
Execution-Driven Distributed Simulation of
Parallel Architectures

Livio Ricciulli, Patrick Lincoln, and José Meseguer

 Computer Science Laboratory

SRI International

Menlo Park, California 94025, USA

Phone: 415-859-2969

Fax: 415-859-2844

E mail: {livio, lincoln, meseguer}@csl.sri.com

Keywords: Performance evaluation, Distributed simulation of computer architectures,
Execution-driven simulation, Distributed shared memory computers, Relaxed memory

consistency.

Abstract: A new methodology for the asynchronous discrete event-driven
simulation of parallel computers is proposed. This methodology integrates
sequential and distributed simulation in a unified paradigm and is applicable
to the simulation of all classes of parallel computer architectures. In our own
simulation work we accelerated simulations by more than an order of mag-
nitude with parallel execution speedup efficiencies in the order of 60-70%.
When simulating in parallel, our approach has the important benefit of
testing the robustness of a simulated design by not hiding the asynchronous
nature of the system being studied (our simulation model preserves the non-
deterministic behavior of certain parallel executions). Unlike other distrib-
uted simulation methodologies, our execution model does not rely on a global
view of virtual time to maintain coherent distributed event causality
relations. The simulator correctly executes a given parallel application that
observes a particular synchronization model of choice without a notion of
virtual time. We then estimate a global virtual time in which the execution
could have been carried out. We give a detailed description of our simulation
methodology, the computational models that it can implement, and the con-
ditions for its correctness. We also give some preliminary performance
results obtained by implementing our parallelization technique to simulate a
massively parallel machine on a CM-5 computer and on a heterogeneous
network of workstations.

1 Introduction
 As parallel computer systems being designed and simulated grow in both complexity

and size, it becomes increasingly harder to perform simulation experiments with a suffi-
cient level of detail within reasonable time limits. Indeed, given the performance currently
offered by sequential workstations, parallel execution often becomes the only viable al-
ternative for realizing detailed simulations of sufficiently large systems. However,
effectively using a parallel computing environment to drastically increase the perfor-
mance of an architectural simulation is a hard problem, for which new techniques are
needed.

We propose a novel methodology for the distributed event-driven simulation of par-

allel architectures that can effectively exploit the existing computational power offered by
today’s parallel and distributed computing environments. Our approach is based on the
execution-driven simulation methodology and affords unprecedented efficiency by en-
forcing only application-specific synchronizations to synchronize the distributed
event-driven simulation. Our simulation methodology is general enough to efficiently
simulate any parallel MIMD or MIMD/SIMD architecture in a distributed manner. In the
case of MIMD multicomputers our methodology applies to both distributed memory ma-
chines with asynchronous message passing [2] and Distributed Shared Memory (DSM)
multicomputers. For the sake of concreteness and because of their intrinsic interest, this
paper focuses on the simulation of DSM machines.

Because parallel computers have explicit synchronization requirements, their simu-
lation can be decoupled in two distinct parts:

1. Correctly executing a simulated parallel application on a simulated architecture

2. Generating a simulated time estimate in which the above execution could have
 been carried out

This decomposition gives more flexibility in choosing an appropriate level of simu-
lation detail to suit one’s particular needs. In one limiting case, by ignoring virtual time,
one could perform simulations testingonly the correctness of an architecture and of the
application being simulated without incurring the overhead of having to keep track of
virtual time. In another limiting case, by using a trace-driven approach, one could com-
pletely abstract the execution of the parallel application and perform, for example,
detailed timing measurements of the latency and throughput of the inter-processor in-
terconnection network.

In the experiments we have performed, we chose to have the execution simulation at
a fairly high level of detail and to keep the time estimation detail at a level that, while still
providing useful information, allowed very efficient parallel simulation. By slightly re-
ducing the accuracy of our timing estimator (±4-5% error) we were able to obtain a highly
parallel simulation platform that, in addition to yielding good performance when executed
on parallel machines, is ideal for implementation on heterogeneous networks of work-
stations where global lock-step synchronization is prohibitively expensive. In our own
architecture work, this technique has greatly increased our experimentation turnaround
time by more than an order of magnitude. For the particular parallel applications with
which we have experimented, we have found that our technique achieves an average ef-
ficiency of 61% of ideal parallel speedup on a 64-node CM-5, and 71% of ideal speedup
on a 16-node heterogeneous network of workstations.

 We have thus far experimented using our approach to simulate one particular parallel
architecture at the Register Transfer Level (RTL). We believe, though, that our approach
is directly applicable to other parallel machines not only for RTL simulations, but also for
higher-level symbolic simulations [10] and for lower-level simulations of parallel com-
puter designs directly specified in VHDL [5]. This latter kind would have the enormous
benefit of avoiding the possibility of translation errors by integrating architectural studies
directly into the digital design process. Potentially, very costly errors, such as Intel’s Pen-
tium/90 problems in a multiprocessing environment [14], given enough computational
power, could have been discovered by using this kind of methodology.

 Our methodology is also quite general with regard to the physical platforms on which
it can efficiently run and and allows seamless integration of sequential and parallel
simulation. The same description of our simulated machine has been successfully and

efficiently run on a single sequential workstation, a 4-processor SPARC-server 670 MP,
a CM-5, and a heterogeneous network of workstations. The network of workstations we
used in our experiments included multiprocessor SPARC-servers, single-processor
SPARC-10s, and a Pentium/90 box running Linux, distributed over two separate Ethernet
domains and interfaced using standard Ethernet hardware. We believe that this approach
is therefore well suited to effectively utilizing department-level clusters of workstations to
obtain more than an order-of-magnitude performance gain.

2 Our approach
Our proposed distributed event-driven simulation methodology has been designed

with the explicit purpose of meeting the needs of parallel architecture simulation. We
can capture the essence of what is different about our methodology by illustrating sche-
matically the casual relation between the execution of simulation events and the
simulated time at which they appear to have executed.

Conventional : Time ⇒ Execution

Our method: Time ⇐ Execution

In the conventional case, time directly drives the execution and event causality is
strictly defined; events are executed or committed only if the global simulation time
permits. Our approach starts from an execution, which is guaranteed to be legal (produces
correct results), and generates a timing estimate in which the execution could have been
carried out. The simulated application directs the simulated execution in such a way as to
always produce correct results (this also tests the soundness of the design), and the timing
estimator produces a timing estimate that conforms to this execution.

By using this approach the parallel simulated execution is easy to implement effi-
ciently because, once all necessary synchronization mechanisms of a given synchroniza-
tion model are in place, the parallel application being simulated will itself synchronize the
simulation with minimal overhead. In previous distributed simulation techniques virtual
time is used to guarantee the correctness of the execution by giving a total order of simu-
lated events regardless of the fact that, as we will see in Section 3, this total ordering is
not always necessary.

The accuracy of the timing estimation can be adapted to one’s particular needs, there-
fore leaving more freedom to the simulator designer. As we will see in Section 4, given a
particular execution, it is possible to very accurately predict at runtime the timing per-
formance of a distributed system with very simple mechanisms. These mechanisms can
be installed in an arbitrary number of places, depending on the degree of accuracy that one
wants to obtain. In general these mechanisms can be activated whenever a logical process
acquires a resource produced by another logical process.

2.1 Parallel Execution Simulation
In this section we outline which programming models can be simulated using our ap-

proach and show how to implement a simulator that correctly executes parallel programs
written under the Release Consistency synchronization model.

In the context of shared memory parallel programming a variety of relaxed memory
consistency models [1,6,8] have been proposed. These models define conditions under
which shared memory parallel programs appear to the programmer as having sequen-
tially consistent executions as defined by Lamport [9], but allow the hardware to schedule
coherence messages more freely. Instead of emulating a serialization of global memory
access, the hardware guarantees a fixed set of coherence properties that are understood by

the software as a synchronization model. If the software then observes the constraints of
the given synchronization model, then the architecture produces executions that are se-
quentially consistent [1]. Such relaxed consistency models allow much more parallelism
than previous ones because global memory access operations do not always need to be
ordered but in some cases are allowed to propagate asynchronously without introducing
overhead to enforce sequential causality.

When a simulation’s observable behavior of interest is the relative ordering of all the
simulated events of the distributed entities, the simulation must enforce such ordering
with simulation techniques of the style proposed by Chandy and Misra [4] or Jefferson
[8]. Instead, if the relevant observable behavior of a system is not the ordering of events
itself but its final state and its overall performance, we can greatly simplify the simulation
methodology. In our methodology it is sufficient to maintain causality of events only to
preserve the correctness of the simulated application and not to emulate a given deter-
ministic execution.

Our methodology correctly simulates the execution of a parallel program that obeys
a particular synchronization model, provided that the simulator correctly implements that
model in a distributed manner. For example, a program written under the Release Con-
sistency model [7] executes correctly on a simulator of the hardware mechanisms
required by this memory consistency paradigm and therefore yields a sequentially con-
sistent simulation.

 To accomplish this, each node of the simulated machine is mapped to an autonomous
Logical Process (LP) that keeps its own local time and executes the simulated parallel
application within the context of execution-driven simulation. We allow the simulator to
consist of as many LPs as needed, and we map the LPs on the nodes of the physical
parallel or distributed system in an optimal way. If multiple LPs are mapped on the same
physical processor, they can be spawned as separate UNIX processes, or they can be
grouped as a single UNIX process sharing the same discrete-event list. Allowing groups
of LPs to be mapped in a single UNIX process somewhat increases the mapping com-
plexity but minimizes the UNIX overhead in transferring data among LPs and achieves
smooth integration of parallel and sequential simulation; in fact when all LPs are mapped
to a single UNIX process sharing the same event list, the simulation becomes sequential.
By using this property we were able to seamlessly compare our parallelization technique
with a corresponding sequential deterministic simulator.

A very important consequence of our LP partitioning is that there is a one-to-one
correspondence between simulated shared data movement and messages that propagate
between LPs. Under this kind of mapping, the implementation and simulation of relaxed
memory consistency models will generate three kinds of events: local non-coherence
simulation events, (simulated) global data access events, and (simulated) synchroniza-
tion events:

1. Local noncoherence simulation events do not directly influence global consistency
 and are needed for the simulation to make forward progress.

2. Simulated global data access events simulate application data movement.

3. Simulated synchronization events control the execution of the LPs and can cause an
 LP to be either blocked or suspended, or to resume from a blocked or suspended
 state.

 When data access events are also synchronizing events according to our definitions,

we treat them as synchronization events. For example, a cache miss causes a block fetch
that carries data and also causes the missing LP to resume; in this case we would consider
a block fetch to be a synchronization event.

The simulation of a particular synchronization model classifies all events generated by
the execution of a parallel application to be of one of the three above types. The simulator
then enforces consistency by observing the following rules:

1. Local events of type 1 and coherence events of type 2 are always executed once they
 are generated by the simulated program.

2. Coherence events of type 3 can cause an LP to execute a series of ‘null’ events
 that could effectively block the execution of the application for that LP. In
 addition, these events trigger specific mechanisms of a particular synchronization
 model of choice to maintain sequential consistency.

Given the above rules, a simulation based on our methodology yields correct results
if the following two conditions hold:

1. The application being simulated satisfies the restrictions imposed by the given
 synchronization model M.

2. The simulator correctly implements the synchronization model M.

Application requirements to satisfy condition 1 totally depend on the architecture and
memory consistency model that are being simulated and therefore are specific to the
particular instantiation of our technique. Condition 2 essentially requires the simulator to
be correct.

The above requirements do not impose any particular computational model or archi-
tecture for the applicability of our methodology. Because of its simplicity and potential for
exploiting application parallelism, we have used Release Consistency [7] as the synchro-
nization model of the particular simulation experiments we have performed. For this
model we can translate the correctness conditions given in [7] to further specify the
correctness conditions 1 and 2 mentioned above:

1. The application being simulated is properly labeled (it is race free).

2.1 All synchronization acquire events performed by a processor must be performed
 before any subsequent global data access event can be issued.

2.2 A synchronization release event can be observed by a processor after all
 preceding global data access events are performed.

2.3 Synchronization events need to be processor-consistent.

Condition 1 basically requires that any two conflicting events (two operations with
the same address, of which at least one is a write [12]) must be ordered by a synchroni-
zation operation between them. Condition 2.1 specifies that an LP must block (generate
null events) until it acquires needed synchronization resources. Condition 2.2 specifies
that all memory operations must be committed before a release can cause an LP to resume
execution. Condition 2.3 requires that LPs perform synchronization operations in program
order.

These conditions ensure that the logical view of the distributed simulation is sequen-
tially consistent under the release consistency model. Furthermore, reasonable assump-
tions about the actual simulation platform along with these properties imply that the result
of the actual simulation running on the real hardware does not depend on vagaries of
timing or race conditions in the simulation platform. Thus, assuming that a parallel

application is race-free is of paramount importance, since it lifts from the simulator the
responsibility of enforcing a total order of simulation events.

2.2 Clock Synchronization
In most cases, ensuring the correctness of a simulated application’s execution is not

enough to make a simulation methodology usable. The simulation model described in
Section 2 does not, as yet, provide a correct estimate of the execution time. The different
LPs execute asynchronously and, although producing the correct data, do not provide a
realistic estimate of global virtual time. In our methodology the clock synchronization
solution is simple, because the simulated application will block the execution of an LP and
therefore enforce an ordering of events that will never need to be undone. Unlike Time
Warp [8], we only modify the virtual clocks without having to restore previous states.

For the purpose of clock synchronization we view a parallel execution as a series of
resource requests, acquisitions, and releases. This unifying view allows us to break down
all synchronizing events of a parallel execution as being of one of these three types. This
view is general enough to model all computational paradigms of interest, and it abstracts
the behavior of a parallel program in a way that allows us to easily generalize our clock
synchronization mechanism. A resource can be any object (hardware or software) that
a process must acquire to make forward progress in the computation; for example a
buffer segment is a resource needed by an LP before it can send a message, and a mutual
exclusion lock is an object needed before a critical section is entered.

Given a particular resource assignment ordering, resource acquisitions are the only
synchronization points at which clocks must be adjusted to yield a correct estimate of
global time. In the usual case, the virtual time of a process that acquires a resource is
either the time at which the resource is made available or the time the resource is re-
quested if the resource was already available. Complications arise when the clocks of the
process that last released the resource and the clock of the process that requests the
resource are not synchronized.

We use lock contention as an example to first motivate this clock synchronization
methodology and then to explain and validate the mechanism we use. Fig. 1 depicts what
can go wrong if the clocks are not synchronized; in all the examples, LP1 acquires a lock
before LP2 with respect to physical time. After completing the mutual exclusion sections
the processors terminate, and the total concurrent execution time is taken to be the
maximum of the two LPs’ execution time. Depending on their relative speed, the two LPs
might terminate with an erroneous estimate of the simulated time that does not reflect a
proper event causality relation.

In Fig. 1a the two processors behave synchronously and do not need clock adjustment.
Fig. 1b shows what would happen if the host node of P1 is faster and allows P1 to com-
plete the mutual exclusion section before P2 issues an acquire message. The resulting
total virtual time of 201 is wrong because it is derived by executing an impossible sched-
ule (the time estimate implies that p1 and p2 execute the mutual exclusion at the same
time).

In case 1b we need a mechanism to synchronize the local clock of LP 2. We assume
that

1. LPs cannot change their virtual times except at the acquisition of a resource.

2. LPs cannot change other LPs’ virtual times.

3. A blocked LP cannot do anything other than acquiring the resource for which it is
 blocked.

 The following accomplishes clock synchronization of two or more processes con-
tending for a resource.

 The virtual time of an LP after it acquires a resource R is the maximum of

 1. Its local time at the first attempt to acquire the resource R

2. The local time of the LP that last
released the resource R plus the propaga-
tion delay of the release-acquire messages

A simple argument supports our claim.
Suppose that two processes P1 and P2 are
contending for a common lock at virtual
local times T1 and T2, respectively, and
that they execute a series of events of
duration m1 and m2, respectively, after
they acquire the lock, and that T1 happens
before T2 in physical time. Assume also
that delta is the overhead time for the
propagation of the release-acquire
messages. P2’s local clock must respect
a causality relationship with the real
event order observed (P1 acquires the
lock before P2). If T1+m1<T2, then the
causality relation is maintained without

Ph
ys

ica
l T

im
e

m1

P1

T1

Release m2

P2

T2

Release

start

acquire

acquire

Fig. 2. Two processors contending for a mutual exclusion
section.

Ph
ysi

ca
l T

im
e

Fig. 1. Some possible behaviors of two virtual processors contending for a lock variable. (a) The processors
execute synchronously. (b) P1 is much faster than P2; P1 and P2 may appear to execute the mutual exclusion
section at the same time.

Start of simulation

Succesful
Acquire

Release

100

200

Start of simulation

Unsuccesful
Acquire

301

101

Succesful
Acquire201

Sp
in

-L
oc

k

p1 p2

Synchronous behavior

00

}

}

}

}

100100

100

100

Release

Total execution time = Max(200,301) = 301

Start of simulation

Succesful
Acquire

Release

100

200

Start of simulation

201

Succesful
Acquire

101

p1 p2

P1 is much faster than P2

00

}

} }
}

100

100

100

100

Release

Total execution time = Max(200,201) = 201

(a) (b)

adjusting T2. If T1+m1≥ T2, then the causality is maintained if T2 is set to T1+m1+delta.
 The total virtual execution time for both processors to complete their mutual exclusion
sections should be

Texec = T1+m1+m2+delta if T2 ≤ T1+m1+delta.

Texec = T2+m2 if T2 > T1+m1+delta.

or more compactly

Texec = Max(T2,T1+m1+delta)+m2

Since LPs can change their clocks only at the acquisition of a resource, it follows that
for the total execution to yield Max(T2,T1+m1+delta)+m2, the second LP, P2, must
adjust its clock at the beginning of m2 to Max(T2,T1+m1+delta). This always works
because an LP issuing a releasing event cannot be itself blocked and therefore must have
a correct virtual time.

This idea is quite general and can be used to synchronize virtual times on any event
that causes a blocked LP to resume useful execution, including, for example, clear oper-
ations on lock variables. This method could synchronize, in a distributed manner, the
local virtual clocks of any system with synchronization primitives based on lock and clear
operations (e.g., using the ANL macros [3]). In a distributed implementation each re-
source has associated with it a time Tr that indicates the local virtual time of the last LP
to release that resource. An LP successfully acquiring a resource uses Tr to compute a
new local virtual time.

3 Our Implementation
One of the main advantages of our simulation methodology is that it allows a great

degree of freedom in selecting the level of detail one wants to achieve. Here we explain
the particular choices we have made in our own architecture simulation work and explain
how these techniques also allow to effiently simulate a complex interconnection network
in a very parallel way.

3.1 The simulated architecture
We have applied our ideas to the simulation of the Rewrite Rule Machine (RRM) [15];

a novel MIMD/SIMD parallel architecture currently being designed and simulated at SRI
International. The RRM system we simulated consists of 64 SIMD processors, each with
its own separate controller executing in MIMD mode. The simulator holds a very de-
tailed description of all the hardware down to the register level; it uses the libraries
provided by the general-purpose simulation package Csim [11]. This package is an ex-
tension of the C language; it allows very efficient process-oriented event-driven
simulations. Each device of each node is a separate process that interfaces with other
processes through synchronization lines (events) and hardware queues (mailboxes). Con-
tention is carefully taken into account at all levels, and timing (the amount of time each
process takes to perform a given operation) is derived from a careful analysis of the
hardware as it would be implemented with realistic high-end microelectronics
technology. This architecture is difficult to simulate sequentially because of its massive
parallelism (the system simulated consisted of 36,864 processing elements). Individual
sequential runs of our optimized sequential simulator typically take weeks of SPARC-20
CPU time.

3.2 Timing Estimation
As mentioned in the introduction, we try to subordinate timing accuracy to

performance. To achieve
the maximum degree of
parallelism we choose to
synchronize the local
clocks of the various LPs
only when they execute
synchronization operati-
ons. In addition, to sim-
plify our implementation,
we introduce a central
controller to arbitrate the
clock synchronization
operations. The control-
ler exchanges messages
with the LPs to determine
a correct causality rela-
tion among synchroniza-
tion events and supplies
LPs with a correct esti-
mate of the execution
time. Although our im-

plementation utilizes a central controller, our general methodology, as explained above,
requires neither a centralized control nor any notion of current global time. For truly large
distributed simulations, very fine grain applications or very detailed simulations with
timing estimation mechanisms installed for all hardware resources, a central controller
can become a bottleneck, but for the applications we have simulated and the level of our
timing accuracy we have not found the controller to be a critical bottleneck in utilizing as
many as 256 physical nodes.

Fig. 3 schematically illustrates our simulation methodology. The central controller
implements our synchronization scheme and sends messages to the synchronizing LPs to
adjust their clocks. The controller is invoked only when the virtual processors execute

Controller

Synchronization

Data Transfer

Physical Network

Virtual
Processor

Virtual
Network

Physical processor

Virtual
Processor

Virtual
Network

Physical processor

Virtual
Processor

Virtual
Network

Physical processor

Fig. 3 A central controller coordinates clock synchronization
while data transfer occurs in a distributed manner.

LP Host

Barrier(p)
{
 INC(barvar)
 send(HOST,local_time)
 while(barvar < N) { nop }
 receive(time)
 local_time = time
}

Barrier_control
{
 var = 0
 while(var < N) {
 receive(time[p])
 var = var +1
 }
 release_time = MAX(time[1..N]) + delta
 for(p=0;p<N;p++) send(p,release_time)
}

Fig. 4. Barrier clock synchronization mechanism. N is the number of LPs; barvar is
the global counter used to implement the barrier; INC is an atomic increment instruction;
p is the LP number issuing the barrier call; var, time[1..N], and release_time are local
variables of the controller; and delta is a fixed delay due to the release-acquire messages.

synchronization operations. All data movement between virtual processors happens di-
rectly between the physical nodes, without the controller intervention.

As an LP enters a blocking synchronization primitive it notifies the controller of its
intent. At the release of a resource, a virtual processor notifies the controller of the time
the resource was released. After an LP acquires a resource, it receives from the controller
the appropriate local time (the maximum of the releaser and requester times). Notice that
we still simulate the data movement required by the simulated synchronization operations
as it would happen in the real system.

Fig. 4 shows how clock synchronization is maintained when a barrier is executed; all
virtual processors notify the controller of their local times as they enter the barrier. Once
the controller detects a release (barrier is complete), it adjusts the virtual times of the

virtual processors to the maximum of the times it has received.

Fig. 5 shows how clock synchronization can be maintained for mutual exclusion
synchronization. The technique works for any number of processors and any number of
mutual exclusion variables. As in the barrier case, virtual processors notify the controller
when they enter a synchronization primitive and ask for the correct local time when
exiting.

These synchronization techniques assume a fixed delay delta for the release-acquire
overhead. More sophisticated algorithms that actually record the propagation delays en-
countered by the release-acquire messages could be used if such an approximation were
inappropriate.

3.3 Network Modeling
Our network modeling methodology, although slightly inaccurate, yields a very fast

and distributed way of simulating large networks. Because we do not synchronize the
local virtual clocks of the LPs on network resources acquisitions, network contention may

Enter_mutex(p)
{
 send(HOST,(p,local_time,LOCK,i))
 while(T&S(lock[i]==0) { nop }
 send(HOST,(p,local_time,ACQUIRE,i))
 receive(time)
 local_time = time
}

Lock_control()
loop {
 receive((p,t,operation,i))
 if operation == LOCK time[p]:=t
 if operation == ACQUIRE
 send(MAX(time[p],release_time[i])+delta)
 if operation == RELEASE release_time[i]:=t

}Exit_mutex(p,i)

{
 send(HOST,(p,local_time,RELEASE,i))
 CLR(lock[i])
}

LP Host

Fig. 5. Mutual exclusion clock synchronization mechanism. i is the index of a global array of lock variables
used to implement mutual exclusion; p is the LP number from 1 to N issuing the operations; T&S is a test-and-set
operation; p, time[1..N], t and operation are local variables of the controller; and delta is a fixed delay due to the
release-acquire messages

be modeled differently than in a global time view. Given the asynchronous nature of the
simulation, messages with the same virtual time may traverse the virtual network at dif-
ferent real physical times or messages with different virtual timestamps may contend for
a common resource at the same physical time. To model network contention more accu-
rately all network resources like simulated buffers or communication lines could trigger
resource-acquisition clock synchronization mechanisms like the ones used for the other
synchronization constructs.

We use only timing information that measures relative propagation delays through the
different parts of the
simulated system,
and we always ignore
the local time of the
virtual devices throu-
gh which the messag-
es propagate. Fig. 6
depicts a read opera-
tion invoked by pro-
c e s s o r A r o u t e d
through processor B
to fetch a value from
processor C. Each
message is t imes-
tamped with the local
time of the original
sending process. As
messages propagate
through the virtual
network, the times-
tamp is updated by
adding the latencies
of the network being
simulated. For exam-

ple, processor B will add T3 and later T9 to the timestamp of the message as it travels
through its simulated hardware. Likewise, processor C will record the local time at which
the message arrives and will add to the timestamp of the message the propagation delays
T4, T5, T6, T7, and T8.

When a message reply is needed (as in the example above), the timestamp of the reply
will reflect the time the message should have returned to the original sender in its own
time reference and, therefore, the local clock of the original sender can be directly ad-
justed to the time of the timestamp. Note that if the sender is not blocked, as would happen
with nonblocking memory reads, the timestamp of the reply can be discarded because we
can assume that the time of the delivery of the message does not influence the LP total
execution time.

4 Experimental Evidence
In reporting on the results of some experiments aimed at evaluating our technique, we

compare sequential simulation performance with executions on both a CM-5 multicom-
puter and a heterogeneous network of workstations. This initial experimental evidence

Fig. 4. A and D read a value from C, and the network
simulation routes the request through B.

C
Virtual
Processor

Virtual
Network

T7

T8
B

Virtual
Processor

Virtual
Network

T3

A

Virtual
Processor

Virtual
Network

T1

T2
T10

T11

T4

T5

T9

T6

supports the effectiveness of our approach.

4.1 The Simulated Applications
As in the Release Consistency programming model [7], we do not enforce a total or-

dering of the synchronization operations because this would place a very strong burden on
the simulator, thus reducing its efficiency. The nondeterminism introduced by this choice
can cause variance in the simulation’s results, but in our view if such determinism is
necessary, it should be enforced by the simulated application rather than by the simulator.
This is exactly the approach that would be followed when the application is run on a real
machine and is in fact a reflection of the indeterminacy existing in some real executions.

We have evaluated our methodology on the simulation of three applications: sorting,
hardware gate-level simulation, and the (D)ARPA image understanding benchmark for
parallel computers [13]. All these applications follow the Single Program Multiple Data
(SPMD) paradigm and were coded in assembly language.

4.2 Comparison of Sequential vs. Parallel
 Tables I and II report the performance of our parallel simulator on a CM-5 and on a

heterogeneous network of workstations. In the CM-5 experiments we mapped one LP per
physical processor; in the network-of-workstations experiment we mapped either one or
four LPs per workstation. The sequential execution times were taken by executing the

same simulation on the same simulator
with 16 or 64 LPs mapped on a single
UNIX process run on a single processor.
We spent considerable time in optimiz-
ing the sequential version of the simu-
lator, but did not pursue several CM-5-
specific optimization possibilities. Giv-
en that Ethernet sockets are already at a
fairly low level, we anticipate that the
most fruitful optimization would be net-
work improvements; we plan to experi-
ment in the near future with an ATM
switch. The porting of the simulator to
 the different platforms was straight-
forward, thus giving us further evidence
for the generality and the machine in-
dependence of our approach.

Table I reports the results obtained by
running our parallel simulator on a

CM-5. Notice that the speedup is calculated over the execution time of a SPARC-10. If
one were to take into account the fact that, for our simulator, the SPARC-10 is about
twice as fast as each of the CM-5 nodes, our speedup figures for each experiment would
double, yielding on the average 69% of ideal speedup.

Table II summarizes the results obtained by running our simulator on a heterogeneous
network of workstations. The experiments were performed with one SPARC-20, two 2-
processor SPARC-20s, two SPARC-10/61s, five SPARC-10/51s, four SPARC-10/41s,
and one Pentium/90. The workstations were distributed on two separate 10-Mbit Ethernet

 Image Understanding/64
Physical Execution Time (sec.) 101,910 5,688
Speedup 1 17.9
Virtual Execution Time (cycles) 2,012,109 2,016,990

 HW Simulator/64
Physical Execution Time (sec.) 22,678 1,320
Speedup 1 17.1
Virtual Execution Time (cycles) 127,982 126,728

 Sorting/64
Physical Execution Time (sec.) 265,437 11,020
Speedup 24.0
Virtual Execution Time (cycles) 3,646,017 3,356,069

CM-5/64SPARC-10/41

Average Speedup 19.6
Average virtual time % variation 2.6

Performance on a 64-node CM-5

TABLE I

domains and interfaced with standard
Ethernet hardware. The speedup was
calculated over the execution time of a
SPARC-10/41, since the total parallel
execution time for our applications is
primarily determined by the execution
time of the slowest workstation. The av-
erage speedup of 16 workstations yields
71% efficiency over ideal speedup.

The total size of the sequential simulator
was 22 to 35 Mbytes, and we suspect
that it had good locality. As the system
being simulated grows in size we expect
the speedup to greatly increase, because
larger data sets will not fit well within
the single processor cache or even real
memory and therefore will give advan-
tage to parallel simulators with much

larger total cache size, total real memory, and total CPU-memory bandwidth.

 Because the parallel simulation is not totally ordered, some small variations result in
the virtual execution times, but as shown in Tables I and II the variations are quite small
and in our view do not outweigh the performance gains obtained through our paralleliza-
tion technique. One possible explanation for the fact that virtual execution times are
consistently lower in distributed simulations than in sequential simulations is that con-
tention modeling is skewed because, in the case of the parallel executions, at any given
time some of the messages are stored in the physical network buffers rather than in the
virtual network, therefore partially reducing the negative effects of contention. Further
experiments are needed to verify this hypothesis. We find these experiments very en-
couraging since we were able to speed up our simulations’ turnaround time from several
days to hours, with only a slight degree of timing variance in the simulated time; other
performance parameters, such as bus utilization and average memory access performance,
although not reported, were also minimally affected.

5 Conclusion
We have proposed a novel simulation methodology that introduces a minimal amount

of overhead in the parallel simulation of parallel systems. This new methodology can be
used to effectively simulate large parallel computers executing real-life applications. The
increase in simulation power has enabled us to begin studying the interaction of our hard-
ware design with the operating system. This fact is of paramount importance because it
gives the designer a much better picture of the whole design and allows testing of system-
level design issues, which in most cases are left untouched until the final realization. An
important consequence of our complete design virtualization is that network simulations
can be flexibly distributed across all the hardware nodes, thus permitting a fast distributed
simulation of arbitrary network topologies. Our methodology is realistic because, al-
though virtualized, the execution is ordered by the synchronization interactions of a real
parallel system. This improves the robustness of the evaluation process of a given design
by embedding it in a real environment. We have directly benefited from this desirable

 Image Understanding/16
Physical Execution Time (sec.) 14,825 4,202 1,560
Speedup 1 3.5 9.5
Virtual Execution Time (cycles) 1,322,434 1,263,301 1,319,723

 HW Simulator/16
Physical Execution Time (sec.) 9,214 2,069 630
Speedup 1 4.45 14.6
Virtual Execution Time (cycles) 262,796 256,734 256,857

 Sorting/16
Physical Execution Time (sec.) 20,892 5,748 2217
Speedup 1 3.6 9.4
Virtual Execution Time (cycles) 1,383,016 1,378,09 1,348,737

Number of Workstations 1 4 16

Average Speedup 3.85 11.4
Average virtual time % variation 1.79 1.63

TABLE II

Performance on a Network of Workstations

attribute in the process of evaluating our technique; we found two instances in our thor-
oughly debugged applications where data races causing inconsistent results surfaced only
when the applications were simulated in parallel. Relative ordering of simulated opera-
tions is truly asynchronous, shortening the path for detecting subtle synchronization
problems. For example, it becomes more difficult to make wrong assumptions about the
atomicity of message delivery or deterministic scheduling behavior, as it can happen in
a sequential simulation.

We plan to experiment more with this methodology on a variety of simulated parallel
architectures to measure the effects of varying the granularity of sharing and the compu-
tation to communication ratios. We also plan to measure the variance of simulation
results for a wide variety of relevant real-life parallel applications running on each simu-
lated architecture to verify our view that these are of minor significance and therefore are
an acceptable characteristic of our simulation methodology. Finally, we plan to explore
the application of our methodology to higher-level symbolic simulations and to lower-
level simulation of hardware designs specified in VHDL.

References

[1] S. Adve, M. D. Hill, "Weak Ordering A New Definition", Proc. 17th Annual
Symposium on Computer Architecture, May 1990.

[2] W. C. Athas, C. L. Seitz, "Multicomputers: Message Passing Concurrent Com-
puters", IEEE Computer Magazine, August 1988.

[3] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson, R.
Stevens, "Portable Programs for Parallel Processors", Holt, Reinhart and Winston, Inc.,
1987.

[4] K. M. Chandy, J. Misra, "Asynchronous Distributed Simulation via a Sequence of
Parallel Computations", Communications of the ACM, April 1981.

[5] A. Costa, A. De Gloria, P. Fababoschi, M. Olivieri, "An evaluation system for
Distributed-time VHDL Simulation", Proc. of the 8th Workshop on Parallel and Distrib-
uted Simulation 1994, Edinburgh, Scotland, UK.

[6] M. Dubois, C. Scheurich, F. Briggs, " Memory Access Buffering in Multiproces-
sors", Proc. 13th Annual International Symposium on Computer Architecture, June 1986.

[7] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J. Hennessy,
"Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors",
Proc. 17th Annual Symposium on Computer Architecture, May 1990.

[8] D. Jefferson, "Virtual Time", ACM Trans. Programming Languages and Systems,
July 1985.

[9] L. Lamport, "How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs", IEEE Trans. on Conputers C-28(9):241-248, September 1979.

[10] S. Narain, R. Chadha, "Symbolic Discrete-Event Simulation", Discrete-Event
Systems, Manufacturing Systems and Communication Networks, Editors: P.R. Kumar
and P. Varaiya, LNCS, Springer Verlag 1994.

[11] H. Schwetman, "Csim: A C-based, Process-oriented Simulation Language",
MCC Technical Report.

[12] D. Shasha, M. Snir, " Efficient and Correct Execution of Parallel Programs that

Share Memory", ACM Trans. Programming Languages and Systems, April 1988.

[13] C. Weems, E. Riseman, A. Hanson, "The DARPA Image Understanding Bench-
mark for Parallel Computers". J. Parallel and Distributed Computing, 11(1), 1991.

[14] B. Crothers, "Multithreading Gets Lost on P100 Systems", Infoworld, cover
page, November 1994.

[15] P. Lincoln, J. Meseguer, L. Ricciulli, "The Rewrite Rule Machine Node Archi-
tecture and Its Performance", Proc. Conpar 94 - VAPP VI, Lintz, Austria, LNCS 854.

