
View-Based Access Control with High Assurance�Xiaolei QianComputer Science LaboratorySRI Internationalqian@csl.sri.comAbstractView-based access control enables content-based and context-based security, as opposed tocontainer-based security provided in operating systems. However, view-based access control inmultilevel secure (MLS) databases su�ers from two problems: safety and assurance. We investi-gate view-based access control in MLS relational databases for a large class of views expressibleas project-select-join queries. We develop a polynomial-time label compilation algorithm thattransforms view-level labeling to tuple-level labeling in such a way that guarantees safety andhigh assurance. We identify two problems related to optimal label compilation, and show thatthey are both NP-complete even for totally ordered security lattices of size two.1 IntroductionViews in relational databases have long been considered ideal as the objects of access control,because they have a higher degree of logical abstraction than physical data and hence enablecontent-based or context-based security, as opposed to container-based security provided in oper-ating systems.However, view-based access control has not been in wide-spread use in multilevel secure (MLS)relational databases because of two major problems [10].� Safety. The safety question asks the following. Is there a database state in which a particularuser possesses a particular privilege for data in a speci�c view? In container-based accesscontrol, di�erent containers do not share contents.1 Hence, a secret label on a containerensures that data in the container are not accessible to unclassi�ed users. In contrast, inview-based access control, views might overlap and the same data might satisfy more thanone view. Hence, a secret label on a view does not guarantee that data contained in the vieware not accessible to unclassi�ed users. This is not acceptable, because it means that datamight not be labeled consistently.�This work was supported in part by the U.S. Department of Defense Advanced Research Projects Agency and theU.S. Air Force Rome Laboratory under contract F30602-94-C-0198, and in part by the National Science Foundationunder grant ECS-94-22688.1Even though two containers might store di�erent copies of the same data, their contents do not overlap physically.1

� Assurance. The assurance question asks the following. Can the safety of a particular view-based access control policy be determined with small amount of trusted code? In container-based access control, containers labeled di�erently can be allocated to disjoint address spaces,because they do not share contents. Hence, high assurance is achievable with a minimalamount of trusted code. In contrast, in view-based access control, the trusted computing base(TCB) is likely to be very large, including most code of a DBMS and especially the queryprocessor that interprets views. This is not acceptable, because a small TCB is required forcerti�cation of multilevel systems above class B1.To retain the advantages of both content-based security and container-based security, view-based access control in MLS relational databases poses the following challenge: how to bridge thegap between content-based security speci�cation and container-based security implementation.2 Motivating ExamplesLet us consider a FLIGHT database containing three relations.Payload (
ight#, item#, weight)Flights (
ight#, date, destination, capacity)Item (item#, itemname, type)A secret view could be de�ned on the FLIGHT database to protect all
ights carrying bombsto Iran.CREATE VIEW Bomb Iran (
ight#, weight, date)SELECT Payload.
ight#, Payload.weight, Flights.dateFROM Payload, Flights, ItemWHERE Flights.
ight# = Payload.
ight#AND Item.item# = Payload.item#AND Flights.destination = iranAND Item.itemname = bomb.A con�dential view could also be de�ned on the FLIGHT database to protect
ights that carrylarge amounts (� 100) of explosives.CREATE VIEW Large Explosive (
ight#, name)SELECT Payload.
ight#, Item.itemnameFROM Payload, ItemWHERE Item.item# = Payload.item#AND Item.type = explosiveAND Payload.weight � 100.Large Explosive overlaps with Bomb Iran in those
ights that carry large amounts of bombs to Iran.A secret label on Bomb Iran does not guarantee that these
ights are not accessible to con�dentialusers|they can access these
ights through Large Explosive.2

We could de�ne a third unclassi�ed view could be de�ned on the FLIGHT database for low-capacity
ights to Kuwait with not-fully-loaded item vxs606:CREATE VIEW Kuwait VXS606 (
ight#)SELECT Payload.
ight#FROM Payload, FlightsWHERE Payload.
ight# = Flights.
ight#AND Payload.item# = vxs606AND Payload.weight < Flights.capacityAND Flights.destination = kuwaitAND Flights.capacity � 80.Kuwait VXS606 does not overlap with Large Explosive, but it overlaps with Bomb Iran in thosepayloads of item vxs606. A secret label on Bomb Iran does not guarantee that these payloads arenot accessible to unclassi�ed users|they can access these payloads through Kuwait VXS606.23 Solution: Label CompilationTo bridge the gap between content-based security speci�cation and container-based security imple-mentation, we develop an e�cient label compilation algorithm that transforms view-level labelingto tuple-level labeling.The algorithm takes a set of labeled views as input. Views are expressed as project-select-join queries where the selection condition involves comparisons of attributes to constants or otherattributes. Labels on views are transformed to labels on primitive views, which are views expressedon single relations. These labeled primitive views are then used to assign labels to tuples in primitiveviews. The algorithm runs in polynomial time.Label compilation using our algorithm has several desirable properties:� Well-Foundedness. Compilation is deterministic. In other words, every tuple in a relationaldatabase is assigned exactly one unique label.� Proper Classi�cation. Explicit data in a view are labeled no higher than the label of theview. In other words, a secret label on a view guarantees that explicit data in the view areaccessible to secret users.� Safety. Explicit data in a view are labeled no lower than the label of the view. In otherwords, a secret label on a view guarantees that explicit data in the view are not accessible tounclassi�ed users.Moreover, our algorithm succeeds if and only if a well-founded, proper, and safe compilation exists.In other words, it is both sound and complete. High assurance is achieved by enforcing access2Notice that payloads in Bomb Iran and Kuwait VXS606 could not overlap, if we knew that every payload is on a
ight (i.e., Payload.
ight# is a foreign key to Flights) and every
ight has a unique destination (i.e., Flights.
ight#is the primary key of Flights). 3

control not on views but on tuples. Hence, only the label compilation code needs to be trusted,and the TCB is comparable in size to those in MLS relational databases with tuple-level labeling.We also investigate the complexity of two problems related to optimal compilation. The �rst isthe problem of lowest classi�cation. When there are more than one well-founded, proper, and safecompilation, we would want to choose the one in which tuples are labeled at the lowest possiblelevels, since doing so maximizes data sharing among users at di�erent levels. The second is theproblem of minimal upgrade. When a well-founded, proper, and safe compilation does not existbecause some views are labeled inappropriately low, we would want to upgrade a minimal numberof views such that compilation succeeds, since doing so maximizes the number of users eligible toaccess data through these views. We show that both problems are NP-complete even for totallyordered security lattices of size two.The rest of the paper is organized as follows. In Section 4, we introduce multilevel schemas andview-level labeling. In Section 5, we present an algorithm for transforming view-level labeling totuple-level labeling. We investigate the complexity of optimal compilation in Section 6. Finally,we compare our results with related work in Section 7, and conclude the paper in Section 8 with abrief discussion of future work.4 Multilevel Schemas with View-Level Labeling4.1 Relational ModelLet U be a �nite collection of attributes. If X;Y are sequences of attributes in U , then XY denotesthe concatenation of X;Y . For A 2 U , XA denotes XhAi. A relation scheme R[X] is a sequenceof attributes X � U named R. A schema B is a family of relation schemes fRi[Xi]g1�i�n. Forexample, the schema of the FLIGHT database contains three relation schemes|Payload, Flights,and Item.Let D be a (possibly in�nite) set of values. A tuple over attributes X is a mapping t[X]:X 7! Dthat assigns values from D to attributes in X. A relation r over relation scheme R[X] is a set oftuples over X. A database B over schema B = fRi[Xi]g1�i�n is a family of relations frig1�i�n,where ri is a relation over Ri[Xi].4.2 Views as Conjunctive QueriesWe consider views that are expressible as project-select-join (PSJ) queries whose selection conditionis a conjunction of comparisons of attributes to constants or other attributes.3 These queries areequivalently expressible as conjunctive queries with built-in predicates [11].We assume that predicates are divided into three disjoint groups: base predicates, built-inpredicates, and view predicates. Given a schema B, there is an jXj-ary base predicate R for everyrelation scheme R[X] in B. Built-in predicates are =; 6=; <;�; >;�. We assume that there is anunbounded supply of view predicates.3Our results generalize to PSJ queries whose selection condition involves disjunction, since they can be representedequivalently by multiple PSJ queries without disjunction.4

An atomic formula involving a base, built-in, or view predicate is a base, built-in, or view literal ,respectively. Given a set C of literals, the sets of variables and constants in C are denoted as var(C)and const(C), respectively. Given a set C of built-in literals, the closure of C, denoted as C�, isthe set of built-in literals c such that var(c) � var(C), const(c) � const(C), and C j= c. Given abase literal p and a set C of built-in literals, the projection of C on p, denoted as �p(C), is the setof literals c 2 C� such that var(c) � var(p).A view V de�ned on schema B has the formh :� p1; : : : ; pm; c1; : : : ; cm0 (1)where h; p1; : : : ; pm; c1; : : : ; cm0 are literals whose arguments are variables or constants, h is a viewliteral named the head , p1; : : : ; pm is a list of base literals named the body , and c1; : : : ; cm0 is a listof built-in literals named the constraint . Variables in the head are distinguished . We assume thatevery variable in the head or the constraint also appears in the body. As a convention, we usex; y; : : : for distinguished variables and w; u; : : : for other variables. We also use head(V);body(V),and constraint(V) to denote the head, body, and constraint of V , respectively.Example 1 The three views on the FLIGHT database in Section 2 can be expressed as thefollowing conjunctive queries:V1(x; y; z) :� Payload(x; u; y);Flights(x; z; iran; v); Item(u; bomb; w)V2(x; y) :� Payload(x; u1; u2); Item(u1; y; explosive); u2 � 100V3(x) :� Payload(x; vxs606; u);Flights(x; v1; kuwait; v2); u < v2; v2 � 80: 2Let V be the view (1). V is primitive if it contains one base literal, namely, m = 1. V is simpleif it contains no built-in literals, namely, m0 = 0. For example, view V1 in Example 1 is simple butnot primitive. Primitive view V is de�ned on relation scheme R[X] if the base predicate in p1 is R.Let P be a set of primitive views. Two primitive views P; P 0 2 P overlap, denoted as P ' P 0,if � a most-general uni�er � = mgu(body(P);body(P 0)) exists, and� constraint(P)� and constraint(P 0)� together are satis�able.Notice that the transitive closure of ', denoted as '�, is an equivalence relation on P. For primitiveview P 2 P, P='� denotes the equivalence class of P under '�, which is the set of primitive viewsin P that are related to P through '�, namely, fP 0jP 0 2 P ^ P '� P 0g. P='� denotes the set ofequivalence classes of primitive views in P under '�, namely, fP='� jP 2 Pg.Let P be a primitive view on R[X]. Given a relation r over R[X], we denote the value of P in rby P (r). A tuple t 2 r satis�es P if P (ftg) is not empty. Let V be a view on B. Given a databaseB over B, we denote the value of view V in B by V (B).5

Let V be the view (1). The cover of V , denoted as cover(V), is a family fPig1�i�m of primitiveviews, one for every base literal in V , where Pi ishi :� pi; �piconstraint(V)where hi is a view literal obtained by replacing the base predicate in pi by a new view predicate.Let V 0 be the view h :� p1; : : : ; pm; constraint(P1); : : : ; constraint(Pm):Notice that the collection of constraints in the cover of V is weaker than the constraint of V ,namely, (S1�i�m constraint(Pi))� � constraint(V)�. Hence, V (B) � V 0(B) for every database Bover schema B.Example 2 The covers of views in Example 1 contain the following primitive views:P1(x; y; z) :� Payload(x; y; z)P2(x; y; iran; z) :� Flights(x; y; iran; z)P3(x; bomb; y) :� Item(x; bomb; y)P4(x; y; z) :� Payload(x; y; z); z � 100P5(x; y; explosive) :� Item(x; y; explosive)P6(x; vxs606; y) :� Payload(x; vxs606; y); y < 80P7(x; y; kuwait; z) :� Flights(x; y; kuwait; z); z � 80:P1 overlaps with P4 and P6. P4 does not overlap with P6; neither does P2 overlap with P7. P3overlaps with P5. 24.3 View-Level LabelingA security lattice is a lattice (L;�), where L is a set of levels and � is the dominance relation. Forexample, a security lattice could be fU;C; Sg, where U � C � S.We consider view-based access control in MLS relational databases, where mandatory accesscontrol policies with the simple security property and the �-property of the Bell-LaPadula model[7] are enforced. Given a security lattice, every user is assigned a clearance level, and every objectis assigned a classi�cation level, both of which are from the lattice.� The Simple Security Property. A user is allowed a read access to an object only if theformer's clearance level is identical to or higher than the latter's classi�cation level in thelattice.� The �-Property. A user is allowed a write access to an object only if the former's clearancelevel is identical to or lower than the latter's classi�cation level in the lattice.6

A multilevel relation scheme is a pair (R[X];L), where R[X] is a relation scheme and L is alattice. A multilevel schema is a pair (B;L), where B is a schema and L is a lattice. For example,the schema of the FLIGHT database in Section 2 together with the lattice above form a multilevelschema of the FLIGHT database.A multilevel schema with view-level labeling is a quadruple (B;L;V;�), where (B;L) is a mul-tilevel schema, V is a family of views on B, and � is a mapping from views in V to levels in L. Forexample, the multilevel schema above together with the three labeled views in Example 1 form amultilevel schema with view-level labeling of the FLIGHT database.5 Compiling to Tuple-Level Labeling5.1 Multilevel Databases with Tuple-Level LabelingLet L = (L;�) be a lattice, and (R[X];L) be a multilevel relation scheme. A multilevel relationwith tuple-level labeling over (R[X];L) is a pair (r; �), where r is a relation over R[X] and � is amapping from tuples over X to levels in L, such that �(t) = l if and only if t 2 r and t is labeled l.Let (B;L) be a multilevel schema, where B = fRi[Xi]g1�i�n. A multilevel database with tuple-level labeling over (B;L) is a family f(ri; �i)g1�i�n, where (ri; �i) is a multilevel relation withtuple-level labeling over (Ri[Xi];L). We denote it by the pair (B;�), where B = frig1�i�n is adatabase over B, and � = f�ig1�i�n is a family of mappings.Let l 2 L be a level. The l-slice of multilevel relation (r; �), denoted as (r; �)l, is a single-levelrelation containing all tuples in r that are labeled at or below l, namely, ftjt 2 r ^ �(t) � lg. Thel-slice of multilevel database (B;�) = f(ri; �i)g1�i�n, denoted as (B;�)l, is a single-level databasecontaining the l-slices of relations in B, namely, f(ri; �i)lg1�i�n.Given a view V on schema B and a multilevel database (B;�) over multilevel schema (B;L),the value of V in (B;�) at l, denoted as Vl(B;�), is the value of V in the l-slice of (B;�), namely,V ((B;�)l).5.2 Label CompilationLet (B;L;V;�) be a multilevel schema with view-level labeling, and P be the set of primitive viewsin the covers of views in V, namely, SV 2V cover(V). A compilation of labeled views in (V;�) is apair (P; �), where � is a mapping from primitive views in P to levels in L.The labeled primitive views in (P; �) can serve as classi�cation constraints in a multileveldatabase with tuple-level labeling over multilevel schema (B;L). In particular, for relation r overrelation scheme R[X], we can construct a multilevel relation with tuple-level labeling (r; �) overmultilevel relation scheme (R[X];L) as follows. For every primitive view P 2 P on R[X] and everytuple t 2 r that satis�es P , �(t) = �(P). All other tuples in r are labeled at the bottom level of L.Likewise, for database B over schema B, we can construct a multilevel database with tuple-levellabeling (B;�) over multilevel schema (B;L).Example 3 The three views in Example 1 are labeled S;C, and U , respectively. A possiblecompilation of these views could assign labels to the primitive views in Example 2 as follows.7

P1; P4; P6, and P7 are labeled U , P3 and P5 are labeled C, and P2 is labeled S. Using these labeledprimitive views to classify tuples in a given FLIGHT database, all Flights tuples to Iran will belabeled S, and all Item tuples that are bombs or explosives will be labeled C. All other tuples willbe labeled U . 2A compilation is well-founded if, for every pair of primitive views P; P 0 2 P, P ' P 0 implies�(P) = �(P 0). For example, the compilation in Example 3 is well-founded. Let B be a databaseover B.Theorem 1 If a compilation is well-founded, then there is a unique multilevel database with tuple-level labeling (B;�) over (B;L), using the labeled primitive views in (P; �) as classi�cation con-straints.Proof Assume that there are two primitive views P; P 0 2 P on relation scheme R[X] where�(P) 6= �(P 0), such that there is a tuple t over attributes X satisfying both P and P 0.Assume that P 6' P 0. If body(P) does not unify with body(P 0), then they must have di�erentconstants for the same argument position. Hence, there cannot be a tuple t 2 r that satis�es bothP and P 0, a contradiction.Let � = mgu(body(P);body(P 0)). If constraint(P)� ^ constraint(P 0)� is not satis�able, thenthere cannot be a tuple t 2 r that satis�es both P and P 0, a contradiction.Hence, P ' P 0, and �(P) = �(P 0), a contradiction. 2Theorem 1 states that a well-founded compilation guarantees that tuples in a database areuniquely labeled. In other words, every tuple is assigned exactly one label.A compilation is proper if, for every view V 2 V, the label of V dominates the least upper boundof the labels of primitive views in the cover of V , namely, lub(f�(P)jP 2 cover(V)g) � �(V). Forexample, the compilation in Example 3 is proper. Let V be a view in V where �(V) = l, l0 2 L bea level where l � l0, and (B;�) be a multilevel database constructed using labeled primitive viewsin (P; �) as classi�cation constraints.Theorem 2 If a compilation is proper, then the values of V in (B;�) at l and l0 are identical.Proof For every primitive view P 2 cover(V), we have that �(P) � l, and hence all tuples inB that satisfy P are labeled at or below l. Thus, Pl(B;�) = P (B), and Vl(B;�) = V (B). SinceVl(B;�) � Vl0(B;�) � V (B), we have that Vl(B;�) = Vl0(B;�). 2Theorem 2 states that a proper compilation guarantees that views in V are properly labeled.In other words, a secret label on a view guarantees that explicit data in the view are accessible tosecret users through the view.A compilation is safe if, for every view V 2 V, the label of V is dominated by the least upperbound of the labels of primitive views in the cover of V , namely, �(V) � lub(f�(P)jP 2 cover(V)g).For example, the compilation in Example 3 is safe. Let V be a view in V where �(V) = l, l0 2 L bea level where l 6� l0, and (B;�) be a multilevel database constructed using labeled primitive viewsin (P; �) as classi�cation constraints. 8

Theorem 3 If a compilation is safe, then the value of V in (B;�) at l0 is empty.Proof There is a primitive view P 2 cover(V) such that �(P) 6� l0. Since every tuple that satis�esP is labeled �(P), Pl0(B;�) is empty. Hence, Vl0(B;�) is empty. 2Theorem 3 states that a safe compilation guarantees that views in V are safely labeled. Inother words, a secret label on a view guarantees that explicit data in the view are not accessible tounclassi�ed users.When every view in V contains a primitive view that is not overlapping with any other primitiveviews in the covers of views in V, it is easy to verify that a well-founded, proper, and safe compilationexists.5.3 Label Compilation AlgorithmLet (B;L;V;�) be a multilevel schema with view-level labeling, and P be the set of primitive viewsin the covers of views in V, namely, SV 2V cover(V). Our label compilation algorithm is shownbelow. Initially, every primitive view in the cover of a view is assigned the label of the view. Allprimitive views in the same equivalence class under '� are assigned the greatest lower bound oftheir initial labels.Algorithm. Label Compilationinput. A family of labeled views (V;�)output. A family of labeled primitive views (P; �)procedure compileP SV 2V cover(V);for V 2 V; P 2 cover(V) do �(P) �(V);for V 2 V; P 2 cover(V) do �(P) glb(f�(P 0)jP 0 2 P='�g);for V 2 V doif �(V) 6� lub(f�(P)jP 2 cover(V)g) then return (;; ;);return (P; �).Readers can verify that the algorithm applied to the labeled views in Example 1 gives rise tothe labeled primitive views in Example 3.Since all primitive views in the same equivalence class under '� are labeled at the same level,compile(V;�) is well-founded. Since every primitive view in the cover of a view is initially labeledthe same as the view and could only be labeled lower through compilation, compile(V;�) is proper.When the algorithm returns nonempty answers, compile(V;�) is safe. Hence, the algorithm issound. The theorem below tells us that the algorithm is also complete.Theorem 4 If compile(V;�) returns empty answer, then there are no well-founded, proper, andsafe compilations of (V;�).Proof Suppose that compile(V;�) returns empty answer, and there is a well-founded, proper,and safe compilation (P; �0). First we show by induction that, for every pair of primitive views9

P; P 0 2 P, P '� P 0 implies �0(P) = �0(P 0). The claim holds for the base case when P ' P 0, since(P; �0) is well-founded. Assume that the claim holds for P1 and Pk if Pi ' Pi+1 for 1 � i � k � 1, andPk ' Pk+1. From the base case, �0(Pk) = �0(Pk+1). From the induction hypothesis, �0(P1) = �0(Pk).Hence �0(P1) = �0(Pk+1).Next we show that, throughout the algorithm, �0(P) � �(P) for every view V 2 V and everyprimitive view P 2 cover(V). After the second step of the algorithm, �(P) = �(V). Since (P; �0)is proper, �0(P) � �(V). Hence �0(P) � �(P).Consider primitive views in the set P='�, all of which have the same �0-label. After the secondstep of the algorithm, let l be the greatest lower bound of �-labels of primitive views in P='�. If�0(P) 6� l, then there is a view V 0 2 V and a primitive view P 0 2 cover(V 0) where P '� P 0 such that�0(P 0) 6� �(P 0) = �(V 0). Hence, the least upper bound of �0-labels of primitive views in cover(V 0)is not dominated by �(V 0), meaning that (P; �0) is not proper, a contradiction.Therefore, �0(P) � l. Since �(P) is assigned l in the third step of the algorithm, �0(P) � �(P)after the third step of the algorithm. Since compile(V;�) returns empty answer, there is a viewV 2 V where �(V) is not dominated by the least upper bound of �-labels (and hence �0-labels) ofprimitive views in cover(V), meaning that (P; �0) is not safe, again a contradiction. 2Let us consider the complexity of the label compilation algorithm. First notice that the closureof a set of built-in literals is computable in time polynomial in the size of the set. Hence, theset of primitive views P is computable in time polynomial in the size of V. Next notice that theuni�cation of two base literals and the satis�ability of a set of built-in literals is computable inpolynomial time. Hence, the set of equivalence classes P='� is computable in time polynomial inthe size of V. Finally notice that both the greatest lower bound and the least upper bound of a setof levels are computable in time polynomial in the size of the set. Therefore, the label compilationalgorithm runs in time polynomial in the size of the input.6 Complexity of Optimal Compilation6.1 Lowest Classi�cationLet (B;L;V;�) be a multilevel schema with view-level labeling. If a compilation of labeled viewsin (V;�) to labeled primitive views in (P; �) is well-founded, proper, and safe, then we can usethe resulting labeled primitive views as classi�cation constraints to label tuples consistently indatabases.When there are more than one well-founded, proper, and safe compilation, we would want tochoose the one in which primitive views in P are labeled with the lowest possible levels, since doingso maximizes data sharing among users at di�erent levels. However, the algorithm of Section 3.3does not generate the lowest classi�cation. In fact, the algorithm produces the highest classi�cation.For every view V 2 V, every primitive view in cover(V) is labeled by default at the highest possiblelevel|�(V), unless it must be labeled lower because of safety requirements.Example 4 It is easy to see that the compilation in Example 3 has the lowest compilation, sinceit is the only well-founded, proper, and safe compilation. If we did not have the labeled view V3 in10

Example 1, then we would only have primitive views P1 through P5 in Example 2, and hence thealgorithm would produce a compilation in which P1; P3; P4, and P5 are labeled C, and P2 is labeledS. This compilation does not have the lowest classi�cation, since P1 and P4 could be safely labeledU . Notice that a compilation with the lowest classi�cation is not always unique|P3 and P5 couldbe safely labeled U instead.4 2Let us consider a special case of the problem, where every relation scheme in B is unary, L is atotal order with two levels ? and > such that ? � >, every view in V is simple and unary and doesnot contain non-distinguished variables, and �(V) = > for every view V 2 V. Let P be the setof primitive views in the covers of views in V, namely, SV 2V cover(V). The Lowest Classi�cationproblem can be stated as follows.Let K � jPj be a positive integer. Is there a subset of primitive views P 0 � P withjP 0j � K, such that there is a well-founded, proper, and safe compilation of (V;�)where the set of primitive views labeled > is P 0?Theorem 5 Lowest Classi�cation is NP-complete.Proof The problem belongs to NP because a nondeterministic machine can randomly guess asolution and verify that it is well-formed, proper, and safe in polynomial time.We reduce a known NP-complete problem, the Hitting Set problem [4, page 222], to the LowestClassi�cation problem. The Hitting Set problem states:Let S be a �nite set, C be a collection of subsets of S, and K � jSj be a positive integer.Is there a subset S0 � S with jS0j � K such that S0 contains at least one element fromevery subset in C?It is easy to see that the Hitting Set problem is equivalent to the following modi�ed Hitting Setproblem:Let S be a �nite set, C be a collection of subsets of S where S = Sc2C c, and K � jSjbe a positive integer. Is there a subset S0 � S with jS0j � K such that S0 contains atleast one element from every subset in C?Our reduction of the modi�ed Hitting Set problem is as follows. First, B contains an attributeAs and a relation scheme Rs[As] for every element s 2 S. Second, V contains a view Vc(x) :�Rs1(x); : : : ; Rsk(x) for every element c 2 C where c = fs1; : : : ; skg. Notice that P = fPs(x) :�Rs(x)gs2S . Since primitive views overlap i� they are identical, all compilations are well-founded.Since views in V are labeled >, all compilations are proper.We need to show that the reduction establishes a one-to-one mapping between the two problems,in the sense that S00 is a solution of the modi�ed Hitting Set problem if and only if it is a solutionof the Lowest Classi�cation problem.4The notion of lowest classi�cation does not take into account the sizes of primitive views. Otherwise, we wouldprefer to label P1 lower since it could very likely contain many more tuples than P3 and P5 combined.11

Suppose that S00 is a solution for the modi�ed Hitting Set problem. We choose the compilation(P; �) where, for every primitive view Ps 2 P, �(Ps) = > if s 2 S00, and �(Ps) = ? otherwise.Since S00 contains at least one element from every subset in C, every view in V contains at leastone primitive view labeled >. Hence, the compilation is safe.Suppose that P 00 is a solution for the Lowest Classi�cation problem. Let S = P, and C be theset fcover(V)jV 2 Vg. Naturally S = Sc2C c. Since every view V 2 V is labeled >, there is at leastone primitive view P 2 cover(V) where �(P) = >. Hence P 00 contains at least one element fromevery subset in C. 26.2 Minimal UpgradeLet (B;L;V;�) be a multilevel schema with view-level labeling. If compile(V;�) returns empty,then there are no well-founded, proper, and safe compilations of labeled views in (V;�).A common cause of the problem is that some views are labeled inappropriately low, in whichcase we would like to upgrade these views such that the resulting schema can be safely compiledto tuple-level labeling. In other words, we want to �nd a new multilevel schema (B;L;V ;�0) suchthat compile(V;�0) does not return empty and, for every view V 2 V, �(V) � �0(V). Naturally,we would like to minimize the number of views that must be upgraded, since doing so maximizesthe number of users eligible to access data through these views.Example 5 Consider the three labeled views below on the FLIGHT database. V4 is labeled U ,V5 is labeled C, and V6 is labeled C 0, where C and C 0 are not comparable.V4(x; y; z1; z2) :� Flights(x; z1; u1; u2); Item(y; z2; v);Payload(x; y; w); w � 100V5(x; y; z) :� Item(y; z; v);Payload(x; y; w); w � 200V6(x; y; z) :� Flights(x; z; u1; u2);Payload(x; y; w); w � 220:Readers can verify that there are no well-founded, proper, and safe compilations. A minimalupgrade is to label Payload tuples U , label Item tuples C, and label Flights tuples C 0. The resultis that one view, namely, V4, is upgraded to lub(C;C 0).5 2Let us consider a special case of the problem, where L is a total order with two levels ? and >such that ? � >. Views in V are divided into two disjoint subsets: V> and V?, where �(V) = >for every V 2 V> and �(V) = ? for every V 2 V?. The Minimal Upgrade problem can be statedas follows.Let K � jV?j be a positive integer. Is there a subset of views V 0 � V? with jV 0j � K,such that compile(V;�0) is not empty, where �0(V) = > for every V 2 V> [V 0 and�0(V) = ? for every V 2 V? � V 0?5Minimality in the number of upgraded views is di�erent from minimality in the number of upgraded primitiveviews. For example, another upgrade is to label S those Payload tuples whose weight � 200, and label Item andFlights tuples U . This upgrade is not minimal in the number of upgraded views (which is two), but it is minimal inthe number of upgraded primitive views (which is one). 12

Let S be the set (SV 2V cover(V))='� and C be the set fcover(V)='� jV 2 Vg. Also let C> andC? be fcover(V)='� jV 2 V>g and fcover(V)='� jV 2 V?g, respectively. The Minimal Upgradeproblem can be equivalently stated as follows.Let K � jC?j be a positive integer. Is there a subset C 0 � C? with jC 0j � K, such thatthere is a subset S0 � S in which c \ S0 6= ; for every c 2 C> [C 0 and c \ S0 = ; forevery c 2 C? � C 0?Theorem 6 Minimal Upgrade is NP-complete.Proof The problem belongs to NP because a nondeterministic machine can randomly guess asolution and run the algorithm of Section 3.3 in polynomial time to determine whether a well-founded, proper, and safe compilation exists.We transform a known NP-complete problem, the modi�ed Hitting Set problem from Section 4,to the Minimal Upgrade problem. The modi�ed Hitting Set problem states:Let S be a �nite set, C be a collection of subsets of S where S = Sc2C c, and K � jSjbe a positive integer. Is there a subset S0 � S with jS0j � K such that S0 contains atleast one element from every subset in C?Our transformation of the modi�ed Hitting Set problem is as follows. Let S be a �nite set, Cbe a collection of subsets of S where S = Sc2C c, and K � jSj be a positive integer. We need toconstruct a �nite set S0, a collection C 0 of subsets of S0 where S0 = Sc2C0 c, two disjoint subsetsC>; C? � C 0 where C 0 = C>[C?, and a positive integer K 0 � jC?j, such that the modi�ed HittingSet problem (S;C;K) has a solution i� the Minimal Upgrade problem (S0; C 0; C>; C?;K 0) has asolution.Every element in S is an element in S0, and every element in C is an element in C 0. Let C> = C.For every element s 2 S, S0 contains a new element s0 62 S, and C 0 contains the element fs; s0g.Let C? = C 0 � C>, and K 0 = K. It is easy to see that the construction can be accomplished inpolynomial time.Let S00 be a solution for (S;C;K). Also let C 00 = ffs; s0gjs 2 S00g. Obviously C 00 � C? andjC 00j � K 0. Since c \ S00 6= ; for every c 2 C> [C 00 and c \ S00 = ; for every c 2 C? � C 00, C 00 is asolution for (S0; C 0; C>; C?;K 0).Let C 00 be a solution for (S0; C 0; C>; C?;K 0). Also let S00 = fsjfs; s0g 2 C 00g. Obviously S00 � Sand jS00j � K. Since c \ S00 6= ; for every c 2 C, S00 is a solution for (S;C;K). 27 Related WorkView-based access control in relational databases was �rst introduced in IBM's System R [6], inwhich views expressed in SQL are the objects of authorization. It has been adopted by most com-mercial relational DBMSs. Because of its importance, view-based access control in MLS relationaldatabases was recommended for long-term research by the Air Force Studies Board in 1983 [8].13

One class of existing approaches to view-based access control is to restrict views to subsets ofsingle relations. In particular, secure views in [12] are select queries where the selection conditioninvolves comparisons of tuple labels to constants. ASD views [5] and pviews [10] are project-selectqueries where the selection condition involves comparisons of attributes to constants. The safety ofsuch views is easy to verify, and high assurance is achievable with a small amount of trusted codeto interpret such views. However, the capability of content-based access control is limited.Another class of existing approaches to view-based access control is to treat labeled views asclassi�cation constraints, which are used to compile labels on views to labels on data such as tuplesor elements in tuples [2, 3]. Users can access data through arbitrarily complex views, such as withordinary MLS relational databases. High assurance is achievable with a small amount of trustedcode for label compilation. However, the safety of views is reduced to the safety of classi�cationconstraints. For easy veri�cation of safety, classi�cation constraints have also been restricted toproject-select queries where the selection condition involves arithmetic expressions of attributesand constants [1]. Again, the capability of content-based access control is limited.Neither class of approaches allows views involving joins, such as Bomb Iran and Large Explosiveon the FLIGHT database. In comparison, our algorithm allows views that are project-select-joinqueries, which are signi�cantly more expressive than single-relation views.Another problem associated with the label compilation method of [1] is that data are oftenoverclassi�ed. When the same tuple appears in two views that are labeled di�erently, it is labeledat the least upper bound of the two view labels, making it inaccessible from both views. Hence,a con�dential label on a view guarantees only that data contained in the view are not accessibleto unclassi�ed users, not that data contained in the view are accessible to con�dential users. Thisis not acceptable because it might cause denial of service to users who are otherwise eligible toaccess data contained in a view. For example, if we have both the secret view Bomb Iran and thecon�dential view Large Explosive, then
ights that carry large amounts of bombs to Iran must belabeled secret, making them inaccessible to con�dential users who are otherwise entitled to access all
ights that carry large amounts of explosives. In comparison, our algorithm guarantees that labelcompilation is proper and safe, meaning that data are neither overclassi�ed nor underclassi�ed.Existing approaches do not distinguish between explicit and implicit data in a view, and treatthe label on the view as applying to both explicit and implicit data. If a secret view involvesthe join of two relations, then it is commonly assumed that both the join and the two relationsmust be labeled secret, where in fact one relation can be labeled unclassi�ed as long as the otherrelation is labeled secret. This confusion unnecessarily complicates the safety problem, leading tothe need to overclassify data. For example, data in Payload could be safely labeled unclassi�ed aslong as data in Item are labeled con�dential, even though Payload is part of the con�dential viewLarge Explosive. In comparison, our algorithm allows implicit data in a view to be labeled lowerthan explicit data in the view, so as to achieve a proper and safe label compilation.8 Summary and Future WorkWe have investigated view-based access control in MLS relational databases for a large class ofviews expressible as project-select-join queries. We have developed a polynomial-time label compi-14

lation algorithm that transforms view-level labeling to tuple-level labeling. Compilation using ouralgorithm is well-founded, proper, and safe, in the sense that every tuple is assigned exactly oneunique label, and data in a view are accessible precisely by users cleared at or above the level ofthe view. With the label compilation code in TCB, high assurance is achievable by enforcing accesscontrol not on views but on tuples.We have also studied the complexity of two problems related to optimal label compilation: theproblem of �nding a well-founded, proper, and safe compilation with the lowest classi�cation; andthe problem of �nding a well-founded, proper, and safe compilation with the minimal number ofviews upgraded. Both problems are shown to be NP-complete even for totally ordered securitylattices of size two.Several directions for future work are possible. First, label compilation may stop after generatinglabeled primitive views. As argued in [10], such views can be implemented with high assurance.This is especially useful for view-based discretionary access control, for it is not very practical toassociate access control lists with tuples. Second, we would like to investigate the compilationof view-level labeling to tuple-level labeling where tuple labels are further constrained commonintegrity constraints such as referential integrity. Third, our algorithm can be generalized to thecompilation of view-level labeling to element-level labeling, using the equivalence between tuple-level and element-level labeling established in [9]. Finally, we would like to consider views that aremore expressive than project-select-join queries, such as views involving the di�erence operator oraggregation functions.AcknowledgmentThe author thanks Li Gong, Peter Neumann, Marvin Schaefer, and James O'Connor for usefulcomments on drafts of the paper.References[1] S. G. Akl and D. E. Denning. Checking classi�cation constraints for consistency and complete-ness. In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages 196{201,1987.[2] B. G. Claybrook. Using views in a multilevel secure database management system. In Pro-ceedings of the 1983 IEEE Symposium on Security and Privacy, pages 4{17, 1983.[3] D. E. Denning, S. G. Akl, M. Heckman, T. F. Lunt, M. Morgenstern, P. G. Neumann, and R. R.Schell. Views for multilevel database security. IEEE Transactions on Software Engineering,13(2):129{140, February 1987.[4] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co., 1979.[5] C. Garvey and A. Wu. ASD views. In Proceedings of the 1988 IEEE Symposium on Securityand Privacy, pages 85{95, 1988. 15

[6] P. P. Gri�ths and B. W. Wade. An authorization mechanism for a relational database system.ACM Transactions on Database Systems, 1(3):242{255, September 1976.[7] C. E. Landwehr. Formal models for computer security. ACM Computing Surveys, 13(3):247{278, September 1981.[8] Committee on Multilevel Data Management Security. Multilevel data management security.Technical report, Air Force Studies Board, National Research Council, National AcademyPress, 1983.[9] X. Qian and T. F. Lunt. Tuple-level vs. element-level classi�cation. In B. M. Thuraisinghamand C. E. Landwehr, editors, Database Security, VI: Status and Prospects, pages 301{315.North-Holland, 1993.[10] M. Schaefer and G. Smith. Assured discretionary access control for trusted RDBMS. InProceedings of the Ninth IFIP WG 11.3 Working Conference on Database Security, pages275{289, 1995.[11] J. D. Ullman. Principles of Database and Knowledge Base Systems, volume 1. ComputerScience Press, 1988.[12] J. Wilson. Views as the security objects in a multilevel secure relational database managementsystem. In Proceedings of the 1988 IEEE Symposium on Security and Privacy, pages 70{84,1988.

16

