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Abstract

Query folding refers to the activity of determining if and how a query can be answered using
a given set of resources, which might be materialized views, cached results of previous queries,
or queries answerable by another database. We investigate query folding in the context where
queries and resources are conjunctive queries. We develop an exponential-time algorithm that
finds all foldings, and a polynomial-time algorithm for the subclass of acyclic queries. Our
results can be applied to query optimization in centralized databases, to query processing in
distributed databases, and to query answering in federated databases.

1 Introduction

Query folding refers to the activity of determining if and how a query can be answered using a given
set of resources. These resources might be materialized views, cached results of previous queries, or
even queries answerable by another database. Query folding is important because the base relations
referred to in a query might be stored remotely and hence too expensive to access, or might not be
available for access because of temporary network disconnection, or might be conceptual relations
only and hence not existent physically. Query folding has applications in query optimization in
centralized databases [4], query processing in distributed databases [6], and query answering in
federated databases [7].

Ezample 1 Let us consider a patient record database consisting of the following relations.

Patients (patient_id, clinic, dob, insurance)
Physician  (physician_id, clinic, pager_no)

Drugs (drug_name, generic?)

Notes (note_id, patient_id, physician_id, note_text)
Allergy (note_id, drug_name, allergy_text)
Prescription (note_id, drug_name, prescription_text).
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Suppose that the database maintains a materialized view defined by

CREATE VIEW Drug_Allergy (patient_id, drug_name, text)

SELECT patient_id, drug_name, allergy_text
FROM Notes, Allergy
WHERE Notes.note_id = Allergy.note_id.

A user might issue the following query to get the ids of patients at the Palo Alto Clinic who are
allergic to an experimental drug xd_2001.

SELECT patient_id, allergy_text

FROM Patients, Notes, Allergy

WHERE Patients.patient_id = Notes.patient_id
AND Notes.note_id = Allergy.note_id
AND clinic = palo_alto
AND drug_name = xd_2001.

Using the view, the above query can be folded to

SELECT patient_id, text

FROM Patients, Drug_Allergy

WHERE Patients.patient_id = Drug_Allergy.patient_id
AND clinic = palo_alto
AND drug_name = xd_2001.

This new query could be more efficient to evaluate than the original query. O

Query containment is a special case of query folding. To determine whether a query is contained
in another query, we could determine instead whether the second query can be answered using a
view defined by the first query. The problem of containment for conjunctive queries is known
to be NP-complete [3]. Several subclasses of conjunctive queries have been identified that have
polynomial-time containment algorithms [1, 2, 5].

Thus, the query-folding problem is at least NP-hard. Actually, it is shown recently to be NP-
complete for conjunctive queries and resources [8], and for conjunctive queries and resources with
binding patterns [10].

Solutions to query folding for conjunctive queries and resources with built-in predicates have
been developed in [4, 12, 14]. The algorithms employed all use exhaustive search strategies that
are exponential-time in complexity, and sometimes use unnecessary pruning conditions that do not
guarantee to find all foldings. In addition, these algorithms compute only strong foldings, which are
foldings that are equivalent to the original query. The algorithms in [12, 14] compute only complete
foldings, which are foldings that depend solely on the resources. When strong and complete foldings
do not exist, partial foldings that are contained in the original query or depend partially on the
resources could be very useful in practice, especially in the distributed environment.

We consider the query-folding problem for conjunctive queries and resources. Section 2 provides
some preliminary definitions. We show in Section 3 how to derive folding rules from resources, and



how to compute strong foldings from partial foldings. In Section 4 an exponential-time algorithm
is developed that finds all complete or partial foldings. In Section 5, we give a polynomial-time
algorithm for a large and natural subclass of conjunctive queries. It is similar in spirit to arc
consistency algorithms for constraint satisfaction problems [9]. For the query containment problem,
our algorithm degenerates to a containment algorithm for a new subclass of conjunctive queries
that is incomparable to but more natural than the subclasses identified in [1, 2, 5]. Finally, we
briefly discuss potential applications of query folding, and conclude the paper with Section 6.

2 Conjunctive Queries

2.1 Preliminaries

We consider queries and resources that are expressible as conjunctive queries or project-select-join
queries where the selection conditions are restricted to equality. We assume that predicates are
divided into three disjoint groups: base predicates, resource predicates, and query predicates. A
conjunctive query ) has the form

h Pt,---sPn

where h,p1,...,p, are atomic formulas whose arguments are variables or constants, h is the head,
and p1,...,p, is the body. Variables in the head are distinguished. We assume that every distin-
guished variable also appears in the body. As a convention, we use X,Y, ... for distinguished vari-
ables, W, U, ... for other variables, and A, B, ... for constants. We also use head(Q) and body(Q)
to denote the head and body of Q, respectively, and var(h) to denote the list of variables in h. The
SQL query in Example 1 is a conjunctive query

q(X,Y) :— patients(X,palo_alto, Wy, Ws),
notes(Ws, X, Wy, Ws), allergy (W3,xd_2001,Y).
The value of a conjunctive query in a database is the value of its head obtained by evaluating
its body in that database. A conjunctive query () is contained in another conjunctive query @',

denoted as Q C @', if the value of Q is a subset of the value of Q' in all possible databases. @ and
Q' are equivalent, denoted as Q = Q', if Q C Q' and Q' C Q.

2.2 Hypergraph Representation

A conjunctive query can be represented by a hypergraph as follows. Every variable in the body
is represented by a node, and a node is distinguished if it represents a distinguished variable. A
hyperedge is a set of nodes. Every conjunct in the body is represented by a hyperedge that contains
the set of variables in the conjunct, in which case we say that the conjunct is associated with the
hyperedge.

Ezample 2 Consider the following conjunctive query
q(X,Y) :— mnotes(Wq, X, Wy, W3),allergy (W7,Y, Wy),
notes(Ws, X, Wy, Wr), prescription(Ws, Y, Wg)



which computes patients X and drugs Y such that X is prescribed to Y and is treated with allergy

to Y. Its hypergraph is shown in Figure 1. O
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Figure 1: Hypergraph for Example 2

A conjunctive query is acyclic if its hypergraph representation is acyclic. We briefly recall the
definitions of GYO-reductions of hypergraphs and acyclic hypergraphs from [13, Section 11.12].
Given two hyperedges p and ¢, if nodes in the set difference p — ¢ appear in no other hyperedges,
then p is an ear. The GYO-reduction of a hypergraph is obtained by removing ears repeatedly
until no more ears exist. A hypergraph is acyclic if its GYO-reduction is empty (i.e., contains no
hyperedges). For example, the hypergraph in Figure 1 is cyclic.

3 The Query-Folding Problem

3.1 Folding Rules

A resource is a conjunctive query whose head contains a resource predicate and whose body contains
base predicates only. Similarly, a query is a conjunctive query whose head contains a query predicate
and whose body contains base predicates only. Let ) be a query, and R = {Ry,..., Ry} be a set
of resources. We assume that no two resources have the same resource predicate, and there are no
variables in common between () and R; for 1 < i < n, or between R; and R; for 1 <4i,7 < n and
i # j. Hence, every resource (query) completely defines its resource (query) predicate.

A partial folding of Q using R is a conjunctive query Q' such that Q' C @ and the body of Q'
contains one or more resource predicates defined in R. A partial folding of @ using R is mazimal
if there are no other partial foldings of @) using R that contain fewer base predicates. A complete
folding of @) using R is a partial folding of @ using R whose body contains resource predicates
only. A strong folding of Q using R is a partial folding Q' of Q using R such that Q C Q'.!

!Using results from [11], our definitions can be generalized directly to foldings that are unions of conjunctive



Example 3  Consider the following resources.
T’1(X1, XQ, Xg) = notes(Ul, Xl, UQ, Ug), allergy(Ul, XQ, Xg)
r2(Y1,Y2,Y3,Ys) — motes(Vi, Y1, Yy, Va), prescription(Vi, Y3, V3), drugs(Ys, Ya).
A complete folding of the query in Example 2 using these resources is

Q(va) = TI(X7Y7W)7T2(X7W17Y7W2)'

Consider a resource of the form

r = Piy---,Pn-

Let Xy,...,X; be the distinguished variables, and Y7,....Yy, be the rest of variables. Since the
resource predicate is completely defined by the body of the resource, the resource implies the

formula
(\V/Xl, - ,Xl)(T — (E|Yl, - ,Ym>(p1 JANCEN Apn))-

After skolemization, we derive n folding rules below.

plAaXy, LX)V (X XG) Y]
pn[fl(Xla e ,Xl)/Yl, N ,fm(Xl, e ,Xl)/Ym] = r
where fi, ..., fm are skolem functions with arguments Xi,..., X;. Notice that, for a folding rule,

the head is a single conjunct containing a base predicate, the body is a single conjunct containing
a resource predicate, and every variable in the head also appears in the body. For example, from
the resources in Example 3, we derive the following folding rules.

notes(f1 (X1, Xa, X3), X1, fo(X1, Xo, X3), f3(X71, X2, X3)) :— r1(X1, X2, X3)
allergy (f1(X1, X2, X3), X2, X3) :— r1(X1, Xa, X3)
notes(g1 (Y1, Y2, Y3, Ys), Y1, Y2, 92(Y1, Y2, Y3, Ys)) = 1a(Y1,Y2,V3,Y))
(
(

~— ~—

)

)

prescription(gy (Y1, Y2, Y3, Ya), Y3,93(Y1, Y2, Y3,Ys)) =~ ra(Y1,Y2,Y3,Yy)
drugs(Y3, Y4) — T Yl, YQ, Yg, Y4)

We can reformulate the query-folding problem as follows. Given a query @), a set of resources,
and a set of folding rules F derived from the resources, a partial folding of () using F is a conjunctive
query, obtained by rewriting () using F, that contains one or more resource predicates but no skolem
terms. For example, readers can verify that rewriting the query in Example 2 using the folding
rules above leads to the query in Example 3 (modulo variable renaming).

queries. In other words, a union of conjunctive queries is a partial folding of @ iff every conjunctive query in the
union is a partial folding of ). A union of conjunctive queries is a strong folding of @ iff every conjunctive query in
the union is a partial folding of @, and at least one conjunctive query in the union is a strong folding of Q.



3.2 Strong Foldings

A strong folding of a query is a partial folding that contains the original query. To show that one
query is contained in another query, we can show that the second query can be folded using the
first query as the resource.

Lemma 1 Let Q and Q, be two conjunctive queries. Q, C Q iff Q has a folding Q using Q, as
the resource such that body(Q¢) = head(Q,).

Proof Let F be the set of folding rules derived from Q,. First suppose that Q; is a folding of Q)
using @, as the resource, and body(Qs) = head(Q,). Obviously, @, C Q. Since Qs is a rewriting
of Q using F, Qy € Q. Hence, @, C Q.

Second suppose that @, C Q. Without loss of generality, assume that @), and @ have the same
distinguished variables. Let body(Q) be of the form pi,...,p,. Using results from [3], there is a
substitution o such that @, has the form

head(QT) T plo—a"'vpnavplla"'ap;n'

In deriving F from @Q,, let 0 be the substitution that replaces the non-distinguished variables in
body(Q,) by skolem terms. In F, we have folding rules of the form

p1od :— head(Q;)

pnod — head(Q,).

Hence, we can rewrite @ using these folding rules, leading to a conjunctive query Q; where
body(Qf) = head(Q,). Since ¢ does not substitute distinguished variables in @, (and hence Q)
by skolem terms, @y does not contain skolem terms. Thus, @ is a folding of @ using @, as the
resource. O

Let Qp be a partial folding of query @ using a set of resources R. Also let (), be the query
obtained from @), by replacing every resource predicate by its definition in R. Since Qp, = Qr, @Qp
is a strong folding of @ iff Q@ C Q,, and according to Lemma 1, iff @, has a folding Q using @Q as
the resource such that body(Q¢) = head(Q).

For example, if we expand the resource predicates in the query in Example 3 by their definitions,
and take the conjunctive query in Example 2 as the resource, then the expanded query does not
have complete foldings. Hence, the query in Example 3 is not a strong folding of the query in
Example 2.

Lemma 1 gives a straightforward way of determine whether a partial folding is a strong folding.
Therefore, we do not explicitly consider strong foldings any more in the rest of the paper.

4 A Query Folding Algorithm

Let Q be a query, Gg be the hypergraph representing (), and F be a set of folding rules. Our
query-folding algorithm computes complete or partial foldings of @} using F. It consists of two
steps.



Initialization The first step is to compute a label for every hyperedge in Gg. Given hyperedge
e € Gg and conjunct p associated with e, its label L. is a relation with attributes var(p). We
denote the list of attributes of L, by attr(L.). For every F € F such that p unifies with head(F)
with a most general unifier (mgu) o, there is a tuple in L, consisting of two parts: tuple var(p)o
and expression body(F)o, where the second part is used to store a folding of p. We denote such a
tuple by var(p)o|body(F')o. The value of L, is the set

var(p)o|body(F)o: F € F
Ao = mgu(head(F), p)
Abody(F')o contains no skolem terms

If we are seeking partial foldings of @ using F, then we add a default tuple var(p)|p to L.

Folding Generation Given two hyperedges e and ¢’ with labels L, and L., respectively, let
Y = attr(L,) Nattr(L!) and Z = attr(L!) — attr(L,). The u-join of L, and L, denoted as L, 0 L,
is a relation with attributes attr(L.), Z defined by the set

(t.¢12)ol(w.w')o: tlu € Le
At'|u' € L,
Ao = mgu(t[V], ¢'[V])

A(u, u')o contains no skolem terms

The second step is to actually construct the set of foldings. It proceeds by u-joining the labels
of all hyperedges in an arbitrary order. The set of foldings is found in the second parts of tuples in
the result:

{u:t|u € folding(Gg) A u contains a resource predicate}

where folding(Gg) is defined in Figure 2.

Algorithm. Folding
INPUT. A hypergraph
OUTPUT. A relation
procedure folding(G): relation
let e be a hyperedge in G with label L,
G — G —e¢
if G’ is empty then return L, else return L, 0 folding(G').

Figure 2: Folding

Let us apply the algorithm to Example 3. Assuming that we are seeking complete foldings, the
first step computes the labels associated with the hyperedges in Figure 1, as shown in Figure 3,
and the second step computes the u-join of these labels, which contains one tuple whose second
component is r1(Xy, Xo, X3),r2(X1, Y2, X5, Yy). Hence, the query in Example 2 has one complete
folding, which is the same as the folding in Example 3 (modulo variable renaming).



Wy X Wy W
f1(X1, X2, X3)  Xi fo(Xq, X2, X3)  f3(Xq, Xo, X3) | (X1, Xo, X3)

91(Y1,Y2,Y3,Yy) Y Y, g2(Y1,Yo,Y3,Yy) | m2(Y1,Y2,Y3.Yy)
Wy Y W,
f1( X1, X9, X3) Xo X3 | ri(Xq, X2, X3)
Ws X W %
f1(X1, X2, X3)  Xi fo(Xq1, X2, X3)  fa(X1, Xo, X3) | r1(X1, Xo, X3)
gl(Y17Y27Y37Y4) Yl Y2 g?(Y17Y27Y37Y4) TZ(Y17Y27Y37Y4)
Wi Y Wy

gl(YIaY2;Y37Y4) Y3 g3(Y17Y27Y3aY4) TZ(YlaYZaY37Y4)

Figure 3: Example 3

Theorem 2 A conjunctive query Q', where body(Q') contains one or more resource predicates, is a
partial folding of Q) using F iff there is some t such that t|body(Q') € folding(Gq) (modulo variable
renaming).

Proof  First, suppose that ¢/body(Q’) € folding(G¢) for some t. We prove by induction on the
length of body(Q) that Q' is a partial folding of Q.

1. The base case is when body(Q) is an atomic formula p. G has one hyperedge e with label
L., and t|body(Q') € Le. Since body(Q') contains a resource predicate, there is a folding rule
F € F and a mgu o such that p unifies with head(F') and body(Q’) is body(F)o. Hence, Q'
is obtained by rewriting body(Q) using F. Since body(F')o does not contain skolem terms,
Q' does not contain skolem terms.

2. Suppose that body(Q) has the form py,ps,...,pn. Let e € Gg be the hyperedge with which
conjunct p; is associated, L, be the label of e, and G = Gg —e. Also let Z = var(pa,...,pn) —
var(py). There are t1|u; € L, and ta|ug € folding(G) such that ¢ = t1,¢3[Z] and body(Q') =
uy, ug. Either uy = pp or uy is obtained by rewriting p; using some F' € F. In the latter
case, u; does not contain skolem terms. By induction hypothesis, uy is obtained by rewriting
P2, ..., pn using F, and us does not contain skolem terms. Thus, Q' is obtained by rewriting
body(Q) using F, and Q' does not contain skolem terms.

Second, suppose that Q' is a partial folding of @ obtained by rewriting body(Q) using F.
Without loss of generality, assume that body(Q) has the form p1,...,pm,...,pn for some 1 < m <
n, where rewrite rules are applied to p1, ..., p., only. Since every rewriting step replaces exactly one
conjunct, there are m (not necessarily different) folding rules Fi, ..., F,, € F used in the rewriting,
such that p; unifies with head(F;) with mgu oy, and var(p;)o;|body(F;)o; is in the label of the



hyperedge in G¢g with which p; is associated, for 1 < i < m. Recall that var(p;)|p; is a default
tuple in the label of the hyperedge in G¢g with which p; is associated, for m +1 < i < n. Hence,

body(Q') is
(body(F1),...,body(Fum), Pmt1y---+Pn)01---Om

and var(body(Q))o1 ... om|body(Q’) is in folding(Gg). O

Now let us consider the cost of computing foldings. Since unification is linear time, labels in
Gg can be computed in time polynomial in the sizes of @Q and F. The size of a label is bounded
by the size of F, and there are as many hyperedges as there are conjuncts in body(Q). Hence, the
cost of computing folding(Gg) is exponential in the size of F.

5 Query Folding for Acyclic Queries

5.1 Existence of Folding

Let @ be an acyclic query, Gg be the hypergraph representing @), R be a set of resources (notice
that resources can be cyclic), and F be a set of folding rules derived from R. We compute the
labels in G g using F in the same way as in Section 4.

Given two hyperedges e and €’ with labels L, and L., respectively, let } = attr(L,) Nattr(L.).

The u-semijoin of L, and L., denoted as L, < I is defined by the set

e
toluo: tlu € Le

A’ € L,

Ao = mgu(t[V], #'[Y])

Auo contains no skolem terms.

A hypergraph is pairwise-consistent if, for every pair of hyperedges e, ¢’ and their labels L, L,

where eNe’ # (), we have that L, < L., = L. Figure 4 gives an algorithm for reducing an acyclic
hypergraph to a pairwise-consistent acyclic hypergraph.

Ezample 4  Pairwise consistency is necessary but not sufficient for the existence of foldings of
cyclic queries. Consider the query

q(X,Y) :— patients(Wy, Wy, W3, Wy), notes(X, Wy, W5, Y), physician(Ws, Wa, W)

which computes the notes for those patients who are seen by physicians at the same clinic. If we
have the following two resources

r1(X1, Xa) :— patients(By, Ay, Ur, Uz), notes(Xy, By, C1, Xo), physician(Cy, Az, Us)
r2(Y1,Y2) :— patients(Ba, Az, V1, Va), notes(Y1, By, Ca, Ya), physician(Cy, Ay, V3)

where A;, B;, C; for 1 < i < 2 are distinct constants, then the query does not have complete foldings
using these resources. However, if we use the folding rules derived from these resources to compute



Algorithm. Reduction
INPUT. An acyclic hypergraph
OUTPUT. A pairwise-consistent acyclic hypergraph
procedure reduction(G): hypergraph
if G is empty then return G
else let e be an ear in G with label L,
G' — G —¢
foreach ¢' € G' with label L, where ¢ N ¢’ # 0 do L. — I B< Lg;
G' — reduction(G');
foreach ¢’ € G with label L' where ¢ N ¢’ # 0 do L, — L, B< L.;
return G’ + e.

Figure 4: Reduction

the labels of the hypergraph of the query, and apply the algorithm of Figure 4 to it, we would get
a non-empty and pairwise-consistent hypergraph. O

Theorem 3 There exists a complete folding of acyclic query Q using folding rules F iff no hyper-
edges in reduction(Gq) have empty labels.

Proof Suppose that Q' is a complete folding of Q using F. According to Theorem 2, there is
some t such that ¢/body(Q’) € folding(Gg). Recall that folding(Gg) is a relation over attributes
var(body(Q)). For every hyperedge e in G and its associated conjunct p, t[var(p)] is a tuple in
the label of e in reduction(Gg). Thus, no hyperedges in reduction(Gg) have empty labels.

Suppose that no hyperedges in G = reduction(Gg) have empty labels. We show by induction
on the number of hyperedges in G that folding(G) is not empty.

1. The base case when GG contains one hyperedge is obvious.
2. Let e € G be an ear, L, be the label of ¢, and G' = G —e. Let Y = attr(L,)Nattr(folding(G")).

For every tuple t € L, there is a tuple t' € folding(G’) such that {[Y] = #'[V], and vice versa.
Since L, is not empty, and by induction hypothesis folding(G') is not empty, folding(G) =

L, 4 folding(G') is not empty.

Let t|u € folding(G). Since folding(G) C folding(Gg), u is a folding of @ according to Theorem 2.
For every hyperedge in G and every tuple ¢'|v in its label, «’ is an expression containing resource
predicates only. Hence, u contains resource predicates only and is a complete folding of Q. O

Ezample 5 Consider the acyclic query below.

q(X,Y) :— allergy(X, Wy, Wy),drugs(W, Ws),
notes(X, Wy, Ws, Wg), patients(Wy, Y, Wy, Wyg)

10



which computes the notes from clinics that describe allergic reactions. Suppose that we have the
following two resources

T’l(Xl,Xg) — allergy(Xl,U1,Ug),drugs(Ul,Xg),noteS(Xl,U3,U4,U5)
r2(Y1,Ya2) = notes(Y1, V1, Va, V3), patients(V1, Yz, Vy, Vs), drugs(Vs, V7)

from which we derive the following folding rules

allergy (X1, f1(X1, X2), fa(X1, X2)) = r1(X1, X2)
drugs(f1(X1, X2), X2) — 1r1(X1, X9)
notes(X1, f3(X1, X2), fa(X1, X2), f5(X1, X2)) — r1(X1, Xo)
notes(Y1,91(Y1,Y2),92(Y1,Y2),93(Y1,Y2)) — ro(Y1,Y2)
patients(g1 (Y1, Y2), Y2,94(Y1,Y2),95(Y1,Y2)) — ra(¥7,Y5)
drugs(ge(Y1,Y2), 97(Y1,Y2)) = 1a(Y1,Y2).

To fold the query completely using these folding rules, Figure 5 gives the labels of its hypergraph,
after reduction using the algorithm in Figure 4. According to Theorem 3, this query has a complete
folding. O

X Wy Wy
X1 [1(X1, Xe)  fo(X1, Xo) | ri(X1, Xo)

Wi W3
f1(X1, X2)  Xo | (X1, Xo)

X Wy W We
X1 1(X1,Y2)  ¢2(X1,Ya)  g3(X1,Y2) | ma(X1, Ya)

Wy Y Wy We
g1(X1,Y2) Yo ga(X1,Y2) g5(X1,Ya) | ra(Xy,Ya)

Figure 5: Example 5
Theorem 4 There does not exist a partial folding of acyclic query Q) using folding rules F iff every
hyperedge in reduction(Gq) has a singleton label.

Proof  For every conjunct p in body(Q), the label of the hyperedge that represents p contains
at least one tuple var(p)|p. Consequently, folding(reduction(Gg)) contains at least one tuple

var(body(Q))|body(Q).

11



Suppose that every hyperedge in reduction(Gg) has a singleton label. Hence, there is exactly
one tuple var(body(Q))|body(Q) € folding(reduction(Gq)), meaning that @ does not have a partial
folding using F.

Suppose that there is a hyperedge e in reduction(Gg) whose label L. contains more than
one tuple. Let tlu € L, such that u contains a resource predicate. Thus, there is t'|u’ €
folding(reduction(Gg)) such that u' contains a resource predicate, meaning that «' is a partial
folding of Q. O

Ezample 6 Consider the acyclic query below.

q(X,Y) :— patients(X, W7, Wy, medicare), notes(Ws3, X, Wy, Ws),
prescription(Ws, Y, Wg), drugs(Y, no)

which computes the medicare patients who are prescribed to non-generic drugs. Suppose that we
have the following resource

r(X1, X9, X3) :— notes(Uy, X1, Xo,Us), prescription(Uy, X3, Us), drugs(Xs, Uy)

from which we derive the following folding rules

notes(f1(X1, X2, X3), X1, Xo, fo(X1, X2, X3)) — r1(X1, X2, X3)
prescription(fi (X1, X2, X3), X3, f3(X1, X2, X3)) :— r1(X1, X2, X3)
drugs(Xs, fa(X1, X2, X3)) — (X1, X2, X3).

To fold the query partially using these folding rules, Figure 6 gives the labels of its hypergraph,
after reduction using the algorithm in Figure 4. According to Theorem 4, this query has a partial
folding. O

Theorem 5 The problem of whether there exists a folding of acyclic query Q using folding rules
F is decidable in time polynomial in the sizes of () and F.

Proof Let ¢ be the number of conjuncts in Q. s, be the size of the largest conjunct in Q, f = |F|,
and sy be the size of the largest folding rule in F. The size of Q is O(c X s.), and the size of F is
O(f X Sf).

For every hyperedge ¢ € Gg and its associated conjunct p, the cost of computing its label L,
is O(f x (sg + sc)), since unification is linear time. Hence, the cost of computing labels in Gg is
Ofcx fx(sf+sc))-

Let e be an ear in Gg. The size of L, is O(f x s¢). The cost of computing reduction(Gq) is
O(c x (24 (f x s§)?)), plus the cost of computing reduction(Gg —e). Thus, the cost of computing
reduction(Gg) is O(c? x (s2 + (f x sf)?)).

Finally, the cost of checking if every hyperedge in reduction(Gg) has an empty or singleton
label is O(c). Therefore, the total cost of deciding if there exists a folding of @ using F is bounded
by

O(f x (¢ x s¢) + (¢ x 50)* + (¢ x f x s4)?)
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X Wy Wy
X7 Wi Wy | patients(Xy, Wy, Wy medicare)

W3 X Wy Ws
W3 X1 W4 W5 I’IOteS(Wg, Xl, W4, W5)
fi(Xq, Xo, X3) X1 Xo fo( Xy, X9, X3) | r(X1, Xo, X3)

W3 Y W
W3 X3 W6 PI‘GSCI‘iptiOI’l(I/Vg7 X3, Wﬁ)
J1(X1, X0, X3) X3 f3(Xq, Xo, X3) | r(X1, Xa, X3)

Y
X3 | drugs(Xs,no)

Figure 6: Example 6

which is polynomial in the sizes of @ and F. O

5.2 Compute Foldings

Given an acyclic query @, its hypergraph G, and a set of folding rules F (extended appropriately
if partial foldings are sought), our algorithm computes complete or maximal partial foldings of @
using F. It consists of three steps.

Initialization The first step is the same as in Section 4.

Hypergraph Reduction The second step is to reduce Gg to a pairwise-consistent hypergraph,
by using the algorithm of Figure 4. If the resulting G¢ is empty (if we are seeking complete foldings)
or every hyperedge in G has a singleton label (if we are seeking partial foldings), then there is no
need to proceed to the next step: there does not exist a folding of ). Otherwise, if we are seeking
partial foldings, then we remove the default tuple from the label of every non-singleton hyperedge
in GQ.

Folding Generation The last step is similar to the second step of Section 4, except that u-join is

replaced by ordinary join, and the order of join is the reverse of the GYO-reduction of Gg. The set

of foldings is found in the second parts of tuples in the join result: {u:t|u € folding(reduction(Gg))}.
For Example 5, joining the relations in Figure 5 we obtain a complete folding.

q(X1,Y2) = ri(Xy, X2),re(X1, Y2).
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Note that this folding cannot be obtained by pattern matching the query to the two resources
sequentially in any order, since the second and the third conjuncts in the body of the query are
needed in both matchings.

For Example 6, we first remove the default tuples from the second and third relations in Figure 6,
and then join the relations, which gives us a maximal partial folding.

q(X1,X3) :— patients(Xy, Wy, Wy, medicare), r(X;, Xo, X3), drugs(Xs,no).

Note that the drugs conjunct of this query cannot be removed, even though it matches the drugs
conjunct in the resource, because U, is not a distinguished variable in the resource.

Now let us consider the cost of computing foldings. From Theorem 5, the cost of the first two
steps is polynomial in the sizes of @) and F. Let U be the set of foldings of @) using F. Since
reduction(Gg) is pairwise consistent, the size of every label in reduction(Gg) is bounded by the
size of U, and the size of every intermediate join result in the third step is also bounded by the
size of U. Since the number of joins is bounded by the size of @), the cost of the third step is
polynomial in the sizes of U and (). Hence, the total cost of computing foldings for acyclic queries
is polynomial in the sizes of ), F, and U.

6 Conclusion

The query-folding problem is the problem of determining if and how a query can be answered
using a given set of resources. We have investigated this problem in the context where queries
and resources are conjunctive queries. In particular, we have developed a simple, exponential-time
algorithm that finds all foldings, and a polynomial-time algorithm for the large and natural subclass
of queries that are acyclic.

Our results show that query containment is a special case of query folding (Lemma 1). For the
class of acyclic queries, our algorithm in Section 5.2 degenerates to a polynomial-time containment
algorithm. This class is incomparable to and more natural than the classes of queries identified
in [1, 2, 5] as having polynomial-time containment algorithms. For example, a polynomial-time
algorithm is developed in [5] for the class of fan-out free queries. There are acyclic queries that are
not fan-out free, for example,

q(X1) = (Y1, X1),r(Y1,Y2), r(Ys, X1),7(Y3,Ys)
and there are cyclic queries that are fan-out free, for example,
q(X1,X2) = r(Y1,Y2),r(Y1, X1),r(Y2, X1),r(Y2, Xa).

Query folding has obvious applications in centralized databases. For example, databases often
maintain materialized views, and a query can be answered by accessing views instead of base
relations if the query can be folded using the views [4]. In multiple query answering, the result of a
query can be used to at least partially answer another query if the second query can be folded using
the first one. Query folding is even more important in a distributed environment. In a client-server
application, views and queries might be cached at the client site. Client queries can be answered
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more efficiently if they can be folded using the cached data [6]. In the situation of a disconnected
network, a query can still be answered at least partially if it can be folded using views and queries
maintained at available sites.

In a federated environment containing multiple heterogeneous, autonomous, and legacy data
sources, a data source might be capable of answering only limited kinds of queries [7]. We can
envision a data source being described using a set of statements of the form?

qi,---sqm — P1,---3Pn

where ¢1,...,¢n is a conjunctive query in the federated schema, and pi,...,p, is a conjunctive
query in a data source. This statement says that a federated query ¢i,..., ¢y, can be answered by
a source query pi,...,pn. From this statement, we can define a view in the federated database

ro o= q1,---,4m-

The job of the federated query processor is to determine if and how federated queries can be
answered using these views, or equivalently, to determine if and how federated queries can be
folded using these views.
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