Correct Schema Transformations®

Xiaolei Qian
Computer Science Laboratory
SRI International
gian@csl.sri.com

Abstract

We develop a formal basis of correct schema transformations. Schemas are formalized as ab-
stract data types, and correct schema transformations are formalized as information-preserving
signature interpretations. Our formalism captures transformations of all schema components,
making it possible to transform uniformly constraints and queries along with structures. In
addition, our formalism captures schema transformations between different data models as eas-
ily as those within the same data model. Compared with Hull’s notion of relative information
capacity, our notion of information preservation captures more schema transformations that are
natural, and fewer schema transformations that are unnatural. Our work lays the foundation of
a transformational framework of schema manipulations.

1 Introduction

Schema transformations, such as removing anomalies and redundancies, schema restructuring, and
translating one schema to another (possibly in a different data model), constitute the major ac-
tivities in schema integration [3]. Central to schema transformations is the need to compare the
information content of schemas: in transforming one schema to another, the information content
of the source schema should be preserved. A schema usually consists of three components [19]:
(1) a set of structures, (2) a set of constraints on the structures, and (3) a set of operators on the
structures. The constraints capture the invariant properties common to all instances of the schema,
and the operators provide the vocabulary for formulating queries in the schema.

Most work on schema transformations has focused on the structure component of a schema (see
[19, Chapter 14] for a summary of existing approaches). A classic example of schema transforma-
tions is the decomposition of a relation with a lossless join that preserves functional dependencies
[20, Section 7.8]. When constraints are limited to functional dependencies in the relational model
and schema transformations are expressed as conjunctive queries, Klug gave an algorithm for de-
riving constraints in the target schema from those in the source schema [13]. When constraints

*This work was supported in part by U.S. Department of Defense Advanced Research Projects Agency and U.S.
Air Force Rome Laboratory under contracts F30602-92-C-0140 and F30602-94-C-0198, and in part by the National
Science Foundation under grant ECS-94-22688.

are limited to functional and inclusion dependencies in the relational model, optimization rules are
given in [7, 8] to remove redundant relations, attributes, and constraints in a schema. However, the
general problem of constraint and operator transformations remains open. Since constraints cap-
ture important information in a schema, schema transformations without the constraint component
are incomplete at best. Without the operator component, it is impossible to transform queries in
the source schema to those in the target schema, even if the structure component is transformed
correctly.

Another major problem with existing work is that schema transformations are almost always
limited to schemas within the same data model—in most cases the relational model or some dialect
of the entity-relationship model. For example, most approaches to schema integration make the
assumption that the schemas to be integrated are already formulated in some canonical data model
(see [3] for a survey). As pointed out in [19], schema transformations between schemas in differ-
ent data models are usually specified by ad hoc mapping rules, with no formalisms to guarantee
correctness in terms of either information preservation or equivalence. In [14], correct translation
is studied from entity-relationship schemas to relational schemas, using a notion of schema equiva-
lence from [11]. However, only primitive forms of cardinality constraints are translated, and query
translation is not considered.

It is customary to treat a schema as a logical theory and instances of the schema as models of
the theory [16]. What constitutes the information content of a schema? According to Bar-Hillel and
Carnap [2], the (semantic) information carried by a logical theory (schema) can be characterized
by the set of sentences (i.e., constraints) logically implied by the axioms of the theory relative to
some language system (i.e., structures and operators). Thus, all three components of a schema
contribute to its information content. In turn, the information content of the structure component
of a schema can be characterized by the set of instances of the schema. In other words, a schema is
capable of storing information not only in its instances but also in its structures, constraints, and
operators.

Most work on schema transformations uses ad hoc and very limited measures in comparing the
information content of schemas. In [6] for example, a schema contains less information than another
if every instance of the first is an instance of the second. The first systematic study was done by Hull
[11], where he introduced the notion of relative information capacity for comparing the information
content of relational schemas. It has been used as the formal basis of schema containment and
schema equivalence for object models [1, 12], and for entity-relationship models [15, 17]. In [21],
Hull’s notion is extended to take into account update semantics. However, the constraint and
operator components of schemas are largely ignored in these studies, even though Hull observed
that the structure component alone of a relational schema does not contain much information at
all [11]. In fact, it is very difficult to generalize the notion of relative information capacity to deal
with constraints and operators. For example, it is shown in [15] that the information capacity of a
schema can be increased by reducing its capacity of storing constraints; and it is claimed in [17] that
the information capacity of a schema remains the same even if we add new operators (surrogate
key attributes).

Traditionally, schemas have been formalized using a structural approach, which describes the
structure component of a schema using a (fixed) set of type constructors. However, the type

constructors have been limited to simple ones that can be stored and manipulated directly, such
as tuples and sets. Recently, Beeri [4, 5] has advocated a behavioral approach based on the theory
of abstract data type (ADT) and algebraic specification (see [22] for a survey), which describes
uniformly all components of a schema using a set of ADT specifications. The behavioral approach
has the additional advantage of supporting more complex and extensible data models.

We adopt the behavioral approach to schema specification, and develop a formal basis of correct
schema transformations that solves the problems discussed above. In particular, schemas are for-
malized as ADTs (Section 2), schema transformations are formalized as signature interpretations
(Section 3), and correct schema transformations are formalized as information-preserving signature
interpretations (Section 4). In Section 5, correct schema transformations are further generalized
to support hidden symbols. We then compare our notion of information preservation with Hull’s
notion of relative information capacity (Section 6), and solve an open problem posted in [11]. Our
formalism is used in Section 7 to show the correctness of common schema transformations that have
been proposed in the literature, such as lossless join decomposition, redundancy removal, schema
integration, and schema translation. A special kind of schema transformations, namely schema
refinements, can also be used to describe efficient schema implementations. Finally, Section 8
provides some concluding remarks.

2 Schemas

2.1 Definitions

We borrow the definitions of order-sorted signatures and algebras from the standard abstract data
type literature [10]. A partially ordered set, or poset, is a pair (S, <), where S is a set and < is a
partial ordering on S. Let S* be the set of finite sequences of members in S. The partial ordering
< can be extended to S* such that (sj...sp) < (s]...s}) iff s; <s}for1<i<n.

An order-sorted signature X is a triple (S, <,Q), where S is a set of sort symbols, (S, <) is a
poset, and € is a family of finite sets {€y s }yes+ ses of function symbols that satisfy the monotonicity
condition

Qs N Qg # 0 and v < o' imply s < s'.

We write f:v — s to denote v € 5%, 5 € S, and f € Qy5. Qy, is a set of constant symbols (i.e.,

O-ary function symbols) of sort s. For example, we could have a signature BOOL containing one sort

bool and two constant symbols true and false. The logical connectives V, A, =, —, < are considered

as function symbols in BOOL.), 3001 is a set of predicate symbols for v € S*. For every sort s € S

we assume that there is an (infix) predicate symbol =,€ Q(s,5),bo0l- FOr BOOL, =40 1 simply .
Given two signatures ¥ = (S, <, Q) and X' = (5', <", Q'), we say that ¥ C X' if

1. SC 9,
2. s1 < s9 implies s1 <’ so for s1,59 € S, and
3. Qs S forve S ses.

We say that ¥ and X' are union-compatible if

1. < is identical to <" on SN S’, and
2. Qys N Q;/,Sl # () implies v = ¢’ and s = s’

For signature ¥ = (S, <, Q), the X-terms are defined inductively as the well-sorted composition
of sorted variables, function symbols, and sorted quantifiers V and 3 in Q. A Y-formula is a X-term
of sort bool. A Y-sentence is a closed X-formula.

Let ¥ = (S, <,Q) be a signature. An order-sorted Y-algebra A consists of an S-indexed family
of carrier sets {As}scs, and a function fa: A, — A, for every Q,, in Q and f € Q,,, where
v=(v1,...,0,) and A, = A,, X -+ x A, , such that

1. s < s’ implies A, C Ay, and
2. f€QysNQy g and v < v imply fa: Ay, — Ag equals to fa: Ay — Ag on A,.

A schema 7 is a pair (X, ®), where ¥ = (S, <, Q) is a signature and @ is a set of Y-sentences
called azioms. For every sort s € S we assume that the equality axioms of reflexivity, symmetry,
transitivity, and substitutivity are in ®. A 7 -instance is a Y-algebra that satisfies ®. The semantics
of 7 is given by the set of 7-instances. A Y-sentence p is a ? -constraint, denoted as 7 |= p, if p
is a logical consequence of the 7-axioms. The set of 7-constraints forms 7 -theory. A 7 -query is a
Y-formula.

2.2 Examples

For a schema 7 = (X, ®), its signature ¥ specifies the structure and operator components of 7,
while its axioms ® specify the constraint component of 7. A typical example is the specification of
schema SET, which takes ATOM as a parameter schema with sort atom.

SET(ATOM) def (sort set(atom)
subsort atom < set(atom)
function {}: — set
_o _:atom, set — set

axiom ﬁ(IOS:{})
zo(yoS)=yo(xoS)
xo(xoS)=x08

The subsort declaration states that every atom is a set (of size one). There is a constant {}
denoting the empty set, and an insertion function o for inserting an atom into a set. As a second
example, LIBRARY1 is a schema specification in the object model.

BOOK def (extend STRING
sort book
function title(_): book — string

isbn(_): book — string
axiom isbn(x) = isbn(y) — x =vy)
def
AUTHOR = (extend STRING, INTEGER
sort author
function name(_): author — string
year-of-birth(_): author — integer)
def
LIBRARY] = (extend BOOK, AUTHOR).

The keyword extend introduces a list of imported schemas. There are two classes of objects:
books and authors. Books have attributes title and isbn, and authors have attributes name and
year-of-birth. In addition, books have unique isbn values. As a third example, LIBRARY2 is a more
elaborate schema specification in the complex-object model.

LIBRARY2 % (extend LIBRARY1, SET(BOOK)
function author-of (_): author — set(book)
axiom —(author-of (x) = {})

(Fz)(y € author-of (x))).

Compared with LIBRARY1, authors in LIBRARY2 have an additional set-valued attribute denot-
ing the set of books that they are an author of. The two additional axioms state that every author
has at least one book, and every book has at least one author. As a fourth example, LIBRARY3 is
an alternative schema specification in the entity-relationship model.

LIBRARY3 % (extend BOOL, LIBRARY1
function authorship(_, _): book, author — bool
axiom (3x)authorship(x,y)
(Jy) authorship(x,y)).

Compared with LIBRARY1, LIBRARY3 has a many-to-many relationship relating books to their
authors. The two additional axioms state cardinality constraints on the relationship: every author
has at least one book and every book has at least one author.

3 Schema Transformation

Let ¥ = (S, <,Q) be a signature. We denote by ¥, s(x) the set of ¥-terms of sort s whose list of
free variables is x of sorts v, where v € S* and s € S.

The following definition is based on the notion of theory interpretation in [9, Section 2.7]. Let
Y= (5", <" Q') be another signature. A signature interpretation o: % — X' is a pair (4, 0), where

1. 6:S — S’ is a map such that s; < s9 implies §(s1) <’ §(s2), and

2. 0 is a family of maps {0, s:Q, s — 23*(1,),5(3)(33)}%5*,%5

where 0*((v1,...,v,)) denotes (6(v1),...,d0(vy)). We write o(s) for §(s), o(v) for §*(v), and o(f)
for 6, s(f). We can extend o to ¥-formulas as follows. Given a Y-formula p, o(p) denotes the
Y'-formula resulted from replacing every term f(t) in p by 6, (f)[o(t)/z], where f € Q,, and
91),5: Qv,s - ES*(U),(S(S) (I)

It should be noticed that the notion of signature interpretation is more general than the notion of
signature morphism commonly seen in the algebraic specification literature [22], in that a function
symbol in the source signature can be mapped to an arbitrary term, not just a function symbol, in
the target signature.!

Let ¥ = (5,<,Q) and ¥/ = (5, <", Q') be two signatures, and 0:3X — Y be a signature
interpretation. A map M, from Y'-algebras to Y-algebras can be induced from o as follows. Given
a Y'-algebra A', we construct a Y-algebra A by assigning the value of o(s) in A’ to s for every sort
symbol s € S and assigning the value of o(f) in A’ to f for every function symbol f € €.

Let 7 = (X,®) and 7' = (X', ®') be two schemas. A schema transformation o:7 — 7' is a
signature interpretation o: ¥ — X', Since ?-constraints and 7 -queries are Y-formulas, o transforms
not only the structures and operators of 7, but also the constraints and queries of 7. By using the
more general notion of signature interpretation, constructs in the source schema can be transformed
to combinations of constructs in the target schema.

For example, a schema transformation from BOOK to AUTHOR could be

{book — author, title — name(x), isbn — int-to-str(year-of-birth(x))} (1)

where int-to-str is a unary function symbol in schema STRING that converts an integer to a string.
The BOOK-axiom is transformed to an AUTHOR-sentence

int-to-str(year-of-birth(x)) = int-to-str(year-of-birth(y)) — x = y.

As we argued in Section 1, all components and instances of a schema contribute to its in-
formation content. A schema transformation preserves the structures and operators of the source
schema. However, it is not sufficient to preserve either the constraints or the instances of the source
schema. For example, the above schema transformation does not preserve the constraints of BOOK,
since the BOOK-axiom is not mapped to an AUTHOR-constraint. The inverse of the above schema
transformation

{author — book, name — title(x), year-of-birth — str-to-int(isbn(x))} (2)

where str-to-int is a unary function symbol in schema STRING that converts a string to an integer,
does not preserve the instances of AUTHOR, since an AUTHOR-instance containing two authors with
the same name but different years of birth does not correspond to any BOOK-instance.

!For ease of presentation, our notion of signature interpretation is less general than the notion of theory inter-
pretation in [9], in that a sort symbol in the source signature can only be mapped to a sort symbol in the target
signature. It is not hard to generalize the notion of signature interpretation to allow a sort symbol to be mapped to
an arbitrary sort expression.

4 Correct Schema Transformation

4.1 Constraint-Preserving Transformation

Let 7 = (X, ®) and 7' = (X', ®') be two schemas, 0:7 — ?' be a schema transformation, and M,
be the induced map from Y'-algebras to Y-algebras. We say that o is constraint-preserving if, for
every 7-axiom p, o(p) is a 7'-constraint.

Theorem 1 Schema transformation o is constraint-preserving iff M, maps every ?'-instance to a
? -instance.

Proof Suppose that M, maps every ?’-instance to a ?-instance, but o is not constraint-preserving.
There is a 7-axiom p € ® where ?' |~ o(p). There is a ?’-instance I' in which o(p) is not satisfied,
or equivalently, —o(p) is satisfied. Hence o(—p) is satisfied in I'. Let I = M,(I'), which is a
?-instance. By the way in which I is constructed from I’ through M,, —p is satisfied in I, a
contradiction.

Suppose that o is constraint-preserving, but there is a ?’-instance I' such that I = M, (I') is
not a ?-instance. Let p be the 7-axiom that is not satisfied in I. Apparently o(p) is satisfied in I'.
By the way in which I is constructed from I’ through M,, p is satisfied in I, a contradiction. O

Constraint-preservation is relatively straightforward to prove: all we need to show is that a
schema transformation preserves the axioms of the source schema.

Constraint-preservation is not sufficient to preserve the instances of the source schema, since
there might be a 7-instance I where I # M,(I') for any ?’-instance I'. An example is schema
transformation (2) in Section 3.

The simpliest form of constraint-preserving schema transformation is schema extension, where
the schema transformation consists of identity maps, and every ?-axiom is a ?’-constraint.

Corollary 2 Schema extension is constraint-preserving.

For the examples in Section 2.2, LIBRARY1 can in fact be transformed to LIBRARY2 and LI-
BRARY3 by schema extension. As a more complicated example of constraint-preserving schema
transformation, suppose that we extend LIBRARY3 to LIBRARY4:

LiBRARY4 (extend LIBRARY3, SET(BOOK)
function author-of'(_): author — set(book)
axiom author-of'(x) = {y|authorship(y,z)}).

The schema transformation from LIBRARY2 to LIBRARY4, which maps author-of to author-of’
and everything else to itself, is constraint-preserving, because the two LIBRARY2-axioms are mapped
to two LIBRARY4-constraints

=(author-of'(x) = {})
(32)(y € author-of'(x))

which follow from the axioms of LIBRARY3 and LIBRARY4.

4.2 Instance-Preserving Transformation

Let 7 = (X, ®) and 7' = (X', ®') be two schemas, 0:7 — ?' be a schema transformation, and M,
be the induced map from Y'-algebras to Y-algebras. We say that o is instance-preserving if, for
every 7-instance I, there is a ?’-instance I' such that M, (I') = I.

Theorem 3 Schema transformation o is instance-preserving, iff p is a 7 -constraint for every X-
sentence p where o(p) is a ?'-constraint.

Proof Suppose that 7 | p for every X-sentence p where ?' |= o(p), but o is not instance-
preserving. Let U be the set of X-algebras that are images of ?'-instances under M, and I € U be
a 7-instance. Suppose that there is a Y-sentence p in the theory of U such that p is not satisfied in
I and hence 7 = p. Since p is in the theory of U, p is satisfied in every Y-algebra in U, and hence
o(p) is satisfied in every ?7’-instance. This means that 7’ = o(p), a contradiction. Therefore every
?-instance is in U, meaning that o is instance-preserving, again a contradiction.

Suppose that there is a Y-sentence p where ?' |= o(p) and 7 }£ p, but o is instance-preserving.
There is a 7 -instance I in which p is not satisfied, or equivalently —p is satisfied. Since o is instance-
preserving, there is a 7’-instance I' such that M, (I') = I. By the way in which I is constructed
from I' through M, o(—p) is satisfied in I', or equivalently —o(p) is satisfied in I'. Hence o(p) is
not satisfied in I’, a contradiction. O

Theorem 3 tells us that, for a schema transformation to be instance-preserving, it is equivalent
that its inverse preserves the constraints of the target schema. However, since the inverse of a
schema transformation might not exist or might not be computable, Theorem 3 does not provide
a straightforward way of proving instance preservation.

Theorem 4 Schema transformation o is instance-preserving iff o maps every non-7 -constraint to
a non-?'-constraint.

Proof Suppose that o maps every non-?7 -constraint to a non-?’-constraint. For every YX-sentence p
where 7’ |= o(p), p has to be a 7 -constraint. Hence o is instance-preserving according to Theorem 3.

Suppose that o is instance-preserving. According to Theorem 3, p is a 7-constraint for every
Y-sentence p where 7’ |= o(p). For every Y-sentence p where 7 (%= p, o(p) cannot be a ?’-constraint.
O

Theorem 4 tells us that, for a schema transformation to be instance-preserving, it is equivalent
that it preserves the non-constraints of the source schema. However, since the set of non-constraints
of a schema could be infinite, Theorem 4 does not provide a way of proving instance preservation
either. In fact, there are no known ways of proving instance preservation.

Instance preservation is not sufficient to preserve the constraints of the source schema, since
there might be a ?'-instance I' where M,(I') # I for any ?-instance I, meaning that o might
not be constraint-preserving according to Theorem 1. An example is schema transformation (1) in
Section 3.

The simpliest form of instance-preserving schema transformation is schema reduction, where
the schema transformation consists of identity maps, and every ?’-axiom is a ?-constraint.

Corollary 5 Schema reduction is instance-preserving.
For example, suppose that we define LIBRARY5 as follows:

LIBRARY5 (extend LIBRARY3, SET(BOOK)
function author-of'(_): author — set(book)
axiom authorship(y,v) — y € author-of'(x)).

The schema transformation from LIBRARY4 of Section 4.1 to LIBRARYH, which consists of iden-
tity maps, is instance-preserving because LIBRARY5-theory is weaker than LIBRARY4-theory.

4.3 Information-Preserving Transformation

As we have argued in Section 1, a correct schema transformation should preserve all components
and instances of the source schema. Since schema transformations preserve structures and oper-
ators, constraint-preserving schema transformations preserve constraints, and instance-preserving
schema transformations preserve instances, we have the following definition for correct schema
transformations.

Let 7 = (X, ®) and 7' = (X', @) be two schemas, and 0:?7 — 7' be a schema transformation.
We say that o is information-preserving if it is both constraint-preserving and instance-preserving.
If o is information-preserving, then we say that 7 is contained in 7', denoted by ? C?'. If 7 C 7'
and 7' C 7, then we say that 7 and ?’ are equivalent, denoted by ? = 7',

For example, suppose that we define LIBRARY6 as follows:

LIBRARY6 & (extend BOOL, LIBRARY1, SET(BOOK)
function authorship(_, _): book, author — bool
author-of'(_): author — set(book)
axiom authorship(y,z) < y € author-of'(x)
=(author-of'(z) = {})
(32)(y € author-of'(x))).

The schema transformations from LIBRARY4 of Section 4.1 to LIBRARY6 and back, which consist
of identity maps, are both information-preserving, and hence LIBRARY4 = LIBRARYG6.

The simpliest forms of information-preserving schema transformation are instance-preserving
schema extension and constraint-preserving schema reduction.

Given a signature ¥ = (5, <,Q) and a function symbol f:v — s where v € S* s € S, but
f & €y s, a definition of f in ¥ is an atomic formula

fla) = F

where F' € 3, 4(x) is a ¥-term and x are free variables in F' of sorts v. Given a schema 7 = (3, @),
we can form a schema 7' = (¥, ®') where ¥ = S U {f} and ®' = ® U {f(z) = F}. The schema
extension from ? to ?’' is a schema extension by definition.

Theorem 6 Schema extension by definition produces equivalent schemas.

Proof Let o be the schema extension from ? to ?’. Since every non-?-constraint is a non-?'-
constraint, ¢ is instance-preserving according to Theorem 4. Hence ¢ is information-preserving
and ? C 7.

Let 7 be the schema transformation from ?’' to ? which maps f to F' and all other symbols
to themselves. Since 7 maps the ?'-axiom f(x) = F to a tautology and all other ?’-axioms
to themselves, 7 is constraint-preserving according to Theorem 1. Since 7 maps every non-7'-
constraint to a non-?-constraint, 7 is instance-preserving according to Theorem 4. Hence 7 is
information-preserving and ?' C 7. |

For example, the extension of LIBRARY3 of Section 2.2 to LIBRARY4 in Section 4.1 is by definition.
Hence LIBRARY3 = LIBRARY4.

5 Schemas with Hidden Symbols

A schema with hidden symbols 7 is a triple (X, 11, ®), where (X, ®) is a schema and II C ¥ is a
signature. Symbols in II are hidden and symbols in X — II are wvisible. The semantics of a schema
with hidden symbols is given by the set of restrictions of (¥, ®)-instances to ¥ — II. A ?-query is
a (X — II)-formula.

For example, recall that author names do not have to be unique in the specification of LIBRARY1
of Section 2.2. We could create a surrogate key for AUTHOR objects using hidden symbols, which
is not visible to users in querying.

def
AUTHOR' = (extend SYMBOL, STRING, INTEGER
sort author
function id(_): author — symbol

name(_): author — string
year-of-birth(_): author — integer)
hidden-sort symbol
hidden-function id
axiom id(x) =id(y) — x =y).

Let 7 = (X, I1,®) and ?' = (X',II',®') be two schemas with hidden symbols. A schema
transformation o: 7 — 7' is a signature interpretation o: (X — II) — (X' — IT'). The induced map
M, is a map from (X' — IT')-algebras to (X — II)-algebras.

For example, the schema transformations from AUTHOR to AUTHOR' and back, which consist of
identity maps, are both information-preserving. Hence AUTHOR = AUTHOR'. Notice that, contrary
to the claim in [17], the two schemas would not be equivalent if the function symbol id were visible
in AUTHOR’, because no schema transformations from AUTHOR' to AUTHOR could map ¢d in such
a way that preserves the axiom of AUTHOR'.

Theorem 7 Instance-preserving schema extension with hidden symbols produces equivalent schemas.

10

Proof Suppose that 7 is extended to ?' with hidden symbols by a instance-preserving schema
transformation. Obviously 7 C 7', Since every ?’-instance restricted to X' — II' is a ?-instance,
and every 7-instance is a ?’-instance restricted to ¥’ — II' due to instance preservation, ?’ £ 7. O

6 Relationship to Hull’s Notion

In [11], Hull introduced four progressively more restrictive measures of the information content of
schemas. We first briefly define these measures of relative information capacity, and then charac-
terize their relationships to our notion of information preservation. Through this, we solve an open
problem posted in [11].

A schema ? = (X, ®) is relational if every function symbol in ¥ is either a constant or a
predicate.? Without further notice, we assume that all schemas in this section are relational.

6.1 Relative Information Capacity

Let 7 = (X,®) and 7' = (¥, ®') be two schemas. The domain of a ?-instance I, denoted as
dom(7), is the union of its carrier sets. Let DOM be a set of values containing the domains of all
?-instances and 7 '-instances, and Z C DOM.

1. A Z-permutation of DOM is a bijective map on DOM that is identical on Z.

2. A map M from ?-instances to ?’-instances is Z-generic if it commutes with every Z-permutation
of every 7 -instance.

3. A map M from ?-instances to ?’-instances is Z-internal if dom(M (1)) C dom(I)U Z for every
?-instance 1.

Let 7 = (X,®) and 7’ = (X', ®") be two schemas. Also let M be a map from ?-instances to
?'-instances, and M' be a map from ?’-instances to ?7-instances. ?' dominates ? via (M, M') if
M' o M is the identity map on ?-instances.

1. 7' dominates ? absolutely,® denoted as ? < ?'(abs), if ?’' dominates ? via (M, M') for some
M, M.

2. 7" dominates ? internally, denoted as ? < 7'(int), if there is a finite Z C DOM such that 7’
dominates 7 via (M, M') for some Z-internal M, M'.

3. 7! dominates 7 generically, denoted as 7 < 7'(gen), if there is a finite Z C DOM such that
7! dominates 7 via (M, M') for some Z-generic M, M.

2This is consistent with Hull’s definition, in which calculus expressions could contain constants, and constraints
could be more general than key dependencies (e.g., constants are constrained by unique name axioms).

3This definition is from [12], which is simpler and is not limited to relational schemas. The two definitions are
equivalent for relational schemas [11].

11

4. 7" dominates ? calculously, denoted as 7 < 7'(calc), if there are two schema transformations
0:7 — ?"and 7: 7" — ? with induced maps M, and M, respectively,? such that 7’ dominates
7 via (M, M,).

Hull has shown that calculus dominance implies generic dominance, which in turn implies
internal dominance, which in turn implies absolute dominance. Moreover, the implication from
generic to internal dominance is strict if schemas contain certain kinds of constraints, namely
key dependencies. However, it remains open whether the implications from calculus to generic
dominance, and from internal to absolute dominance are strict.

6.2 Relationship to Relative Information Capacity
Let ? = (X,®) and 7' = (X', ®') be two schemas.

Theorem 8 If? < 7'(calc), then? T 7',

Proof Let 0:7 — 7" and 7:?’ — 7 be two schema transformations with induced maps M, and
M, respectively, such that 7’ dominates ? via (M,, M,). By definition of calculus dominance, M,
maps every ?’-instance to a 7 -instance, and hence o is constraint-preserving. For every 7 -instance
I, M.(I) is a ?'-instance such that M, (M, (I)) = I. Hence o is instance-preserving. Therefore o
is information-preserving,. O

Theorem 9 If? T 7', then 7 < 7'(abs).

Proof Let 0:7 — 7' be an information-preserving schema transformation with induced map M,.
Since o is constraint-preserving, M, maps every ?’-instance to a ?-instance. Since o is instance-
preserving, for every 7-instance I there is a ?'-instance I' such that M, (I') = I. Hence there is
a map M from ?7-instances to 7’-instances such that M, o M is the identity map on ?-instances.
Therefore 7' dominates ? via (M, M,). O

There exist schemas ? and 7’ such that 7 < 7'(gen,int,abs) but 7 Z 7' (and hence 7 A 7’'(calc)).
For example, consider the following schemas.

scurMal & (sort city
axiom (3z,y)-(r = y))

def
SCHEMA2 = (sort town).

A SCHEMAl-instance is a set containing at least two cities, while a SCHEMA2-instance could be
a singleton set. Hence SCHEMAL1 is logically stronger than SCHEMA2. A map M from SCHEMA1-
instances to SCHEMA2-instances could map every SCHEMAIl-instance to the identical SCHEMA2-
instance. On the other hand, a map M’ from SCHEMA2-instances to SCHEMA l-instances could

4This definition is equivalent to Hull’s definition, because relational calculus is equivalent to first-order predicate
calculus, which is the language of relational schemas.

12

map every SCHEMAZ2-instance containing at least two towns to the identical SCHEMAl-instance;
and map every singleton SCHEMA2-instance to the SCHEMA1-instance where city is assigned the set
{SF,LA}. Since these two maps are both {SF,LA}-generic, and M' o M is the identity map on
SCHEMA l-instances, we conclude that SCHEMA1 < SCHEMAZ2(gen,int,abs). However, any schema
transformation from SCHEMA1l to SCHEMA2 will have to map city to town. The only function
symbol in SCHEMAL is =;,. If it is mapped to =¢yyn, then the image of the SCHEMAl-axiom is
not a SCHEMA2-constraint. If it is mapped to an equivalence relation ~ other than =;,,n, then the
image of the SCHEMAl-axiom cannot be true in any singleton SCHEMA2-instances. In either case,
the schema transformation cannot be constraint-preserving, and hence SCHEMA1 [Z SCHEMA2.

This example tells us that Hull’s notion could find dominance relationships between schemas
that are not naturally related through dominance relationships: a schema should not be capable
of storing more information if we reduce its capability of storing constraints. Our notion rules out
such unnatural dominance relationships.

There also exist schemas 7 and 7' such that 7 T 7’ (and hence 7 =< 7'(abs)) but 7 A
?'(int,gen,calc). For example, consider the following schema.

def
SCHEMA3 = (extend SYMBOL, STRING, BOOL
function Ry (_, _): symbol, string — bool
axiom Ri(x,y) ARy(v,2) —y=2z)
def
SCHEMA4 = (extend STRING, BOOL
function Rs(_): string — bool)

and a schema transformation from SCHEMA4 to SCHEMA3 that maps Rs to the SCHEMA3-term
(32)R1(x,y). In other words, Ry is the projection of Ry on the non-key column. It is easy to
show that the schema transformation is information-preserving, and hence SCHEMA4 C SCHEMAJ.
However, any map from a SCHEMA4-instance to a SCHEMA3-instance will have to invent as many
distinct values as the size of Ry for the key column of R;. Since there are arbitrarily large SCHEMA4-
instances, the map cannot be Z-internal for a fixed finite Z. So SCHEMA4 A SCHEMA3(int,gen,calc).

This example tells us that there are natural dominance relationships between schemas that are
not captured by Hull’s notion: the capability of storing information in a non-keyed schema should
be increased by adding a key column. Our notion captures such natural dominance relationships.

The above examples also show that calculus dominance is strictly more restrictive than our
notion, which is in turn strictly more restrictive than absolute dominance. Moreover, our notion
is not comparable to generic or internal dominance. As a consequence, we have solved an open
problem posted by Hull:

Corollary 10 Calculus dominance is strictly more restrictive than generic dominance. Internal
dominance 1s strictly more restrictive than absolute dominance.

7 Applications

7.1 Lossless Join Decomposition

Consider Example 7.8 from [20, page 395], with the following two schemas:

13

SCHEMA5 & (extend STRING, BOOL
function R(_, _, _, _): string, string, string, string — bool
axiom R(z,y,z,w) A R(x,y', 2\ w') —y=1¢
R(z,y,z,w) A R(z,y, z,w') — w =w')
SCHEMAG % (extend STRING, BOOL
function Rl(_): string, string — bool
Rs(_, _, _): string, string, string — bool
axiom Rl(a: y) ANRy(z,y') —y=1
Ro(x,y,2) A Ry(x,y,2") — 2 =2").

A schema transformation from SCHEMA5 to SCHEMAG6 could map R to the SCHEMAG-term
Ri(x,y) A Ry(w, z,w). A schema transformation from SCHEMA6 to SCHEMA5 could map Ry to the
SCHEMAB-term (3z,w)R(x,y, z,w) and map Ry to the SCHEMAbS-term (Jy)R(x,y, z,w). It is not
hard to verify that SCHEMAS = SCHEMAG. Since SCHEMAS is not in BCNF while SCHEMAG is, the
latter is considered a better schema design.

7.2 Redundancy Removal

Given two schemas 7 = (X, ®) and 7' = (X', ®') where ? = 7', We say that 7' is less redundant
than ? if ¥’ contains fewer or simpler signature symbols than X, or ®' contains weaker axioms
than ®. In this case, we could replace ? by ?’ to achieve a more concise representation of the same
information. Consider the following schemas in the relational model:

def
SCHEMA7 = (extend STRING, BOOL
function Rq(_, _,), Ra(_, _,): string, string, string — bool
axiom Ry(z,y,2) ARi(x,y,2") —y=y Az="2
Ro(,y,2) A Ry(a,y,2") —y=y' Az="2
Ra(.y.2) — (3y)Ro(.y'.2)
def
SCHEMA8 = (extend STRING, BOOL
function R’l(_): string, string — bool
R4(-, _, _): string, string, string — bool
axiom R(x, y)/\R’(T y)—y=y
Ry(z.y.2) NRy(z,y,2") —y=y' ANz =2
Ry (x,) — (3,) Ry(x, 9/, "))

A schema transformation from SCHEMA7 to SCHEMAS could map R; to the SCHEMAT7-term
R (x,y) AN (Fy')Ry(x,y',). A schema transformation from SCHEMAS8 to SCHEMAT could map R} to
the SCHEMAS8-term (3z) Ry (z,y, z). It is not hard to verify that SCHEMA7 = SCHEMAS. Compared
to SCHEMAS, SCHEMAT has more redundancy because the third column of Rj is redundantly stored
as the third column of R;. Hence replacing SCHEMAT by SCHEMAS8 removes this redundancy. This
schema transformation has been proposed in the literature [8, 17].

14

7.3 Schema Integration

Let 7; = (5;,®;) for 1 < i < n be n schemas such that ¥; and ¥; are union-compatible for
1 <4,7 < n. When we integrate these schemas into one, the first step is to identify the semantic
relationships between them. Suppose that the semantic relationships are expressed over ¥; for
1 <i < n, and possibly an additional signature ¥'; and consist of a set of (i~ X; U ¥')-sentences
®'. An integration of 7;, where 1 <i < n, is a schema ? = (3, ®) such that

n n
(Uziux |Josue)=2.
=1 =1

Thus, schema integration can be viewed as applying information-preserving schema transforma-
tions to the union of component schemas and their semantic relationships to improve the quality
of the integrated schema (e.g., to remove redundancy). Consider a schema specification similar to
LIBRARY?2 of Section 2.2:

LIBRARY2' & (extend LIBRARY1, SET(AUTHOR)
function authored-by(_): book — set(author)
axiom —(authored-by(x) = {})

(3x)(y € authored-by(x))).

Suppose that we integrate LIBRARY2 and LIBRARY2'. The semantic relationship between them
can be expressed as
x € author-of (y) < y € authored-by (x).

Intuitively, the two schemas contain the same information represented differently. Hence their
union is redundant: the many-to-many relationship between authors and books is represented by
two multi-valued maps that are inverses of each other. It is not hard to verify that the union of
LIBRARY2 and LIBRARY2' together with the above semantic relationship is equivalent to LIBRARY3
of Section 2.2. Hence LIBRARY3 can be taken as their integration. This schema transformation has
been proposed in the literature [18].

7.4 Schema Translation

Given two schemas ? and 7', a schema transformation o:? — ?’ is a translation from ? to 7' if
?2 =7/

Schema translation between different data models is not any more difficult than that within the
same data model, because our schema formalism really blurs the difference between data models:
data models differ in the data types they support. So we could have a schema specified in a
mixture of data models, e.g., LIBRARY4 of Section 4.1 is in a combination of complex-object and
entity-relationship models.

As an example of schema translation, suppose that we extend LIBRARY3 of Section 2.2 with
an additional axiom name(x) = name(y) — = = y, which can then be translated to the following
schema in the relational model:

15

LIBRARYS' % (extend STRING, INTEGER, BOOL

sort S1, 82

function R;(_, _): s1, string — bool
Rs(_,_): 89, integer — bool
R(_,_): 81,89 — bool

axiom Ry(z,y) A Ri(z,2) —y==z
Ro(x,y) N Ry(x,2) —y==2
(Jy)Ra(v,y)
(3y) Ra(,y))

through the schema transformation

book — s1,1isbn +— x, title — {y|Ry1(x,y)},
author — sy, name — x, year-of-birth — {y|Ra(x,y)},
authorship — R(x,y)

Notice that, because of the LIBRARY3'-axioms, the images of title and year-of-birth are always total
and evaluate to singleton sets. Also notice that the inclusion dependencies from the two columns of
R to the first columns of Ry and Ry respectively are satisfied automatically through sort constraints
and the last two LIBRARY3'-axioms. Similar schema translations from the entity-relationship model
to the relational model have been proposed in [14].

7.5 Schema Refinement

Given two schemas 7 and ?’, a schema transformation o:? — ?’is a refinement of 7 to ?'if ? £ 7.
Thus schema refinements can increase the information content of the schemas being refined.

Advanced data models provide many powerful abstractions that make schema specifications
concise and semantically clear. However, the added expressive power comes with a price: there
is no known method to infer simple and efficient storage implementations for these abstractions
[5], because many abstractions no longer have a single implementation that is tolerably efficient
over the entire query space. For example, a set-valued attribute can be implemented by a relation,
a list, a bit-vector, etc.. Such implementation decisions can be encoded as schema refinements.
When guided by the characteristics of typical queries, schema refinements can be applied to derive
efficient implementations of schemas.

As an example, consider the following specification of schema SEQ:

SEQ(ATOM) def (sort seq(atom)
subsort atom < seq(atom)
function []: — seq
_e _:glom, seq — seq

axiom —(reS=][])
reS=z'eS —-x=2'AS5=¢5

).

16

We could imagine that SEQ has a range equality predicate - =, _: seq, seq — bool, such that two
sequences are range-equal iff they contain the same set of elements. It is not hard to show that the
schema transformation from SET of Section 2.1 to SEQ

{set — seq,{} — [],0 = x 0y, =— 2=, y}

is information-preserving. Now consider LIBRARY2' of Section 7.3. If the set-valued attribute
authored-by is most often accessed by traversing its value, then we could apply the above schema
transformation to refine it into a sequence-valued attribute. The implementation also contains more
information, because we could now query the first author of a book, for example.

8 Conclusion

We have developed a formal basis of correct schema transformations. In particular, schemas are for-
malized as ADTs, schema transformations are formalized as signature interpretations, and correct
schema transformations are formalized as information-preserving signature interpretations.

Compared with existing approaches, our formalism captures transformations of all schema com-
ponents, making it possible to transform uniformly constraints and queries along with structures.
In addition, our formalism captures schema transformations between different data models as easily
as those within the same data model.

We have compared in detail our notion of information preservation with the most widely used
correctness criteria—Hull’s notion of relative information capacity. Our notion is strictly less restric-
tive than calculus dominance, strictly more restrictive than absolute dominance, and incomparable
to generic or internal dominance. Moreover, our notion captures more schema transformations that
are natural, and fewer schema transformations that are unnatural, than Hull’'s notion. We have
also solved an open problem with Hull’s notion calculus and internal dominance are, respectively,
strictly more restrictive than generic and absolute dominance.

Our work lays the foundation of a transformational framework of schema manipulations. Pop-
ular transformations of common ADTs can be encoded as transformation rules and proven correct
once. Schemas specified with common ADTs can be simplified, restructured, and translated by
applying these rules repeatedly. We can also apply these rules to refine schema specifications into
efficient storage representations. As examples, we have shown the correctness of common schema
transformations that have been proposed in the literature.

A cknowledgment

The author thanks Richard Hull for valuable discussions and comments, which helped improve the
presentation of this paper.

References

[1] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical Computer
Science, 62:3-38, 1988.

17

2]

[11]

[12]

[13]

[14]

[15]

[16]

Y. Bar-Hillel and R. Carnap. An outline of a theory of semantic information. In Y. Bar-Hillel,
editor, Language and Information, chapter 15, pages 221-274. Addison-Wesley, 1964.

C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323 364, December 1986.

C. Beeri. Theoretical foundations for OODB’s — a personal perspective. IEEE Data Engi-
neering Bulletin, 14(2):8 12, June 1991.

C. Beeri. New data models and languages the challenge. In Proceedings of the Eleventh
ACM Symposium on Principles of Database Systems, pages 1-15, 1992.

P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema merging. In Proceedings
of the Third International Conference on Extending Database Technology, 1992.

M. A. Casanova, L. Tucherman, A. L. Furtado, and A. P. Braga. Optimization of relational
schemas containing inclusion dependencies. In Proceedings of the Fifteenth International Con-
ference on Very Large Data Bases, pages 317-325, 1989.

M. A. Casanova and V. M. P. Vidal. Towards a sound view integration methodology. In
Proceedings of the Second ACM Symposium on Principles of Database Systems, pages 36—47,
1983.

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheri-
tance, overloading, exceptions and partial operations. Theoretical Computer Science, 105:217
273, 1992.

R. Hull. Relative information capacity of simple relational database schemata. SIAM Journal
of Computing, 15(3):856 886, August 1986.

R. Hull and C. K. Yap. The format model: A theory of database organization. Journal of the
ACM, 31(3):518 537, July 1984.

A. Klug. Calculating constraints on relational expressions. ACM Transactions on Database
Systems, 5(3):260-290, September 1980.

V. M. Markowitz and A. Shoshani. Representing extended entity-relationship structures in re-
lational databases: A modular approach. ACM Transactions on Database Systems, 17(3):423—
464, September 1992.

R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema equivalence in heterogeneous
systems: Bridging theory and practice. Information Systems, 19(1):3-32, January 1994.

J.-M. Nicolas and H. Gallaire. Data base: Theory vs. interpretation. In H. Gallaire and
J. Minker, editors, Logic and Databases, pages 33—-54. Plenum Press, 1978.

18

[17]

[18]

[19]

[20]

[21]

[22]

A. Rosenthal and D. Reiner. Tools and transformations rigorous and otherwise for practical
database design. ACM Transactions on Database Systems, 19(2):167-211, June 1994.

S. Spaccapietra and C. Parent. View integration: A step forward in solving structural conflicts.
IEEE Transactions on Knowledge and Data Engineering, 6(2):258 274, April 1994.

D. Tsichritzis and F. Lochovsky. Data Models. Prentice-Hall, 1982.

J. D. Ullman. Principles of Database and Knowledge Base Systems, volume 1. Computer
Science Press, 1988.

V. M. P. Vidal and M. Winslett. Preserving update semantics in schema integration. In Pro-
ceedings of the Third International Conference on Information and Knowledge Management,
pages 263-271, 1994.

M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science. Vol. B: Formal Models and Semantics, chapter 13, pages 675 788. MIT
Press/Elsevier, 1990.

19

