ANCORS: Adaptable Network COntrol and Reporting
System*

SRI-CSL-98-01

Livio Ricciulli, Phillip Porras, Nachum Shacham
March 19, 1998

Abstract

ANCORS is a distributed tool suite that merges technology from network man-
agement, active networking, and distributed simulation in a unified paradigm to assist
in the assessment, control, and design of computer networks. This paper explores
some of the advantages that can be obtained from merging the three technologies, and
describes how ANCORS integrates complementary elements of each. ANCORS’s ar-
chitecture offers substantial software reuse, scalability, and flexibility and supports an
extensible mechanism to employ multiple network management protocols of varying
degrees of complexity. This paper also describes network engineering and monitoring
services that were implemented to prototype some of ANCORS’s architectural ideas
and provide practical experience for their refinement.

1 Introduction

The Internet will become increasingly dynamic. Changes in the Internet will affect both its
control mechanisms and the nature of information exchanged.

e New trends in network design [12, 4, 3, 13, 9, 1] seek to render network protocols more
flexible and extensible, and to thus improve their overall usefulness. Configuration
changes can be as dynamic as interpreting and executing a few predefined instructions
as a network packet is received, causing new protocols to be loaded on demand, or
modifying, deleting, or adding more permanent objects that implement application-
specific network services.

e The introduction of new technologies and services as they become available may change
the nature of network traffic. The Internet phone, video broadcast, and the increasing
interest of cellular phone companies in accessing services on the Internet are examples
of future technologies that may greatly affect the Internet.

* This work was supported by DARPA contract number DABT63-97-C0040.

The current state of the art in network engineering, monitoring, and control must im-
prove dramatically. It is becoming increasingly apparent that effective management of large,
ever-changing networks depends on sophisticated monitoring to help understand the way a
network changes and in detecting anomalous behavior (both malicious and nonmalicious).
Current network management and control software suffers from serious scalability and flex-
ibility constraints because it is oriented to the single administrative domain level. As new
interdependencies arise in sharing resources beyond single administrative domains, moni-
toring capabilities, like application-specific protocols, should be able to change over time,
should adapt to new conditions as they develop, and should be scalable.

In addition to sophisticated and adaptable monitoring, future networks would greatly
benefit from simulation services so that network engineers can experiment with new network
technologies without compromising network operations. Current network engineering tools
can scale only to small and relatively simple networks and are not interoperable. Tools will
be required to scale far beyond current capabilities and will need to promote interoperability
and model reuse. In addition to evaluating performance metrics to compare one design
with another, network engineering tools should implement a development environment for
validating new designs.

Besides offering powerful assessment and design tools, adaptable networks should also
provide a flexible infrastructure to manage and distribute software. New standards being
proposed to assist in the distribution and maintenance of software through the network [11,
10] would allow users to install or update software components by simply accessing HTML-
like pages, thus providing more cost-effective mechanisms for distributing and maintaining
application software. While the adoption of these mechanisms to dynamically add and
maintain the code base of end-user applications may pose little technical challenge, extending
such mechanisms to also deploy and maintain system-level software is more difficult. An
addition of system-level networking software must be done very carefully to avoid potentially
costly mistakes and the addition must also be propagated to the management infrastructure
so that monitoring and control capabilities can change with the network itself.

The objective of our research is to streamline and, at the same time, enrich the man-
agement and monitoring of dynamic networks while adding new support into the network
management paradigm to assist network designers. We revisited the concept of network man-
agement and extended its paradigm to make it the enabling technology for designing, testing,
configuring, and monitoring network assets in the best possible way. ANCORS merges ideas
from distributed network management, distributed simulation and active networking in a
coherent, efficient, and user-friendly manner. Section 2 focuses on exploring some of the
benefits that ANCORS gains by merging active networking with network management and
distributed simulation. Section 3 discusses ANCORS’s flexible system management frame-
work that can deploy and manage our new multidomain infrastructure. Section 4 describes
our initial implementation experiences, and Section 5 gives some concluding remarks.

2 Integrated Active Network Management and Design

Figure 1 illustrates the synergy derived from the merging of active networking concepts with
network management and distributed simulation. Our preliminary experiences in merging

Networ k

M anagement
Simulation can usereal
Adaptable monitoring network data and
improves scalability and execute near itsorigin

flexibility
. Simulation as a design D_|Strlbl,!ted
ActiVe tool totest new ideas Simulation
Networking

Figure 1: Advantages of Merging Distributed Network Management, Distributed Simulation
and Active Networking

these technologies under the ANCORS architecture indicate that we can provide an inte-
grated environment for network technology development while affording substantial software
reuse in supervising network operations. ANCORS gains from active networking the ability
to dynamically deploy engineering, management, and data transport services at runtime.
ANCORS leverages this capability to (1) coherently execute multiple simulations on the
network in a scalable and integrated fashion to support design, (2) integrate network and
system management with legacy standards (SNMP, CMIP) to result in a more flexible and
scalable management framework, and (3) provide network management functions to super-
vise network operations, collect network statistics to be used as input to network engineering
tools and higher-level assessment tools, and assist network operators in reacting to significant
changes in the network.

Figure 2 depicts an architecture based on the integration of active networking concepts,
network management, and distributed simulation. The architecture is divided into data,
assessment, and control layers. The data layer operates at the data packet level and offers
a set of services for the manipulation of network data. The assessment layer performs an-
alytical reviews of network behavior to extract relevant semantic information from it. The
control layer performs higher-order functions based on expert knowledge. All the services
constituting these layers are deployable and use common system management support. AN-
CORS should distribute data-layer services at the inter-domain level (following the model of
active networking) and limit the deployment of assessment and the control layer services to
the domain level. However, depending on the amount of resource sharing resulting from the
deployment of active networking, the services of the assessment layer may also be distributed
across multiple domains. Because the control layer needs to possess a significant amount of
authority to perform changes in the network, it should only be deployed within one domain.
Several control services should then cooperate at the inter-domain level to exchange useful
information for making better informed control decisions about their respective domains.

In this context a domain consists of collection of software and hardware objects that are managed by a
single administrative authority.
A discussion about control services inter-domain information exchange is beyond the scope of this paper.

Control Layer
Response

Assessment Layer Adaptive i Heuristic
Learning Assessment

; ; Monitoring & Data
Engineerin
Data L ayer <:> Control <:> Transport

Figure 2: ANCORS’s Architecture

2.1 Data Layer

Although merging three technical areas into one may offer definite advantages, it is still
useful to recognize that the fundamental tasks to be performed can be separated. For this
reason, we find it useful to decompose the data layer into three distinct kinds of data services
that may benefit from dynamic deployment in the network and that naturally map to the
three services we want to support: data transport, monitoring and control, and engineering.

2.1.1 Data Transport Services

Data transport services offer communication protocols, either quite general and extensible
as proposed in [12, 3, 13, 9, 1], or more traditional services derived from the ones available
today. In all cases, we assume that their deployment may be dynamic. The scope of this
paper does not permit us to give a detailed description of these services and their possible
applications. We instead focus on the engineering and monitoring and control services, which
are our primary research emphasis. These services introduce the fundamental technology
upon which ANCORS extends the network management paradigm to support planning,
performance, and stability assessment.

2.1.2 Monitoring and Control

Monitoring and control services monitor the operation of network services, perform some
initial analytical review of performance data to detect exceptional conditions, report rel-
evant information to higher-level layers, and offer a mechanism for runtime configuration.
These services perform tasks analogous to those performed by today’s network management
agents. In addition, specialized monitoring and control network services may be dynamically
deployed to perform user-defined targeted analyses such as those proposed in [6].

The use of active networking to allow user-definable monitoring capabilities to be deploy-
able gives ANCORS two major advantages: (1) it permits selective monitoring of a particular
phenomenon as new network requirements and new usage patterns emerge over time, and
(2) it improves monitoring scalability through an arbitrary degree of sophistication in the

monitoring agents, thus allowing a fluid tradeoff of the amount of computation to be per-
formed in the services distributed throughout the network with the amount of computation
to be performed in the control stations.

2.1.3 Engineering Services

Engineering services aid in the design and testing of network services before their deploy-
ment. ANCORS incorporates distributed simulation to help operators explore and select the
optimal deployment and configuration of network assets and develop new network technol-
ogy. Hardware design tools have reached a very high level of sophistication and can assist
hardware designers in all phases of design and development. Such tools can support a wide
spectrum of levels of abstraction, from high-level purely behavioral specifications, to increas-
ingly finer detailed structural layouts, all the way down to the actual design of the transistors
on the silicon. Simulation is used throughout all phases of this design process, and it is the
main mechanism that guides design choices. As for hardware, network design should also
be carried out in an environment that can offer a variable degree of abstraction and that
can offer simulation as a pivoting technology to guide development. We argue that, because
of the organic nature of current networks and their fast evolution pace, design should be
carried out in the real network itself. Future networks will need tools that can adapt their
functionality and scope, and that can grow and change with the network itself.

e To generate results that accurately predict network behavior and performance, simu-
lation and analysis must be closely tied to the actual, rather than on artificially gen-
erated, network traffic conditions. To that end, the tools should run on the network
itself, taking the actual observable traffic conditions into consideration.

e Before committing network-wide changes such as the alteration of the network routing
algorithm, an operator may want to conduct simulation experiments that can predict
the behavior of the network under the new algorithm without affecting network relia-
bility. That is, analysis and design tools should be available to a wide range of network
operators, who could act independently or in collaboration with one another.

e New vulnerabilities may be discovered that threaten the survivability of a network.
Operators should be able to install countermeasures dynamically to match evolving
threats. Here, too, simulation experiments are needed to test efficacy of planned secu-
rity measures and ascertain trade-offs between network performance and security.

Our distributed planning and simulation system leverages network management and in-
troduces simulation as an additional network service. Integrating distributed simulation
with network management has four main advantages: (1) it naturally supports reuse of both
simulation software and network models, (2) the simulated models can use real network data
produced by the monitoring agents, thus improving fidelity, (3) the consumers of the data
(the simulation models) are placed close to the origin of the data to reduce overhead and (4)
the monitoring and control capabilities of network management can be reused to monitor
and control the simulations.

In practice, engineering services may mimic the behavior and performance of all other
network services but differ from them in the following ways: (1) they live in a separate address
space and are for the exclusive use of the network designers, (2) they operate protocols in
a virtual timescale that may differ from physical time, and (3) they may generate synthetic
network traffic that does not contain user data.

2.2 Assessment Layer

As shown in Figure 2, ANCORS’s assessment layer interfaces with the monitoring and con-
trol services of the data layer and the automatic response service of the control layer. At the
data layer, the monitoring and control services interface to both engineering and data trans-
port services, thus providing a unique interface to the assessment layer. By designing our
architecture in this way, we can achieve software reuse of the assessment and control layers
and seamlessly integrate network engineering and data transport services within the same
paradigm. At the assessment layer, two sophisticated analytical reviews of the network’s
data are performed. The first is a heuristic review of elements within the data, specifically
looking for metrics within the reported results that represent exceptional or unexpected
behavior. Boundary results for the metrics are specified at the initialization of the data
collection agents, and may be dynamically updated by an administrator. The second form
of assessment involves an adaptive learning algorithm that performs continuous statistical
profiling of the network data. As data flows into the statistical profiling engine, the profile
specific to the particular data acquisition agent is updated, and statistically stable results
begin to emerge. The statistical profiling engine monitors the degree to which various user-
defined metrics change with respect to the current operational behavior of the network. The
algorithms used to provide the heuristic assessment and the statistical profiling of network
data will be adapted from related research effort on information survivability [6].

2.3 Control layer

The output from the assessment layer is propagated to the control layer, where these results
are displayed for the administrator or processed by an expert system decision engine capable
of providing predetermined responses, given the receipt of various assessment results.
Response methods are predefined code segments deployed to the analysis target as part
of the control-layer configuration space. Included with each valid response method are eval-
uation metrics for determining the circumstances under which the method should be dis-
patched. Formulating effective responses to detected exceptional activity is, itself, an exten-
sive subtopic being pursued within the scope of our research. In many situations, the most
effective response may be no response at all, in that every response imposes some cost in
system performance or (worse) human time. The extent to which the control layer contains
logic to filter out uninteresting analysis results may mean the difference between effective
monitoring units and unmanageable (soon to be disabled) monitoring units. For certain
analysis results, such as the detection of significant exceptional activity through heuristic
analysis, the necessity for response invocation may be obvious. For other analysis results

The passage of time is explicitly controlled by predefined time-synchronization algorithms.

(such as the detection of a statistical anomaly in the packet stream to or from a network
service) the control layer may require greater sophistication in the invocation logic.

It is important to tailor a response that is appropriate given the severity of the problem,
and that provides a singular effect to address the problem without harming the flow of
legitimate network traffic. The following general forms of response are available through the
control layer as analysis results from the assessment layer are received:

e Passive results dissemination: The control layer can simply make the analysis
results available for administrative review. We are currently exploring techniques to
facilitate passive dissemination of analysis results by using already-existing network
protocols such as SNMP, including the translation of analysis results into an ad-hoc
MIB structure.

e Assertive results dissemination: The control layer can actively disseminate ad-
ministrative alerts. While the automatic dissemination of alerts may help to provide
timely review of problems by administrators, this approach may be the most expensive
form of response, in that it requires human oversight.

e Dynamic oversight of the monitoring and control layer: The control layer
may provide limited control over the configuration of logging facilities within network
components, requiring greater collection from the data layer as the assessment layer
identifies significant exceptional activity.

e Dynamic configuration changes: The control layer may induce changes to the
configuration of the network infrastructure in response to exceptional activity. Such
actions may include reconfiguration of services, routing databases, or filtering rules.

3 ANCORS’s System Management

ANCORS’s support for the deployment and management of network services focuses on ser-
vices that are fairly permanent and long-lived and that can benefit from having a separate
system management infrastructure. The management of short-lived services should be di-
rectly embedded in the mechanisms that deploy and control them and therefore are integral
parts of their dynamic loading mechanisms. This kind of micro-management, currently being
addressed by several research projects [12, 3, 13], is beyond the scope of this paper.

From a system management point of view, all services constituting ANCORS’s architec-
ture (Figure 2) are equal. Their deployment, operation, and monitoring can be performed
using the same mechanisms, and therefore they can be managed in the same paradigm. In
the following discussion we offer a solution for their effective, scalable, and user-friendly
management.

All classes of deployable network services from simple SNMP daemons to more sophis-
ticated data transport services and assessment services require identical support functions
from system management. The support functions can be broadly characterized as those

achieving (1) process control, (2) configuration, or (3) monitoring.

Process control functions allow the loading and unloading of network services to and
from network nodes. The physical location of the code that implements the network services
may be different from the physical location of their deployment. For this reason, a reliable
transport protocol such as TCP may be used to transfer the code. Some searching and
browsing capabilities should be offered so that network operators may also easily locate the
appropriate executable codes. Existing protocols such as HTTP and LDAP /X500 or newer
and richer protocols such as the ones described in [10, 11] could be used for user-friendly
code storage and retrieval.

Configuration functions write control data into the network services after they have
been loaded onto the intended nodes for the purpose of integrating them into the network
node and possibly tailoring the service to particular needs.

Monitoring functions result in reading data from the network service for the purpose
of supervising its operation. This support function may be invoked directly from the network
administrator interactively (or it may be invoked iteratively by the network monitoring and
control services) for the purpose of collecting performance data.

— — = Configuration Functions - = == Monitoring Functions —— ProcessControl Functions

Service Deployment

W AP N Root Daemon
AN Automatic Response
W\ Al \\

‘\ AN] 1

Management
Station

\
v

Figure 3: ANCORS’s Management Architecture

This decomposition gives rise to the architecture depicted in Figure 3. In ANCORS,
a root manager handles process control requests coming from the management stations or
automatic response services to either load new services or terminate existing ones. The as-
sessment layer interprets monitoring results from the data layer, and the automatic response
services react to significant conditions as they are reported by the assessment layer. The
automatic response services may reconfigure both the assessment services and the data-layer
services in response to changes in the network behavior.

Notice from Figure 3 that ANCORS’s architecture allows the traditional but nonscalable
approach of having the management station directly monitor and control the data layer. This

Monitoring is typically associated with network management and control is associated with system
management. Because of the flexibility introduced by active networking and ANCORS’s ability to support
multiple protocols, monitoring and control functionalities can be supported within the same management
framework.

Init() ANCORS
MIME document SNMP
Content-Type: application/x-ANCORS Manager

<?XML VERSION="1.0 RMD="NONE"?>

<ANCORS> Content-Type: text/html
<agent="http://csl.sri.com/ancors/agentX X .ancors"'>
</ANCORS> <HTML>

<TITLE> Configuration for XX</TITLE>
<FORM ACTION="/cgi-bin/exec.cgi/">

Content-Type: application/x-SNMP <INPUT TYPE=SUBMIT NAME="parameterl" VALUE="valuel">
<INPUT TYPE=SUBMIT NAME="parameter2" VALUE="vaue2">

<?XML VERSION="1.0 RMD="NONE"?> </[FORM></HTML>

<SNMP>

<agent="ftp://ftp.cd.sri.com/SNM P/agentXX">
<mib="ftp://ftp.cdl.sri.com/SNMP/MIBXX">
</SNMP>

Figure 4: Services’ management can be specified through the use of MIME encapsulation
and the XML language.

aspect of our architecture can be very useful when simple network management technologies
are employed that do not require ad-hoc distributed monitoring functions.

We recognize that Internet services must be open, simple and flexible, and therefore
we do not intend to have a unique format for the information exchanges between network
services and management stations. While we intend to formulate a protocol that best suits
the nature of our adaptable management paradigm based on delegation [14], we recognize
that legacy protocols and simple Web-based solutions should also be possible. Standards
like SNMP should be supported in those cases where backward compatibility is desirable;
HTML could be employed for services to be configured and monitored interactively. To
support multiple protocols, ANCORS uses a discovery mechanism to probe newly deployed
services. The idea is quite simple and is somewhat similar to the approach followed today on
the Web. Each network service listens on a port assigned to it by the root manager. After
deployment, the services respond to a predefined and universally agreed-upon command
init (the equivalent of GET / in HTTP). The init command causes the network services to
respond with a MIME-encapsulated reply. In general, the reply contains information to be
used for the configuration and monitoring of the service itself and the configuration of other
related services.

As shown in Figure 4, a service wanting to use SNMP, for example, replies with infor-
mation encapsulated in an SNMP-specific MIME. The reply would specify the URL of the
SNMP agent and the associated MIB to be loaded with the service. The management station
then loads the requested SNMP agent and MIB and automatically adds the service to its
SNMP manager application.

Figure 4 also shows an ANCORS MIME corresponding to the specific management ap-
plication that we intend to develop in the near future, based on delegation. In a more simple
scenario, the service can also reply with an encapsulated message in HTML format. The
replay then allows the administrator to use standard HT'ML forms to configure and later

Load_process <URL 1>

 GET <URL2>
Load thread <URL2>

Figure 5: ANCORS daemons can spawn a new process or a thread within a process

interactively monitor the service through a browser. Yet another approach is for the service
to respond by providing Java byte-code that can then be embedded either in the central
management stations or in a distributed monitoring agent, using a scheme similar to the one
proposed in [2]. Other interesting technologies that are being developed, and that may be
included, are DRP [10] and NESTOR [15].

We think ANCORS'’s simple query mechanism can be the foundation for solving the
problem of how to extend the monitoring and control capability as new network services
are deployed. In addition to allowing backward compatibility, this scheme can support very
simple and lightweight management solutions based on standard Web software, or it can
also support more sophisticated solutions to bolster the power of network management as
needed.

4 Implementation

We are currently prototyping most of the ideas we have outlined. We have primarily focused
in implementing (1) a prototype of a root ANCORS daemon that dynamically accepts and
instantiates network services, (2) a representative example of an engineering service that
could be used to conduct very accurate, end-to-end quantitative experimentation, and (3)
the integration of a monitoring and control service for intrusion detection [6].

4.1 ANCORS Root daemon

The current prototype of an ANCORS root daemon accepts commands to download network
service from a remote location. The network service is specified as a URL; the ANCORS dae-
mon, after downloading the service with an HT'TP GET command, strips the HTML header
from the received code and installs the service. As shown in Figure 5, the download command
can either (1) trigger the ANCORS daemon to duplicate itself by using a fork system call
to run the downloaded network service (as well to accept further commands), or (2) simply
add a thread to an existing process. In either case, the downloaded code is initially accessed
through a universally predefined entry point (init()). This initial configuration function
can simply transfer control to the downloaded code for execution, or it can first gather run-

10

time configuration data in a manner specific to each network service and then explicitly
started. Our current system management prototype supports the deployment of native bi-
nary compatible code or Java applications. The deployment and configuration mechanism
is fully backward compatible. Legacy services can be configured by downloading configura-
tion files and specifying required command-line arguments so that existing software can be
easily deployed without modification. In addition, we have implemented simple web-based
configuration mechanisms for newly developed services. In these services, the configuration
and monitoring functions are embedded inside the deployed service itself. These functions
return HTML code that is fed to the network manager to gather some user-defined runtime
parameters or for displaying usage data. The network engineer configures and monitors the
services with HI'ML forms that are then pushed back through a CGI script to the created
service. Each operation returns HTML forms that in turn may call other functions, thus
allowing a hierarchical organization of HTML pages. Future extensions to our management
system will allow the incorporation of existing NM software based on SNMP and Java and
the creation of new decentralized management solutions based on the concept of delegation
(perhaps using Java as the delegation language).

The ANCORS daemon offers a set of built-in primitives to the downloaded services that,
in addition to standard native system functionality (I/O, memory management, networking),
provide (1) multithreading (nonpreemptive), (2) LAN multicast emulation, and (3) global
time synchronization. These primitives can provide support for distributed simulation net-
work engineering applications, as well as some forms of sophisticated network monitoring.

4.2 Virtual Networking Using ANCORS

To date we have produced a representative example of an engineering network service that
emulates a Unix kernel. The service was obtained by modifying a Linux operating system
to allow its execution in user mode. The modifications of the operating system replaced all
lower-level, hardware-dependent procedures and interfaces with user-level counterparts. We
deleted the file system support and incorporated all necessary configuration procedures (like
ifconfig and route) into the service itself as configuration functions. Memory management
was completely deleted and replaced by user-level memory allocation functions (malloc and
free). The scheduling was also completely replaced by nonpreemptive threading offered by
the simulation package (CSIM [8]).

The resulting service executes in a virtual timescale, offers the identical networking be-
havior of a real Linux kernel and can therefore be used as a vehicle to instantiate high
fidelity distributed simulations of virtual networks [7]. One of the model’s configuration
functions accepts several different timing configurations to approximate the protocol stack
timing behavior of four different kernels (SunOS 4.13, SunOS 5.5, Linux 2.02, and BSD 2.2).

The virtual kernel offers the network application programming interface (API) of the real
Linux counterpart and therefore can be used to reproduce a wide range of loading conditions.
ANCORS’s ability to add and delete threads can be used in this application to dynamically

For example, it could use a MIME-encapsulated document to specify configuration and monitoring
operations to be performed by the management system.
All products and company names mentioned in this paper are the trademarks of their respective holders.

11

User-defined Deployable virtual host

Thread . I
reads Analytical User-defined Application '»(Application
Model Monitoring Load
|
Y Y \J
\ Virtual TCP/UDP AP |
\ TCP | | uDP | ICMP |

Measured Load ‘ P [4 ‘
Ethernet Interfacel Ethernet Interface 2 Ethernet Interface n
‘Ip|Network Broadcast‘ ‘Ip|Network Broadcast‘ eece ‘Ip|Network Broadcast‘

Hash Hash
Function Function

Port # Port # Port #

Virtual Kernel

TCPIP

Figure 6: Deployable Virtual Host

change loading conditions (by adding or deleting user-defined loading threads) or by injecting
user-defined monitoring probes into the kernel so that specific parameters can be observed.
For the time being we have implemented some simple load models borrowed from classic
queuing theory. As shown in Figure 6, the user-definable loads may be produced by either
closely mimicking real load conditions recorded by network monitoring services or by linking
some real applications to the virtual kernel to generate application-specific loads (perhaps
originating from a real-time video stream).

The virtual kernels communicate with each other through TCP, and automatically con-
figure themselves to participate in emulated multicast sessions that parallel the behavior of
virtual Ethernet segments. Initially, all real hosts are aware of all other real hosts that may
share the same virtual Ethernet segment. Each virtual Ethernet segment network address
assigned to a virtual host is transformed through a hash function into a port number. When
the virtual kernel initializes its virtual interfaces, the multicast emulation initialization pro-
cedure tries to connect to all known peers that may share a virtual Ethernet segment using
the port associated with each virtual interface. Thus, if two or more virtual hosts share a
virtual network address, and therefore use the same port, they establish a TCP connection
used to tunnel virtual Ethernet packets. When a virtual host sends a simulation packet
pertaining to a particular virtual Ethernet segment, it sends it to all virtual hosts that have
connected to the associated port.

The deployment of a virtual network is achieved by downloading and configuring several
virtual kernels through ANCORS daemons. All these operations can be performed either
through a standard HTML browser or by using a script. We have so far instantiated sev-
eral virtual networks running on a network of workstations including Sun SPARCstation
20s, UltraSPARCs, and Intel-based machines running BSD and Linux operating systems.
Our experiments have, so far, only verified the behavioral semantics of our virtual network
and we plan to conduct representative performance experiments to explore some interesting
quantitative network design issues.

12

4.3 A Monitoring and Control Service for Intrusion Detection

We are also developing a prototype downloadable intrusion-detection module for ANCORS,
which represents a monitoring and control service at the data layer. This intrusion-detection
module can be dynamically configured and deployed to any network element that hosts an
ANCORS daemon, and can then return analysis results to the assessment layer for correlation
and perhaps control-layer responses. These dynamically distributable intrusion-detection
service modules represent a significant departure from the previous centralized host-based,
user-oriented, intrusion-detection efforts that suffer poor scalability and integration into large
networks. The intrusion-detection services are adaptations of separate intrusion-detection re-
search tools developed by SRI under the EMERALD (Event Monitoring Enabling Responses
to Anomalous Live Disturbances) project, and represent one of the first distributed network
surveillance security mechanisms that will fully integrate into an active network paradigm.

The ANCORS intrusion-detection service module consists of event filters, capable of
interacting with the analysis target to analyze a variety of operational data, including audit
data, system- or application-layer activity logs, and network traffic. The operational data
is forwarded to the intrusion-detection module’s analysis engines, which consist of both a
signature analysis (an expert-system) engine and a statistical anomaly detection engine.
Details of the architectural structure and analysis capabilities of the ANCORS intrusion-
detection service can be found in [6].

Fundamental to the intrusion-detection module’s ability to support rapid deployment to
a variety of ANCORS hosts, and to conduct a variety of analyses on heterogeneous event
streams, is the implementation of a pluggable configuration library that allows strong sepa-
ration between the analysis semantics and the code-base. The ANCORS intrusion-detection
module consists of two major components, the analysis code-base, and a dynamically plug-
gable configuration library called the resource object. The resource object is highly target
specific, containing all of the operating parameters for the intrusion-detection module, as well
as the native methods needed to retrieve and format the target event stream. As intrusion-
detection modules are deployed from one analysis target to another, no code modifications
are necessary. Rather, one must construct, or select from a preconstructed library, the re-
source object appropriate for the target host and analysis objectives. Upon deployment, the
ANCORS daemon receives both the intrusion-detection code module and a resource object,
which it instantiates to provide dynamically deployable and customizable surveillance. A
detailed discussion of the ANCORS intrusion-detection module’s abilities to detect misuse
and other exceptional activities on TCP/IP gateway machines can be found in [5].

5 Conclusion

As the dynamic deployment of networking services becomes standard technology to support
user applications, network operators will require an efficient and flexible infrastructure to
assist them in network design, configuration, and monitoring. The quality of future network
management, monitoring, and engineering tools and standards will be crucial in determining
the speed at which networking will evolve toward a more dynamic architecture. In ANCORS,
network monitoring, control, and design can coexist in an integrated paradigm. The synergy

13

of combining distributed simulation, network monitoring and control, and active networking
will dramatically increase the power of network management and engineering. We have
shown how a unified, yet very extensible, system management framework can be derived
from current Web technology to provide compatibility with legacy standard (SNMP) and
virtually unlimited extensibility to introduce more powerful management technologies as
they become available. We have also described some services we have implemented that can
be used in the context of our new network management framework.

In the near future, we plan to bridge our work with existing active networking technologies
to provide an integrated platform for merging data transport protocols and their associated
deployment mechanisms with our extensible engineering and management support. In addi-
tion, we will use our infrastrucuture to conduct network engineering experiments to advance
the understanding of end-to-end network behavior and offer a user-friendly environment for
the development of new network technologies.

14

References

[12]

[13]

[14]

[15]

D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and Jonathan M. Smith. Active bridging. To
appear in the Proceedings of the ACM SIGCOMM’97 Conference, Cannes, France, September 1997.

F. Barillaud, L. Deri, and M. Feredun. Network management using internet technologies. Integrated
Network Management V, San Diego, 1997.

L. Peterson J. Hartman, U. Manber and T. Proebsting. Liquid software: A new paradigm for networked
systems. Technical Report 96-11, University of Arizona, 1996.

U. Legedza, D. J. Wetherall, and J. V. Guttag. Improving the performance of distributed applications
using active networks. Submitted to IEEE INFOCOM’98, 1998.

P.A. Porras and A.Valdes. Live traffic analysis of tcp/ip gateways. To appear in Proceedings of the
Network and Distributed System Security Symposium, San Diego, March, 1998.

P.A. Porras and P.G. Neumann. Emerald: Event monitoring enabling responses to anomalous live
disturbances. Proceedings of the National Information Systems Security Conference, Baltimore, MD,
October, 1997.

L. Ricciulli. High-fidelity distributed simulation of local area networks. To appear in Proceedings of the
31st Annual Simulation Symposium, Boston, April, 1998.

H. Schwetman. Csim: A c-based, process-oriented simulation language. Technical report, MCC, 1989.

Jonathan Smith, David Farber, Carl A. Gunter, Scott Nettle, Mark Segal, William D. Sincoskie,
David Feldmeier, and Scott Alexander. Switchware: Towards a 21st century network infrastructure.
http://www.cis.upenn.edu/ switchware/papers/sware.ps, 1997.

Arthur van Hoff, John Giannandrea, Mark Hapner, Steve Carter, and Milo Medin. The HTTP Distri-
bution and Replication Protocol. http://www.marimba.com/standards/drp.html, August 25, 1997.

Arthur van Hoff, Hadi Partovi, and Tom Thai. Specification for the Open Software Description (OSD)
Format. http://www.microsoft.com/standards/osd/, August 11, 1997.

D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. Ants: A toolkit for building and dynamically
deploying network protocols. Submitted to IEEES OPENARCH’98, 1998.

Y. Yemini and S. da Silva. Towards programmable networks. IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, L’ Aquila, Italy, October 1996.

Y. Yemini, G. Goldszmidt, and S. Yemini. Network management by delegation. Second International
Symposium on Integrated Network Management, Washington DC, April 1991.

Y. Yemini, A. V. Konstantinou, and Danilo Florissi. Nestor : Network self management and organiza-
tion. http://www.cs.columbia.edu/dec/nestor/, 1998.

15

