
Correct Schema Transformations�Xiaolei QianComputer Science LaboratorySRI Internationalqian@csl.sri.comAbstractWe develop a formal basis of correct schema transformations. Schemas are formalized as ab-stract data types, and correct schema transformations are formalized as information-preservingsignature interpretations. Our formalism captures transformations of all schema components,making it possible to transform uniformly constraints and queries along with structures. Inaddition, our formalism captures schema transformations between di�erent data models as eas-ily as those within the same data model. Compared with Hull's notion of relative informationcapacity, our notion of information preservation captures more schema transformations that arenatural, and fewer schema transformations that are unnatural. Our work lays the foundation ofa transformational framework of schema manipulations.1 IntroductionSchema transformations, such as removing anomalies and redundancies, schema restructuring, andtranslating one schema to another (possibly in a di�erent data model), constitute the major ac-tivities in schema integration [3]. Central to schema transformations is the need to compare theinformation content of schemas: in transforming one schema to another, the information contentof the source schema should be preserved. A schema usually consists of three components [19]:(1) a set of structures, (2) a set of constraints on the structures, and (3) a set of operators on thestructures. The constraints capture the invariant properties common to all instances of the schema,and the operators provide the vocabulary for formulating queries in the schema.Most work on schema transformations has focused on the structure component of a schema (see[19, Chapter 14] for a summary of existing approaches). A classic example of schema transforma-tions is the decomposition of a relation with a lossless join that preserves functional dependencies[20, Section 7.8]. When constraints are limited to functional dependencies in the relational modeland schema transformations are expressed as conjunctive queries, Klug gave an algorithm for de-riving constraints in the target schema from those in the source schema [13]. When constraints�This work was supported in part by U.S. Department of Defense Advanced Research Projects Agency and U.S.Air Force Rome Laboratory under contracts F30602-92-C-0140 and F30602-94-C-0198, and in part by the NationalScience Foundation under grant ECS-94-22688. 1

are limited to functional and inclusion dependencies in the relational model, optimization rules aregiven in [7, 8] to remove redundant relations, attributes, and constraints in a schema. However, thegeneral problem of constraint and operator transformations remains open. Since constraints cap-ture important information in a schema, schema transformations without the constraint componentare incomplete at best. Without the operator component, it is impossible to transform queries inthe source schema to those in the target schema, even if the structure component is transformedcorrectly.Another major problem with existing work is that schema transformations are almost alwayslimited to schemas within the same data model|in most cases the relational model or some dialectof the entity-relationship model. For example, most approaches to schema integration make theassumption that the schemas to be integrated are already formulated in some canonical data model(see [3] for a survey). As pointed out in [19], schema transformations between schemas in di�er-ent data models are usually speci�ed by ad hoc mapping rules, with no formalisms to guaranteecorrectness in terms of either information preservation or equivalence. In [14], correct translationis studied from entity-relationship schemas to relational schemas, using a notion of schema equiva-lence from [11]. However, only primitive forms of cardinality constraints are translated, and querytranslation is not considered.It is customary to treat a schema as a logical theory and instances of the schema as models ofthe theory [16]. What constitutes the information content of a schema? According to Bar-Hillel andCarnap [2], the (semantic) information carried by a logical theory (schema) can be characterizedby the set of sentences (i.e., constraints) logically implied by the axioms of the theory relative tosome language system (i.e., structures and operators). Thus, all three components of a schemacontribute to its information content. In turn, the information content of the structure componentof a schema can be characterized by the set of instances of the schema. In other words, a schema iscapable of storing information not only in its instances but also in its structures, constraints, andoperators.Most work on schema transformations uses ad hoc and very limited measures in comparing theinformation content of schemas. In [6] for example, a schema contains less information than anotherif every instance of the �rst is an instance of the second. The �rst systematic study was done by Hull[11], where he introduced the notion of relative information capacity for comparing the informationcontent of relational schemas. It has been used as the formal basis of schema containment andschema equivalence for object models [1, 12], and for entity-relationship models [15, 17]. In [21],Hull's notion is extended to take into account update semantics. However, the constraint andoperator components of schemas are largely ignored in these studies, even though Hull observedthat the structure component alone of a relational schema does not contain much information atall [11]. In fact, it is very di�cult to generalize the notion of relative information capacity to dealwith constraints and operators. For example, it is shown in [15] that the information capacity of aschema can be increased by reducing its capacity of storing constraints; and it is claimed in [17] thatthe information capacity of a schema remains the same even if we add new operators (surrogatekey attributes).Traditionally, schemas have been formalized using a structural approach, which describes thestructure component of a schema using a (�xed) set of type constructors. However, the type2

constructors have been limited to simple ones that can be stored and manipulated directly, suchas tuples and sets. Recently, Beeri [4, 5] has advocated a behavioral approach based on the theoryof abstract data type (ADT) and algebraic speci�cation (see [22] for a survey), which describesuniformly all components of a schema using a set of ADT speci�cations. The behavioral approachhas the additional advantage of supporting more complex and extensible data models.We adopt the behavioral approach to schema speci�cation, and develop a formal basis of correctschema transformations that solves the problems discussed above. In particular, schemas are for-malized as ADTs (Section 2), schema transformations are formalized as signature interpretations(Section 3), and correct schema transformations are formalized as information-preserving signatureinterpretations (Section 4). In Section 5, correct schema transformations are further generalizedto support hidden symbols. We then compare our notion of information preservation with Hull'snotion of relative information capacity (Section 6), and solve an open problem posted in [11]. Ourformalism is used in Section 7 to show the correctness of common schema transformations that havebeen proposed in the literature, such as lossless join decomposition, redundancy removal, schemaintegration, and schema translation. A special kind of schema transformations, namely schemare�nements, can also be used to describe e�cient schema implementations. Finally, Section 8provides some concluding remarks.2 Schemas2.1 De�nitionsWe borrow the de�nitions of order-sorted signatures and algebras from the standard abstract datatype literature [10]. A partially ordered set , or poset , is a pair hS;�i, where S is a set and � is apartial ordering on S. Let S� be the set of �nite sequences of members in S. The partial ordering� can be extended to S� such that hs1 : : : sni � hs01 : : : s0ni i� si � s0i for 1 � i � n.An order-sorted signature � is a triple hS;�;
i, where S is a set of sort symbols, hS;�i is aposet, and
 is a family of �nite sets f
v;sgv2S�;s2S of function symbols that satisfy the monotonicitycondition
v;s \
v0;s0 6= ; and v � v0 imply s � s0:We write f : v ! s to denote v 2 S�; s 2 S, and f 2
v;s.
hi;s is a set of constant symbols (i.e.,0-ary function symbols) of sort s. For example, we could have a signature bool containing one sortbool and two constant symbols true and false. The logical connectives _;^;:;!;$ are consideredas function symbols in bool.
v;bool is a set of predicate symbols for v 2 S�. For every sort s 2 Swe assume that there is an (in�x) predicate symbol =s2
hs;si;bool. For bool, =bool is simply $.Given two signatures � = hS;�;
i and �0 = hS0;�0;
0i, we say that � � �0 if1. S � S0,2. s1 � s2 implies s1 �0 s2 for s1; s2 2 S, and3.
v;s �
0v;s for v 2 S�; s 2 S.We say that � and �0 are union-compatible if 3

1. � is identical to �0 on S \ S0, and2.
v;s \
0v0;s0 6= ; implies v = v0 and s = s0.For signature � = hS;�;
i, the �-terms are de�ned inductively as the well-sorted compositionof sorted variables, function symbols, and sorted quanti�ers 8 and 9 in
. A �-formula is a �-termof sort bool . A �-sentence is a closed �-formula.Let � = hS;�;
i be a signature. An order-sorted �-algebra A consists of an S-indexed familyof carrier sets fAsgs2S , and a function fA:Av ! As for every
v;s in
 and f 2
v;s, wherev = hv1; : : : ; vni and Av = Av1 � � � � �Avn , such that1. s � s0 implies As � As0 , and2. f 2
v;s \
v0;s0 and v � v0 imply fA:Av ! As equals to fA:Av0 ! As0 on Av.A schema � is a pair h�;�i, where � = hS;�;
i is a signature and � is a set of �-sentencescalled axioms. For every sort s 2 S we assume that the equality axioms of reexivity, symmetry,transitivity, and substitutivity are in �. A �-instance is a �-algebra that satis�es �. The semanticsof � is given by the set of �-instances. A �-sentence p is a �-constraint , denoted as � j= p, if pis a logical consequence of the �-axioms. The set of �-constraints forms �-theory . A �-query is a�-formula.2.2 ExamplesFor a schema � = h�;�i, its signature � speci�es the structure and operator components of �,while its axioms � specify the constraint component of �. A typical example is the speci�cation ofschema set, which takes atom as a parameter schema with sort atom .set(atom) def= (sort set(atom)subsort atom � set(atom)function fg:! set� : atom ; set ! set: : :axiom :(x � S = fg)x � (y � S) = y � (x � S)x � (x � S) = x � S: : :).The subsort declaration states that every atom is a set (of size one). There is a constant fgdenoting the empty set, and an insertion function � for inserting an atom into a set. As a secondexample, library1 is a schema speci�cation in the object model.book def= (extend stringsort bookfunction title(): book ! string 4

isbn(): book ! stringaxiom isbn(x) = isbn(y)! x = y)author def= (extend string, integersort authorfunction name(): author ! stringyear-of-birth(): author ! integer)library1 def= (extend book, author).The keyword extend introduces a list of imported schemas. There are two classes of objects:books and authors. Books have attributes title and isbn, and authors have attributes name andyear-of-birth. In addition, books have unique isbn values. As a third example, library2 is a moreelaborate schema speci�cation in the complex-object model.library2 def= (extend library1, set(book)function author-of (): author ! set(book)axiom :(author-of (x) = fg)(9x)(y 2 author-of (x))).Compared with library1, authors in library2 have an additional set-valued attribute denot-ing the set of books that they are an author of. The two additional axioms state that every authorhas at least one book, and every book has at least one author. As a fourth example, library3 isan alternative schema speci�cation in the entity-relationship model.library3 def= (extend bool, library1function authorship(;): book ; author ! boolaxiom (9x)authorship(x; y)(9y)authorship(x; y)).Compared with library1, library3 has a many-to-many relationship relating books to theirauthors. The two additional axioms state cardinality constraints on the relationship: every authorhas at least one book and every book has at least one author.3 Schema TransformationLet � = hS;�;
i be a signature. We denote by �v;s(x) the set of �-terms of sort s whose list offree variables is x of sorts v, where v 2 S� and s 2 S.The following de�nition is based on the notion of theory interpretation in [9, Section 2.7]. Let�0 = hS0;�0;
0i be another signature. A signature interpretation �: �! �0 is a pair h�; �i, where1. �:S ! S0 is a map such that s1 � s2 implies �(s1) �0 �(s2), and2. � is a family of maps f�v;s:
v;s ! �0��(v);�(s)(x)gv2S� ;s2S5

where ��(hv1; : : : ; vni) denotes h�(v1); : : : ; �(vn)i. We write �(s) for �(s), �(v) for ��(v), and �(f)for �v;s(f). We can extend � to �-formulas as follows. Given a �-formula p, �(p) denotes the�0-formula resulted from replacing every term f(t) in p by �v;s(f)[�(t)=x], where f 2
v;s and�v;s:
v;s ! �0��(v);�(s)(x).It should be noticed that the notion of signature interpretation is more general than the notion ofsignature morphism commonly seen in the algebraic speci�cation literature [22], in that a functionsymbol in the source signature can be mapped to an arbitrary term, not just a function symbol, inthe target signature.1Let � = hS;�;
i and �0 = hS0;�0;
0i be two signatures, and �: � ! �0 be a signatureinterpretation. A map M� from �0-algebras to �-algebras can be induced from � as follows. Givena �0-algebra A0, we construct a �-algebra A by assigning the value of �(s) in A0 to s for every sortsymbol s 2 S and assigning the value of �(f) in A0 to f for every function symbol f 2
.Let � = h�;�i and �0 = h�0;�0i be two schemas. A schema transformation �: � ! �0 is asignature interpretation �: �! �0. Since �-constraints and �-queries are �-formulas, � transformsnot only the structures and operators of �, but also the constraints and queries of �. By using themore general notion of signature interpretation, constructs in the source schema can be transformedto combinations of constructs in the target schema.For example, a schema transformation from book to author could befbook 7! author ; title 7! name(x); isbn 7! int-to-str(year-of-birth(x))g (1)where int-to-str is a unary function symbol in schema string that converts an integer to a string.The book-axiom is transformed to an author-sentenceint-to-str(year-of-birth(x)) = int-to-str(year-of-birth(y))! x = y:As we argued in Section 1, all components and instances of a schema contribute to its in-formation content. A schema transformation preserves the structures and operators of the sourceschema. However, it is not su�cient to preserve either the constraints or the instances of the sourceschema. For example, the above schema transformation does not preserve the constraints of book,since the book-axiom is not mapped to an author-constraint. The inverse of the above schematransformationfauthor 7! book ;name 7! title(x); year-of-birth 7! str-to-int(isbn(x))g (2)where str-to-int is a unary function symbol in schema string that converts a string to an integer,does not preserve the instances of author, since an author-instance containing two authors withthe same name but di�erent years of birth does not correspond to any book-instance.1For ease of presentation, our notion of signature interpretation is less general than the notion of theory inter-pretation in [9], in that a sort symbol in the source signature can only be mapped to a sort symbol in the targetsignature. It is not hard to generalize the notion of signature interpretation to allow a sort symbol to be mapped toan arbitrary sort expression. 6

4 Correct Schema Transformation4.1 Constraint-Preserving TransformationLet � = h�;�i and �0 = h�0;�0i be two schemas, �: � ! �0 be a schema transformation, and M�be the induced map from �0-algebras to �-algebras. We say that � is constraint-preserving if, forevery �-axiom p, �(p) is a �0-constraint.Theorem 1 Schema transformation � is constraint-preserving i� M� maps every �0-instance to a�-instance.Proof Suppose thatM� maps every �0-instance to a �-instance, but � is not constraint-preserving.There is a �-axiom p 2 � where �0 6j= �(p). There is a �0-instance I 0 in which �(p) is not satis�ed,or equivalently, :�(p) is satis�ed. Hence �(:p) is satis�ed in I 0. Let I = M�(I 0), which is a�-instance. By the way in which I is constructed from I 0 through M�, :p is satis�ed in I, acontradiction.Suppose that � is constraint-preserving, but there is a �0-instance I 0 such that I = M�(I 0) isnot a �-instance. Let p be the �-axiom that is not satis�ed in I. Apparently �(p) is satis�ed in I 0.By the way in which I is constructed from I 0 through M� , p is satis�ed in I, a contradiction. 2Constraint-preservation is relatively straightforward to prove: all we need to show is that aschema transformation preserves the axioms of the source schema.Constraint-preservation is not su�cient to preserve the instances of the source schema, sincethere might be a �-instance I where I 6= M�(I 0) for any �0-instance I 0. An example is schematransformation (2) in Section 3.The simpliest form of constraint-preserving schema transformation is schema extension, wherethe schema transformation consists of identity maps, and every �-axiom is a �0-constraint.Corollary 2 Schema extension is constraint-preserving.For the examples in Section 2.2, library1 can in fact be transformed to library2 and li-brary3 by schema extension. As a more complicated example of constraint-preserving schematransformation, suppose that we extend library3 to library4:library4 def= (extend library3, set(book)function author-of 0(): author ! set(book)axiom author-of 0(x) = fyjauthorship(y; x)g).The schema transformation from library2 to library4, which maps author-of to author-of 0and everything else to itself, is constraint-preserving, because the two library2-axioms are mappedto two library4-constraints :(author-of 0(x) = fg)(9x)(y 2 author-of 0(x))which follow from the axioms of library3 and library4.7

4.2 Instance-Preserving TransformationLet � = h�;�i and �0 = h�0;�0i be two schemas, �: � ! �0 be a schema transformation, and M�be the induced map from �0-algebras to �-algebras. We say that � is instance-preserving if, forevery �-instance I, there is a �0-instance I 0 such that M�(I 0) = I.Theorem 3 Schema transformation � is instance-preserving, i� p is a �-constraint for every �-sentence p where �(p) is a �0-constraint.Proof Suppose that � j= p for every �-sentence p where �0 j= �(p), but � is not instance-preserving. Let U be the set of �-algebras that are images of �0-instances under M�, and I 62 U bea �-instance. Suppose that there is a �-sentence p in the theory of U such that p is not satis�ed inI and hence � 6j= p. Since p is in the theory of U , p is satis�ed in every �-algebra in U , and hence�(p) is satis�ed in every �0-instance. This means that �0 j= �(p), a contradiction. Therefore every�-instance is in U , meaning that � is instance-preserving, again a contradiction.Suppose that there is a �-sentence p where �0 j= �(p) and � 6j= p, but � is instance-preserving.There is a �-instance I in which p is not satis�ed, or equivalently :p is satis�ed. Since � is instance-preserving, there is a �0-instance I 0 such that M�(I 0) = I. By the way in which I is constructedfrom I 0 through M�, �(:p) is satis�ed in I 0, or equivalently :�(p) is satis�ed in I 0. Hence �(p) isnot satis�ed in I 0, a contradiction. 2Theorem 3 tells us that, for a schema transformation to be instance-preserving, it is equivalentthat its inverse preserves the constraints of the target schema. However, since the inverse of aschema transformation might not exist or might not be computable, Theorem 3 does not providea straightforward way of proving instance preservation.Theorem 4 Schema transformation � is instance-preserving i� � maps every non-�-constraint toa non-�0-constraint.Proof Suppose that � maps every non-�-constraint to a non-�0-constraint. For every �-sentence pwhere �0 j= �(p), p has to be a �-constraint. Hence � is instance-preserving according to Theorem 3.Suppose that � is instance-preserving. According to Theorem 3, p is a �-constraint for every�-sentence p where �0 j= �(p). For every �-sentence p where � 6j= p, �(p) cannot be a �0-constraint.2 Theorem 4 tells us that, for a schema transformation to be instance-preserving, it is equivalentthat it preserves the non-constraints of the source schema. However, since the set of non-constraintsof a schema could be in�nite, Theorem 4 does not provide a way of proving instance preservationeither. In fact, there are no known ways of proving instance preservation.Instance preservation is not su�cient to preserve the constraints of the source schema, sincethere might be a �0-instance I 0 where M�(I 0) 6= I for any �-instance I, meaning that � mightnot be constraint-preserving according to Theorem 1. An example is schema transformation (1) inSection 3.The simpliest form of instance-preserving schema transformation is schema reduction, wherethe schema transformation consists of identity maps, and every �0-axiom is a �-constraint.8

Corollary 5 Schema reduction is instance-preserving.For example, suppose that we de�ne library5 as follows:library5 def= (extend library3, set(book)function author-of 0(): author ! set(book)axiom authorship(y; x)! y 2 author-of 0(x)).The schema transformation from library4 of Section 4.1 to library5, which consists of iden-tity maps, is instance-preserving because library5-theory is weaker than library4-theory.4.3 Information-Preserving TransformationAs we have argued in Section 1, a correct schema transformation should preserve all componentsand instances of the source schema. Since schema transformations preserve structures and oper-ators, constraint-preserving schema transformations preserve constraints, and instance-preservingschema transformations preserve instances, we have the following de�nition for correct schematransformations.Let � = h�;�i and �0 = h�0;�0i be two schemas, and �: � ! �0 be a schema transformation.We say that � is information-preserving if it is both constraint-preserving and instance-preserving.If � is information-preserving, then we say that � is contained in �0, denoted by � v �0. If � v �0and �0 v �, then we say that � and �0 are equivalent , denoted by � � �0.For example, suppose that we de�ne library6 as follows:library6 def= (extend bool, library1, set(book)function authorship(;): book ; author ! boolauthor-of 0(): author ! set(book)axiom authorship(y; x)$ y 2 author-of 0(x):(author-of 0(x) = fg)(9x)(y 2 author-of 0(x))).The schema transformations from library4 of Section 4.1 to library6 and back, which consistof identity maps, are both information-preserving, and hence library4 � library6.The simpliest forms of information-preserving schema transformation are instance-preservingschema extension and constraint-preserving schema reduction.Given a signature � = hS;�;
i and a function symbol f : v ! s where v 2 S�; s 2 S, butf 62
v;s, a de�nition of f in � is an atomic formulaf(x) = Fwhere F 2 �v;s(x) is a �-term and x are free variables in F of sorts v. Given a schema � = h�;�i,we can form a schema �0 = h�0;�0i where �0 = � [ffg and �0 = � [ff(x) = Fg. The schemaextension from � to �0 is a schema extension by de�nition.Theorem 6 Schema extension by de�nition produces equivalent schemas.9

Proof Let � be the schema extension from � to �0. Since every non-�-constraint is a non-�0-constraint, � is instance-preserving according to Theorem 4. Hence � is information-preservingand � v �0.Let � be the schema transformation from �0 to � which maps f to F and all other symbolsto themselves. Since � maps the �0-axiom f(x) = F to a tautology and all other �0-axiomsto themselves, � is constraint-preserving according to Theorem 1. Since � maps every non-�0-constraint to a non-�-constraint, � is instance-preserving according to Theorem 4. Hence � isinformation-preserving and �0 v �. 2For example, the extension of library3 of Section 2.2 to library4 in Section 4.1 is by de�nition.Hence library3 � library4.5 Schemas with Hidden SymbolsA schema with hidden symbols � is a triple h�;�;�i, where h�;�i is a schema and � � � is asignature. Symbols in � are hidden and symbols in �� � are visible. The semantics of a schemawith hidden symbols is given by the set of restrictions of h�;�i-instances to �� �. A �-query isa (���)-formula.For example, recall that author names do not have to be unique in the speci�cation of library1of Section 2.2. We could create a surrogate key for author objects using hidden symbols, whichis not visible to users in querying.author0 def= (extend symbol, string, integersort authorfunction id(): author ! symbolname(): author ! stringyear-of-birth(): author ! integer)hidden-sort symbolhidden-function idaxiom id(x) = id(y)! x = y).Let � = h�;�;�i and �0 = h�0;�0;�0i be two schemas with hidden symbols. A schematransformation �: � ! �0 is a signature interpretation �: (� � �) ! (�0 � �0). The induced mapM� is a map from (�0 ��0)-algebras to (���)-algebras.For example, the schema transformations from author to author0 and back, which consist ofidentity maps, are both information-preserving. Hence author � author0. Notice that, contraryto the claim in [17], the two schemas would not be equivalent if the function symbol id were visiblein author0, because no schema transformations from author0 to author could map id in sucha way that preserves the axiom of author0.Theorem 7 Instance-preserving schema extension with hidden symbols produces equivalent schemas.10

Proof Suppose that � is extended to �0 with hidden symbols by a instance-preserving schematransformation. Obviously � v �0. Since every �0-instance restricted to �0 � �0 is a �-instance,and every �-instance is a �0-instance restricted to �0��0 due to instance preservation, �0 v �. 26 Relationship to Hull's NotionIn [11], Hull introduced four progressively more restrictive measures of the information content ofschemas. We �rst briey de�ne these measures of relative information capacity, and then charac-terize their relationships to our notion of information preservation. Through this, we solve an openproblem posted in [11].A schema � = h�;�i is relational if every function symbol in � is either a constant or apredicate.2 Without further notice, we assume that all schemas in this section are relational.6.1 Relative Information CapacityLet � = h�;�i and �0 = h�0;�0i be two schemas. The domain of a �-instance I, denoted asdom(I), is the union of its carrier sets. Let DOM be a set of values containing the domains of all�-instances and �0-instances, and Z � DOM.1. A Z-permutation of DOM is a bijective map on DOM that is identical on Z.2. A mapM from �-instances to �0-instances is Z-generic if it commutes with every Z-permutationof every �-instance.3. A mapM from �-instances to �0-instances is Z-internal if dom(M(I)) � dom(I)[Z for every�-instance I.Let � = h�;�i and �0 = h�0;�0i be two schemas. Also let M be a map from �-instances to�0-instances, and M 0 be a map from �0-instances to �-instances. �0 dominates � via (M;M 0) ifM 0 �M is the identity map on �-instances.1. �0 dominates � absolutely ,3 denoted as � � �0(abs), if �0 dominates � via (M;M 0) for someM;M 0.2. �0 dominates � internally , denoted as � � �0(int), if there is a �nite Z � DOM such that �0dominates � via (M;M 0) for some Z-internal M;M 0.3. �0 dominates � generically , denoted as � � �0(gen), if there is a �nite Z � DOM such that�0 dominates � via (M;M 0) for some Z-generic M;M 0.2This is consistent with Hull's de�nition, in which calculus expressions could contain constants, and constraintscould be more general than key dependencies (e.g., constants are constrained by unique name axioms).3This de�nition is from [12], which is simpler and is not limited to relational schemas. The two de�nitions areequivalent for relational schemas [11]. 11

4. �0 dominates � calculously , denoted as � � �0(calc), if there are two schema transformations�: �! �0 and � : �0 ! � with induced mapsM� and M� respectively,4 such that �0 dominates� via (M� ;M�).Hull has shown that calculus dominance implies generic dominance, which in turn impliesinternal dominance, which in turn implies absolute dominance. Moreover, the implication fromgeneric to internal dominance is strict if schemas contain certain kinds of constraints, namelykey dependencies. However, it remains open whether the implications from calculus to genericdominance, and from internal to absolute dominance are strict.6.2 Relationship to Relative Information CapacityLet � = h�;�i and �0 = h�0;�0i be two schemas.Theorem 8 If � � �0(calc), then � v �0.Proof Let �: � ! �0 and � : �0 ! � be two schema transformations with induced maps M� andM� respectively, such that �0 dominates � via (M� ;M�). By de�nition of calculus dominance, M�maps every �0-instance to a �-instance, and hence � is constraint-preserving. For every �-instanceI, M� (I) is a �0-instance such that M�(M� (I)) = I. Hence � is instance-preserving. Therefore �is information-preserving. 2Theorem 9 If � v �0, then � � �0(abs).Proof Let �: �! �0 be an information-preserving schema transformation with induced map M�.Since � is constraint-preserving, M� maps every �0-instance to a �-instance. Since � is instance-preserving, for every �-instance I there is a �0-instance I 0 such that M�(I 0) = I. Hence there isa map M from �-instances to �0-instances such that M� �M is the identity map on �-instances.Therefore �0 dominates � via (M;M�). 2There exist schemas � and �0 such that � � �0(gen,int,abs) but � 6v �0 (and hence � 6� �0(calc)).For example, consider the following schemas.schema1 def= (sort cityaxiom (9x; y):(x = y))schema2 def= (sort town).A schema1-instance is a set containing at least two cities, while a schema2-instance could bea singleton set. Hence schema1 is logically stronger than schema2. A map M from schema1-instances to schema2-instances could map every schema1-instance to the identical schema2-instance. On the other hand, a map M 0 from schema2-instances to schema1-instances could4This de�nition is equivalent to Hull's de�nition, because relational calculus is equivalent to �rst-order predicatecalculus, which is the language of relational schemas. 12

map every schema2-instance containing at least two towns to the identical schema1-instance;and map every singleton schema2-instance to the schema1-instance where city is assigned the setfSF;LAg. Since these two maps are both fSF;LAg-generic, and M 0 �M is the identity map onschema1-instances, we conclude that schema1 � schema2(gen,int,abs). However, any schematransformation from schema1 to schema2 will have to map city to town. The only functionsymbol in schema1 is =city. If it is mapped to =town, then the image of the schema1-axiom isnot a schema2-constraint. If it is mapped to an equivalence relation ' other than =town, then theimage of the schema1-axiom cannot be true in any singleton schema2-instances. In either case,the schema transformation cannot be constraint-preserving, and hence schema1 6v schema2.This example tells us that Hull's notion could �nd dominance relationships between schemasthat are not naturally related through dominance relationships: a schema should not be capableof storing more information if we reduce its capability of storing constraints. Our notion rules outsuch unnatural dominance relationships.There also exist schemas � and �0 such that � v �0 (and hence � � �0(abs)) but � 6��0(int,gen,calc). For example, consider the following schema.schema3 def= (extend symbol, string, boolfunction R1(;): symbol ; string ! boolaxiom R1(x; y) ^R1(x; z)! y = z)schema4 def= (extend string, boolfunction R2(): string ! bool)and a schema transformation from schema4 to schema3 that maps R2 to the schema3-term(9x)R1(x; y). In other words, R2 is the projection of R1 on the non-key column. It is easy toshow that the schema transformation is information-preserving, and hence schema4 v schema3.However, any map from a schema4-instance to a schema3-instance will have to invent as manydistinct values as the size of R2 for the key column of R1. Since there are arbitrarily large schema4-instances, the map cannot be Z-internal for a �xed �nite Z. So schema4 6� schema3(int,gen,calc).This example tells us that there are natural dominance relationships between schemas that arenot captured by Hull's notion: the capability of storing information in a non-keyed schema shouldbe increased by adding a key column. Our notion captures such natural dominance relationships.The above examples also show that calculus dominance is strictly more restrictive than ournotion, which is in turn strictly more restrictive than absolute dominance. Moreover, our notionis not comparable to generic or internal dominance. As a consequence, we have solved an openproblem posted by Hull:Corollary 10 Calculus dominance is strictly more restrictive than generic dominance. Internaldominance is strictly more restrictive than absolute dominance.7 Applications7.1 Lossless Join DecompositionConsider Example 7.8 from [20, page 395], with the following two schemas:13

schema5 def= (extend string, boolfunction R(; ; ;): string ; string ; string ; string ! boolaxiom R(x; y; z; w) ^R(x; y0; z0; w0)! y = y0R(x; y; z; w) ^R(x; y0; z; w0)! w = w0)schema6 def= (extend string, boolfunction R1(;): string ; string ! boolR2(; ;): string ; string ; string ! boolaxiom R1(x; y) ^R1(x; y0)! y = y0R2(x; y; z) ^R2(x; y; z0)! z = z0).A schema transformation from schema5 to schema6 could map R to the schema6-termR1(x; y) ^R2(x; z; w). A schema transformation from schema6 to schema5 could map R1 to theschema5-term (9z; w)R(x; y; z; w) and map R2 to the schema5-term (9y)R(x; y; z; w). It is nothard to verify that schema5 � schema6. Since schema5 is not in BCNF while schema6 is, thelatter is considered a better schema design.7.2 Redundancy RemovalGiven two schemas � = h�;�i and �0 = h�0;�0i where � � �0, We say that �0 is less redundantthan � if �0 contains fewer or simpler signature symbols than �, or �0 contains weaker axiomsthan �. In this case, we could replace � by �0 to achieve a more concise representation of the sameinformation. Consider the following schemas in the relational model:schema7 def= (extend string, boolfunction R1(; ;); R2(; ;): string ; string ; string ! boolaxiom R1(x; y; z) ^R1(x; y0; z0)! y = y0 ^ z = z0R2(x; y; z) ^R2(x; y0; z0)! y = y0 ^ z = z0R1(x; y; z)! (9y0)R2(x; y0; z))schema8 def= (extend string, boolfunction R01(;): string ; string ! boolR02(; ;): string ; string ; string ! boolaxiom R01(x; y) ^R01(x; y0)! y = y0R02(x; y; z) ^R02(x; y0; z0)! y = y0 ^ z = z0R01(x; y)! (9y0; z0)R02(x; y0; z0)).A schema transformation from schema7 to schema8 could map R1 to the schema7-termR01(x; y)^ (9y0)R02(x; y0; z). A schema transformation from schema8 to schema7 could map R01 tothe schema8-term (9z)R1(x; y; z). It is not hard to verify that schema7 � schema8. Comparedto schema8, schema7 has more redundancy because the third column of R2 is redundantly storedas the third column of R1. Hence replacing schema7 by schema8 removes this redundancy. Thisschema transformation has been proposed in the literature [8, 17].14

7.3 Schema IntegrationLet �i = h�i;�ii for 1 � i � n be n schemas such that �i and �j are union-compatible for1 � i; j � n. When we integrate these schemas into one, the �rst step is to identify the semanticrelationships between them. Suppose that the semantic relationships are expressed over �i for1 � i � n, and possibly an additional signature �0; and consist of a set of (Sni=1 �i [�0)-sentences�0. An integration of �i, where 1 � i � n, is a schema � = h�;�i such thath n[i=1�i [�0; n[i=1�i [�0i � �:Thus, schema integration can be viewed as applying information-preserving schema transforma-tions to the union of component schemas and their semantic relationships to improve the qualityof the integrated schema (e.g., to remove redundancy). Consider a schema speci�cation similar tolibrary2 of Section 2.2:library20 def= (extend library1, set(author)function authored-by(): book ! set(author)axiom :(authored-by(x) = fg)(9x)(y 2 authored-by(x))).Suppose that we integrate library2 and library20. The semantic relationship between themcan be expressed as x 2 author-of (y)$ y 2 authored-by (x):Intuitively, the two schemas contain the same information represented di�erently. Hence theirunion is redundant: the many-to-many relationship between authors and books is represented bytwo multi-valued maps that are inverses of each other. It is not hard to verify that the union oflibrary2 and library20 together with the above semantic relationship is equivalent to library3of Section 2.2. Hence library3 can be taken as their integration. This schema transformation hasbeen proposed in the literature [18].7.4 Schema TranslationGiven two schemas � and �0, a schema transformation �: � ! �0 is a translation from � to �0 if� � �0.Schema translation between di�erent data models is not any more di�cult than that within thesame data model, because our schema formalism really blurs the di�erence between data models:data models di�er in the data types they support. So we could have a schema speci�ed in amixture of data models, e.g., library4 of Section 4.1 is in a combination of complex-object andentity-relationship models.As an example of schema translation, suppose that we extend library3 of Section 2.2 withan additional axiom name(x) = name(y) ! x = y, which can then be translated to the followingschema in the relational model: 15

library30 def= (extend string, integer, boolsort s1; s2function R1(;): s1; string ! boolR2(;): s2; integer ! boolR(;): s1; s2 ! boolaxiom R1(x; y) ^R1(x; z)! y = zR2(x; y) ^R2(x; z)! y = z(9y)R1(x; y)(9y)R2(x; y))through the schema transformation8><>: book 7! s1; isbn 7! x; title 7! fyjR1(x; y)g;author 7! s2;name 7! x; year-of-birth 7! fyjR2(x; y)g;authorship 7! R(x; y) 9>=>; :Notice that, because of the library30-axioms, the images of title and year-of-birth are always totaland evaluate to singleton sets. Also notice that the inclusion dependencies from the two columns ofR to the �rst columns of R1 and R2 respectively are satis�ed automatically through sort constraintsand the last two library30-axioms. Similar schema translations from the entity-relationship modelto the relational model have been proposed in [14].7.5 Schema Re�nementGiven two schemas � and �0, a schema transformation �: �! �0 is a re�nement of � to �0 if � v �0.Thus schema re�nements can increase the information content of the schemas being re�ned.Advanced data models provide many powerful abstractions that make schema speci�cationsconcise and semantically clear. However, the added expressive power comes with a price: thereis no known method to infer simple and e�cient storage implementations for these abstractions[5], because many abstractions no longer have a single implementation that is tolerably e�cientover the entire query space. For example, a set-valued attribute can be implemented by a relation,a list, a bit-vector, etc.. Such implementation decisions can be encoded as schema re�nements.When guided by the characteristics of typical queries, schema re�nements can be applied to derivee�cient implementations of schemas.As an example, consider the following speci�cation of schema seq:seq(atom) def= (sort seq(atom)subsort atom � seq(atom)function []:! seq� : atom ; seq ! seq: : :axiom :(x � S = [])x � S = x0 � S0 ! x = x0 ^ S = S0: : :). 16

We could imagine that seq has a range equality predicate =r : seq ; seq ! bool , such that twosequences are range-equal i� they contain the same set of elements. It is not hard to show that theschema transformation from set of Section 2.1 to seqfset 7! seq ; fg 7! []; � 7! x � y;=7! x =r ygis information-preserving. Now consider library20 of Section 7.3. If the set-valued attributeauthored-by is most often accessed by traversing its value, then we could apply the above schematransformation to re�ne it into a sequence-valued attribute. The implementation also contains moreinformation, because we could now query the �rst author of a book, for example.8 ConclusionWe have developed a formal basis of correct schema transformations. In particular, schemas are for-malized as ADTs, schema transformations are formalized as signature interpretations, and correctschema transformations are formalized as information-preserving signature interpretations.Compared with existing approaches, our formalism captures transformations of all schema com-ponents, making it possible to transform uniformly constraints and queries along with structures.In addition, our formalism captures schema transformations between di�erent data models as easilyas those within the same data model.We have compared in detail our notion of information preservation with the most widely usedcorrectness criteria|Hull's notion of relative information capacity. Our notion is strictly less restric-tive than calculus dominance, strictly more restrictive than absolute dominance, and incomparableto generic or internal dominance. Moreover, our notion captures more schema transformations thatare natural, and fewer schema transformations that are unnatural, than Hull's notion. We havealso solved an open problem with Hull's notion|calculus and internal dominance are, respectively,strictly more restrictive than generic and absolute dominance.Our work lays the foundation of a transformational framework of schema manipulations. Pop-ular transformations of common ADTs can be encoded as transformation rules and proven correctonce. Schemas speci�ed with common ADTs can be simpli�ed, restructured, and translated byapplying these rules repeatedly. We can also apply these rules to re�ne schema speci�cations intoe�cient storage representations. As examples, we have shown the correctness of common schematransformations that have been proposed in the literature.AcknowledgmentThe author thanks Richard Hull for valuable discussions and comments, which helped improve thepresentation of this paper.References[1] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical ComputerScience, 62:3{38, 1988. 17

[2] Y. Bar-Hillel and R. Carnap. An outline of a theory of semantic information. In Y. Bar-Hillel,editor, Language and Information, chapter 15, pages 221{274. Addison-Wesley, 1964.[3] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies fordatabase schema integration. ACM Computing Surveys, 18(4):323{364, December 1986.[4] C. Beeri. Theoretical foundations for OODB's | a personal perspective. IEEE Data Engi-neering Bulletin, 14(2):8{12, June 1991.[5] C. Beeri. New data models and languages | the challenge. In Proceedings of the EleventhACM Symposium on Principles of Database Systems, pages 1{15, 1992.[6] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema merging. In Proceedingsof the Third International Conference on Extending Database Technology, 1992.[7] M. A. Casanova, L. Tucherman, A. L. Furtado, and A. P. Braga. Optimization of relationalschemas containing inclusion dependencies. In Proceedings of the Fifteenth International Con-ference on Very Large Data Bases, pages 317{325, 1989.[8] M. A. Casanova and V. M. P. Vidal. Towards a sound view integration methodology. InProceedings of the Second ACM Symposium on Principles of Database Systems, pages 36{47,1983.[9] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.[10] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheri-tance, overloading, exceptions and partial operations. Theoretical Computer Science, 105:217{273, 1992.[11] R. Hull. Relative information capacity of simple relational database schemata. SIAM Journalof Computing, 15(3):856{886, August 1986.[12] R. Hull and C. K. Yap. The format model: A theory of database organization. Journal of theACM, 31(3):518{537, July 1984.[13] A. Klug. Calculating constraints on relational expressions. ACM Transactions on DatabaseSystems, 5(3):260{290, September 1980.[14] V. M. Markowitz and A. Shoshani. Representing extended entity-relationship structures in re-lational databases: A modular approach. ACM Transactions on Database Systems, 17(3):423{464, September 1992.[15] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema equivalence in heterogeneoussystems: Bridging theory and practice. Information Systems, 19(1):3{32, January 1994.[16] J.-M. Nicolas and H. Gallaire. Data base: Theory vs. interpretation. In H. Gallaire andJ. Minker, editors, Logic and Databases, pages 33{54. Plenum Press, 1978.18

[17] A. Rosenthal and D. Reiner. Tools and transformations|rigorous and otherwise|for practicaldatabase design. ACM Transactions on Database Systems, 19(2):167{211, June 1994.[18] S. Spaccapietra and C. Parent. View integration: A step forward in solving structural conicts.IEEE Transactions on Knowledge and Data Engineering, 6(2):258{274, April 1994.[19] D. Tsichritzis and F. Lochovsky. Data Models. Prentice-Hall, 1982.[20] J. D. Ullman. Principles of Database and Knowledge Base Systems, volume 1. ComputerScience Press, 1988.[21] V. M. P. Vidal and M. Winslett. Preserving update semantics in schema integration. In Pro-ceedings of the Third International Conference on Information and Knowledge Management,pages 263{271, 1994.[22] M. Wirsing. Algebraic speci�cation. In J. van Leeuwen, editor, Handbook of TheoreticalComputer Science. Vol. B: Formal Models and Semantics, chapter 13, pages 675{788. MITPress/Elsevier, 1990.

19

