommultiple clients) in the same order. This requirement is called replica coordination [16] and isnot necessary in a PB protocol. Satisfying this coordination requirement is quite expensive { forexample, a Byzantine agreement protocol is a typical solution. With this heavy cost in resourcesand performance, the SM approach gains the ability to tolerate symmetric as well as asymmetricfaults, in addition to manifest faults.In our adaptive algorithms given below, the high-cost Byzantine agreement machinery is used onlywhen needed, thus we call these algorithms Byzantine-On-Demand or BOD.3.2 Manifest versus Symmetric FaultsOur �rst adaptive algorithm BOD-1 is to tolerate both manifest and symmetric faults, but notasymmetric faults. For the moment, we assume that links connecting servers are nonfaulty.Given any PB protocol (blocking or nonblocking), we need only make a few simple changes tomake it adaptive. We assume the servers have implemented a Byzantine agreement (BA) protocol{ for agreeing on the next client request for processing, or replica coordination { that can handlesymmetric faults. Strictly speaking, any protocol that can mask symmetric faults is su�cient forBOD-1, but for convenient discussion, we always refer to a BA protocol.The basic idea is to let the backup servers participate in the service passively as in the PB protocol,except that they now also receive the original request from the client and watch the primary for anyinconsistency (compared with themselves). If they detect an inconsistency, they report an error tothe client (who will then wait for further action on the part of the servers) and initiate a Byzantineagreement protocol among the servers to mask the error.Notice that since we are using a primary-backup approach as default, it is important, from theviewpoint of providing a correct service to the client, to detect non-manifest faults only in theprimary, from whom the client takes a response. Nonmanifest faults in backups will lower the4



overall degree of fault tolerance (for additional faults) but can be safely ignored for the meantimebecause once such a faulty backup becomes a primary, its erratic behaviour will be immediatelydetected. It is this property that makes the adaptive algorithm so cost-e�ective.Nevertheless, it may not be desirable to allow a signi�cant proportion of backups to become faultybecause the chance of detecting faults in the primary and the ability to replace it will be reduced.Faulty backup servers can be dealt with by an additional fault diagnosis and removal mechanism.For example, if only one backup disagrees with the primary, then this backup must be faulty (onthe assumption that the majority is nonfaulty) and can immediately be removed and repaired.The outline of the BOD-1 algorithm is in Table 1. We use r to denote a request, a(r) for theresponse, and s-c for information regarding state change.Round 0. Client: Broadcast request r to all servers.Primary: Wait for request from client.Backup: Wait for request from client.Round 1. Client: Wait for response from primary.Primary: Broadcast (r, a(r), s-c) to all backups.Respond a(r) to client.Backup: Queue r. Wait for message from primary.Round 2. Client: Wait for error report from backup.Primary: Wait for error report from backup.Backup: Verify the correctness of a(r).If error, broadcast ERROR to client and all servers,and start BA protocol (to agree on which client request to process).Wait for error report from other backups.Round 3. Client: If receive ERROR from a majority of servers,wait for the BA protocol to complete; then vote on the responses.Otherwise, accept a(r).Primary: If receive ERROR from a majority of servers, switch to the BA protocol,process request and respond to client.Return to Round 1.Backup: If receive ERROR from a majority of servers, switch to or continue withthe BA protocol, process request and respond to client.Otherwise, terminate BA protocol it started earlier, if any.Return to Round 1.Table 1: Byzantine-On-Demand Algorithm BOD-1A few points need to be clari�ed about the algorithm. For simplicity, we have omitted somedetails of the PB protocol, especially its failure detector and the handling of manifest faults. The5



mechanism for detecting (and masking) symmetric fault in BOD-1 is in addition to the failuredetector of the PB protocol. In theory, either detection mechanism can take precedence over theother. For example, if manifest and symmetric faults occur concurrently, we can deal with themanifest faults �rst (e.g., arranging a new primary) and the symmetric faults later. Or we canmask the symmetric faults �rst and handle the manifest faults later. The latter scheme has theadvantage that the client receives responses earlier than in the former scheme. Variations arepossible. For example, if both fault detection mechanisms detect faults related to the primary, asymmetric fault can be assumed and the BA protocol initiated.We have used a nonblocking PB protocol in BOD-1 such that the primary responds to the clientwithout waiting for acknowledgement from the backups. In such a case, it is important that theprimary's response to the client and its broadcast to the backups must be in the same round becauseotherwise, a fault may occur when the primary is responding to the client so that the client receivesan incorrect response while all backups receive the correct response (and thus do not complain).Obviously, any blocking PB protocols will also work in this framework and our algorithm BOD-1needs only minor modi�cations (which we do not go into here).In addition, we have assumed that the client always expects to get the response a(r) from theprimary. Some PB protocols are \pass-the-buck" in that the response always comes from a di�erentserver [6, p.100]. Our framework can also accommodate these protocols.If the primary has failed manifestly, the identity of the new primary is decided according to thePB protocol and is conveyed to the client. When the identity of the primary is in dispute, anon-manifest fault has occurred and a BA protocol can be used to reach an agreement. It is notdi�cult to see how this additional BA protocol can be added, so we will not discuss this issue inmore detail.A backup server checks for two new errors in Round 2. One is that the primary processes aclient's request not according to a FIFO order. The other is that the primary's response is wrong.A backup server can check the �rst error by looking at its local queue of requests, and can check thesecond by taking the request the primary broadcast, processing it, and comparing its own resultwith the one sent by the primary. A discrepancy signi�es that a symmetric fault has occurred. Notethat when a server broadcasts an error message, it can use the same message to carry out the nextstep of the BA protocol, instead of waiting till Round 3. We do not discuss such optimizations.In BOD-1, a server does a majority voting on error messages before deciding to switch to the BAprotocol. This is because of the assumption that the links between the servers are nonfaulty, thusa symmetric error will be detected and reported by all nonfaulty servers. Without this assumption,a server may need to switch to the BA protocol even when receiving just one error report.A backup server that has detected an error in Round 2 immediately starts the BA protocol. Thisis the earliest possible time to convert to running the BA protocol. Under the assumption thatlinks connecting the servers are nonfaulty, if the primary is faulty, then all nonfaulty backups willhave started running the BA protocol in Round 2. Thus it may appear to contribute little forthe primary and the faulty backups to start catching up to running the BA protocol in Round 3.However, a server experiencing a transient fault in Round 2 may have recovered by Round 3 andthus could be quite useful in the vote. If the primary is not faulty, then a backup server will receive6



error report from only a minority of servers in Round 3, and those who have started running theBA protocol earlier should terminate it. Without this assumption of nonfaulty links, a server neednot vote on error report and must continue to complete the BA protocol.In BOD-1, at the end of the protocol, servers return to start from the beginning, in the default PBmode. This can be changed easily. For example, if the occurrence of non-manifest faults has beenfrequent for a period of time, the algorithm can stay in the SM mode for a while before returningto the PB mode. Here, fault forecast and heuristic methods can be useful.Finally, the adaptive algorithm imposes no ordering among the processing of requests from multi-ple clients. The primary is free to choose the next request to process, as long as the order amongrequests from the same client is FIFO. The backups simply follow the primary's lead. This ar-rangement satis�es the Replica Coordination requirement [16], and is crucial for keeping the costdown. This is in the same spirit of the coordinator-cohort scheme [3, 5]. Any additional orderingcan be enforced with other methods, which are beyond the scope of this paper.Proof of correctness. We give a proof outline by enumerating all cases. (1) If there is nofault, then the protocol terminates essentially as the PB protocol. (2) If the primary and backupsexhibit only manifest fault, then the PB protocol's fault detection and recovery mechanism handlesthese faults. (3) If the primary exhibits a symmetric fault, then some nonfaulty backups (or allnonfaulty backups, if there are no link faults) will detect the fault (by the additional fault detectionmechanism in BOD-1) and report to the client. A subsequent BA protocol will mask this faultand the client can obtain the correct response by simple majority voting [16]. (4) If the primaryis nonfaulty, then at most a minority of backup servers will report error (note that no protocolcan tolerate a majority of servers being non-manifestly faulty), and these error messages are falsealarms and rightly ignored. 2Analysis of complexity. Compared with the PB approach, when there are no faults, BOD-1requires m extra messages in the client's initial broadcast, m being the number of backup servers.BOD-1 also uses one more round than a nonblocking PB protocol, the same number of round asa \pass-the-buck" PB protocol, but one fewer round than a blocking PB protocol. The primary'sbroadcast message in Round 2 is slightly longer (it contains both the request and response), andthe backups will all have to process the request individually (thus consume more CPU cycles).Therefore, BOD-1 is slightly more expensive than a typical PB protocol, and this is quite reasonablycompensated by the fact that symmetric faults can now be detected and masked.If there are only manifest faults, then a PB protocol requires more rounds to recover. Thus theoverall response time for BOD-1 is no worse than the PB protocol it uses as default, and the onlyadditional expense in BOD-1 is the client's initial broadcast.When symmetric faults occur, all nonfaulty servers in BOD-1 convert to running a BA protocol(or whatever algorithm that can tolerate this type of fault) in Round 2, assuming no link faults,but with some overhead. Compared with the state-machine approach, BOD-1 uses one more roundbecause in SM the BA protocol can start in Round 1. However, the client's broadcast and thatof the primary in the �rst two rounds of BOD-1 are not wasted { they can be used as part of theearly rounds of the BA protocol { and the only extra messages are those reporting errors to theclient. On the other hand, if the state-machine approach is used as default, then even when no7



fault or only manifest faults occur, the running cost is signi�cantly higher than that of BOD-1. 2In Table 2 below, we compare the algorithm complexity of blocking PB (denoted as bPB, andincluding \pass-the-buck" protocols), State Machine (SM), and BOD-1. We give only the di�erencebetween the complexity of BOD-1 and that of other algorithms because the absolute complexityvaries depending on the PB or SM protocol we use as building blocks. For brevity, we do not includenonblocking PB protocols because their running cost di�ers from \pass-the-buck" protocols onlyin that nonblocking protocols use one fewer round. Suppose there are a total of m backup servers.bPB BOD-1 SMmsgs rounds msgs rounds msgs roundsfault-free msg(bPB) r(bPB) msg(bPB)+m r(bPB) msg(SM) r(SM)manifest msg(bPB) r(bPB) msg(bPB)+m r(bPB) msg(SM) r(SM)symmetric msg(SM)+m r(SM)+1 msg(SM) r(SM)Table 2: Complexity ComparisonWe can clearly see that when no fault occurs, BOD-1 uses one more broadcast (from client to allthe servers) and one more round than the cheapest nonblocking PB protocol. However, nonblock-ing protocols need additional mechanisms for error recovery, such as checkpointing, and cannothandle send-omission and general-omission faults. Also, in a fault-free run, some blocking pro-tocols (such as \pass-the-buck" protocols) use just one more round than nonblocking protocols,while other blocking protocols use more rounds. When only manifest faults occur, BOD-1 uses onemore broadcast than either nonblocking or blocking Primary-Backup, but no more rounds. Whensymmetric faults occur, BOD-1 is as slightly more expensive than the SM protocol.Since SM is much more expensive than PB, but non-manifest faults occur relatively rarely, theadaptive algorithm BOD-1 is superior than the PB approach in that non-manifest faults can nowbe tolerated and also superior than the SM approach in that the average running cost is greatlyreduced. It should be pointed out that in our discussion we use Byzantine agreement protocol totolerate symmetric faults, so the comparison in cost in Table 2 may be a little unfair because acheaper protocol may also tolerate such faults. However, it is intuitive that any method that cantolerate symmetric faults will likely be signi�cantly more expensive than the PB approach, andthus adaptive algorithms similar to ours will likely be bene�cial.3.3 Manifest versus Asymmetric FaultsBOD-1 cannot handle asymmetric faults. For example, the primary can send correct responses toall backup servers but send a wrong one to the client. Therefore, the client cannot rely on theprimary's response as before, and it is not enough for backup servers to watch the primary.Our second algorithm BOD-2 is a simple modi�cation of BOD-1 and can tolerate manifest andasymmetric faults. As before, we assume the availability of a PB protocol (blocking or nonblocking)and a Byzantine agreement (BA) protocol. 8



As can be seen in Table 3, there are only two major di�erences between BOD-1 and BOD-2. First,when a backup server is satis�ed with the primary's response, instead of remaining silent, it sendsthe response back to the client as well. Second, the client votes on all the responses and reports anerror (to initiate the BA protocol) if the primary's response is not the majority vote of all responsesfrom the servers. Note also that it is no longer meaningful to vote on error reports since faults canbe arbitrary.Round 0. Client: Broadcast request r to all servers.Primary: Wait for request from client.Backup: Wait for request from client.Round 1. Client: Wait for response from primary.Primary: Broadcast (r, a(r), s-c) to all backups. Respond a(r) to client.Backup: Queue r. Wait for message from primary.Round 2. Client: Wait for a(r) or error report from backup.Primary: Wait for error report from backup.Backup: Verify the correctness of a(r). If correct, respond a(r) to client.If error, broadcast ERROR to client and all servers,and start BA protocol (to agree on which client request to process).Wait for error report from other backups.Round 3. Client: If receive an error report,wait for the BA protocol to complete; then vote on the responses.If no error is reported but primary's a(r) is not the majority voteof the a(r)'s, broadcast to all servers to initiate BA protocol.Otherwise, accept a(r).Primary: If receive an error report, switch to the BA protocol, process request,respond to client, and return to Round 1. Otherwise, go to Round 4.Backup: If receive an error report, switch to or continue with the BA protocol,process request, respond to client, and return to Round 1.Otherwise, go to Round 4.Round 4. Primary: Wait to see if client report error. If error, switch to BA protocol.Otherwise, return to Round 1.Backup: Wait to see if client report error. If error, switch to BA protocol.Otherwise, return to Round 1.Table 3: Byzantine-On-Demand Algorithm BOD-2The correctness argument for BOD-2 is similar to that of BOD-1 { any non-manifest fault isdetected and a Byzantine agreement protocol is initiated to mask it.The complexity of BOD-2 is higher than BOD-1. In a fault-free run, an extra m messages will be9



needed in Round 2 (for the \backup" servers to respond to the clients). When only manifest faultsoccur, it is still much cheaper than a full-edged state-machine approach in that backup serverssimply follow the lead by the primary in deciding the next request to process. This arrangementeliminates the need for extra e�ort to satisfy the Replica Coordination requirement [16]. Whenasymmetric faults occur, BOD-2 may use one more round than BOD-1, for example, when thebackup servers have to wait till Round 4 to decide whether to switch to the BA protocol. However,if the client does not report error in Round 3, it can complete the protocol after Round 3, earlierthan the servers.4 Related WorkOur work is undertaken within the general framework outlined in [12] and can be viewed as arealization of some of the principles of adaptive fault tolerance. We have made heavy use ofmaterials on primary-backup protocols [9, 8, 6] and the state-machine approach [16]. In particular,our adaptive algorithms use those protocols as building blocks, in a modular fashion.Previous work on handling hybrid faults appears to focus on extending protocols for Byzantineagreement so that they can tolerate a higher number of benign or hybrid faults (e.g., [14, 15, 17])than a standard Byzantine agreement protocol. These algorithms typically can tolerate as manyByzantine faults as possible (bounded by one third of the number of processors [13]). However, whenother non-manifest faults do not occur, the algorithm by Thambidurai and Park [17] cannot toleratemany manifest faults whereas our algorithms can tolerate a maximum number of manifest faultsbecause they will be running a Primary-Backup protocol. The algorithm by Lincoln and Rushby[14] can tolerate a maximum number of manifest faults but, like the algorithm by Thambiduraiand Park [17], it is non-adaptive in that the number of rounds of each execution of the protocolis decided in advance so the complexity of the protocol does not decrease when no or fewer faultsoccur. Moreover, the complexity of such algorithms is typically comparable to that of Byzantineagreement because they aim to tolerate arbitrary faults, including symmetric and asymmetric faults,all the time. In contrast, our adaptive algorithms are much less expensive because for most of thetime they merely attempt to detect arbitrary faults, and activate the heavy machinery to toleratearbitrary faults only as they occur.Our adaptation strategy is in avour similar to early-stopping protocols (e.g., [10, 7, 2]). Thecomplexity (i.e., numbers of messages and rounds) of these protocols is proportional to the numberof actual faults occurring instead of the maximum number of faults that can be tolerated. In otherwords, the protocols terminate earlier if fewer faults occur. This line of work has largely beenfocused on Byzantine-agreement-type problems, so the protocols are adaptive only to the extentof the number of actual faults, not distinguishing the types of faults. Therefore, they are usuallymuch more expensive than our algorithms, which take advantage of the common observation thatin most applications Byzantine faults occur only infrequently. Nevertheless, our algorithms can useearly-stopping Byzantine agreement protocols or those above for hybrid faults to further increasee�ciency.Garay and Perry [11] recently proposed a continuum of failure models with crash-only faults and10



Byzantine faults at the extremes. This can be taken as a combination of early stopping and dealingwith hybrid faults. Although their model is exible in that a design does not have to choose oneof the two extremes, their method again concentrates on solving agreement-type problems. Ouralgorithms, on the other hand, are aimed at building general fault-tolerant services. In particular,the algorithms adapt between two di�erent approaches, namely primary-backup and state-machine,and utilize to the maximum the e�ciency of a primary-backup protocol.There have been e�orts to evaluate the relative merits of various fault tolerance techniques fordi�erent applications (e.g., [18]), especially following the recent precise formulation and analysis ofthe widely used primary-backup approach [9, 8, 6]. Our work provides some insight in that onecan adaptively use these di�erent approaches and retain (almost) the best of both worlds.Finally, since our adaptation is modular in that it uses existing primary-backup and Byzantineagreement protocols as building blocks, our algorithms are conceptually simple. An importantbene�t is that the correctness proof is much simpler than that for earlier protocols for handlinghybrid faults. We need only show that the adaptation correctly detects and adapts to the occurrenceof certain types of faults. The potential reduction in the e�ort of formal veri�cation is thensigni�cant.5 Summary and Future WorkWe have shown how to apply the principles of adaptive fault tolerance to handle hybrid faults. Wehave presented algorithms that intelligently adapt between the Primary-Backup (PB) approachand the State-Machine (SM) approach. Such an adaptive algorithm runs a default PB protocol butalso attempts to detect the occurrence of non-manifest faults. When these fault occur, a Byzantineagreement type protocol is activated to mask the faults. Given that in practice manifest faults(e.g., crash and omission faults) are the most common ones, our adaptive approach is more cost-e�ective than the traditional \one or the other" approach because it retains (almost) the best ofboth worlds. Our approach is modular in that any speci�c PB or SM protocol can be plugged in.This keeps our algorithms conceptually simple, and it also signi�cantly reduces the complexity ofthe correctness argument and the e�ort of formal veri�cation.There are many directions for future research. One is to investigate optimizations of our algorithms.For example, given an assumption of the number of possible faults in a period of time (such aspredicted by the fault forecast component), some messages in BOD-1 may not need to be broadcastto all backup servers. This is because non-manifest faults are symmetric, so only one nonfaultyserver is needed to detect a fault, depending on the assumptions of link faults. Some simulationmay also provide fresh insights.Another is to examine other possible adaptations, such as between symmetric and asymmetricfaults, and between various manifest faults. As we already mentioned, other mechanisms for faultdiagnosis and fault removal can be integrated. They can run parallel to our algorithms. Toreintegrate a repaired component, if only symmetric faults are possible, algorithms can be developedso that the repaired server obtains state information from a small number of existing servers. Ifasymmetric faults are possible, then those methods mentioned in [16] can be used. Other aspects11



of adaptation, such as fault transparency to clients and the cost to repair damaged servers, mayalso be worth investigating.Our adaptive algorithms not only o�er some theoretical insight into the relationship between theprimary-backup and state-machine approaches to implementing fault-tolerant services, they alsoappear to be very practical. For example, given the existing support for process groups and virtualsynchrony in the ISIS/Horus system [4], it should not be di�cult to add an adaptation facility sothat non-manifest faults can be tolerated as needed.References[1] P.A. Alsberg and J.D. Day. A Principle for Resilient Sharing of Distributed Resources. In Pro-ceedings of the 2nd International Conference on Software Engineering, pages 627{644, October1976.[2] P. Berman, J.A. Garay, and K.J. Perry. Optimal Early Stopping in Distributed Consensus.In Proceedings of the 6th International Workshop on Distributed Algorithms, volume 647 ofLecture Notes in Computer Science, pages 221{237, Haifa, Israel, November 1992. Springer-Verlag.[3] K.P. Birman. Replication and Availability in the ISIS System. In Proceedings of the 10th ACMSymposium on Operating System Principles, volume 19(5) of ACM Operating Systems Review,pages 79{86, December 1985.[4] K.P. Birman. The Process Group Approach to Reliable Distributed Computing. Communica-tions of the ACM, 36(12):37{53/103, December 1993.[5] K.P. Birman, T.A. Joseph, T. Raeuchle, and A. El Abadi. Implementing Fault-tolerant Dis-tributed Objects. IEEE Transactions on Software Engineering, 6(11):502{508, June 1985.[6] N. Budhiraja. The Primary-Backup Approach: Lower and Upper Bounds. Ph.d. dissertation,Cornell University, Ithaca, New York, June 1993.[7] N. Budhiraja, A. Gopal, and S. Toueg. Early Stopping Distributed Bidding and Applications.In Proceedings of the 4th International Workshop on Distributed Algorithms, volume 486 ofLecture Notes in Computer Science, pages 304{320, Haifa, Israel, September 1990. Springer-Verlag.[8] N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg. Optimal Primary-Backup Protocols.In Proceedings of the 6th International Workshop on Distributed Algorithms, volume 647 ofLecture Notes in Computer Science, pages 362{378, Haifa, Israel, November 1992. Springer-Verlag.[9] N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg. Primary-Backup Protocols: LowerBounds and Optimal Implementations. In Proc. 3rd IFIP Working Conference on DependableComputing for Critical Applications, pages 187{196, Sicily, Italy, September 1992.12



[10] D. Dolev, R. Reischuk, and H.R. Strong. Early Stopping in Byzantine Agreement. Journal ofthe ACM, 37(4):720{741, October 1990.[11] J.A. Garay and K.J. Perry. A Continuum of Failure Models for Distributed Computing.In Proceedings of the 6th International Workshop on Distributed Algorithms, volume 647 ofLecture Notes in Computer Science, pages 153{165, Haifa, Israel, November 1992. Springer-Verlag.[12] J. Goldberg, I. Greenberg, and T.F. Lawrence. Adaptive Fault Tolerance. In Proceedings of theIEEE Workshop on Advances in Parallel and Distributed Systems, pages 127{132, Princeton,New Jersey, October 1993.[13] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Transactionson Programming Languages and Systems, 4(3):382{401, July 1982.[14] P. Lincoln and J. Rushby. A Formally Veri�ed Algorithm for Interactive Consistency Under aHybrid Fault Model. In Proceedings of the 23rd Fault-Tolerant Computing Symposium, pages402{411, Toulouse, France, June 1993.[15] F.J. Meyer and D.K. Pradhan. Consensus with Dual Failure Modes. IEEE Transactions onParallel and Distributed Systems, 2(2):214{222, April 1991.[16] F.B. Schneider. Implementing Fault-Tolerant Services Using the State-Machine Approach: ATutorial. ACM Computing Surveys, 22(4):299{319, December 1990.[17] P. Thambidurai and Y.K. Park. Interactive Consistency with Multiple Failure Modes. InProceedings of 7th IEEE Symposium on Reliable Distributed Systems, pages 93{100, Columbus,Ohio, October 1988.[18] A. Waterworth, P.D. Ezhilchelvan, and S.K. Shrivastava. Understanding the Cost of Replica-tion in Distributed Systems. Technical report, Computing Laboratory, University of Newcastleupon Tyne, U.K., January 1993.[19] J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith, R.E.Shostak, and C.B. Weinstock. SIFT: Design and Analysis of a Fault-Tolerant Computer forAircraft Control. Proceedings of the IEEE, 66(10):1240{1255, October 1978.
13


