
Adaptive Fault-Resistant Systems1Jack Goldberg Li GongSRI International Ira GreenbergRaymond ClarkConcurrent Computer Corportion E. Douglas JensenDigital Equipment CorporationKane KimUniversity of California, Irvine Douglas WellsConnection Technologies
1This work was sponsored by Rome Laboratories, United States Air Force Base, New York,Contract 13441-4505

AbstractA research team led by SRI International has completed a 1.5 year period of work inadaptive, distributed, fault-resistant systems. This research has been motivated by theincreasingly complex and dynamic nature of working environments for modern systems,especially distributed, real-time systems. Operating conditions in such environments varygreatly in the types and distributions of faults and input data, in user requirements inchanging service situations, and in possible losses of computing resources. The traditionalapproach|applying given resources in a �xed system con�guration to meet worst-case op-erating conditions| is becoming less tenable. Adaptive systems can track changes in theenvironment by modifying the way computing resources are organized and utilized. Thegoal of the research was to establish a foundation for a general methodology of design foradaptive, distributed, real-time, fault-resistant systems.This report presents a general theory and architecture, a taxonomy of design approaches,and examples of concrete architecture and design techniques. A core approach is the use ofa control-theory model for adaptive computer systems; key issues derived from the modelare the need for accurate state evaluation and prediction and incremental control to assureadaptation stability. The study investigated general frameworks for specifying trade-o�samong service attributes such as timeliness, accuracy and precision and examined how suchtrade-o�s can be managed during adaptation.Several new issues and opportunities in fault-tolerant computing were uncovered, includ-ing the use of formal models for specifying and predicting adaptive fault-resistant systems,re
ective architecture for recursive control of fault tolerance implementations, and mul-tihypothesis fault diagnosis to reduce the ambiguity and diagnosis latency in real-time,distributed systems.Several case studies are presented, including Adaptive, Distributed Recovery Blocks(ADRBs), a scheme for exchanging processing resources for recovery speed, AdaptiveDistributed-Thread Integrity (ADTI), a scheme for dynamically selecting appropriate detec-tion and recovery protocols for managing node and link failures in the Alpha programmingmodel, and Adaptive Fault Tolerance for Hybrid Faults (AFTHF), an e�cient scheme fortolerating faults with a wide range of complexity.

Contents1 Overview 11.1 Motivations and Objectives : 11.2 Work plan : 21.2.1 Theory and General Architectural Principles : : : : : : : : : : : : : 21.2.2 Speci�c design techniques : 21.2.3 Communication of Results : 41.3 Summary : 42 Concepts and Techniques 52.1 Objectives and Basic Concepts : 52.1.1 Project Scope : 52.1.2 Expanding the Envelope : 62.1.3 Adaptation E�ects in Distributed Systems : : : : : : : : : : : : : : : 62.1.4 Environmental Change Properties and Service Attributes : : : : : : 72.2 Adaptation Triggers and Responses : 112.3 Adaptation Example: Adaptable Distributed Recovery Blocks : : : : : : : : 122.4 Adaptation Models : 142.4.1 A Model for Specifying Adaptation : : : : : : : : : : : : : : : : : : : 142.4.2 A Performance Model for Adaptive Systems : : : : : : : : : : : : : : 162.5 A General Adaptation Scheme : 172.6 Adaptation Strategies for Fault Tolerance : : : : : : : : : : : : : : : : : : : 182.7 Attribute-Based Technique Selection : 202.8 Diagnosis and Control : 212.8.1 The Role of Diagnosis in Adaptive Control : : : : : : : : : : : : : : 212.8.2 A Simple Control Scheme : 222.8.3 Incremental Diagnosis and Control : : : : : : : : : : : : : : : : : : : 232.9 Re
ective and Hierarchical Architecture : 252.9.1 Re
ective Architecture : 262.9.2 Multilayered Changes in a Function-Support Hierarchy : : : : : : : 272.10 Results and Future System Design Issues : : : : : : : : : : : : : : : : : : : 273 The Adaptive Distributed Recovery Block Scheme 293.1 The Role of ADRBs in Adaptive Fault Tolerance : : : : : : : : : : : : : : : 293.2 Basic Principles of the DRB Scheme : 313.2.1 Primary-shadow pair of self-checking processing nodes : : : : : : : : 31i

ii 3.2.2 Replication of recovery blocks : 353.2.3 Recursive shadowing with N (> 2) try blocks : : : : : : : : : : : : : 373.2.4 Supervisor station : 383.2.5 A DRB Implementation Structure for Multicast LAN-Based Systems 393.2.6 Principles and Implementation Structures of the ADRB scheme : : : 443.2.7 Summary and Remaining ADRB Research Issues : : : : : : : : : : : 643.2.8 Partial Validation of a DRB Implementation : : : : : : : : : : : : : 643.2.9 A Modular Implementation Model for the DRB Scheme with a Con-�guration Supervisor : 643.2.10 An Implementation Model for a Worker DRB Computing Station : : 683.2.11 An Experimental Validation of the Modular Implementation Model : 744 Adaptive Distributed Recovery Block Demonstration 754.1 Adaptive Distributed Recovery Blocks : 764.2 ADRB Behavior : 774.2.1 Operational ADRB Mode Characteristics : : : : : : : : : : : : : : : 774.2.2 Dynamically Changing ADRB Modes : : : : : : : : : : : : : : : : : 784.2.3 Experimental Measurements : 784.3 ADRB and Application Structure : 814.3.1 Separation of Application and Adaptivity Software : : : : : : : : : : 814.3.2 Structure of Adaptivity Software : 824.4 Lessons Learned : 834.4.1 Desirable Application Function Properties : : : : : : : : : : : : : : : 834.4.2 ADRBs and Databases : 845 Adaptive Distributed-Thread Integrity 875.1 Alpha Thread Maintenance and Repair : 885.2 The Alpha Programming Model : 885.2.1 Objects : 895.2.2 Distributed Threads : 895.2.3 Invocation and Thread Creation : 905.2.4 Illustration of Alpha Programming Model Concepts : : : : : : : : : 905.3 Distributed-Thread Integrity : 905.3.1 System Assumptions : 925.3.2 Components of the Thread Trimming Approach : : : : : : : : : : : 935.3.3 Alternative Task Designs : 945.3.4 Interactions with Other System Components : : : : : : : : : : : : : 955.4 The Alpha TMAR Protocol : 965.4.1 Alpha TMAR Assumptions : 965.4.2 The Alpha TMAR Protocol : 975.5 Alternative TMAR Protocols : 995.6 The Node Alive TMAR Protocol : 1015.6.1 Node Alive TMAR Assumptions : 1015.6.2 Description of the Node Alive TMAR Protocol : : : : : : : : : : : : 1035.7 Adaptive TMAR : 105

iii5.7.1 An Adaptive Thread Polling Protocol : : : : : : : : : : : : : : : : : 1055.7.2 An Adaptive Node Alive Protocol : : : : : : : : : : : : : : : : : : : 1065.7.3 Switching between Thread Polling and Node Alive Protocols : : : : 1075.8 Adaptivity Functions : 1085.8.1 Monitoring : 1095.8.2 Diagnosis : 1095.8.3 Control : 1105.8.4 Metacontrol : 1115.9 Simulation : 1115.9.1 Simulation System : 1115.9.2 Assumptions : 1125.9.3 The TMAR Protocols : 1135.9.4 Adaptation Control Strategy : 1145.9.5 User Interface : 1155.9.6 Adaptive Control Experiment : 1195.9.7 Further Development of the Simulation System : : : : : : : : : : : : 1225.10 Conclusions and Recommendations : 1236 Implementing Adaptive Fault-Tolerant Services for Hybrid Faults 1256.1 Introduction : 1256.2 An Adaptation Strategy : 1266.3 Two Adaptive Fault Tolerance Algorithms : : : : : : : : : : : : : : : : : : : 1276.3.1 System Model : 1276.3.2 Manifest versus Symmetric Faults : : : : : : : : : : : : : : : : : : : 1286.3.3 Manifest versus Asymmetric Faults : : : : : : : : : : : : : : : : : : : 1326.4 Related Work : 1346.5 Summary and Future Work : 1357 Conclusions 137A Adaptive Fault Tolerance 145

List of Figures2.1 Expanding the envelope of operations : 62.2 Adaptation e�ects in distributed systems : : : : : : : : : : : : : : : : : : : 72.3 Operating-environment change factors : 82.4 Service attributes and interfaces : 92.5 Adaptation triggers and responses : 112.6 Adaptable distributed recovery blocks : 132.7 State model of adaptive systems : 152.8 Markov model of fault and work load adaptation : : : : : : : : : : : : : : : 162.9 A model-based control system : 172.10 A general adaptation scheme : 182.11 Implementation strategies : 192.12 Design-time analysis of technique attributes : : : : : : : : : : : : : : : : : : 212.13 Attribute-based technique selection : 222.14 A Simple Control Scheme : 232.15 Incremental diagnosis and control : 242.16 Re
ective architecture : 262.17 Multilayer changes for adaptation : 273.1 PSP-structured computing station : 313.2 Detailed view of a PSP-structured computing station : : : : : : : : : : : : : 333.3 Successor PSP-structured computing station : : : : : : : : : : : : : : : : : : 343.4 A DRB combines PSPs and replicated RBs : : : : : : : : : : : : : : : : : : 363.5 A DRB station with recursive shadowing : 383.6 Using a DRB station as supervisor : 393.7 A fault-tolerant LAN-based system consisting of a supervisor station andDRB stations : 393.8 Achieving reliable data input : 423.9 Basic operations under the ADRB scheme : : : : : : : : : : : : : : : : : : : 453.10 Basic Components of an ADRB station : 473.11 Three execution modes of an ADRB station : : : : : : : : : : : : : : : : : : 473.12 Ordering of execution times under di�erent modes : : : : : : : : : : : : : : 493.13 Typical adaptation scenarios : 503.14 A basic con�guration of an ADRB station : : : : : : : : : : : : : : : : : : : 513.15 ADRB transition protocols I : 523.15 ADRB transition protocols II : 53iv

v3.15 ADRB transition protocols III : 543.16 Adapatation possibilities for various combinations of equipment and time : 563.17 Logical NCM function : 573.18 Four di�erent execution modes for NCM : 583.19 Basic principles guiding the execution modes : : : : : : : : : : : : : : : : : 593.20 Performance characteristics of the four NCM execution modes : : : : : : : : 603.21 A scenario for adaptation of the NCM server : : : : : : : : : : : : : : : : : 623.22 Structuring of the freeway monitoring application : : : : : : : : : : : : : : : 653.23 Details of the DRB protocols for the primary node from the freeway example 663.24 Details of the DRB protocols for the shadow node from the freeway example 673.25 Structure of the modular implementation model for a node in a DRB station 693.26 Detailed structure of the modular implementation model for a primary node 703.27 The structure of the implementation model for a supervisor node : : : : : : 735.1 Illustration of the Alpha programming model concepts : : : : : : : : : : : : 915.2 E�ects of a node failure on executing threads : : : : : : : : : : : : : : : : : 925.3 Repair actions performed by TMAR : 935.4 Example control function using hyst.pseresis : : : : : : : : : : : : : : : : : : 1105.5 Sample simulation program con�guration �le : : : : : : : : : : : : : : : : : 1165.6 Results of the adaptive control experiment : : : : : : : : : : : : : : : : : : : 121

Chapter 1OverviewA 1.5 year period of work in adaptive, distributed, fault-resistant systems was conductedby a team of researchers at Concurrent Computers, University of California at Irvine, SRIInternational, and two consultants, and was led by SRI International.We hope that this report will communicate our view that incorporating adaptation intooperating environments as a fundamental characteristic of computer system architectureo�ers (1) an important advance in computer architecture, and (2) a fruitful area for tech-nology development.1.1 Motivations and ObjectivesIn early applications and in current high-criticality applications, great e�orts are made dur-ing design to isolate a computer system from its environment except for a carefully manageddata
ow. Designs are intended to provide a predetermined service to the users, using a�xed set of algorithms for all data and environmental conditions within allowed ranges. Inthe design, su�cient resources are provided to meet the worst possible combination of dataand environmental events; resolution of con
icts in resource allocation due to unpredictabledata events is relegated to a scheduler.As computer systems become ubiquitous, the dynamic characteristics of their environ-ment become more signi�cant in determining how well (or poorly) a system serves its users.The combined e�ects of faults and resource failures, wide swings in service demand, andsituation-dependent user requirements stress a computer's ability to satisfy its service ex-pectations. This is an especially signi�cant problem in distributed systems that employunreliable communications, and whose components may operate in di�erent and perhapsharsh physical, data, and usage environments. For such operating situations, the principleof meeting worst-case operational constraints using a �xed design has become increasinglydi�cult to apply. One of the goals for adaptive design is to allow
exible use of availableresources to cover a much wider range of di�erent kinds of environmental variables thancould be covered by a �xed, worst-case design.Adaptivity has been increasingly suggested by researchers as a way to meet the challengeof wide environmental changes. While some adaptive algorithms have been developed andemployed for particular computer system functions|the ethernet protocol is a well-knownexample|adaptivity as a general principle in computer systems is not well understood or1

2 Overviewaccepted. The purpose of the research was to establish and demonstrate the feasibility ofadaptive computer systems by initiating development of a systematic design methodology,consisting of theory, architecture, and practical techniques of design.Given the newness of the subject, some e�ort was spent in establishing and clarifyingconcepts{for example, one might say that an adaptive system responds to its environment,but since all data processing is in some sense uniquely responsive to data values obtainedfrom the environment, at what point does a system cease to be just an implementation ofan algorithm, and become an adaptive system? We believe we have answered this question.We also sought to arouse the interest of the research community, through papers andpresentations at conferences and workshops, in order to use the present project as a leverin advancing technology. We are pleased to report that several researchers have respondedto our ideas, and are now contributing techniques for adaptivity to the scienti�c literature.1.2 Work planThe research focused on the following tasks:� Develop a theory of adaptive fault-resistant systems and general principles of archi-tectural design� Develop speci�c architecturasl design techniques� Demonstrate adaptive designs� Communicate results to the scienti�c community1.2.1 Theory and General Architectural PrinciplesChapter 2 presents results in theory and general architectural design principles. The discus-sion is intended to clarify concepts, de�ne key issues, and o�er feasible solutions and designapproaches. It proceeds through the following subjects: basic concepts of fault-tolerantservice and adaptability, examples of adaptation, models for speci�cation and performanceprediction, a general architecture for adaptive control, controlling the tradeo�s of service at-tributes in adaptation, a taxonomy of design techniques, real-time diagnosis, prediction andstable control, recursive-re
exive control architecture, and adaptation relations in layeredand distributed systems.We believe that the abstract speci�cation and performance models, the discussion ofthe critical role of diagnosis in achieving stable control, and the use of re
exive architecturefor fault tolerance are novel contributions to the methodology of adaptive computer design.The use of the control-theory model for adaptive systems has been particularly useful inexposing problems of state assessment (called diagnosis in our treatment to conform withthe vocabulary of fault tolerance) and stability of adaptation.1.2.2 Speci�c design techniquesThe taxonomy of design techniques presented in Chapter 2 suggests the very wide range ofnew techniques that may be employed to support adaptive architectures. We studied threetechniques, whose results are described in separate chapters:

Overview 3� Adaptive Distributed Recovery Blocks (ADRBs), a multiple-mode scheme for errordetection and recovery, useful for both hardware and software faults; the scheme allowsan exchange of processing resources for error-recovery speed (Chapters 3 and 4)� Adaptive fault tolerance for hybrid faults, an economical technique for tolerating bothsimple and complex fault types (Appendix A)� Adaptive distributed-thread integrity, a technique for detecting and repairing threadbreaks in a wide range of operating environments using the Alpha programming model(Chapter 5)Our examples demonstrate speci�c design techniques and illustrate the service trade-o�s that are characteristic of adaptive designs. Models of service attribute tradeo�s arereviewed, such as the triad basis of timeliness, precision, and accuracy. The examples showthat there is an abundance of types of functional adaptation, and that adaptive design canbe very straightforward. A remaining challenge is to �nd very economical design solutionsthat can limit the added complexity and performance overhead introduced by adaptation.One example shows that adaptation can actually reduce the normal processing overhead forsystems that must cope with complex as well as simple faults.Demonstration of adaptive distributed recovery blocks We developed a demon-stration of the ADRB scheme, using the Alpha programming model and designed to run onan Alpha testbed. The system is intended to demonstrate the tradeo� of resource utilization(with impact on possible throughput) and error-recovery speed. Three modes are exhibited:(1) single processor, serial recovery, (2) dual processor, concurrent recovery, and (3) singleprocessor, default output. Mode 1 features low processor cost|hence high throughput fora given set of processors, mode 2 features rapid recovery but higher processor utilization,and mode 3 features low processor cost but low accuracy. One of the challenges encounteredwas to create a design that would make seamless transitions between operating modes.Adaptive fault tolerance for hybrid faults We developed a novel algorithm for usingredundant processors to tolerate hybrid faults|that is, faults of several types. The typesconsidered include crash faults (silent processors) and value faults of two kinds: symmetric(all faulty processors produce the same wrong value) and asymmetric (faulty processorsproduce arbitrary values). In contrast to other hybrid-fault tolerance schemes, the algorithmhas very low processing overhead in the normal, fault-free case. The algorithm may be seeneither as a very economical way to broaden the fault coverage of classical primary-backupprocessor systems or to lighten the average processing burden of classical consensus-basedprocessor systems. The contribution of adaptivity is that errors are diagnosed and a decisionis made as to the proper fault tolerance.Adaptive distributed-thread integrity The Alpha distributed, object-oriented pro-gramming model employs threads of control that may span several nodes. A distributedthread has a root and a point of activity that may move from node to node as objectsare invoked. Control ultimately returns to the root as invocations complete. Node fail-ures may break a distributed thead into several disjoint pieces. The system is responsible

4 Overviewfor identifying broken threads, safely terminating orphan thread segments, and properlyrestarting thread activity. Di�erent strategies are better suited for maintaining thread in-tegrity, depending on the nature of the thread workload, the system resources, the faultmodel, and the application requirements. We have developed an adaptive algorithm for thismaintenance function, and have simulated its behavior.1.2.3 Communication of ResultsProject work has been reported in the following communications:� A paper at the IEEE Workshop on Advances in Parallel and Distributed Systems,November 1993, Princeton [14]|included as an appendix to this report� A manuscript submitted to the 1994 Symposium on Reliable and Distributed Systems,November 1994� Oral presentations at two 1993 Rome Laboratory Technical Exchanges� Talk at a seminar of the University of Arizona Computer Engineering Department,January 1993� Talk at IEEE Workshops on Fault and Error Injection, Gotheborg, Sweden, June1993, and Annapolis MD, April 1994� Talk at the Bay Area System Seminar, Menlo Park CA, July 1993� Talks at IFIP Working Group 10.4 meetings, June 1993, and January 1994� Outline and material for a paper on distributed ADRB control1.3 SummaryAdaptative fault resistance is a new direction in computer architecture. Adaptivity allowsdecisions about algorithms and resource allocation to be made at operation time that usuallyare �xed at design time. The goal of adaptive design is to make it possible for a fault-tolerantcomputer to cover a wider range of environmental conditions, such as variations in faulttypes and distributions, changes in user requirements, variations in workload, and variationsin resource availability, than could be served by a �xed design.This report describes work of a multiorganization team in theory, system architecture,and methodology of design, including case studies, novel algorithms, and a demonstration.The work is intended to build a foundation for a methodology of system design. The resultshave been reported in various professional meetings, resulting in some new investigationsby other researchers.

Chapter 2Concepts and TechniquesThe major technical issues and principles for adaptive fault resistance that have been de-veloped during this project are discussed below. . Since our previous interim report, wehave introduced more formalism in the de�nition and behavioral description of adaptation,sharpened our description of key issues such as attribute-based technique selection, anddeveloped several general and concrete architectural models for adaptive systems.2.1 Objectives and Basic ConceptsThe scope of the project was determined by the general motivations for, and concepts ofadaptation for, distributed fault-tolerant systems.2.1.1 Project ScopeThe basic technical concept of adaptive fault resistance (AFR) is that a dependable com-puting system should have the ability to adapt its structure autonomously to changingoperational conditions, so that its service range will be larger than could be provided bythe same resources in a static structure.This may be envisioned as an expansion of the envelope of dependable service that isdetermined by user requirements, computing resources, work load, and fault distribution.A major area of application for adaptive fault resistance is distributed real-time systems,which typically operate in environments that are highly variable and di�cult to control.The adaptation concept di�ers from current design methodology, which assumes that asystem is given certain behavioral capabilities, typically based on some worst-case assump-tion, that are invariant during operation. We believe that in the dynamic environments inwhich real-time distributed systems operate, it will be rare for the worst-case conditions tooccur simultaneously in all dimensions. Adaptation seeks to take advantage of this non-concurrency by recon�guring system resources to meet the current combination of servicedemands and fault conditions.The objective of the research is to develop principles, methods, and techniques of designthat will make adaptive behavior a fundamental feature of dependable, real-time distributedsystems. 5

6 Concepts and Techniques2.1.2 Expanding the EnvelopeWe assume an initial, classic design in which a system operates within a given domain thatis determined by a set of requirements and expected operational conditions; it is furtherassumed that any combination of requirements and operating conditions may occur atany time during operation. As illustrated in Figure 2.1, we then assume that a revisedrequirement has been submitted that signi�cantly expands the domain with respect tosome or all the dimensions of user requirements, available resources, work load, and faultdistribution, but with the additional possibility that not all combinations of operatingconditions may occur simultaneously.
Fixed,
high-quality service

Expanded
Domain

Adaptive,
high-quality service

Reduced service, restricted work load,
limited fault range, more resources

Design
Compromises

Adaptation

Initial
Domain

DESIGN
ALTERNATIVES

Figure 2.1: Expanding the envelope of operationsWe expect such expansions to be increasingly common as dependable, real-time systemsmove out of their current niche applications, such as ultracritical process control or well-constrained transaction processing, into more complex, real-world applications.The classic response to the expanded needs of complex environments is to add resourcesand to compromise the initial requirements so as to attain a buildable and a�ordable system.The AFR approach is to limit the increase of resources, and to structure the resources indi�erent ways at di�erent times, in accordance with changes in operating conditions. Thedesign goal is that for any given operating condition, the resources will give dependableservice comparable to that provided by the same resources for a constrained, �xed operatingdomain.The price to be paid for such economy of resources is that it may take time for the systemto adapt to new conditions and that some additional design risk and overhead performancecost may be associated with the additional functionality of adaptation.2.1.3 Adaptation E�ects in Distributed SystemsSigni�cant changes in operating conditions for a distributed system may apply globally orlocally, in one node or link or in several. We assume that such changes will trigger adaptivity

Concepts and Techniques 7within and among the components a�ected. As illustrated in Figure 2.2, the adaptivity mayor may not be transparent to the remainder of the system, whose operating conditions havenot changed.
Regional

Local

Inter-regional

Impacts of change
on non-affected nodes

 Delay
 Delivery rate
 Ability to cooperate
 Error rate
 Figure 2.2: Adaptation e�ects in distributed systemsExternally visible changes resulting from adaptation may include� Changes in the latency or bandwidth of exchanges between adapted and nonadaptednodes� Changes in the work load capacity of adapted nodes� Changes in the error rate of delivered resultsWe note that the changes may be positive or negative; for example, the rate of faultoccurrence may increase or decrease with the appearance or disappearance of an externalfault source. Adapting to a reduced fault rate may result in increasing processing capacity,which can bene�t the system as a whole.Externally visible adaptations e�ectively constitute a change in operating conditions forthe nonadapted nodes, and may therefore require them to undertake adaptation | thatis, there may be some propagation of adaptation through the system. This is a potentiallydangerous phenomenon, because the chain of adaptation may become a signi�cant perfor-mance burden or interruption, and if there are cycles in the adaptation path, there may beinstability.An important technical issue is therefore how to limit or control the propagation ofadaptation e�ects within a distributed system. One way this can be expressed is the problemof �nding the smallest subset of a distributed system such that adaptation e�ects withinthe subset are invisible to the remaining system.2.1.4 Environmental Change Properties and Service AttributesChanges in the environment's properties may require system adaptation. We �rst review akey set of properties, and then consider the criteria for service that will be used to guidethe adaptation.

8 Concepts and TechniquesEnvironmental Change PropertiesAs illustrated in Figure 2.3, we consider the operating environment to be de�ned by fourdimensions:� Work load� User service requirements� Faults� ResourcesFor each dimension, it is assumed that there may be some operation-time variation thatstresses the system's ability to meet its requirements, and hence may require the system tomodify the way its resources are utilized. The dimension of user requirements is unique,in that its changes may be both the reason for adaptation and the measure of how welladaptation succeeds. Speci�cations of requirements may be both absolute and relative, anddi�erent for each element of a user's service. For example, a user may demand absoluteavailability for some service element, while allowing a tradeo� between availability and errorrate for some other service element.
User Service Requirements

Work Load

Faults

Resources

ADAPTIVE
FAULT-RESISTANT
SYSTEM

Delivered Service

Evaluation OK

Anomalous/MismatchedFigure 2.3: Operating-environment change factorsThe following list contains some familiar instances and examples of the four dimensions:� Work load dimensions{ Data types (alphanumeric, logical, signals, strings){ Time and space distribution (rates, intervals, location, clustering)� User service dimensions (illustrated in Figure 2.4){ Data processing functionality{ Performance (throughput, latency){ Timeliness (satisfaction of deadlines, allowed number of missed responses, preser-vation of order, closeness of synchronization)

Concepts and Techniques 9{ Accuracy (closeness of the computed to the ideal value, mutual consistency ofrelated data|but see below for a di�erent interpretation){ Dependability (reliability, availability, safety, security)� Fault dimensions{ Fault types (permanent, transient; design, hardware, operator){ Fault time, space and multiplicity distribution (rate, interval, location, cluster-ing)� Resource dimensions{ Magnitude of processing, storage, and communication resources{ Rate of permanent losses{ Frequency and duration of resource overloads
SERVICE ATTRIBUTES

Data Functionality

Performance

 Throughput
 Timeliness
 Precision
 Consistency

Dependability

 Reliability
 Availability
 Safety
 Security

SERVICE INTERFACES

User

User interface

Subsystem

Subsystem interface

Distributed System

Hierarchical System fault

error

failure

Figure 2.4: Service attributes and interfacesA Basis Set for Service AttributesTom Lawrence, Rome Laboratory, has noted that these service attributes may be interpretedin terms of an economical basis set consisting of Timeliness, Precision, and Accuracy. Inthis basis set, Precision refers to the amount of information processed, which might includethe volume of data or the rate of processing, while Accuracy may include correctness orcloseness to correct value. In any system and application environment, the service attributesmay be closely interrelated|for example, loss of timeliness in a service delivery may resultin a failure to service new data values adequately or at all, with resulting errors or omissionsin computed values. In terms of the attribute basis set, such loss of timeliness may causeloss of both precision|in this case, throughput or coverage of input work, and accuracy|inthis case, errors of omission or incomplete processing.

10 Concepts and TechniquesFaults, Errors, Failures, and Fault ToleranceTo round out our de�nitions of the service concept, we present a highly condensed summaryof key ideas in fault tolerance. A more extensive de�nition and explanation of fault toleranceconcepts has been published by the IFIP 10.4 Working Group on Dependability and FaultTolerance [20]. We start by distinguishing faults, errors, and failures and their relations,with speci�c reference to the point in a system at which they may occur or be observed:� Fault | A deviation between the speci�cation and implementation of a component'sfunction, either by physical state change or design error. Faults may have manydi�erent causes and manifestations|for example, faults may be transient, intermittentor permanent, they may occur in hardware, software or in operation, and they mayoccur at all levels of a system. Proper treatment of a fault strongly depends on thefault type|for example, repetition may be appropriate for a transient hardware fault,but a waste of time for a software fault.� Error | A deviation of the state of a computed variable from the value speci�ed bythe design, as observed at a system component interface.� Failure | A deviation of a system component from its speci�ed behavior, as observedat its interface. A failure speci�cation may allow some level of error in the systemoutput to be considered acceptable.A fault-tolerance monitor can observe errors but can only infer faults. This is typicallydone by comparing the results produced by a subsystem, for known inputs, with somereference values, and deducing which computing elements within the subsystem may havecaused the error. In some cases, the data that produced an error is not available; in thatcase, considerable ambiguity may be introduced in determining the fault type and location.Fault e�ects can propagate in several ways. Errors may
ow horizontally through cas-caded chains of functional elements, and vertically through layers of support functions.Errors that change the de�nition of a function create new faults|that is, malfunctions|which become the source of new errors.Fault-tolerant computers are designed to prevent faults from leading to failures by� Bounding the propagation of errors� Masking or correcting erroneous results� Isolating faulty components� Restoring system state to the ideal or acceptable valueFault tolerance objectives may have to be compromised according to the availability ofresources and time. For example, it may only be necessary|or there may only be enoughtime available|to mask errors rather than to isolate the faulty components that cause theerrors.Given the possibility of fault propagation from point to point and layer to layer, it ispossible to repair a fault at its origin without correcting all of its consequences|thus, a

Concepts and Techniques 11fault that originated in some low-level hardware element may give rise to complex faultsituations that must be remedied at a high system level.Given the great variety of possible fault types and the complexity of determining thenature and location of a fault from the available error information, it is extremely importantto be able to determine the type of fault that may have occurred and to predict the faultsthat are likely to occur in the next computing interval.2.2 Adaptation Triggers and ResponsesThe phenomena that give rise to the need for adaptation, and possible adaptive responses,are related to the four key system properties of work load, user service requirements, faults,and available resources.In an adaptive fault-tolerant system, adaptation will be initiated when there is an exces-sive mismatch between new operating conditions and the capabilities of the current system,that is, when the currently available resources are not fully utilized to meet current require-ments for performance and dependability. Figure 2.5 illustrates various kinds of changes inoperating conditions and possible adaptive responses.
Change Type Triggering Anomaly Response

Fault type Too many software
 errors

Use alternative design
 versions

Too many node and
 link crashes

User directive

 Reliability sacrificed
 for application
 coverage!

 Reduce fault-tolerance
 redundancy levels

Fault distribution Too many comm-link
 errors

 Switch from optimistic to
 pessimistic protocols

Data distribution Too many processor
 overloads

 Employ load balancing

 Switch to memory-intensive
 algorithm

 Use alternative paths
 Increase redundancy

Figure 2.5: Adaptation triggers and responsesFault-type triggers For changes in the prevailing fault type, say from mainly hardwareto mainly software faults, a possible adaptation-triggering anomaly is the occurrence of anexcessive rate of errors, resulting from the use of inappropriate fault tolerance mechanisms.An appropriate response may be to tolerate errors using multiple program versions (a formof software fault tolerance). A di�erent kind of change in fault type may be the occurrence ofmore node and link crashes than can be satisfactorily handled by the current fault tolerancemechanisms. Possible responses are to use alternative communication paths, to increase thelevel of data redundancy over multiple nodes, or to switch from optimistic to pessimisticcommunication protocols.

12 Concepts and TechniquesUser-requirement triggers A possible change in user requirements may be a user'sdecision to sacri�ce the reliability of some application, for example, by accepting a highererror rate or lower precision, to be sure that certain vital tasks are adequately served. Apossible system response is to shift resources from redundant to nonredundant task service.Workload triggers Another important type of operating change is in the way inputdata are distributed among processing nodes. For example, data from external sensors maybe concentrated at some node so that the node is occasionally overloaded. The resultinginability to process additional data is equivalent at the system level to a transient nodefailure. One obvious response is to employ load balancing among nodes. Some adaptationmay be su�cient within the node; for example, it may be useful to switch processingalgorithms at the node from processing-intensive to memory-intensive (i.e., table lookup)forms or vice versa.Available-resource triggers As the number of resources available diminishes due tofailures or overload, certain fault algorithms may become infeasible to support|for example,there may not be su�cient processing resources to provide desired levels of replication.Algorithms that require a certain balance of processing, storage and communication maybecome infeasible|for example, algorithms that depend on high bandwidth communicationto maintain close synchronization between replicated processes may be impractical if certaintimeliness and data consistency requirements must be satis�ed.These are only a few examples of adaptation-triggering anomalies and possible responses.We note that if a system were required to handle all of these changes simultaneously, asa worst-case condition, and without adaptation, the complexity and processing overheadcosts of the fault-tolerant processing algorithm might be intolerable.2.3 Adaptation Example: Adaptable Distributed RecoveryBlocksAs a study vehicle, we have developed the concept of adaptable distributed recovery blocks(ADRB), and have demonstrated it in a simple testbed. An ADRB, which was conceivedby Kane Kim, a project contributor, is an extension of a distributed recovery block (DRB),also by Kim, which, in turn, is an extension of a recovery block (RB), which was conceivedand developed by Brian Randell of the University of Newcastle, UK. All of the RB versionsare intended to tolerate both software design faults and hardware faults. RBs can toleratetransient hardware faults, but DRBs can tolerate both transient and permanent hardwarefaults. The basic DRB concept is to provide two or more versions of a program and to selectthe results of a program if it satis�es a user-designed acceptance test (AT). The reliabilityof the results depends on the precision of the AT, which is an application-level concern, andnot a system-level concern. Practical ATs provide less than perfect assurance of correctness.In the basic RB scheme, versions are tried sequentially until a version passes its AT. Ifall ATs fail, control is returned to a higher system level. In the DRB scheme, versions aregiven a rank ordering; all versions are executed concurrently and output is chosen from the

Concepts and Techniques 13version of highest rank that passes its AT. Given the diversity of designs, the versions maynot all complete at the same time.A third recovery block mode may be employed, which we call single-try (ST). ST at-tempts only a single program version; if the results fail the AT, they are discarded andcontrol passes to the next input data item. Clearly, this default action constitutes a degra-dation of service.The ADRB scheme, illustrated in Figure 2.6, permits a collection of processing nodes tobe organized according to the RB, DRB, or ST scheme, depending on the desired systemattributes. The �gure illustrates that a collection of communicating processors might beset to operate in di�erent modes simultaneously; for example, versions A1 and A2 areco-resident, and support the RB mode, versions B1 and B2 are in di�erent processors,supporting the DRB mode, and single-version C is in a single processor, supporting the STmode.
A1
A2 B1 B2 C

A1

test

A2

test

a1

a2

fail

B1 B2

test test

 select

b1 b2 fail

C

test c

default

Attributes

Resource
Utilization

Recovery
Speed

Reliability
Mode

1 high low high

2 low high high

3 high high low

Alternative
Program
Versions

Attribute Trade-Offs

Mode I Mode 2 Mode 3
Sequential Concurrent Single-Try

Alternative Error-Recovery SchemaFigure 2.6: Adaptable distributed recovery blocksAs shown in the table of attribute trade-o�s in the �gure, the modes exhibit di�erentservice attributes. RB mode has high resource e�ciency (its only redundancy consists inthe execution of the AT), but it su�ers from a low speed of recovery from errors because ofits need to re-execute a computation following an AT failure. This may result in a systemerror if a fault occurs during the execution of a task that has a tight deadline. In contrast,DRB mode is advantageous in fault-recovery speed, because the results of a second versionare available immediately on the failure of the AT for the higher-ranked version, except forpossible di�erences in execution of diverse versions. DRB's disadvantage is that it consumestwice the processing resources of RB, which diminishes the resources that may be needed

14 Concepts and Techniquesto serve a high work load. The ST scheme has high resource e�ciency and high recoveryspeed (there is no second version to try again), but it su�ers in reliability compared to RBand DRB because failed ATs result in failed service.High recovery speed can have an important impact in reducing error rate, as follows:for high input data rate, it may occur that recovering from an error in processing one inputdatum using the serial method (standard RB) may prevent a processor from responding toa new input datum. The result may be the omission of output for the new datum or animperfect computation. This corresponds to an interaction of Timeliness and Accuracy inLawrence's attribute basis set.The di�erent attribute sets of the several modes present trade-o� choices to the operator,in this case, resource e�ciency, error recovery speed, and reliability. The operator maychoose to use RB, DRB, or ST, depending on the relative importance of the three attributecharacteristics. For a multiple-processor system, this choice may be made independentlyfor di�erent tasks and di�erent processors.In summary, we have described an example of an adaptable system with several modesthat o�ers the operator alternative combinations and degrees of service attributes. Sec-tion 2.8.3 discusses how the adaptation choice itself may be made and put into e�ect.2.4 Adaptation ModelsTwo abstract models for adaptation are described here. The �rst model, which is statebased, is intended to allow speci�cation of essential adaptive behavior, such as probabilityof successful and unsuccessful adaptation, adaptation thresholds, and transition times. Thesecond model, which is Markovian [48], is intended to allow prediction of performance, bothsuccessful and unsuccessful, given probabilities of certain fault and work load experienceand adaptive responses.2.4.1 A Model for Specifying AdaptationAn engineering methodology for adaptive fault resistance design must include some meansfor specifying precisely when and how the system will perform adaptation. Figure 2.7presents a simple, abstract model that suggests the possible form of such a speci�cation.An adaptive system is represented by the interaction between two state spaces: theoperating-condition state space and the system-con�guration state space. States in theoperating-condition state space are themselves points in a vector space, with dimensionssuch as user requirements, work load, fault mode, and computing resources, and statesin the system-con�guration state space represent choice of data processing algorithm andresource con�guration. The quality of match between operating-condition state and system-con�guration state is represented by the match/anomaly function space.In the �gure, it is assumed that an extraneous condition has caused a change in theoperating-condition space from state OCi to OCj . For a given initial system-con�gurationstate, SCp, the match function value, will then change from M(OCi, SCp) to M(OCi, SCp).It is assumed that the distance between the two match functions is su�cient to trigger achange in system con�guration state from SCp to SCq, with a resulting change in matchfunction from M(OCj ,SCp) to M(OCj, SCq). In making a change in con�guration state,

Concepts and Techniques 15
OC OC

M(OC , SC)

M(OC , SC)

M(OC , SC)

SC SC

i j

i p j q

j p

p q

SC
F

d

c

t

f
p

A

Extraneous Change

Operating-Condition
State Space

System-Configuration
State Space

Match/Anomaly
Function Space

Adaptation

o

Figure 2.7: State model of adaptive systemsit must be considered that a harmful transition to a degenerate state, identi�ed as SCF ,may occur; the degeneration may be static, for example, an unrecoverable partition or lossof control integrity, or dynamic, for example, a thrashing among adaptation states thatinterferes with delivery of service.This model allows a buyer and vendor of an adaptive fault-resistant system to specifyadaptation behavior in terms of certain relationships among the states and state transitions;for example, it may be speci�ed that� t, the transition time from SCp to SCq, must be less than some value T.� c, the di�erence in quality of match following a change o in operating states su�cientto cause a change in con�guration, must be less than some value C.� d, the di�erence in quality of match following an adaptation, must be less than theinitiating mismatch c, by some value D.� Pf , the probability of failure into a degenerate state, must be less than some valuePd.Such models are useful in exposing the performance and reliability issues that must drivea practical design. The model also may help a customer and vendor to negotiate the di�culttrade-o�s of a system design. The model can serve as a point of reference for evaluatingthe success of an adaptive design. This particular model abstracts out the performance ofan adaptive system; other models are needed for that important property.

16 Concepts and Techniques2.4.2 A Performance Model for Adaptive SystemsMarkov models have been used to predict the behavior of fault-tolerant systems, givenprobabilities of elementary events, such as faults and fault recovery actions. When thebehavior of interest is reliability or availability, the model is used to predict expected failure-free life from initialization (reliability), or mean service time (availability). Such models alsohave been used to study performability, which is the expected performance of a system thatis subject to temporary or permanent loss of resources.The model depicted in Figure 2.8 is a Markov model for systems that adapt to changesin fault type and work load. As with classic Markov models, it describes a system as a setof states and state transitions. Each state of the described system assumes some level ofcomputing resources and a level of performance e�ciency for those resources. The followingevents are represented by transitions in one of three dimensions, depicted by the three-axiscartoon:
Resource Recovery

Resource loss

Fault-type Adaptation

Work Load
Adaptation

Adaptation Failure

Resource
Exhaustion
Failure

AWL

RL

RR

AFT

AWL

AFT AFT

RR

RL

AWL

AWLFigure 2.8: Markov model of fault and work load adaptation� Resource loss because of a transient or permanent component failure� Resource recovery, either intrinsic, following a transient fault, or logical, provided bya fault tolerance mechanism� Fault-type adaptation, intended to improve the e�ectiveness of the system's fault-tolerant responses to changing fault types� Work load adaptation, intended to improve the computing e�ectiveness of a system'sresources for a changing work loadThe behavior of the system may be visualized as an ongoing transition between nodesof the state graph resulting from the system's response to faults, changing fault types, andchanging work loads.

Concepts and Techniques 17Two kinds of system failures are recognized. The �rst failure results when the computingresources are exhausted because of unrecovered component failures. The second failure is abreakdown of integrity of the system because of improper adaptation, such as sending thesystem into a degraded computing con�guration, or entering into an unproductive series ofadaptations.Such a model may be useful both for absolute predictions of performance and failure andfor comparisons of alternative designs. Getting realistic numbers for the state transitionrates may be expensive, but some estimation of these rates will be necessary to justify thee�ectiveness of a proposed design.2.5 A General Adaptation SchemeWe have found that the adaptive control model used in modern control system theory isquite useful in characterizing the behavior of adaptive computer systems. Issues of stabilityand the use of models to analyze and predict behavior are translatable with little essentialdi�erence. A simpli�ed illustration of such a control system model is shown in Figure 2.9.The controller uses models of the system and the environment to translate goal commandsinto control commands for the system under control. The controller also updates the mod-els using the di�erence between the predictions and the observations. For simplicity, theillustration does not assume predictions of the control goal, but that is entirely feasible.
System Under Control

Controller

Observer-predictor

System and Environment
 Models

Model Correction

GoalFigure 2.9: A model-based control systemFigure 2.10 shows a general architectural scheme for adaptation, which translates thegeneral scheme of an adaptive control system into relevant computer objects. The systemunder control is represented as a current fault-tolerant implementation of a set of userrequirements for logical service, performance, and dependability, including a function thatreports the system's service behavior; the system is driven by work load data and by faults.The implementation is governed by the fault tolerance scheme selection and control functionof an adaptation controller. That function is driven by two sources: (1) an adaptationcontrol function, and (2) a report on the inventory of available computing resources. The

18 Concepts and Techniquesadaptation control function integrates user requirements for performance and dependabilityand a diagnosis of the behavior of the system under control, both its current state andpredictions based on environmental data.
Fault-Tolerance Scheme

Fault-Tolerant
Implementation

Logical Service Performance and Dependability

Adaptation
Control

Diagnosis

Prediction

Service/Behavior
 Report

Work Load

Faults

 Faults

Selection and Control

Resource
Inventory

System Under Control

Work LoadAdaptation
Controller

User
Requirements

Figure 2.10: A general adaptation schemeThe scheme is formally equivalent to a control system in which a control function, derivedfrom the system output, is applied to a system in order to make it meet some externallyspeci�ed goal in the presence of environmental disturbances. In the adaptation scheme,the goal is to satisfy user requirements for logical service, performance, and dependability.The external disturbances are changes in user requirements, work load, faults, and avail-able computing resources. Adaptive versions of such control systems, such as the KalmanFilter, provide for the prediction of changing environmental and system properties based oncontinually updated models. The same paradigm is appropriate for an adaptive computingsystem.We note that in the general scheme as described, the system and the controller aremonolithic. We have noted earlier some of the problems of distributed systems|for exam-ple, the need to bound the propagation of adaptation e�ects. In Section 2.9, we discusshow the notion of re
ective architectures may be applied to layered systems.Some key issues in the realization of this general scheme are strategies for adaptiveimplementations, techniques for selecting implementations to meet attribute requirements,and incremental techniques for diagnosis and control.2.6 Adaptation Strategies for Fault ToleranceThe set of modi�able fault tolerance techniques, illustrated taxonomically in Figure 2.11, isquite rich. We note three broad classes of modi�cation, alternative fault-tolerant algorithmicscheme selection, alternative service algorithm selection, and parameter variation. Fault-tolerant algorithm options include (1) the fault anticipation policy of an algorithm, which

Concepts and Techniques 19may be optimistic or pessimistic anticipations about the likelihood of occurrence of a faultduring the algorithm's execution, (2) recovery policy, which may be of the forward or back-ward type, (3) management of group redundancy|in practice, the use of primary/backupor consensus fault masking, and (4) choice of fault isolation or error masking. Service al-gorithm options will a�ect the amount of resources required for user service, and indirectlya�ect the amount of resources available for fault tolerance. Options include (1) the types ofconcurrency{serial or parallel, (2) the degree of distribution of control|centralized or dis-tributed, (4) the logical model for processing|such as imperative, functional, model-based,or rule-based, (5) the balance or mix of processing, storage, and communication resourcesused by a given algorithm, and (6) whether processing is optimized at design and compiletimes, or at run time.
Fault-Tolerant Processing
Implementation Strategies

Fault Anticipation

 Optimistic
 Pessimistic

Recovery

 Forward
 Backward

Resource Mix

 Processing
 Storage
 Communication

Algorithmic Parametric

Time

 Delay
 Repetition

Resources

 Scale
 BalanceFigure 2.11: Implementation strategiesParametric changes may include modi�cation of (1) time parameters, such as the timeallowed for a failed but possibly recoverable process to recover, or the number of repeti-tions attempted before a fault process is considered to be unrecoverable, and (2) resourceparameters, such as the level of redundancy applied to a given fault tolerance scheme, orhow load is distributed among a set of resources.

20 Concepts and TechniquesThese few examples indicate that there is little limitation in �nding feasible strategiesfor adaptation. There are, however, several important challenges in selecting and applyingsets of fault tolerance techniques, such as� When should changes be made?� How can changes be made safely (to avoid failure or thrashing), incrementally (to allowassessment of correctness of the diagnosis that triggered the change), and reversibly(to cope with incorrect adaptation decisions)?� How can the overhead cost of multiple techniques be minimized?In Section 2.8.3, we argue that the amount of change attempted in an adaptation shouldbe a function of the con�dence in the diagnosis of mismatch conditions. This impliesthat useful adaptation strategies should not only o�er many alternatives in fault tolerancetechnique, but that the techniques should allow di�erent levels of change, and that if anadaptation proves to be unfruitful or harmful it should be possible to restore the system'sinitial con�guration with minimum loss. Overhead cost includes the performance cost ofthe selection mechanism and the possible temporary reduction in service during changes.These criteria indicate that despite the abundance of alternative techniques for modify-ing system implementation, the selection of sets of economical, safe, and e�ective alternativetechniques is far from trivial.The use of parametric changes clearly provides opportunity for making incrementalchanges. The method of changing algorithms, while discrete, also may be applied incre-mentally. For example, if there is some uncertainty about the nature of the current faulttype, a small fraction of the current workload might be processed with a di�erent algorithm.Success would encourage increasing that workload fraction incrementally.2.7 Attribute-Based Technique SelectionIn the ADRB example in Section 2.3, the di�erent modes provide the designer with di�erentlevels of service attributes such as resource utilization, fault-recovery time, and reliability.The di�erent attribute levels may be helpful in responding to changes in user or operatorrequirements, but they also may constitute a di�cult challenge in satisfying a given set ofrequirements with diminished resources; a given scheme may satisfy one attribute, but notanother. The general adaptation scheme calls for the adaptation controller to �nd a fault-tolerant processing scheme that best satis�es an operating condition. This is essentially aproblem in design, but one that must be solved at operation time.To solve this problem, we assume, as shown in Figure 2.12, that a human designergenerates, as part of the design process, a set of fault-tolerant processing techniques tocover the expected range of changes, and for each technique derives a characterization ofall pertinent service attributes. Generally, such a characterization will be parameterized,showing the e�ect of applying di�erent levels of resources to the technique. For example,the technique of multichannel, majority-logic voting may be characterized by throughput,latency, reliability, and availability functions, parameterized by the number of channels.

Concepts and Techniques 21
 Fault-Tolerant Design Scheme

 Off-Line Attribute Analysis

 Resource-Based Attribute Functions

[A1(R) A2(R) A3(R) An(R)]

Throughput Timeliness....Reliability Safety...

Attribute
CatalogFigure 2.12: Design-time analysis of technique attributesThe resulting attribute pro�les will be stored in the adaptive controller for use at runtime. Figure 2.13 illustrates how a set of service attribute requirements may be evaluated todetermine if a given technique is feasible for serving a particular set of run-time-developedservice attribute requirements. The feasibility of a technique is assessed for varying levels ofresources for which the scheme has been parameterized. That technique should be selectedthat satis�es the given attribute requirements with the lowest assignment of resources.The assignment of resources should satisfy global requirements as well as the demandsof the current adaptation circumstances; that is, it may be necessary to compromise somerequirements in favor of others.2.8 Diagnosis and ControlIn de�ning our approach to diagnosis and control of adaptive fault-tolerant systems weexamine the general role of diagnosis in system control, discuss a very simple diagnosis andcontrol scheme, and present a more general approach to diagnosis and control.2.8.1 The Role of Diagnosis in Adaptive ControlThe function of adaptation is to execute a change in the way a computing system accom-plishes a speci�ed service. This may be seen as a kind of computation in which the data isnot an observation of the real world, but rather a concrete characterization, or diagnosis ofthe e�ectiveness of the current service implementation|the product of the computation is anew implementation. In control theory, such characterization is called System Identi�cation[29]. Implementation-characterization, which we will refer to as diagnosis in the remainingdiscussions, is one of the central issues in adaptation, because it, together with the servicerequirement, provides the information as to what problem an adaptation must solve.Diagnoses should be fast and accurate in order to both achieve the highest level ofservice implementation and to avoid instability in making changes. Speed is important toavoid instability caused by excessive lags in following rapid changes in the environment.

22 Concepts and Techniques
FT Implementation
 Catalog

Scheme Resource-Parametric Attribute Functions

Ai1(R), Ai2(R), Ai3(R), ..., AiN(R)i

Attribute Requirements

 a1, a3, a8

Available Resources

 R

Constraint
Satisfaction

OK

Next

Service- Figure 2.13: Attribute-based technique selectionAccuracy is important to avoid corrections that cause the system to depart from, ratherthan to approach, the desired state and hence diminish the prospects and increase the rateof convergence to the correct new system state.We suggest two approaches to diagnosis and control. The �rst is a very simple scheme,in which diagnosis is a threshold function, with hysteresis, driven by a single, �ltered adap-tation variable. The second is a more complex scheme that aims to deal with ambiguousevidence about system e�ectiveness and, furthermore, to obtain high-quality diagnoses asrapidly as possible.2.8.2 A Simple Control SchemeA simple control scheme is illustrated in Figure 2.14. In this scheme, some adaptationvariable, say the occurrence of errors, is observed and smoothed with a low-pass �lter. Theresult is tested by a threshold detector with hysteresis|that is, a change is triggered whenthe variable rises above the high threshold and falls below the low threshold. The �ltertends to produce an output only when there is a long-term shift in the e�ectiveness of thesystem service implementation, and the hysteresis serves to avoid changes due to momentaryvariations.The scheme allows some parameter setting by a higher level of control|including thetime constant of the �lter and the level of the two thresholds.This simple scheme might be used for low-level system adaptation, where the dataabout adaptation e�ectiveness is relatively unambiguous. For example, two nodes maycommunicate using either an optimistic or a pessimistic protocol, depending on the errorrate. In this case, the error rate is the only adaptation variable of interest, and the choiceof implementation modes is simple. This simple scheme would be satisfactory for a Poisson

Concepts and Techniques 23
Adaptation
Variable

Low-pass
Filter

Threshold &
Hysteresis

Change Order

Detection
Control

A B A

Dead Zone

Configuration A/B

Time-constant
Control

Tupper

Tlower Figure 2.14: A Simple Control Schemeerror distribution, but it might not be satisfactory if the distribution is bursty or haspredictable
uctuations.2.8.3 Incremental Diagnosis and ControlIn complex systems, information about the e�ectiveness of a service implementation maynot be easy to interpret. In analyzing service anomalies, it may be di�cult to distinguishthe contributions of faults and service overloads, and to distinguish the various types offaults and overloads themselves. A given anomaly may have many explanations, whoseremedies may be very di�erent, and even opposed. The problem is complicated by the factthat causes usually cannot be observed directly, and can only be inferred from weak and
uctuating evidence.A further di�culty arises from the need to make decisions about adaptations as soon aspossible after operating changes occur, in order to maintain performance and avoid possiblecatastrophic failure.In response to these di�culties, we suggest a diagnosis approach that has three compo-nents:� Multiple concurrent diagnoses, to deal with ambiguity in error evidence� Prediction, to maximize a priori knowledge about environmental variations� Incremental decision making, to achieve most rapid possible adaptation to rapidly-changing operating conditionsMultiple Concurrent Diagnosis and Incremental Decision MakingThese approaches are illustrated in Figure 2.15. An incremental and di�erential diagnosisunit observes error reports from the system under control and presents one or more possiblediagnoses, each with some measures of con�dence and precision (speci�city of the size of

24 Concepts and Techniquesthe region that contains the fault). Diagnoses are attempted at every error report, and asnew evidence is obtained, the likelihoods of the several candidate fault diagnoses may bemodi�ed (shown by the feedback of weight adjustment) in accordance with the changingweight of evidence for each fault hypothesis.As faults change from one type to another, the level of con�dence in the current diagno-sis should change, initially decreasing as new evidence arrives that is inconsistent with theprevailing theory, and then increasing as new error information arrives and new hypothesesare strengthened. At some point in the transition between dominant hypotheses, the adap-tation controller will have to decide when the con�dence level in a new hypothesis justi�esa change in fault tolerance technique, and, for any given con�dence level, what amount ofcommitment of the system to a new technique is justi�ed.
SYSTEM UNDER CONTROL

Error
Reports

Incremental
and Differential
Diagnosis Adaptation

Control
Time
Available

Confidence

Precision

Change
Type

Change
Magnitude

Faults

Diagnostic
Multiple
Diagnostic
Hypotheses

H1
H2
Hn

Hazards of poor and hasty decisions:

 Incorrect or ineffectual changes
 Thrashing
 Unnecessary resource loss

Probe
System

Weight
Adjustment

FAULT
TYPE 1

FAULT
TYPE 2

t

?

Figure 2.15: Incremental diagnosis and controlGiven the uncertain and data-dependent arrival of error information in real systems, weassume that the adaptation controller is capable of periodically probing the system withtests to quickly reveal the presence of faults.There is surprisingly little literature on the subject of real-time diagnosis|that is, diag-nosis that attempts to achieve useful analysis of a system that operates within a changingdata and fault environment. Most diagnosis results are given for static situations|that is,situations in which time is not a limiting factor in the analysis. For most diagnosis tech-nology, the problem to be solved is to determine complexity{the number of tests requiredto analyze a system of a given size, or coverage|and the fraction of faults that may beuncovered for tests of a given length. By contrast, the problem of real-time testing is todetermine the function relating accuracy of testing and number of observations, in order toallow the earliest possible estimation of system state.

Concepts and Techniques 25Prediction for Diagnosis and Adaptation DecisionsModern control systems make substantial use of prediction in generating control commands.Predictions are based on some model. In simple control systems the predictions may bebased on a �xed model|say a �lter that integrates recent observations. In advanced,adaptive control systems, the model is dynamic|that is, it is updated by comparing thepredictions it generates with experience.Some opportunities for prediction in distributed computing systems are� Prior knowledge about the operation, including the dynamics of data arrival for thenormal working day and for di�erent operating situations� Knowledge about trends in fault behavior, such as gradual breakdowns of storage andcommunication media, models of crash behavior, models of overloads and recoveries,and histories of failures of particular subsystems� Knowledge about user priorities for work in di�erent operational situationsSuch knowledge can be very valuable both in diagnosing system conditions on the basisof partial evidence, and in deciding whether or not an adaptation is justi�ed.For diagnosis, prediction may help to distinguish random from burst faults, and physicalfrom design faults, which can be crucial in chosing fault tolerance remedies. For adaptationdecisions, it is clearly bene�cial to avoid system changes when, after environmental changesare detected, it can be predicted that changes are only temporary.Bene�ts of fault and environmental prediction have been discussed informally in the faulttolerance research literature, but there is no existing theory or systematic methodology forexploiting it in practical systems.Multiple-dimension diagnosisAspects of the operating environment such as faults, workload, resources and requirements,may be characterized individually by various criteria. For example, faults may be charac-terized by type and by spatial and temporal distribution; workload may be characterizedby rate, object size, and spatial concentration, and so on. Quanti�ed indicators exist thatcan serve as the basis for adaptation for any single aspects..Since a given set of resources must be con�gured to serve all of these aspects, thebest use of the resources would likely result from using a characterization that integratedall relevant dimensions. The use of techniques from the �elds of pattern recognition andneural networks may be useful here. Neural techniques o�er the additional possibility oflearning from actual system experience.2.9 Re
ective and Hierarchical ArchitectureA recently developed principle of system hierarchy, called re
ection, can be used for orga-nizing adaptive control and techniques for managing adaptation in hierarchical systems.

26 Concepts and Techniques2.9.1 Re
ective ArchitectureThe general adaptation scheme discussed previously assumes that both the system undercontrol and the adaptation controller are monolithic. In practice, designers employ a layeredstructuring for their systems in order to manage complexity, and we expect that practicaladaptive systems will be so layered. We further expect that the control logic required foradaptation will itself be so complex as to justify some degree of layering. We �nd therelatively new notion of re
ective architecture discussed in recent literature to be attrac-tive, both for the layering of adaptive control and for applying adaptive control to layeredsystems.Re
ective architecture is based on a hierarchical relation, which is illustrated in the �rstpart of Figure 2.16. The �gure shows layer R observing layer Q's behavior and subsequentlydirecting Q to change the way it implements some function, such as fault tolerance. Thesame principle has been applied to balancing load in a multiprocessor. The second partof the �gure shows a combination of a conventional Uses-based hierarchy and a re
ectivehierarchy. Layer C uses layer B as, for example, an application program uses an operatingsystem utility | but layer B is subject to the control of a re
ective hierarchy, shown asB(R1), B(R2), and so forth.
Reflection Hierarchy

P

Q

R

R observes
Q’s behavior

R defines how Q
 is implemented

Z

Y

X

Z observes,
modifies,
and uses Y

Integrated Adaptation
 Hierarchy

REFLECTIVE ARCHITECTURE

A

B

C

B
R1

B
R2

C uses B

Hybrid Reflection/Uses
 Hierarchy

B uses A

B reflects on B
R

Figure 2.16: Re
ective architectureThe B() hierarchy separates out several adaptivity concerns; for example, layer B(R1)may be concerned with selecting appropriate fault tolerance schemes, while layer B(R2)may be concerned with when an adaptation should be attempted; that is, it moderates theaction of B(R1). Layer B(R3) might be concerned with how aggressively an adaptationshould be carried out, given the current level of diagnostic con�dence and the current userpolicy on how adaptation risk and service urgency are to be balanced. Such layering ofadaptation concerns may help to simplify adaptive designs and to allow orderly growth ofcapabilities with experience.

Concepts and Techniques 27In some cases, the two kinds of hierarchy might usefully be integrated, as suggested inthe third part of Figure 2.16, where layer Z observes, modi�es, and uses layer Y.Re
ection does not solve the algorithmic problems of adaptive control, but it o�ers ageneral structure for organizing complex adaptive control functions.2.9.2 Multilayered Changes in a Function-Support HierarchyIn layered systems, a change of system con�guration may not easily be restricted to asingle layer. Figure 2.17 illustrates a layered adaptive system, where alternate functions areavailable at each level, and functions at one level support functions at higher levels. It isassumed that a function at one level may not be able to support all functions at the nexthigher level, that is, the dependencies from level to level are incomplete. In the �gure asconstructed, a change from function S(2,1) to function S(2,3) at level 2 is assumed to berequired to accomplish an adaptation originating at level 2. As shown, such a change willrequire level-3 changes from function S(3,1) to function S(3,3), inasmuch as S(3,1) is notsupported by S(2,3).
 S 4,1 S 4,2 S 4,3

S 3,1 S 3,2 S 3,3 S 3,4

S 2,1 S 2,2 S 2,3 S 2,4

S 1,1 S 1,2 S 1,3

Subsystem
Level

4

1

 2

3

Alternative Implementation Sets

Example:
Change from
S 2,1 to S 2,3Figure 2.17: Multilayer changes for adaptationWe conclude that changes made to accomplish adaptation in a multilevel system mayhave to extend over several functional system layers, and that changes among levels mayhave to be coordinated at design time.2.10 Results and Future System Design IssuesThis review has extended and formalized the statement of general principles and discussionof examples and technical approaches presented in previous reports. We have di�erentiatedadaptive fault-resistant systems from traditional fault-tolerant systems by emphasizing anadaptive system's need to have autonomous awareness of an anomalous mismatch betweenits current implementations of fault tolerance and the demands of a dynamically changingset of requirements. We have presented several schemes for design that have a high degree ofgenerality. The following technical insights and problem areas have risen from this viewpoint

28 Concepts and Techniques� Abstract models based on �nite-state machines are available for specifying adaptivebehavior and predicting performance and misadaptations.� Process-control models are very fruitful analogues for adaptive computer system con-trol; directly appropriate issues include gain control, prediction, instability, and adap-tation failures.� Uncertainty of evidence is a critical issue in real-time system state analysis and faultdiagnosis, and has a central impact on making adaptation decisions. Useful techniquesinclude concurrent multihypothesis diagnosis, predictive diagnosis, and incrementaldecision making.� re
ective architecture, developed originally to allow extendibility in computer lan-guages, provides an excellent and general structure for adaptive architecture.� There is an abundance of design families within which adaptation choices may bemade.� Selecting particular fault tolerance techniques to meet changing user requirementsmay be based on predetermined service attributes of candidate techniques.� Similar to the need for bounding fault propagation in fault-tolerant systems, there isa need to bound (1) the propagation of adaptation responses in a distributed system,and (2) vertical propagation of changes in multilayer support functions.We believe that these general and particular results o�er a useful basis for a methodologyof design for future systems.We have used one case study, ADRBs, to illustrate the need for techniques for selectingalternative implementations based on possibly changing service attributes. Further detailson ADRBs are presented in Chapters 3 and 4, and a case study on distributed threadintegrity is discussed in Chapter 5.

Chapter 3The Adaptive DistributedRecovery Block SchemeIn many challenging applications, environmental conditions that a�ect fault tolerance re-quirements imposed on computer systems change dynamically. As signi�cant changes inenvironmental conditions or in internal computing resource conditions occur, the e�ectiveset of fault tolerance mechanisms also changes.3.1 The Role of ADRBs in Adaptive Fault ToleranceThe purpose of adaptive fault tolerance (AFT) is to meet the dynamically and widely chang-ing fault tolerance requirement by e�ciently and adaptively using a limited and dynamicallychanging amount of available redundant processing resources [21].When the fault tolerance requirement reaches a highly stressful state (that is, at or nearthe peak) in an application in which the fault tolerance requirement
uctuates widely, theprocessing resources available in the computer system are typically not su�cient to supportall the fault-tolerance mechanisms needed without adjusting the set of services providedby the computer system. In addition, given that the resources (processing, communica-tion, and data storage) of a computer system are �nite and that under increasing stressthe availability/usability of these resources will decrease because of failures, the questionsare: Toward what objective will the remaining resources be directed? And is the currentstrategy for fault tolerance the most e�ective under this greater stress? The system resourcemanager may decide to decrease the functionality (that is, total set of functions supported)to maintain the level of timeliness (that is, the ability to produce critical responses duringthe required time periods) and the level of consistency (that is, the degree of deviation fromthe intended relationship among the states of the di�erent parts of the computer systemand the environment). Or it may decide to give up some consistency for functionality andtimeliness. The system resource manager must, therefore, trade-o� functionality, timeli-ness, and consistency in order to maintain an optimal system operation having decreasedresources. As a part of this trade o�, the set of fault tolerance mechanisms activated mayneed to be dynamically adjusted. Hence comes the notion of adaptive fault tolerance.29

30 The Adaptive Distributed Recovery Block SchemeThe distinctive nature of AFT as compared to more conventional fault tolerance becomesmore evident when the fault tolerance requirement or the resource availability changes \ina noticeably discrete fashion," that is, from one mode to another mode. In response tosuch mode changes, the adaptive fault-tolerance management system (FTMS) adjusts itsoperating strategy accordingly, that is, entering a new mode of operating fault tolerancecapabilities. Such an adaptive multimode FTMS is bound to have a highly modularizedstructure and is thus easier to implement reliably than monolithic static FTMSs that mayexecute all available fault tolerance mechanisms all of the time. In fact, in most challengingdistributed computer system (DCS) applications, it already becomes prohibitively expensiveto operate the DCS with continuous activation of the fault-tolerance mechanisms neededonly in several highly stressing modes, let alone operate with all the available fault tolerancemechanisms activated. An adaptive FTMS reallocates its resources to activate a set offault tolerance mechanisms e�ective in a new mode of the environment and the computingresource.A speci�c instance of an AFT technique, the adaptive distributed recovery block (ADRB)scheme is a major extension of the basic distributed recovery block (DRB) scheme developedin [23, 26, 15, 25, 24]. The DRB scheme was adopted as the basic structure for designingfault-tolerant real-time DCSs because of its wide applicability and ability to handle bothhardware and software faults with no loss of real-time task executions. One fundamentalsoftware approach to realizing real-time fault tolerance capabilities in DCSs is parallel re-dundant execution, which is to have multiple processing nodes execute the same real-timetask in a redundant fashion. The DRB scheme is a practical and broadly applicable formal-ization of the parallel redundant execution approach. The scheme is essentially an approachto structuring a duplex redundant computing station, called a DRB station, dedicated toexecution of one or a few real-time application processes and capable of handling bothhardware and software component failures with the e�ect of real-time forward recovery.The ADRB scheme extends the DRB scheme in two major ways. First, a critical real-time task can be executed not only (1) in the parallel redundant mode, which is the standardmode used in the basic DRB station, but also (2) in the sequential backward recovery mode,which is the execution mode adopted in the original recovery block scheme [19, 40], and(3) in the sequential forward recovery mode, which has been considered in many previousprojects on exception handling. Therefore, an ADRB station dynamically switches its op-erating mode in response to signi�cant changes in the resource and application modes.Secondly, the supervisor station under the DRB scheme is basically responsible for threefunctions: detection of node crashes, detection of misjudgments by the nodes in DRB sta-tions about the status of their partner nodes, and network recon�guration including taskredistribution. Under the ADRB scheme the supervisory function is not necessarily con-centrated in a particular node or computing station. Moreover, the supervisory functionstation has an additional dimension|that is, changing the set of real-time tasks to be exe-cuted. The supervisor function can be executed not only in the centralized mode but alsoin the decentralized mode. Therefore, again, the system can dynamically switch betweenthe centralized supervisory mode and the decentralized cooperative monitoring and controlmode. The algorithms and execution modes for accomplishing the three basic functions canthus be adjusted as signi�cant changes in the resource and application modes occur.Although the basic DRB scheme has been evolving over the past ten years, exploration

The Adaptive Distributed Recovery Block Scheme 31of various possible implementation structures has thus far taken place more in the contextof highly parallel multicomputer networks [26, 25]. Only in recent years have some concreteimplementation structures and prototypes of DRB stations for use in real-time LAN-basedsystems been studied [15, 24]. In order to partially validate one version of a DRB im-plementation structure and identify detailed implementation issues, a simple experimentalimplementation of DRB stations in a small-scale LAN-based DCS testbed was conducted.issues are discussed in Section 3.2.7.3.2 Basic Principles of the DRB SchemeThe most basic and important problem in constructing a real-time fault-tolerant DCS is toconstruct highly reliable and fault-tolerant constituent computing stations. One approachto realizing this is by parallel replicated execution of real-time tasks. A practical andbasic approach that keeps the amount of data communication between replicated processingnodes to a minimum is to structure a computing station in the form of a pair of self-checking processing (PSP) nodes, each processing node possessing the capability of judgingthe reasonableness of its task execution results. The PSP scheme is a core component ofthe DRB scheme.We concentrate here on two instances of the PSP scheme. The �rst scheme is intended totolerate primarily hardware faults (although some operating system faults are also tolerated)by using identical, replicated software and hardware. The second scheme tolerates softwarefaults as well as some hardware and operating system faults, by using nonidentical software(intended to produce equivalent results for the same inputs), running on identical hardware.3.2.1 Primary-shadow pair of self-checking processing nodesAn abstract representation of a PSP-structured computing station is given in Figure 3.1.
Comm. network

SCR SCR

P P
M M

(AT) (AT)

PSP-Structured Computing StationFigure 3.1: PSP-structured computing stationThere are largely two basic approaches to implementing the self-checking functions, onethrough hardware support and the other in software. Self-checking hardware mechanismshave been extensively developed [47, 51]. Self-checking software mechanisms are not nec-essarily substitutes for self-checking hardware mechanisms, but rather the former can besupplements to the latter. One of the most versatile and
exible self-checking softwaremechanisms is the acceptance test, which is a routine for checking the acceptability of theexecution results of a task [19, 40]. Use of this mechanism, possibly in conjunction with

32 The Adaptive Distributed Recovery Block Schemesome self-checking hardware mechanisms, is the approach adopted in the DRB scheme. Itcan be viewed as an instance of an executable assertion.Figure 3.2 illustrates a PSP-structured computing station based on the self-checkingfunction implemented in the form of an acceptance test routine. Each node has its own localdatabase. Node A is the initial primary node, and node B is the initial shadow node withinthis computing station. Each node has its own local data base for application processing.Both nodes obtain input data from the multicast channel (built on a system-wide multiaccesscommunication network), and the primary node A informs the shadow node B of the IDof the data item that node A selected for processing in the current task execution cycle.Nodes A and B process the data and perform their self checking concurrently by using thesame acceptance test routine. Because node A passes the test here, it informs the shadownode B of its success and then delivers the results to the successor computing station(s).Upon successful delivery, node A informs node B of the success, and both nodes proceed toenter the next task execution cycle.Processing of task input data usually requires reference to a database. It is essentialthat the database be protected from unacceptable results that may be generated by eitherof the processors. There are several ways to achieve this protection. One way is to providesome means for undoing a change to a local database{say by using a bu�er that recordsall changes as a local state vector. Another way is to use an external persistent store forrecording all acceptable results. The second way is simpler to manage, but it imposes theburden of downloading data into a processor for every new task.It also may be desirable to protect the local database information from loss resultingfrom processor faults. In this case, a separate data base may be provided for each processor.For this solution, it must be possible to copy the contents of the unfailed database into acorrupted database.Suppose that the PSP-structured computing station in Figure 3.3 is the successor sta-tion. Upon receiving data from the predecessor station (in Figure 3.2), the primary nodeC informs node D of the data item to process next, for example, via transmission of the IDof the data item. The nodes process the data and perform their self checking concurrently,but this time the primary node C fails while the shadow node D passes. Node D will learnof the failure of node C via either an explicit notice from node C or a time-out (if nodeC has crashed). Node D then becomes the new primary node, delivers its task executionresults to the successor computing station(s), and noti�es the partner node, if alive, of thesuccessful delivery. Meanwhile, node C, if alive, attempts to become a new shadow node bytrying again to process the data item. If node C passes the self-checking test this time, itcan then continue as a shadow node; upon learning of the successful delivery of the resultby the partner node D, it proceeds to the next task cycle as the shadow node.To realize the full potential of this PSP scheme, cost-e�ective mechanisms must beprovided for ensuring that all versions get the same data in each task execution cycle, andfor reliably saving some relevant task execution results into persistent store upon successfulcompletion of acceptance tests. These issues are discussed in Section 3.2.5.This primary-shadow scheme is thus capable of handling hardware faults with the e�ectof real-time forward recovery and is a core component of the DRB scheme.

The Adaptive Distributed Recovery Block Scheme 33

Output

Agree

Pass

< Next Cycle >

Acceptance
test

Node B

Multicast Channel

Notify
Data

Check previous
status-2

of partner

P1
P1

Acceptance
test

Pass

Output

notify
completion

: wait

Check
-2

Check
-3

Check
-1

Status
-2

Status
-2

Status
-1

Status
-3

< Next Cycle >

Receive &
Save Data

Receive &
Save Data

Node A

Figure 3.2: Detailed view of a PSP-structured computing station

34 The Adaptive Distributed Recovery Block Scheme
Agree

Output

Notify
Completion

Pass

< Next Cycle >

Acceptance
test

Node D

Multicast Channel

Notify
Data

Check previous
status-2

of partner

P2

P2

P2

Rollback

Acceptance
test

Acceptance
test

*Fail

Pass

: wait

Check

Check
-2

Check
-1

Status
-2

Status
-2

Status
-1

Status
-3

< Next Cycle >

Receive &
Save Data

Receive &
Save Data

Node C

Figure 3.3: Successor PSP-structured computing station

The Adaptive Distributed Recovery Block Scheme 353.2.2 Replication of recovery blocksIf the system designer is concerned with not only hardware faults, but also with softwarefaults, the primary-shadow scheme discussed with Figures 3.2 and 3.3 can be extended byincorporating the idea of using multiple versions of the application task procedure for eachtask. These multiple versions and a task-speci�c acceptance test related to the same taskcan be structured together in the form of a recovery block (RB) [19, 40].The syntax of a recovery block is: ensure T by B1 else by B2 ... else by Bn else error.Here, T denotes the acceptance test (AT), B1 the primary try block, and Bk, 2 � k � n,the alternate try blocks. All the try blocks are designed to produce the same or similarcomputational results. The acceptance test is a logical expression representing the criterionfor determining the acceptability of the execution results of the try blocks. A try (that is,execution of a try block) is thus always followed by an acceptance test. If an error is detectedduring a try or as a result of an acceptance test execution, then a rollback-and-retry withanother try block follows.The extended scheme is the distributed recovery block (DRB), and under this scheme arecovery block is replicated into multiple nodes forming aDRB station for parallel redundantprocessing. In most cases, a recovery block containing just two try blocks, the primaryand the alternate, is designed and then assigned to two di�erent nodes, the primary andshadow nodes, as depicted in Figure 3.4. The speci�cation of the maximum execution timeallowed for each try block is an integral part of the DRB scheme. A try block that isnot completed within the time, because of hardware faults or excessive looping, is treatedas a failure. Therefore, the acceptance test can be viewed as a combination of both logicand time acceptance tests. The roles of the two try blocks are assigned di�erently in thetwo nodes. The governing rule is that the primary node tries to execute the primary tryblock whenever possible, whereas the shadow node tries to execute the alternate try block.Therefore, primary node X initially uses try block A as the �rst try block, whereas shadownode Y initially uses try block B as the �rst try block. Until a fault is detected, both nodesreceive the same input data, process the data using two di�erent try blocks (that is, blockA on node X and block B on node Y), and check the results using the acceptance test. Bothnodes perform all these tasks concurrently. The time acceptance test (that is, the time-outmechanism) is used to ensure the timely behavior of both nodes.In a fault-free situation, both nodes will pass the acceptance test with the results com-puted with their �rst try blocks. In such a case, the primary node noti�es the shadow nodethat it successfully passes the acceptance test. Thereafter, only the primary node sends itsoutput to the successor computing station(s). Both nodes then proceed to the next task cy-cle. However, if the primary node fails and the shadow node passes its own acceptance test,the shadow node assumes the role of the primary node; that is, the nodes exchange theirroles. These actions by the two nodes are done asynchronously as explained in Figure 3.3.On the other hand, if the shadow node fails �rst, the primary node need not be disturbed.In both cases, the failed node attempts to become an operational shadow node; it attemptsto roll back and retry with its second try block to bring its application computation stateincluding its local database up to date. This attempt does not disturb the primary node.The DRB scheme imposes some restrictions on the use of the recovery block scheme.A recovery block to be used in the DRB scheme should be two-phase structured; it should

36 The Adaptive Distributed Recovery Block Scheme
A B

F

S

AB
F

SF

Initial Primary Node Initial Shadow Node
X Y

Successor
Computing Station

AT : Acceptance test Initial first
try block

Initial second
try block

F : Failure

S : Success

TIME
AT

TIME
AT
F

Predecessor
Computing Station

Input
Buffer

Input
Buffer

LOGICAL & TIME
AT

LOGICAL & TIME
AT

Figure 3.4: A DRB combines PSPs and replicated RBs

The Adaptive Distributed Recovery Block Scheme 37consist of one input acquisition phase and one output phase. During the input phase,the recovery block must not involve any output step (i.e., sending computation resultsto the outside) while it may involve multiple input steps. Similarly, during the outputphase, the recovery block may involve multiple output steps but not a single input step.This restriction is essential to prevent interdependency among di�erent DRB stations forrecovery from being formed.There is also the possibility that the two local databases, each belonging to a di�erentpartner node, may diverge in their contents. The goal of the DRB scheme is to keepthese local databases in acceptable states. If the acceptability criterion used here is arigorous one and if the two local databases are in acceptable states, the di�erences in thecontents of the local databases will be limited by the acceptability criterion, and hencenot problematic. Therefore, the quality of the acceptance test in a DRB station is veryimportant. Fortunately, experience has indicated that design of good-quality acceptancetests is much easier in real-time application �elds than in non-real-time data processingapplications.Under the DRB scheme, real-time forward recovery is achieved regardless of whetherfaults occur in the hardware or software components. During fault-free operation, theexecution overhead is very small because the actions of the primary node do not dependon those of the shadow node. By adopting the RB structuring as its component, theDRB scheme supports
exible incorporation of algorithmic redundancy because the two tryblocks are not required to produce identical results and the second try block need not beas sophisticated as the �rst try block. When the designers cannot accommodate the costsof developing alternative try blocks, they can still use the PSP portion of the DRB schemeto facilitate real-time hardware fault tolerance.3.2.3 Recursive shadowing with N (> 2) try blocksIn some highly safety-critical applications, the system designer may design more than twotry blocks into a recovery block to further increase reliability. Although several approachesto structuring a DRB station that uses three try blocks are conceivable, one of the mostnatural approaches is recursive shadowing, which is to treat the third node as a shadownode for the team of the �rst two nodes as depicted in Figure 3.5 [25].Node Z in the �gure will normally use try block C as its primary try block and deliverits results only when both X and Y fail to produce acceptable results in time. Nodes X andY behave like a single functional node with respect to interfacing with their shadow node Z.They must share responsibilities for providing their status information to node Z at variouspoints as well as responsibilities for understanding the \useful/useless shadow" status ofnode Z. If node X or Y crashes, then it can be replaced by node Z and thus the computingstation can start functioning as an ordinary two-node DRB station. Similarly, crash of nodeZ will result in the computing station functioning as an ordinary two-node DRB station.If both X and Y fail at their acceptance tests but are alive, then node Z becomes the newprimary node and one of the two failed nodes (X and Y) should become the new secondarynode (a shadow for node Z) and the other should become the third node (a shadow for theteam of Z and the secondary node). In an n-node DRB station, the nth node functionsas a shadow for the team of the �rst n-1 nodes. A natural consequence of this recursive

38 The Adaptive Distributed Recovery Block Scheme
X Y

R
Z

C BACABA B C

R : reporting success
of node X or node Y Successor

Computing Stations

Predecessor
Computing Stations

Figure 3.5: A DRB station with recursive shadowingshadowing organization is the modest increase in the implementation complexity as thenumber of nodes used in a DRB station increases. For the sake of simplicity in discussion,these cases of using more than two try blocks in a DRB station will be treated as specialcases throughout the remainder of this report.3.2.4 Supervisor stationA major extension of the basic DRB scheme made by Hecht et al. [16, 15] was in incorpo-rating a supervisor computing station into the LAN-based system. A centralized form ofa supervisor station was incorporated in [15], but many of the supervisor station functionscan also be decentralized. Demonstrations of decentralized implementations have yet totake place.The supervisor station is basically responsible for three functions:� Detection of node crashes� Detection of misjudgments by the nodes in DRB stations about the status of theirpartner nodes� Network recon�guration, including task redistributionTo make the supervisory function highly robust, it is useful to dedicate a DRB sta-tion (rather than a nonredundant computing station) to the supervisory function (see Fig-ure 3.6).Interactions between the supervisor station and \worker" DRB stations must be imple-mented e�ciently. Many di�erent forms of interactions are conceivable.

The Adaptive Distributed Recovery Block Scheme 39
DRB Sta 1:
Supervisor

DRB Sta 2:
Worker DRB Sta n:

WorkerFigure 3.6: Using a DRB station as supervisor3.2.5 A DRB Implementation Structure for Multicast LAN-Based Sys-temsA node in a DRB station basically engages in two types of inter-node communication:� Data communication with other (predecessor and successor) computing stations,which may be DRB stations� Status exchanges with partner node(s) within the same DRB stationThe timings of the two types of communication are di�erent and the status messagesare short signals unlike the data messages, which may be substantial and of variable length.Therefore, in choosing e�cient implementation structures for DRB stations, the com-munication subsystem architecture of the given LAN-based system must be re
ected. Forthe remainder of this chapter, we mainly assume the use of a LAN architecture with a singlemultiaccess broadcast network, as depicted in Figure 3.7.
Multicast Channel

P1 P2
PnPn-1

Pn-2

Worker DRB Station 1

Worker DRB Station m

Supervisor

StationFigure 3.7: A fault-tolerant LAN-based system consisting of a supervisor station and DRBstationsWe are focusing on the cases of using highly decentralized (HD) easily expandable LANsystem architectures. Popular LAN communication structures such as the CSMA (carrier-sensing multiple access) bus and the token ring possess strong expandability characteristics

40 The Adaptive Distributed Recovery Block Schemeat the communication network level. To minimize the impacts of frequently changing hard-ware con�gurations on the software, it is useful to design and implement the software suchthat physical node addresses of each node are used only inside a small kernel module withinthe node. With such design, interaction among the processes distributed over multiplenodes does not involve use of physical node addresses.Going a step further in this direction, Mori et al. [34, 33] developed a scheme calledthe data �eld for dynamically establishing \logical multicast channels" shared among theconcurrent distributed processes without requiring the processes to know the identities ofother cooperating processes, or the identities of the nodes running the processes. Theonly thing that a group of cooperating processes needs to know in advance for messagecommunication is the name of the logical multicast channel through which the messagewill be communicated. Each of those processes can simply educate the communicationsubsystem in the host node about the logical multicast channel to be used. Therefore, aprocess wanting to send a message to other cooperating processes will execute a primitive\Multicast the data Di over the channel Cx". Then all other processes designed to sharechannel Cx will pick up the message. Dynamic creation and use of logical multicast channelsfor interprocess communication is an attractive feature to incorporate in HD LAN systemarchitectures.3.2.5.1 Major Design Parameters of DRB StationsFive design parameters that must be chosen carefully to obtain a cost-e�ective DRB station,and that may be impacted by the types of communication architectures used, are� Mechanisms for ensuring input data consistency. Suppose each of the two fault-free partner nodes in a DRB station picks a new data item for the same task executioncycle. If these two data items have the same ID, then the two nodes are said to bepreserving input data consistency. Complications can arise if the communication linksbetween some nodes and the multicast channel are not reliable; certain data messagesmay arrive at one partner node but not at the other partner node. In general, it isnecessary to take actions that explicitly ensure input data consistency.� Mechanisms for sharing acceptance test results. The shadow node in a DRBstation needs to learn the acceptance test result of its primary partner node with anacceptable delay. On the other hand, it is not essential in principle for the primarynode to know the acceptance test result of the shadow node because as long as theprimary node does not fail, it alone can satisfactorily meet the application require-ments. However, it is possible that the shadow node could temporarily lag more thanone task execution cycle behind the primary node. Therefore, the primary node mustcheck to see if the shadow severely lags for longer than a tolerable time period. If so,the primary node may judge the shadow node to have become useless and thus askthe supervisor station to replace the shadow node. Another option for facilitating thedetection of the fallout of the shadow node is to have the supervisor station detect it.To do this will require the shadow node to periodically announce its progress.� Mechanisms for reliable communication of result data messages. Successfuldelivery of the result data message by the primary node to the successor computing

The Adaptive Distributed Recovery Block Scheme 41station(s) must be con�rmed by both partner nodes in the producer DRB station.In case of a failure, the primary node must learn it and then either make a retry fordelivery or give up and become a new shadow node, whereas the shadow node mustlearn it so that it can decide whether or not to deliver its own result data message.This means that delivery of a result data message by the primary node must befollowed by a reply with an acknowledgment message(s) by the successor computingstation(s).� Mechanisms to support recursive shadowing with N (> 2) try blocks.It is desirable to implement recursive shadowing without incurring a nonlinear surgein the message tra�c among the member nodes of a DRB station.� Mechanisms to support a supervisor station.It is desirable to have a supervisor station perform its functions with minimal distur-bance to the nodes of worker DRB stations.3.2.5.2 Approaches for Ensuring Input Data ConsistencyWhen the data items to be processed always arrive at both partner nodes belonging tothe same DRB station in the same order, the input data consistency requirement is easilymet. However, complications can arise if the communication links between some nodes andthe multicast channel are not reliable; certain data messages may arrive at one partnernode but not at the other partner node. With many LAN architectures, it is not easy toensure uniform ordering of arriving messages at all the receiving nodes without involvingan interaction among the receiving nodes.Because the multicast channel is the only communication path available in the systemarchitecture considered here, it is important to keep the number of messages exchangedduring a task execution cycle of a DRB station to the minimum or a near-minimal number.Two approaches for ensuring input data consistency are conceivable. One approach is tosimply have the primary node send an explicit message containing the ID of the data itemselected for processing to the shadow node as exempli�ed by the Status-1 message-sendaction of node A (the primary node) and the Check-1 message-receive action of node B (theshadow node) in Figure 3.2.The other approach is to piggyback the information on the data item selected onto theacknowledgment message that the primary node needs to send to the producer station of theselected data item. Although it is not shown explicitly in Figures 3.2 and 3.3, the \Receive& Save Data" action by a node must be followed by an acknowledgment action. Becausethe acknowledgment message must also be transmitted through the multicast channel, itis a good choice to multicast the message not only to the producer computing station(of the received data item), but also to the shadow node and the supervisor station. Thispiggybacking approach is depicted as the \A & S-1" (Acknowledgment & Status-1) message-send action of the primary node A in Figure 3.8. By checking this message, the shadownode can tell if both its the primary partner and itself have the same message-receivingexperiences and can process the same data item. This action is depicted by the \C-1"(Check-1) message- receive action of node B in Figure 3.8.

42 The Adaptive Distributed Recovery Block Scheme

Node B : shadow

Multicast Channel

Broadcast
acknowledgement

& the ID of the
data item selected

Receive partner’s
ack & the ID of the

data item

Output

Try Try

AT AT
Pass

Output

< Next Cycle >

Receive &
Save Data

A&
S-1

C-1*

C-2 C-3**

C-3
or C-2

Receive Ack,
or partner’s

output

Receive
partner’s

output

Receive
Ack

Assume
shadow’s

role
Output &

Assume primary’s
role

partner’s
output
rec’d

Ack
rec’d

Receive &
Save Data

Pass

< Next Cycle >

rec’d

timeout

Node A : primary

* from partner ** from successorFigure 3.8: Achieving reliable data input

The Adaptive Distributed Recovery Block Scheme 433.2.5.3 Approaches for Sharing Acceptance Test ResultsAn attractive approach is to have the shadow node check to see if the result data messagefrom the primary partner node is multicasted, thereby judging the acceptance test successor failure of the primary partner. An absence of the multicast is interpreted as an indicationthat the primary partner has crashed. If the primary node fails in its acceptance test butremains alive, then it takes the step of sending a notice of the failure to the shadow node(and possibly to the supervisor station) in place of the step of multicasting a result datamessage. This output monitoring approach is depicted as the result output action of nodeA and the C-2 (Check-2) message-receive action of node B in Figure 3.8.The primary node and/or the supervisor station needs to detect the fallout of the shadownode. The Status-2 message-send action of node B, which involves sending the acceptancetest result to be checked by the primary node in a future task execution cycle, and theCheck-previous-Status-2 action of node A, which involves checking a set of recent Status-2 messages from the shadow node, illustrates one way to facilitate the detection of thefallout of the shadow node. Another option is to require the shadow node to announce itsprogress periodically, in the form of a Status-2 message in each task execution cycle or lessfrequently. The progress report can then be monitored by the primary node and/or thesupervisor station.3.2.5.4 Approaches for Reliable Communication of Result Data MessagesOne approach for achieving reliable communication of result data messages is depictedin Figure 3.2. The output action of node A includes receiving acknowledgment(s) fromthe successor computing station(s). Receipt of the acknowledgment(s) together with theStatus-3/Check-3 protocol, ensures reliable delivery of a result data message.A more attractive approach, however, is to have the successor computing station mul-ticast an acknowledgment message and have both the shadow node and the primary nodeverify that the acknowledgment arrives. The C-3 (Check-3) actions of node A and node Bin Figure 3.8, together with the A & S-1 (Acknowledgment & Status-1) action to be takenby the successor computing station, represent this acknowledgment monitoring approach.Note that in Figure 3.8 a nonblocking approach for receiving the acknowledgment messagewas also adopted in both partner nodes. This is an optional feature and it can be adoptedwhen it is desirable to allow the nodes to \look ahead" into the next task execution cyclewhile the acknowledgment message is on the way.3.2.5.5 Approaches for Recursive Shadowing with N (> 2) Try BlocksImplementing the recursive shadowing involves a recursive arrangement of the approachesdiscussed earlier for implementation of three of the �ve basic design parameters.3.2.5.6 Approaches for Implementing a Supervisor StationWith the basic types of LAN-based system architectures, maximum
exibility exists inimplementation of supervisor stations because it is easy to enable every processor to hearany data or status message communicated between nodes of \worker" computing stations.

44 The Adaptive Distributed Recovery Block SchemeAs mentioned early in Section 3.2.4, many of the supervisor station functions can be de-centralized. However, the advantages and disadvantages of decentralized implementationshave not been fully understood. Of the three basic functions of the supervisor station, thedetection of node crashes, is the easiest to implement in a decentralized form. When acentralized supervisor station is adopted, it is also necessary to make arrangements for eachworker station to periodically cast its opinion on the health status of the supervisor station.The interval between such opinion casting can be made much larger than a typical taskexecution cycle.3.2.5.7 Modular Implementation Models and Experimental ValidationsTo partially validate the DRB implementation structure discussed throughout Section 3.2.5and identify detailed implementation issues, a simple experimental implementation of DRBstations in a small-scale LAN-based DCS testbed was conducted from March through June1993. This is discussed in Section 3.2.8. We then proceeded to formulate a modular im-plementation model which can easily incorporate various existing or emerging techniquesfor network diagnosis and recon�guration and reliable message communication. This modeland partial validation e�orts made are discussed in Sections 3.2.9 and 3.2.11.3.2.6 Principles and Implementation Structures of the ADRB schemeThe ADRB scheme exploits several of the fundamental trade-o�s that are found in com-puting systems in the dimensions of time, equipment and service. The particular instancesof those dimensions in ADRB are latency in computation and error recovery, e�ciency ofresource utilization, and accuracy of computed results.The ADRB scheme extends the DRB scheme in two major ways. First, a critical real-time task can be executed not only (1) in the parallel redundant mode, which is the standardmode used in the basic DRB station, but also (2) in the sequential backward recovery mode,which is the execution mode adopted in the original recovery block scheme [19, 40], and(3) in the sequential forward recovery mode, which has been considered in many previousprojects on exception handling. Therefore, an ADRB station dynamically switches its op-erating mode in response to signi�cant changes in the resource and application modes.Secondly, the supervisor station under the DRB scheme is basically responsible for threefunctions: detection of node crashes, detection of misjudgments by the nodes in DRB sta-tions about the status of their partner nodes, and network recon�guration including taskredistribution. Under the ADRB scheme the supervisory function is not necessarily con-centrated in a particular node or computing station. Moreover, the supervisory functionstation has an additional dimension|that is, changing the set of real-time tasks to be exe-cuted. The supervisor function can be executed not only in the centralized mode but alsoin the decentralized mode. Therefore, again, the system can dynamically switch betweenthe centralized supervisory mode and the decentralized cooperative monitoring and controlmode. The algorithms and execution modes for accomplishing the three basic functions canthus be adjusted as signi�cant changes in the resource and application modes occur.Figure 3.9 depicts the overall ADRB operation. First, the given task set is mappedto the node set by the network con�guration management (NCM) server. Each task maybe assigned to one or more nodes to form an ADRB station. The execution mode of each

The Adaptive Distributed Recovery Block Scheme 45ADRB station is chosen by the NCM server on the basis of the equipment availability andthe criticality and recovery time requirement of the task assigned to the ADRB station.As the system resource condition changes and the application proceeds through di�erentphases, the NCM may order each ADRB station to change its execution mode.
• • •

TTT

TT TT

T

• • •

• • •

NCM

NCM NCM NCM

W1 W1W2 W2Wn Wn• • •

• • •

Centralized Decentralized

T

, , ,1 2 3 m
,

Node Set

DRB

Task dist & redist

Network
monitoring

Adaptive
Control
Arrangement

to Centralized
to Decentralized
No change

Task set

NCM

Control Arrangement

or

1 1 2 m

Figure 3.9: Basic operations under the ADRB schemeFigure 3.9 also depicts the possibility of dynamically switching between the centralizedexecution mode and the decentralized execution mode for the NCM server. An abstractrepresentation of the logical component that makes decisions on switching of the NCMexecution mode is named \adaptive control arrangement". This component can of coursebe a part of the NCM. In the decentralized execution mode, NCM servers running ondistributed nodes need frequent communication among themselves to assure that their viewsof the network con�guration are consistent.3.2.6.1 Adaptive Changes of the Task Execution and Recovery Mode in anADRB StationThree execution modes for real-time tasks A real-time task can be executed in threefundamentally di�erent ways with the cooperation of a task designer willing to providesoftware redundancy:� Sequential backward recovery. This mode of execution was incorporated in theoriginal RB scheme [19, 40]. It takes a single processing node.

46 The Adaptive Distributed Recovery Block Scheme� Parallel redundant execution. This mode of execution was incorporated in theDRB scheme and facilitates forward recovery. It takes two or more processing nodes.� Sequential forward recovery. This mode of execution was assumed in many pre-vious projects on exception handling. It takes a single processing node.These three modes of fault-tolerant execution di�er in equipment resource requirements,software design requirements, and recovery times required. Therefore, an ADRB stationunder the ADRB scheme can take advantage of these three options to maximize the reliabledelivery of services under varying conditions of available task execution time and equipmentresources.Figure 3.10 shows an abstract representation of the components in an ADRB station.The main components are as follows.1. There are a set of input queues, each corresponding to a di�erent input source or adi�erent input type.2. n di�erent task algorithms are provided. Some of them may be designed for thesame or similar computational results. Others may be exception handlers that can beinvoked upon failure of an earlier tried algorithm to bring the ADRB station to a safestate (i.e., a state from which the ADRB station has a chance to proceed to a normalstate).3. The acceptance test function is a component provided to check the acceptability ofthe results of the most recently executed algorithm.4. Once the acceptance test execution is successful, then the computation result is sentin the form of a message to other ADRB stations and/or saved into a stable stor-age component that can be accessed by other ADRB stations. The stable storagecomponent may be a storage component exclusively belonging to the ADRB station,a storage component shared by multiple ADRB stations, or a combination of bothtypes.Figure 3.11 depicts the three di�erent execution modes of an ADRB station. The DBcomponent in this �gure corresponds to the stable storage component in Figure 3.10. Whenthe ADRB station is in the sequential backward recovery mode (RB mode) or the sequentialforward recovery mode (EH Exception Handler mode), only one processing node is dedicatedto the station and the crash of the node dictates functional replacement of the crashed nodeby a standby node identi�ed by the NCM server. Unless the processing node saved its statevector into a shared database component before the crash, the replacement means a fullrestart of the task on a new node.In considering the execution time aspects of each execution mode, we assume that theexecution times for the primary and shadow algorithms, respectively, are T1 and T2 andthe deadline adopted in another node for hearing about the completion of the primaryalgorithm is Td. We also assume that the primary algorithm fails to produce an acceptableresult because of a software design fault or a hardware fault.

The Adaptive Distributed Recovery Block Scheme 47

Figure 3.10: Basic Components of an ADRB station
...

P
P

SPDB

DB

DBDB

AT

AT

EH

: exception
handler

RB: Sequential
backward recovery

DRB
EH

RB

DRB: Forward recovery
via parallel redundant
execution

EH: Sequential
forward recovery

ATAT

Cold
Standby

Service
restart

on

If the node crashes

Figure 3.11: Three execution modes of an ADRB station

48 The Adaptive Distributed Recovery Block Scheme1. Sequential backward recovery mode (RB mode).Two di�erent cases, one involving an acceptance test failure and the other involvinga node crash, are distinguished.(1a) Sequential backward recovery from an acceptance test failure.The total execution time in this case isT:RB:AT = T1 + Tsr + T2;where Tsr is the time for state restoration, which is needed to prepare for an alternatealgorithm. Here Tsr + T2 can be greater than T1.(1b) Node crash.We assume that the processing node saved its state vector into a shared databasecomponent before the crash. The total execution time in this case isT:RB:CR = Td + Treplace + Tsr + T2;where Treplace is the time spent to identify a new replacement node and Tsr and T2are the same as in (1a). Here Treplace can be greater than T1.2. Parallel redundant execution mode (DRB mode).Again two di�erent cases are distinguished.(2a) Primary's failure at the acceptance test.The total execution time in this case isT:DRB:AT = T1 + Tsd;where Tsd is the time for a shadow to hear the failure of the primary. Here Tsd istypically smaller than Tsr or T2.(2b) Node crash.The total execution time in this case isT:DRB:CR = Td:Here it is obvious that Td > T1 + Tsd.3. Sequential forward recovery mode (EH mode).As before, two di�erent cases are distinguished.(3a) Sequential forward recovery from an acceptance test failure.The total execution time in this case isT:EH:AT = T1 + TEH ;

The Adaptive Distributed Recovery Block Scheme 49where TEH is the time for execution of the exception handler. TEH is typically smallerthan T1 or T2 but larger than Tsd.(3b) Node crash.In this case, the recovery action is the same as in the case of (1b). ThereforeT:EH:CR= T:RB:CR = Td + Treplace + Tsr + T2:The execution times under di�erent execution modes analyzed above can be ordered asshown in Figure 3.12.
T_DRB_AT

T_EH_ATT_DRB_CR

T_RB_CR = T_EH_CR increases

T_RB_ATFigure 3.12: Ordering of execution times under di�erent modesAn example adaptation scenario Figure 3.13 depicts one scenario in which an ADRBstation adapts to the changing time and equipment resource conditions by changing itsmode of execution.A defense command and control (C2) situation is assumed in Figure 3.13. Duringpeacetime, both the available time and equipment for task execution are assumed to bein a comfortable, abundant state. The application in such a phase may require executionof a large number of soft-real-time tasks. The sequential backward recovery mode is theprevailing mode of execution for most DRB stations. Once war starts, the set of tasks tobe executed changes, and many become hard-real-time tasks. The available time conditionbecomes tight, although the equipment condition may still be comfortable because not muchequipment loss has yet been incurred. Almost all hard-real-time tasks will be executed inthe parallel redundant execution mode. After some time passes in the war phase, theequipment condition will become desperately short because of battle damage and otherrandom equipment failures. Therefore, shedding of less critical application tasks as well asexecuting critical tasks in the less equipment-intensive execution mode, namely, the singleforward-recovery mode, will become mandatory.More exact adaptation possibilities can be described by identifying a desirable executionmode for each point in a two-dimensional resource space|that is, Time � Equipment spaceas in Figure 3.16. For example, when the time availability situation is desperate and the

50 The Adaptive Distributed Recovery Block Scheme

Function changes

Set S1 Set S2 Set S2m ⊂ S2Figure 3.13: Typical adaptation scenarios

The Adaptive Distributed Recovery Block Scheme 51equipment availability situation is tight, two possible execution modes are conceivable. Sincethe time availability is in a desperate condition, every critical task must be executed in theDRB mode or the EH mode. If the equipment availability were in a comfortable condition,then the DRB mode would have been the choice. However, since the equipment availabilityis in a tight condition, it is not feasible to con�gure the full set of ADRB stations in theDRB mode. Another option is to con�gure some less critical tasks in the EH mode, therebyreducing the number of nodes required but at the cost of increasing the risk of those ADRBstations missing their deadlines.Transition protocols Protocols for the ADRB stations and the NCM server e�ectswitching of ADRB stations among the three execution modes. The facilities used in exe-cution of the protocols are depicted in Figure 3.14.
AT

Figure 3.14: A basic con�guration of an ADRB stationThere are six di�erent possible transitions among the three execution modes. Six tran-sition protocols, each corresponding to one of the six transitions, are presented in Fig-ures 3.15:ab, 3.15:cd, and 3.15:ef.Among the six transition cases, the case of switching from the RB mode to the DRBmode and the case of switching from the sequential forward recovery (S-FR) mode to theDRB mode require the most complex and time-consuming protocols. This occurs becausethe primary must provide a copy of its state vector to the newly chosen shadow node.There are two issues related to preservation of data integrity during execution of tran-sition protocols. One is for the primary node to maintain its data integrity. The basic rule

52 The Adaptive Distributed Recovery Block Scheme

NCM

Primary Node

1
2

Shadow Node

(b) DRB --> RB

1 Orders the shadow
to relinquish the
shadow role

1 Upon receiving the order,
relieves itself of the
shadow role

2 Orders the primary
to operate in the
RB mode

2’ Upon receiving
the order, enters
the RB mode

NCM

Primary Node

1

2

3

Shadow Node

(a) RB --> DRB

1

23

Assigns an idling node
to the shadow role

Requests help from the primary
for further initialization data

Upon receiving a request from
the newly created shadow
node, offers relevant information
in its local database to the
shadow

Figure 3.15: ADRB transition protocols I

The Adaptive Distributed Recovery Block Scheme 53

NCM

Primary Node

1a

(d) S-FR --> RB

1a Orders the primary
to switch to the RB mode

1a Upon receiving
the order or

Either

1b spontaneously due
to an internal condition,

NCM

Primary Node

1a

(c) RB --> S-FR

1a Orders the primary
to switch to the S-FR mode

1a Upon receiving
the order or

Either

1b spontaneously due
to an internal condition,

switches to the S-FR mode

switches to the RB modeFigure 3.15: ADRB transition protocols II

54 The Adaptive Distributed Recovery Block Scheme

NCM

Primary Node

1

3

4

2

Shadow Node

(f) S-FR --> DRB

1 Orders the primary
to switch to the
RB mode

1’ Upon receiving
the order,
switches to
the RB mode

4 Upon receiving the
request from the newly
created shadow node,
offers relevant
information in its local
database to the shadow

3 Requests help from
the primary for
further initialization
data

2 Assigns an idling
node to the
shadow role

NCM

Primary Node

1
2

Shadow Node

(e) DRB --> S-FR

1 Orders the shadow
to relinguish the
shadow role

1’ Upon receiving the order,
relieves itself of the
shadow role

2 Orders the primary
to operate in the
S-FR mode

2’ Upon receiving
the order, enters
the S-FR mode

Figure 3.15: ADRB transition protocols III

The Adaptive Distributed Recovery Block Scheme 55here is that the primary node must switch its mode of operations only between task exe-cution cycles. If it receives an order to switch the mode in the middle of a task executioncycle, it must defer the switching until the time of completing the current cycle. If thenode detects an error|that is, an acceptance test failure, before completing the currenttask execution cycle, it must make a recovery attempt valid in the current mode. Onlyafter a successful recovery|or an AT failure, the node can switch to the new mode. If thenode cannot recover successfuly, then the node must attempt to inform the NCM serverof its crippled condition so that the NCM server may make an appropriate recon�gurationdecision. This simple operational rule is the most e�ective in maintaining data integritywithin the primary node.The other issue is for the shadow node to maintain its data integrity. Only two switchingcases are relevant here : RB �! DRB and DRB �! RB. The case of DRB �! RB doesnot present any problem. The shadow node can switch its mode as soon as it receives anorder. Even in the other case, RB �! DRB, the new shadow node will execute its switchingprocedure as soon as it receives an order. However, in this case, the switching procedurecan be time-consuming since it requires cooperation of the primary node for providing astate vector (i.e., information in the local database of the latter). The primary may chooseto send the information in multiple steps. During the switching procedure the shadow mustalso periodically inform the primary of the sequence of messages it has received so that theprimary may determine how much information it must supply from its local database.Other adaptation parameters Besides the execution mode, there are other adaptationparameters in an ADRB station. Dropping the task is an adaptation parameter used inFigure 3.16 and was set on when the equipment availability condition was tight or desper-ate. In addition, the degree of redundant execution in an ADRB station is an adaptationparameter. When both the criticality of a task and the fault occurrence rate are high, theADRB station may execute in the DRB mode with more then two processing nodes as longas a su�cient number of nodes are available in the system. When the equipment availabilitycondition becomes tighter, the ADRB station can reduce the degree of redundant execution.3.2.6.2 Adaptive Network Surveillance and Recon�gurationThe three major components of network con�guration management (NCM) are� Network surveillance to detect and locate faulty nodes� Con�rmation of message delivery and detection of misjudgments made by the nodesin the DRB stations� Task redistributionThe �rst two components are closely coupled. Both involve monitoring messages origi-nating from the subject nodes. On the other hand, message delivery con�rmation needs tobe executed much more frequently than the recognition of permanent faults.

56 The Adaptive Distributed Recovery Block Scheme
Equipment (DRB (DRB+) +)desperate RB single singlewith forward forwardshedding recovery recovery thread+ +shedding sheddingDRB with DRB withRB shedding sheddingtight with possible or orshedding DRB+RB DRB+singleforward recoverythreadcomfortable RB DRB DRBor DRBcomfortable tight desperateTimeFigure 3.16: Adapatation possibilities for various combinations of equipment and time

The Adaptive Distributed Recovery Block Scheme 573.2.6.3 Basic execution modes for NCMThe NCM execution modes are de�ned as follows:1. Fully cooperating mode vs. partitioned modeWhen the communication network is not fully connected or communication betweensome groups of nodes becomes di�cult due to a high level of noise interference, it isnatural for the system to enter the partitioned mode of operation. In a partitionedmode, a node in a subsystem can have a view of the subsystem con�guration but notof the entire system con�guration. Basically, the NCM can be forced to operate inthe partitioned mode when internode communication becomes highly unreliable. Notethat this partitioning is applied to the NCM only; the possibility of application-relatedcommunication between a node in one group and another node in a di�erent group isnot removed.2. Centralized mode vs. decentralized modeAs mentioned earlier, the NCM server can be implemented in either centralized ordecentralized forms.
P P P

Network Configuration
Management (NCM)Figure 3.17: Logical NCM functionFigure 3.18 depicts all four di�erent execution modes for the NCM server of whichthe logical function is shown in Figure 3.17:(a) Fully cooperating centralized mode(b) Fully cooperating decentralized mode(c) Partitioned centralized mode(d) Partitioned decentralized modeThe basic principles guiding the four execution modes are summarized in Figure 3.19.The comparisons of the fully cooperating mode and the partitioned mode are made inFigure 3.20. Since under the partitioned mode a node cannot have a global view of theentire system status, the mode sacri�ces the possibilities for globally optimal resourcesharing and task distribution. On the other hand, if the fully cooperating mode ofexecution for the NCM is attempted when communication between some groups ofnodes is di�cult, then the execution e�ciency of the NCM will become very low.

58 The Adaptive Distributed Recovery Block Scheme
P NCM P

Centralized control

Decentralized control

NCM

P P P

P P P

P

Partitioned

Centralized

Decentralized

NCM NCM

NCM NCMNCM

Figure 3.18: Four di�erent execution modes for NCM

The Adaptive Distributed Recovery Block Scheme 59
NCM Arrangement

partitioned

Centralized

Decentralized

Manage partitioning
during periods of
communication
difficulties

Select leader

Achieve
consensus

Basic Principle

Select leader

Achieve consensus

Centralized

DecentralizedFigure 3.19: Basic principles guiding the execution modesThe main performance characteristics of the four di�erent execution modes are alsosummarized in Figure 3.20. The footnotes associated with Figure 3.20 are the follow-ing:1. Since the transient fault rate is low, the centralized approach (A.1) will yield goodcoverage in fault detection.2. In general, the decentralized approach (A.2) has better coverage in fault detection butits relative strength becomes noticeable in situations with high fault rate. However,the decentralized approach requires consumption of more processing power spreadover all the nodes.3. The partitioned mode of operation is entered when high-data-rate communicationamong groups of nodes becomes di�cult. If the transient fault rate is low, then com-munication di�culties will occur only due to permanent loss of some communicationlinks. Here the centralized approach (B.1) will yield good coverage in fault detection.4. Because of the same reasons used in both cases 2 and 3 above, the decentralizedapproach (B.2) will yield good coverage in fault detection.5. In the situations with high rate of transient faults, the superior capability of thedecentralized approach (A.2) over A.1 in terms of the coverage in fault detectionshould be noticeable.6. If the transient fault rate is high, then communication di�culties among the largelyautonomous node groups can occur not just because of permanent loss of some commu-nication links but also because of a high level of noise interferences in communicationlinks. Within each node group, frequent transient faults may occur in processingnodes or communication links. In such cases, the decentralized approach (B.2) willexhibit superior coverage in fault detection.

60 The Adaptive Distributed Recovery Block Scheme
A. Fully Cooperating B. PartitionedObservability high lowerResource sharing high lowerand Optimalityof task dist.Performance in low higherhighly noisyenvironments A. Fully Cooperating B. PartitionedA.1 Centralized A.2 Decentralized B.1 Centralized B.2 DecentralizedFor situations good1 good2 good3 good4with low rate of but consumestransient faults more processingpowerFor situations worse than A.25 good5 worse than B.26 good6with high rateof transientfaultsFor situations about the same about the same about the same about the samewith low rate as A.27 as A.17 as B.28 as B.18of permanentfaultsFor situations slightly worse slightly better about the same about the samewith high rate than A.29 than A.19 as B.210 as B.110of permanentfaultsCoverage for high11 highest11 lowest11 low11fault (in cases of (in cases of (in cases of (in cases ofdetection high transient high transient high transient high transientfault rate) fault rate) fault rate) fault rate)Msg tra�c lower than A.212 higher than A.112 lower than B.212 higher than B.212Figure 3.20: Performance characteristics of the four NCM execution modes

The Adaptive Distributed Recovery Block Scheme 617. Permanent faults at low rate are not a major factor in
uencing the performance ofeither of the two approaches, centralized (A.1) and decentralized (A.2).8. Permanent faults at low rate are not a major factor in
uencing the performance ofeither of the two approaches, centralized (B.1) and decentralized (B.2).9. Permanent faults at high rate will cause the di�erences in performance of the twoapproaches, A.1 and A.2, to become more noticeable than permanent faults at low ratedo but they do not have as much in
uence as transient faults do. This is partly becauseusually the partitioned mode of operation is entered after a substantial number ofpermanent fault occurrences and thus the period during which high rate of permanentfaults is exhibited can only be brief. In any case, frequent changes of the �supervisor�node under A.1 due to the supervisor losses will incur more serious performancepenalty than node failures of the same frequency under A.2 do.10. If permanent faults occur at a high rate even after the system enters the partitionedmode of operation, then repeated re-partitioning is likely to occur. In this type ofsituation, the di�erences in performance between the two approaches, B.1 and B.2,are not signi�cant.11. The fully cooperating mode of operation yields high observability whereas the parti-tioned mode of operation incurs sacri�ces of the global view. Therefore, the formeryields higher fault detection coverage than the latter does. In addition, between thecentralized approaches and the decentralized approaches, the decentralized approachesyield higher coverage in fault detection.12. In general, the decentralized approach creates a higher message tra�c than the cen-tralized approach does. This occurs because the former requires every active node tomonitor the health conditions of every other node and participate in decision mak-ing regarding the system status and the recon�guration action to be taken, whereaswith the latter, only the supervisor node gets involved in monitoring and decisionmaking in a major way. Between the fully cooperating mode of operation and thepartitioned mode of operation, the former creates more message tra�c than the latterbecause in the latter case, frequent message communication occurs only among thenodes belonging to the same group.Execution modes of each major NCM function Let us now examine the possibilitiesof executing each of the three major components of NCM in di�erent modes. First of all,since both the recognition of nodes with permanent faults and the con�rmation of messagedeliveries involve monitoring of message communications, it is natural to execute both NCMfunctions in the same mode. This is why the four execution modes are listed as possiblemodes for network monitoring in Figure 3.21. Secondly, for task redistribution, the decen-tralized execution approach is not attractive; it just increases the overhead. The reliabilityof the node handling task redistribution can be checked by the other two NCM functions(i.e., recognition of permanent faults and con�rmation of message deliveries). Therefore,only two execution modes, the fully cooperating centralized mode and the partitioned cen-tralized mode, are listed as possible modes for task redistribution in Figure 3.21.

62 The Adaptive Distributed Recovery Block Scheme
Centralized

Partitioned

Centralized

Decentralized

Partitioned &
Centralized

Partitioned
Decentralized

: Adaptation in response to changes in
equipment, time availability, fault rate, etc.

Task distribution
& redist.

Network monitoring

Cent. - Cent.

Cent. - Part. & Cent.

Part. - Part. & Cent.

Cent. - Decent.

Cent. - Part. & Decent.

Part. - Part. & Decent.

Fault rate (node)

Fault rate (comm),
Proc capacity

Fault rate,
Proc capacity,

Fault rate,
Proc capacity,

Eqpt(link),
Fault rate(comm),
Time(?)

Eqpt(link),
Fault rate(comm),
Time(?)

Eqpt (link),
Fault rate

(comm)

Eqpt (link),
Fault rate

(comm)Figure 3.21: A scenario for adaptation of the NCM server

The Adaptive Distributed Recovery Block Scheme 63Third, when the network monitoring is executed in the fully cooperating mode, thereis no reason for the task redistribution function to be executed in a partitioned mode. Onthe other hand, the inverse is not true; even if the network monitoring is executed in thepartitioned mode, the task redistribution function may be executed in the fully cooperatingmode to achieve globally optimal distribution. This is because the task redistributionfunction is much less frequently executed than the network monitoring is and thus evenwith the reduced network communication bandwidth caused by the high level of noiseinterference, execution of the task distribution function in the fully cooperating mode maybe feasible.Therefore, only six possible combinations of the network redistribution execution modeand the network monitoring execution mode need to be considered:1. (fully cooperating) centralized (mode for task redistribution) and (fully cooperating)centralized (mode for network monitoring)2. centralized and decentralized3. centralized and partitioned centralized4. centralized and partitioned decentralized5. partitioned centralized and partitioned centralized6. partitioned centralized and partitioned decentralizedThese six combinations are depicted in Figure 3.21.An example adaptation scenario The reasons for switching of the NCM server amongdi�erent execution modes are the di�erent performance characteristics of the di�erent exe-cution modes summarized in Figure 3.20. The switching between the fully cooperating modeand the partitioned mode will be dictated primarily by the communication link availabilityand secondarily by the remaining communication bandwidth available and the executiontime available. Similarly, the switching between the centralized mode and the decentralizedmode will be dictated primarily by the node fault rate and the communication link faultrate and secondarily by the processing capacity available. Figure 3.21 depicts an adaptationscenario based on these reasonings.Further classi�cation of the centralized execution mode The centralized execu-tion mode for the network monitoring function can be further classi�ed into the simplexsupervisor mode and the active replicated supervisor mode. In the latter case, the net-work monitoring function is assigned to a DRB station. Again, the primary factors thatin
uence the decisions on switching between the simplex supervisor mode and the activereplicated supervisor mode include the time constraints on the network monitoring func-tion, the equipment availability, and the fault rate. The task redistribution function canalso be executed in the modes discussed above.

64 The Adaptive Distributed Recovery Block Scheme3.2.7 Summary and Remaining ADRB Research IssuesThe ADRB scheme we have presented is a concrete instance of the AFT technology thatcan be put into practice immediately. However, in order to exploit the full potential of thescheme, further research is needed to develop various optimal implementation techniques.Some of the major study topics in this direction are� Cost-e�ective integration of the adaptive redundant execution management compo-nent and the adaptive NCM component into the ADRB scheme� Development of an implementation model for the ADRB scheme in object-based dis-tributed systems� Experimental design of ADRB stationsSuccessful accomplishment of these studies will contribute signi�cantly to the growth ofthe AFT technology and its user community.3.2.8 Partial Validation of a DRB ImplementationTo partially validate the DRB implementation structure discussed in Section 3.2.5 and iden-tify detailed implementation issues, a simple experimental implementation of DRB stationsin a small-scale LAN-based DCS testbed was conducted from March through June 1993.The simple freeway-segment monitoring simulation program was �rst implemented ona LAN of four PCs. As shown in Figure 3.22, the simulated freeway segment has one on-ramp and one o�-ramp. One PC is used to simulate the dynamically changing conditionsof the freeway segment, including positions of continuously entering and exiting cars. Thesecond PC uses two sensors to keep counts of the cars entering the freeway segment duringeach checking interval. The third PC uses two sensors to keep counts of the cars exitingthe freeway segment during each checking interval. The fourth PC then collects reportsfrom the second and third PCs, calculates the number of cars in the freeway segment, anddisplays the count.As shown in Figure 3.22, two DRB stations were con�gured, and thus six PCs wereused. The experiment involved the injection of faults, measurement of the overhead andrecovery performance, and subsequent analysis of the system behavior. This experimentwas a partial validation of the DRB implementation structure in that the supervisor stationwas not implemented. The
owcharts in Figures 3.23 and 3.24 show the details of the DRBprotocols implemented in the preliminary partial validation experiment.3.2.9 A Modular Implementation Model for the DRB Scheme with aCon�guration SupervisorThe implementation techniques for the DRB scheme, especially those for use in LAN-basedsystems, are expected to go through continuous re�nement and extension in the future.This is partly due to the fact that a higher-fault-coverage real-time fault tolerance schemecan be obtained by combining the DRB scheme with complementary techniques for networkdiagnosis and recon�guration and reliable communication. New complementary techniques

The Adaptive Distributed Recovery Block Scheme 65
Generate
data for

scan nodes

Accumulate
the number

of cars exited

Accumulate
the number of
cars entered

Display
number of

cars on
the freeway

Simulator
Node

Scan1
Node

Scan2
Node

Display
Node

Display
Node

Scan1
Node

Shadow Primary

Shadow Primary

DREAM NET

Traffic info (1) Traffic info (2)

Number of
cars exited (4)

Number
of cars

entered (5)

AT
fall
(12)

ACK (14)

AT
fall
(13)

ACK (11)

Number of
cars entered (3)

Monitored Freeway Section

() Content code

MessageFigure 3.22: Structuring of the freeway monitoring application

66 The Adaptive Distributed Recovery Block Scheme

check mode

primary

shadow

C

A

wait for data*

TryA & AT

send result**

pass

AT fail or

timeout

wait for ACK or
partner’s result

received
message

Main Process

Message Monitor Process

PRIMARY NODE

send failure msg
to shadow

TryB & AT fail

change node’s
mode to shadow

pass

post Message
Monitor Process

ACK message? change node’s
mode to shadow

report to supervisor
"ACK didn’t come

from successor node"

YES

partner’s
result

timeout

wait

send ACK with ID to
partner & predecessor

check mode

primary

shadow
go to E

report its own
node crash
to survivor

go to F

go to D

Rollback

B

received data

* Assumption: the kernel has a queue
holding incoming messages.

** Assumption: the kernel may choose to send
each message twice if possible noise interferences

in the communication channel are of concern.

A

go to G

C

Figure 3.23: Details of the DRB protocols for the primary node from the freeway example

The Adaptive Distributed Recovery Block Scheme 67
*

wait for ACK
from primary

wait for data*

TryB & AT

wait for result or
failure message

received data

pass

received
result

AT fail or

timeout

wait for ACK
from successor

received
ACK

Main Process

Message Monitor Process

SHADOW NODE

change node’s
mode to primary

post Message
Monitor Process

timeout

timeout

received
ACK

send result
timeout or

timeout change node’s
mode to primary

TryA & AT
failpass report its own

node crash to
supervisor

D

check mode
primary

shadow

go to B

F

go to B

wait

go to A

Rollback

check mode
primary

shadow G

E

report to supervisor
"Fatal error occurred"

wait for primary’s report to
supervisor about the absence

of ACK from successor

change node’s
mode to primary

go to C

report to supervisor about
possible crashes of both the
partner and the successor

received
report

* Assumption: the kernel has a queue
holding incoming messages.

receive
failure msg

Figure 3.24: Details of the DRB protocols for the shadow node from the freeway example

68 The Adaptive Distributed Recovery Block Schemewith such capabilities will continue to emerge at least for the next several years. To facilitatee�cient incorporation of new complementary mechanisms, an implementation model thathas a modular and easily expandable structure has been devised. The promising natureof the model was con�rmed during an experimental implementation conducted from Julythrough September 1993 using both the model and a simple PC-network-based real-timedistributed computing testbed.3.2.9.1 Worker DRB computing stations and a supervisor stationIn typical LAN-based real-time fault-tolerant systems using the DRB scheme, real-timedata
ows among several DRB stations, which are called worker DRB stations. We mayalso incorporate a supervisor station to make the system highly robust and to extend itslifetime [15, 24]. Figure 3.7 depicts a typical con�guration of a system composed of severalworker DRB stations and a supervisor station.The supervisor station is generally responsible for detection of node crashes, detectionof misjudgments by the nodes in DRB stations about the status of their partner nodes,and network recon�guration, including task redistribution. Some of these functions | forexample, detection of node crashes | can be decentralized [27]. In fact, new approachesfor the detection of node crashes and the loss of messages, and for network recon�gurationhave mushroomed in recent years, indicating that these areas are still immature. It isthus advantageous to implement worker DRB stations and the supervisor station such thatthe new, more cost-e�ective, complementary approaches and mechanisms emerging in thefuture can be easily incorporated. This means that it is highly desirable to have a modularimplementation model for both the worker DRB station and the supervisor station.This modular implementation model will facilitate the e�cient incorporation of newlyemerging approaches for� Supervisor-worker cooperation{ Arbitration of the con
icts arising between partners in a worker DRB station{ Network recon�guration� Reliable multicast and crashed node detection.All promising approaches for detection of crashed nodes and message losses requirefrequent communication, logging, and analysis of some form of inquiry messages and ac-knowledgment messages [15, 27]. Components responsible for such message production,logging, and analysis are thus integral parts of the implementation model. The DF schemefor providing dynamically con�gured multicast channels is also a part of the implementationmodel.3.2.10 An Implementation Model for a Worker DRB Computing StationA general structure of the implementation model for a DRB computing station is depictedin Figure 3.25. Each node in a worker DRB station uses a slightly di�erent subset of thecomponents, depending on its role (primary or shadow). The shared variable FROLE in

The Adaptive Distributed Recovery Block Scheme 69
Node in a worker DRB station

ICP

PSuP

OCP

AAP

QACK

QOUTQIDQINQD

QRACK

QREQ

FROLEFSUSP SPART

Shared variables

RML SML

*

*

TASK
PROCESS

SPA R T : s ta tus o f the par tner
RML : received message log
SML : sent message log

: in shadow node on ly
FR O L E : f lag ind icat ing the ro le (p r imary , shadow)
F S U S P : f lag ind icat ing the mode (normal , suspended)

FORCE

FORCE

TASK
PROC.

WTP

Figure 3.25: Structure of the modular implementation model for a node in a DRB station

70 The Adaptive Distributed Recovery Block Scheme
Primary node

ICP

OCP

QACK

QOUT

QIN

QD
QRACK

QREQ

TASK
PROCESS

Pick a data
item from QOUT

See if QACK has
been flushed in the

past ∆ seconds

Send the data from
QOUT & the contents
of QACK in one msg

Send the contents
of QACK in one msg

Receive msg with
a proper content

code

Distribute msg

Pick data

Send the ID of
the selected data

Analyze the status
of the other nodes &
the success/failure
in msg delivery

PSuP

Respond to
the request
from partner
or supervisor

Set execution
deadline

TRY

AT

Send result

Update local
database

Cancel timeout

success

flush

no data

success

N

Y

Set Ack timeout
if the data item
is a try result

: FLOW OF TIME INFORMATION ONLY : CONTROL FLOW ONLY

FROLEFSUSP SPART

Shared variables

RML SML

FORCE

OCP

WTP

Error
handling

Figure 3.26: Detailed structure of the modular implementation model for a primary node

The Adaptive Distributed Recovery Block Scheme 71each node indicates the role of the node. Figure 3.26 provides some more details on thestructure of the primary node.A worker DRB station node has six basic types of processes: (1) Task process, (2)Incoming Communication process (ICP), (3) Outgoing Communication process (OCP), (4)Watchdog Timer process (WTP), (5) Acknowledgment Analyzer process (AAP), and (6)Partnership Support Process (PSuP).The ICP is responsible for receiving all incoming messages (tagged with appropriatecontent codes) and distributing them to several data queues, based on their attributes.The data from the predecessor computing stations are stored into the queue QIN (whichmay actually represent a set of queues, QIN1, QIN2, ..., QINp, where p is the number ofpredecessor stations) in both primary and shadow nodes.At the beginning of each data processing cycle, the primary node's Task process picks adata item from QIN . To ensure the input data consistency, the primary node's Task processinforms its partner (in the shadow node) of the ID of the data item just selected. The ICPon the shadow node receives the ID message and inserts it into QID. The shadow's Taskprocess picks a data ID from QID at the beginning of each data processing cycle. Using theID, the shadow node's Task process selects the data item from its QIN . Whenever possible,both the primary node's Task process and the shadow node's Task process execute di�erenttry blocks in each data processing cycle, although they execute the same acceptance test.The result data produced by the primary node's Task process are given to the OCPthrough QOUT . Then, the OCP sends out all such messages onto the multicast channelto which at least the successor stations, the shadow node, and the supervisor station areconnected. Throughout the execution of the DRB scheme, a time-out mechanism is engagedfor fault detection. The WTP is responsible for reacting to each time-out signal. The time-out values are registered into QD by the processes in need of time-out activations. Forexample, a time-out mechanism is engaged by the Task process before an execution of atry block. If such a time-out occurs, the WTP forces the Task process to start the samesequence of actions that is normally followed upon an acceptance test failure.To facilitate both node crash detection and message delivery con�rmation, all nodesin the system periodically exchange heartbeats in the form of acknowledgment messages.To be more speci�c, the following cost-e�ective approach is adopted. As the ICP receiveseach message from the channel, it produces an acknowledgment (ack) message and insertsit into QACK . Normally, as shown in Figure 3.26, the OCP does not send an ack messageseparately. Instead, when the OCP is ready to send a message picked from QOUT , theOCP piggybacks the full contents of QACK onto the message from QOUT and then sendsthe combined message. However, if the OCP notices that QOUT has remained empty for aperiod equal to or longer than a preset interval D, then the OCP packs the full contents ofQACK as a single message and sends it out. This acknowledgment/heartbeat scheme enablesthe AAP to detect node crashes and message delivery failures without much delay. Whenthe crash of the supervisor is detected, the worker stations should elect a new supervisorstation.Once a node encounters an anomalous situation, it enters the suspended mode and thisentry involves setting the shared variable FSUSP to indicate the mode. For example, afterthe primary node sends a task output message but before it receives an acknowledgmentfrom the successor computing station, it may receive a task output message sent by its

72 The Adaptive Distributed Recovery Block Schemepartner node. Such a situation may arise because of a fault in the receiver part of the shadownode (now acting as the primary node) or a fault in the sender part of the primary node.The primary node then enters the suspended mode and seeks advice from the supervisor.As another example, if the shadow node discovers that it has missed an application datamessage from a predecessor station because of a fault in its receiver part, it enters thesuspended mode and seeks help from the primary node to obtain a copy of the message.In general, a node is in the suspended mode while it tries to get help from the supervisorand/or its partner node.The PSuP handles the requests/orders from the supervisor station and the partnernode. For example, an order from the supervisor station may be to switch the role from theprimary node to the shadow node. A request from the partner may be to provide a copyof an application data message generated by a predecessor station. Or it may be a requestfrom the newly assigned partner node for a copy of the local database. The knowledge anode has about its partner node | for example, the role and the mode of the partner node| is kept in the shared variable SPART .As the ICP receives an incoming message, it saves a time-stamped copy in the receivedmessage log (RML). The RML facilitates an investigation when an acknowledgment messagecorresponding to an unknown message is received. It also enables the PSuP to honor arequest from the partner node for a copy of a message that the latter node missed. Asmentioned before, a request for copies of the data messages may also come from a newlyassigned partner node.As the OCP sends out a message, it also records a time-stamped copy in the sent messagelog (SML). One use of the SML is by the AAP, which, among other things, attempts tocon�rm the successful delivery of each message sent out.If the primary node's Task process fails to pass the acceptance test, it sends a failurenotice to both the partner node and the supervisor station before making an attempt fora rollback-and-retry. Because the local database has not been updated yet and the RMLcontains the input data item, all the information needed for a rollback is available as longas the main memory is not corrupted. That is, no other preparatory actions are needed tofacilitate rollbacks. A node with a memory hardware fault can be treated in the same waya crashed node is treated, even if the memory fault is transient. That is, such a node istaken out of the DRB station for o�-line repair and then can be reincorporated as a newpartner node.3.2.10.1 An implementation model for a supervisor stationA general structure of the implementation model for a supervisor station is depicted inFigure 3.27.The supervisor station is basically responsible for detection of misjudgments by the nodesin DRB computing stations about the status of their partner nodes, detection of node crashand message delivery failure, and network recon�guration including task redistribution.A supervisor station controls �ve types of processes: Supervisor process, ICP, OCP,WTP, and AAP. The Supervisor process monitors the messages communicated betweennodes of worker DRB stations and detects misjudgments by the nodes|for example, detec-tion of two primary nodes in a DRB station. It may also receive inquiries from nodes in the

The Adaptive Distributed Recovery Block Scheme 73
ICP OCP

AAP

QACK

QOUT

QRACK

QD

Analysis
result

SUPERVISOR

PROCESS

Shared variables

RML WST SML

Node in a supervisor station

RML: received message log

SML: sent message log.

WST: worker s tatus table

INQ: inqui ry f rom a node in a worker DRB s tat ion

FORCE

FORCE

SUPV.
PROC.

WTP

QDATA,ID,

INQ

Figure 3.27: The structure of the implementation model for a supervisor node

74 The Adaptive Distributed Recovery Block Schemesuspended mode regarding possible mistakes by themselves or their partner nodes, such asmessage transmission failures and message reception failures. When a shadow node decidesto become a primary node, it also sends a request to the supervisor node for a posterioriapproval.To support network recon�guration, the status of worker nodes is preserved in the workerstatus table, WST. Once a new worker is inserted into the system, the Supervisor processassigns a job to the new mode. For example, the job may be to function as a shadow nodein a certain DRB station. As in the case of a worker DRB station, the function of theAAP is to detect node crash and/or message delivery failure by continuously analyzing theack messages coming in. In the case of a detection, the AAP reports it to the Supervisorprocess so that the latter may orchestrate a network recon�guration action. The AAPas well as the WTP may discover that the supervisor node has been faulty, for example,missing a message, or trapping the Supervisor process in an erroneous loop. Upon suchdiscovery, the AAP or WTP can force the Supervisor process to take an appropriate actionfor conditioning the system for continuous operation, such as ordering other nodes to electa new supervisor node, or crashing the supervisor node.3.2.11 An Experimental Validation of the Modular ImplementationModelAs a supplement to the logical validation of the implementation model formulated, an exper-imental implementation based the model discussed in Section 3.2.9 was conducted from Julythrough September 1993. A simple kernel called the ECPM (Extended Concurrent PascalMachine) was used. The ECPM has evolved in the UCI DREAM (Distributed Real-timeEver Available Microcomputing) Lab over the past ten years and was designed to supportreal-time processes distributed over a LAN. The kernel was extended to incorporate theDF scheme. The simple case of freeway tra�c monitoring used in the earlier experimen-tal implementation discussed in Section 3.2.8 was again implemented on the PC network(PCN) testbed. Two worker DRB stations were implemented and a skeleton version of thesupervisor station, which detects misjudgments made by the nodes in worker DRB stationsbut does not yet possess other capabilities such as network recon�guration, was established.The kernel in each node uses dual ready queues and the time-sliced processor allocationapproach. The time slices are allocated alternatively to the two ready queues. In addition,a powerful dynamic priority scheme called priority-bracket scheduling [22] is applied forallocation of time slices among the processes within each ready queue. This
exible structureis highly useful in scheduling the processor time in each node to support the processesdepicted in Figures 3.25 and 3.27. Because the ICP is considered to be the most time-critical process, it was assigned to monopolize one ready queue, whereas other processeswere assigned to compete within the other ready queue. This experimental study e�ort washalted before reaching the full validation stage because of the change in the demonstrationplan of the AFR project.

Chapter 4Adaptive Distributed RecoveryBlock DemonstrationThe results gathered from the Adaptive Distributed Recovery Block (ADRB) demonstrationprogram and lessons learned from designing, implementing, and executing the demonstra-tion are described below.The ADRB demonstration and the AFRS (Adaptive Fault Resistant Systems) Releaseof the Alpha Distributed Operating System that supports it are described in a number ofother documents1. Particularly:� Alpha Software, AFRS Release: Computer System Operator's Manual describes thegeneration and operation of the AFRS Release of the Alpha Distributed OperatingSystem and its applications� Alpha Software, AFRS Release: Software User's Manual documents the AFRS Re-lease of the Alpha Distributed Operating System and its adaptivity demonstration forpotential users of the system� Alpha Software, AFRS Release: System/Segment Speci�cation discusses the AlphaDistributed Computer System Testbed that hosts the AFRS Release and its applica-tions� Alpha Software, AFRS Release: Software Design Document details the design of theAFRS Release and of its adaptivity demonstrationWe address three major areas: (1) the behavior of the ADRB facility, including itsperformance, (2) the structure of the ADRB facility and the application software thatemploys it, and (3) general lessons learned in applying ADRBs in a system.The adaptivity demonstration of the AFRS project implemented an Adaptive Dis-tributed Recovery Block facility with a notional plot correlator application function. TheADRB facility is capable of executing in three distinct modes in order to provide a bettermatch between the system requirements and available system resources, each of which canbe dynamically changing.1Separately bound 75

76 Adaptive Distributed Recovery Block DemonstrationThe ADRB facility displays each of these three modes and behaves as expected in eachmode. An experimenter can direct the ADRB facility to change ADRB operating modeat any time, and can cause the facility to transition smoothly between any of the threemodes. We analyze Speci�c performance results, although this is not a production system;it is intended to display the ADRB technology and to permit experimenters to study it ina notional situation.The structure of the ADRB facility and the separation of that facility from the basicapplication code should allow for an orderly expansion of function in future versions of thissoftware.Devising, designing, implementing, and exercising the adaptivity demonstration alsoillustrated a few desirable properties for application functions that are to be encapsulatedby an ADRB facility. Most of these properties result from the need to execute two try blockssimultaneously on di�erent nodes in a distributed system. Coordination of their executionis complicated if large databases must be shared or kept consistent between these parallelapplication functions.The adaptivity demonstration is operational and permits the ongoing study of ADRBsin an Alpha Distributed Operating System context.4.1 Adaptive Distributed Recovery BlocksAdaptive Distributed Recovery Blocks are extensions of Recovery Blocks (RBs) [40] andDistributed Recovery Blocks (DRBs) [24]. ADRBs provide multiple modes of operationin order to provide a better match between system requirements and available system re-sources, each of which can be dynamically changing.ADRBs provide application services despite� Software faults during recovery block execution� Hardware faults during recovery block execution� Node failures� Timing faults (a result that was produced too late)ADRBs can be con�gured to utilize or conserve processing resources. The Alpha-provided ADRBs can operate in three distinct modes� Mode I | Serial recovery blocks. Mode I incorporates two recovery (try) blocks andan acceptance test. For each input datum, the primary try block is executed. If thegenerated result passes the acceptance test, the results from the primary try blockare used. Otherwise, the second try block is executed and its results are passed tothe acceptance test. If all results fail the test, an error is reported to a higher level ofcontrol.� Mode II | Concurrent recovery blocks. Mode II is designed to reduce the latency ofthe recovery block when a fault occurs. Here, too, there are two try blocks and anacceptance test. In Mode II, both try blocks are executed concurrently on separate

Adaptive Distributed Recovery Block Demonstration 77nodes, and their results are independently tested by copies of the acceptance test. Ifthe primary try block passes the acceptance test, its results are used. Otherwise, ifthe secondary try block passes the acceptance test, then its results are used. UnlikeMode I, the secondary try block has already been executed if the primary try blockfails the acceptance test. This mode is also known as a distributed recovery block(DRB).� Mode III | Recovery block with skip. Mode III is designed for the situation whereresources are scarce and time is pressing. There is one try block and one acceptancetest. The try block is executed. If the generated result passes the acceptance test,the results of the try block are used. Otherwise, the recovery block is ended and thecurrent input is skipped | that is, no result is generated for that input. (This is anacceptable action for some application functions, including the function employed forthe adaptation demonstration.)4.2 ADRB BehaviorParticular behavior of ADRBs is expected in the presence of faults, and in certain situations,a change between ADRB operating modes can be made. ADRB mode behavior is supportedby experimental measurements.4.2.1 Operational ADRB Mode CharacteristicsThe Alpha-hosted ADRB facility clearly exhibits the three operational modes described inSection 4.1 when executing the ADRB demonstration program. The gross characteristicsof each mode are exactly as expected, speci�cally1. When a software fault is detected in Mode I, recovery cannot occur until at leastanother try block has been executed.2. When a software fault is detected in Mode II, recovery, if it is successful, occurs quicklybecause the both ADRB stations are working to produce answers at the same time.To obtain such low latency, two try blocks are executed in parallel for each inputreport.3. When a software fault is detected in Mode III, recovery takes longer than in Mode II,but is much quicker than in Mode I. However, the quality of the result su�ers. In fact,for this demonstration, the default result computed under Mode III indicates that theincoming report could not be correlated with any track (because there was insu�cienttime to really check). This is, in fact, an acceptable outcome for this application inmost cases.Section 4.2.3 reviews some quantitative experimental results to illustrate these points.

78 Adaptive Distributed Recovery Block Demonstration4.2.2 Dynamically Changing ADRB ModesIf ADRBs are to be truly adaptive, it must be possible to dynamically change ADRB operat-ing modes. In fact, ideally, mode transitions would occur instantaneously and \seamlessly."The coordination required to accomplish such transitions can be considerable.Nonetheless, the Alpha-hosted ADRB facility in the adaptivity demonstration allowsthe experimenter to change from any ADRB mode to any other ADRB mode at any time.The time required to accomplish the transition is small compared to the anticipated tryblock execution times of many tens of milliseconds. This is arguably the most noteworthyaspect of the adaptivity demonstration.One factor that can delay the completion of an ADRB mode transition is the timerequired to obtain access to critical data structures that describe the current operatingmode and con�guration. (An ADRB con�guration is an ADRB operating mode, along withan indication of the ADRB stations involved in the execution and their respective roles.)The current con�guration is accessed and recorded along with other critical information foreach invocation. The ADRB facility should, in theory, be capable of processing a sequenceof application invocations where each individual invocation is carried out in a di�erentADRB mode.Transitions into ADRB Mode II from either Mode I or Mode III require additional coor-dination to assure consistent views of the existing track database.2 The issue of databasesand ADRBs is discussed in some depth in Section 4.4.2.4.2.3 Experimental MeasurementsAs stated in Section 4.2.1, the three ADRB modes behaved as expected in the face offaults. However, a number of factors can a�ect the desirability of one mode over another.For example, if inputs can occasionally be skipped | that is, not processed by the ADRBfacility | or can be queued momentarily, Mode I might be far preferable to Mode II whenfaults are rare and not clustered. This determination might be based on the fact that, onaverage, Mode II requires twice as many processing cycles (and other computing resources)as Mode I when faults are infrequent. Mode I requires as many total processing cycles asMode II only when a fault is encountered.On the other hand, if faults occur frequently, the total number of processing cyclesconsumed by Mode II compared toMode I narrows and the reduced recovery latency Mode IIprovides becomes much more attractive.To appreciate such aspects of system operation, the ADRB demonstration presents in-formation related to resource consumption, in total and on average, as well as the occurrenceof faults and errors and their recovery.The ADRB demonstration provides the experimenter with a number of parameters toadjust, including1. ADRB operating mode2. Try block execution time2Transitions from ADRB Mode II into either of the other modes do not involve this delay because muchless state must be propagated in those cases.

Adaptive Distributed Recovery Block Demonstration 793. Input arrival rate4. Software fault rate5. Input queueingThese parameters can be adjusted to study each of the ADRB operating modes undervarious loads and fault environments.Elevating the software fault rate tends to make the display more interesting becausethere are more faults to recover from and, in fact, there can be errors due to multiple faultsexperienced by two try blocks for a single input datum. While executing the demonstrationunder such conditions is most interesting, it might not be the most relevant, if it does notre
ect realistic circumstances.To address that concern, the ADRB demonstration permits the experimenter to selectparameters that are most appropriate for that experimenter's application. If the experi-menter wishes to have an even better feel for the relevance of ADRBs for another applicationfunction, the plot correlator function is encapsulated in an Alpha object type and could bereplaced by another object type that computed another application function. (Section 4.3discusses the structure of the system in greater depth.)The following subsections provide a few interesting quantitative results gained throughuse of the adaptivity demonstration, relative to the use of ADRBs. The table below showsthe average values measured for a few critical variables over a large number of runs, featuringa range of input arrival periods, try block execution times, and software fault rates. \TBT"designates try block execution time, and \FTBT" designates the fast try block executiontime of the code executed by Mode III when it detects a fault.Measurement (Avg) Mode I Mode II Mode IIITotal Cycles{no fault TBT + 15 ms 2*TBT + 70 ms TBT + 15 msRecovery Latency TBT + 6 ms 24 ms FTBT + 6 msTotal Cycles{fault(s) 2*TBT + 21 ms 2*TBT + 70 ms TBT + FTBT + 21 ms4.2.3.1 Fault Rates and Error RatesThe application experiences an error when the Alpha-hosted application program cannotcorrectly identify the track with which a given report is associated. There are three potentialcauses of errors in the adaptivity demonstration:1. The ADRB-encapsulated plot correlator speci�es a track other than the correct track.2. The ADRB-encapsulated plot correlator experiences a su�cient number of faults thatit cannot produce an acceptable result for a given input report.3. The ADRB-encapsulated plot correlator is too busy to respond to a new input arrival.

80 Adaptive Distributed Recovery Block DemonstrationThe plot correlation function is su�ciently forgiving of faults and errors that there is noevidence that it has ever designated an incorrect track identi�cation for an input report.Both of the remaining error types have been seen and can be controlled by the experi-menter. The rate at which faults occur is under experimenter control.In ADRB Mode III operation, any fault will result in an error. So the error rate andthe fault rate are identical. Under Modes I and II, two faults must occur for a single inputin order for an error to occur. So the expected error rate is the square of the fault rate(assuming that software faults occur independently in di�erent try blocks3).The measured rate at which errors occur for a given software fault rate corresponds wellwith the expected error rate.The �nal error class occurs when the application cannot keep up with the input stream.This is often a signal to change ADRB operating modes, although if it occurs in Mode III,there is no more e�cient mode to select. In that case, the plot correlator can tolerate someloss of data, although accuracy might often be compromised.4.2.3.2 ADRB-Related OverheadADRB-related overload could mean a number of things. In this discussion, it refers to theamount of time spent processing application invocations and replies in the ADRB facilityitself | that is, in the ADRBInvokeWrapper and the ADRBWrappers. (See Section 4.3 fora discussion of these objects.)The current Alpha DOS does not have a global clock, so it is di�cult to measure certaintimes directly. That includes some portions of the ADRB-related overhead. As a result,the �gure is approximated.Mode I Overhead. Mode I overhead is derived from two measurements:� The total compute time required to produce a result when there are no faults� The recovery latency measured when a fault is experiencedEach of these times includes the time required to execute the Application Function'stry block, so the overhead in each case is the measured time minus the try block executiontime. Over a wide span of try block execution times, input arrival periods, and softwarefault rates, these numbers vary little.When there are no faults, Mode I imposes roughly a 15 ms overhead. When one or twofaults are encountered an additional 5 to 11 ms is added. (On average, this is an additional6 ms.)Mode II Overhead. Mode II overhead is approximated a little di�erently than Mode Ioverhead. In this case, the measured compute time re
ects the time spent executing bothtry blocks. Consequently, by removing the actual time spent executing the try blocks, an3The occurrences of faults in this demonstration are determined by drawing random numbers from in-dependent uniform probability distributions. Consequently, they should be, essentially, independent. Thismight not be the case in a real system, where common programmer errors might provide a correlationbetween failures of di�erent try blocks.

Adaptive Distributed Recovery Block Demonstration 81approximation of the Mode II overhead can be made. Once again, over a large range of tryblock execution times, input arrival periods, and software fault rates, the overhead �gurevaries little.Whether or not there are faults, the ADRB Mode II overhead consistently runs at about68 to 74 ms.This higher overhead number, when compared to Mode I, is understandable. First, twofull invocations are performed compared to Mode I's single invocation (when no fault isencountered). In addition, these numbers were measured using a two-node testbed con�gu-ration. In such a con�guration, one node acts as a dedicated ADRB station, while the otheracts as an ADRB station and the interface to the application program, the ADRB Manager,and the external world. During executing in Mode I, the ADRB station selected is the onethat is local to the ADRB Manager, eliminating the need to incur the additional overheadof remote invocations to access the ADRB station. In Mode II, one of the ADRB stationsalways requires a remote invocation. By looking at the recovery latency for Mode II, it ispossible to estimate the additional time required to access the remote ADRB station |on average 24 ms. This time would be signi�cantly reduced in the processor-pair per nodecon�guration suggested by Kim in Chapter 3.Mode III Overhead. Mode III overhead is calculated in the same manner as Mode Ioverhead. In fact, the �gures are virtually identical to Mode I | approximately 15 msof overhead when no faults are encountered, and 5 to 11 additional ms when faults areencountered.The important di�erence between Mode I and Mode III is not the amount of ADRB-related overhead, it is the reduced computation time required when a fault is encountered.4.2.3.3 Minimum Input Arrival PeriodBased on the ADRB-related overhead calculations of Subsection 4.2.3.2, a lower boundcan be placed on the interarrival time between input reports. So for example, even withan instantaneous try block execution and no faults, Mode I or Mode III could handle atmost about 66 inputs/second/ADRB station. The maximum �gure for Mode II would beapproximately 29 inputs/second/ADRB station pair.4.3 ADRB and Application StructureThe system structure permits the separation of the code that provides the ADRB facilityfrom the application code, making the ADRB facility largely transparent to the applicationprogram. The internal organization of the ADRB facility is is structured to allow futuregrowth, with clear object capability.4.3.1 Separation of Application and Adaptivity SoftwareFrom the start, it was intended that the ADRB software would be separated from theapplication software to the greatest practical extent. Ideally, an Alpha application programthat employed operation invocation to execute application functions could be mechanically

82 Adaptive Distributed Recovery Block Demonstrationtransformed to invoke the ADRB facility, rather than application functions, each time itexecuted a function. The ADRB facility would then determine how many of what typeof application function to invoke to provide the proper level of service to the applicationprogram. When these invocations replied, the ADRB facility would coordinate the selectionof an acceptable result and return that result to the invoking program.This ideal has been largely attained in the adaptivity demonstration:1. When the Application Program object instance logically invokes an Application Func-tion object instance, it actually invokes an ADRBInvokeWrapper object instance.2. The ADRBInvokeWrapper routes the application invocation, along with other relevantdata, to one or more ADRB stations.3. Another object instance, called an ADRBWrapper, encapsulates each ApplicationFunction object instance on an ADRB station.Consequently, the Application Program invokes a single operation on the ADRBIn-vokeWrapper and receives a reply, just as if it had invoked the operation directly on theApplication Function. The ADRBInvokeWrapper and one or more ADRBWrappers coor-dinate as needed to route the actual invocation to the proper set of Application Functionobject instances in the proper order. And each Application Function object instance re-ceives invocations from a single ADRBWrapper, just as it would normally receive themfrom an Application Program.Despite the fact that the application and adaptivity software have been largely sepa-rated, they have not been totally separated. They a�ect each other in the following ways:1. The Application Function object code, although essentially identical to that of a non-ADRB version, is presented as a set of try blocks, rather than as a single function.In addition, the Application Function must provide an acceptance test to check theresults it produces. This seems to be an inherent consequence of using ADRBs.2. The ADRBInvokeWrapper and the ADRBWrapper must know something about therequest and reply parameters for the application. At the very least, they must knowthe size of the parameter blocks. This might not be an inevitable di�erence; strongerlanguage support than Alpha currently provides might alleviate this problem.3. In certain cases, including that presented by the adaptivity demonstration, theADRBInvokeWrapper must understand the syntax and semantics of the applicationwell enough to provide consistent results to the Application Program, despite the factthat the results are produced by two di�erent Application Functions that can developand maintain di�erent internal state. (This is not a problem when the ApplicationFunctions do not have persistent internal state, or when the internal persistent statethat they have cannot diverge.) Section 4.4 discusses this point for the adaptivitydemonstration in greater depth.4.3.2 Structure of Adaptivity SoftwareThe adaptation software also has a fair amount of internal structure:

Adaptive Distributed Recovery Block Demonstration 831. The AFR Manager controls all of the fault resistance facilities in the system, deter-mining the allocation of resources to each fault resistance facility.2. The ADRB Manager controls one of these fault resistance facilities. It organizesits resources as a number of ADRB stations and assigns these stations to performspeci�c application functions. In the future, more automated managers will selectthe ADRB operating mode for each application function using the ADRB facility.Today, the experimenter selects the desired ADRB operating mode. The ADRBManager converts that operating mode into an ADRB con�guration | that is, itassigns ADRB stations to support the selected ADRB operating mode. The ADRBManager communicates the ADRB con�guration to the ADRBInvokeWrapper.3. The ADRBInvokeWrapper acts as the interface for the Application Program to theADRB facility. It receives ADRB con�gurations from the ADRB Manager and breaksthem down into a set of ADRB roles that are played by individual ADRB stations.Roles include, for instance, being the only ADRB station that is performing tradi-tional, sequential try blocks on a single ADRB station, or being the primary or shadowADRB station for execution of DRBs in parallel. For each invocation performed bythe Application Program, the ADRBInvokeWrapper makes invocations on the partic-ipating ADRB stations, telling each the role that it should play for that invocation.4. Each ADRBWrapper acts as the interface to a single Application Function. Eachplays its role, coordinating with its associated Application Function and the ADRBIn-vokeWrapper as assigned.This structure seems su�ciently general to permit continued growth of the ADRB andAFR facilities in the future. At the same time, the structure establishes clear guidelines forthe responsibility of each of these objects in the adaptivity portion of the system, indicatingthose resources under each object's control and the locus of control in the overall AFRsystem.Although no formal, re
ective structure was employed in the adaptivity demonstration,the organization of the AFR and ADRB facilities is similar in spirit to that found in re
ectivesystems, where, informally speaking, each layer of the AFR system observes and controls alower layer, while interacting with an associated, parallel layer of the application.4.4 Lessons LearnedPrevious sections have already discussed a number of the lessons that the adaptivity demon-stration has taught, including the feasibility of implementing an ADRB facility on the AlphaDistributed Operating System. Consequently, we focus here on issues that have not beendiscussed in depth earlier.4.4.1 Desirable Application Function PropertiesThe work in an ADRB-based system is performed by a number of ADRB stations. Eachstation receives a sequence of inputs and produces a corresponding sequence of outputs.Although the ADRB stations coordinate execution with one another as needed for purposes

84 Adaptive Distributed Recovery Block Demonstrationof ADRB management | for example, when two stations are executing the same functionas parts of a DRB | they do not interact directly when executing their encapsulatedapplication function.When hosting such a model on an object-oriented operating system like Alpha, idealapplication functions would be entirely self-contained; they would not invoke other objectsto perform their services. In addition, they would perform their application function in twophases. During the �rst phase they would read data, and during the second, they wouldupdate their internal and external state, after determining that the computed result wasacceptable.4The plot correlator application function that was chosen for the adaptivity demonstra-tion possesses these properties. The plot correlator function has been encapsulated into anobject that makes no invocations on other objects. In addition, the plot correlator functionreads the entries in a track database, searching for the best �t for a new radar report. Inthe end, when a candidate track is selected | or the plot correlator concludes that theradar report constitutes a new track | an acceptance test is applied to the result and thetrack database is updated if the result is acceptable.The plot correlator possesses one other advantageous property for this demonstration:it can tolerate skips. That is, under overload, some input reports can be skipped withoutseriously a�ecting the quality of the plot correlation function. Without this property, everyinput would have to be processed, presumably until an acceptable result was obtained foreach. Under stress, this would be a serious constraint on system operation. (Notice thatMode III takes direct advantage of this fact, skipping inputs when the primary try blockfails. If this could not be tolerated, Mode III would not be viable, limiting the ADRBfacility's options when the system is under stress.There is one problem with the selection of the plot correlator function: it accesses apotentially large track database. Managing access to this database, particularly in Mode II,can be di�cult.4.4.2 ADRBs and DatabasesIf an application function is to be encapsulated by ADRBs, then the function must be struc-tured so that it can be executed in Mode II, that is, DRB mode. In that case, two ADRBstations execute the application function in parallel. If the application function accessesa large database, then both ADRB stations must be permitted access to the database inparallel.There are a number of ways to provide access to the database, and each has its ownadvantages and disadvantages:1. The database can be shared by both ADRB stations. If the application function hasthe two-phase read/write property mentioned in Section 4.4.1, then it seems reason-able to have both ADRB stations read from a single, shared database; only one station4This two-phase execution is not, strictly speaking, a requirement. However, if the application functiondoes not possess this property, then more powerful facilities, like atomic transactions or an ad hoc equivalent,must be provided in order to allow the application function to undo changes that were made based on theassumption that the computation produced an acceptable result.

Adaptive Distributed Recovery Block Demonstration 85will actually write the acceptable result to the database. That way, both stations willalways share a consistent view of the database.There are at least two problems with this approach. First, the database is a sharedresource and must be able to service twice the normal number of requests when thesystem is operating in Mode II. More seriously, all of the database references madeby these two distributed, database-intensive application functions will be remote ref-erences | references to another node in most cases. This is a very expensive methodwhen compared to direct reads from local memory or local �les.Providing multiple, consistent copies of the database for the application functions ad-dresses the latter concern, but requires a powerful fault-tolerant technique to supportADRBs, if it is even practical.2. A copy of the database can be passed to each ADRB station at the start of eachapplication function execution. At the completion of execution, each station willupdate its copy. Only one copy will be selected for subsequent use, ensuring consistentviews for all executions of the ADRB stations.This might be feasible for small databases, but seems prohibitively expensive for largedatabases.3. Each ADRB station can create and maintain its own copy of the database. This en-sures e�cient access to the information, but poses other problems. Since either ADRBstation might experience a fault during the execution of the application function, itis possible that their internal databases might diverge | that is, they might not beidentical. The ADRB scheme does not permit the stations to exchange results at theconclusion of application function executions. As a result, another party must takethe answers o�ered by the ADRB stations, interpret them, and produce a consistentresult to return to the Application Program.The adaptivity demonstration chose the last approach. It increased the complexity of theADRBInvokeWrapper object, which was responsible for interpreting the individual resultsand producing the uni�ed result for the Application Program. In this case, the ADRBIn-vManager produced an identi�er for each unique track that was observed by the Alphasystem. Each individual ADRB station's plot correlator would have its own local trackidenti�er for that track. The ADRBInvokeWrapper maintained a set of translation tablesto transform the individual plot correlator results into the unique Alpha track identi�er.5This choice also complicated transitions into Mode II from the sequential try block modes(Modes I and III). For these ADRB mode transitions, a copy of the track database of theactive ADRB station's track table had to be transferred to the partner ADRB station.65Notice that this is not a universal function for such systems. This would be a more attractive optionif it were. Performing the speci�ed translations requires knowledge of the plot correlator function, both itssyntax and its semantics. Di�erent steps would be required if the application function was something otherthan plot correlation.6This might make it seem that the databases cannot diverge; but they can. Each time multiple newtracks are detected, there is a chance that a fault will cause the ADRB stations to assign di�erent trackidenti�ers to the new tracks | even if they are running identical plot correlator code.

86 Adaptive Distributed Recovery Block DemonstrationDespite these di�culties, this seemed to be the most realistic structure for the applica-tion at hand. It is di�cult to imagine passing multiple copies of real | that is, very large| track databases around the system with the arrival of each new radar report; and it isdi�cult to imagine making the large number of invocations to read track entries that wouldbe necessary for each plot correlation. If the actual plot correlation were to take place inthe shared database object, then the individual results are far less independent then theyare under the selected scheme.

Chapter 5Adaptive Distributed-ThreadIntegrityWe applied the concepts of adaptive fault tolerance to the kernel-layer abstraction of dis-tributed threads. Our goals were to formulate a high-level design for a portion of an adap-tive distributed-thread integrity service and to examine the principles we have developedfor adaptive fault tolerance. We focused on the thread maintenance and repair protocolthat forms a key portion of this service.First, we describe the distributed-thread integrity problem in the context of the Alphaprogramming model and supervisory real-time control systems. We then present the basiccomponents needed to address thread maintenance and repair. To be more concrete, wegive an overview of the Alpha TMAR protocol [37], which has been implemented, and theassumptions on which it is based. This protocol is used as the basis for the Thread Pollingprotocol, one of the protocols that we select for further study.For adaptive fault tolerance to be viable, there must be at least two alternative imple-mentations of the fault tolerance function, each of which performs better in di�erent regionsof the possible operating environment. We examine a variety of alternatives to the ThreadPolling protocol, and select one called the Node Alive protocol. It is described in Section 5.6along with the assumptions on which it is based.We believe that the Thread Polling protocol and the Node Alive protocol are viablealternatives. The di�erent regions of the operating environment for which they are bestsuited are presented in Section 5.7. We also discuss how each of these two protocols can bemade adaptive by controlling their parameters.We then discuss the adaptivity functions of monitoring, diagnosis, control, and meta-control in the context of TMAR. Based on our examination of these issues we believe thata practical, adaptive TMAR protocol could be constructed.Finally, we describe a proof-of-concept simulation system that we implemented to studythe TMAR protocols and adaptive fault tolerance. We present some experimental resultsthat illustrate the bene�ts of using automatic adaptive control to switch between simpli�edversions of the Thread Polling and Node Alive protocols.87

88 Adaptive Distributed-Thread Integrity5.1 Alpha Thread Maintenance and RepairDistributed threads are a programming model abstraction that is used to represent dis-tributed computations. To be concrete, we will consider distributed threads in the contextof the Alpha programming model [38, 11], which was designed for real-time supervisory con-trol. Here, the programming model is provided directly by the Alpha distributed real-timeoperating system kernel, and distributed threads represent real-time distributed computa-tions. When we refer to Alpha, we will usually be referring to the Alpha kernel.As part of the basic programming model, it is important for the system to provide certainguarantees about the integrity of distributed threads. In Alpha, a distributed thread is acontinuous, distributed execution point that transparently and reliably spans physical nodesin the computer system. If a distributed thread is broken, say because of a node failure,the Alpha kernel is responsible for noticing the problem and repairing the thread. BecauseAlpha is a real-time kernel, this must be done in a timely manner.This portion of Alpha's distributed-thread integrity support is called thread mainte-nance and repair (TMAR). It is responsible for discovering thread breaks, identifying thecontinuous portion of the thread that can be recovered, identifying the portions that mustbe removed, managing removal and clean up, and resuming execution. The portions of adistributed thread that must be removed are called orphans. It is desirable to remove or-phans as soon as possible to prevent them from consuming resources that could be used byvalid computations and to prevent them from performing invalid or contradictory actions.Providing integrity for distributed threads is similar to providing integrity for otherdistributed computation abstractions. For example, orphan detection and elimination hasbeen studied in the context of nested transactions [17, 18, 31], remote procedure calls [36,39, 45], and message logging protocols [2].A speci�c TMAR protocol was developed for Alpha, based on assumptions about theexpected operating environment [37]. This included assumptions about the workload, theuser and application requirements, the system fault model, and the resource base andits con�guration. However, this is a rich environment and we believe that other TMARprotocols would perform better under a di�erent set of assumptions. To test this hypothesis,we devised numerous alternative TMAR protocols, and then selected two for more detailedstudy.During the AFRS project, we identi�ed three ways to build adaptive fault tolerance intosystems. They are changing key algorithm parameters, changing algorithms, and recon�g-uring the placement and use of processing and data. Here, we used the �rst two approachesas the basis for an adaptive TMAR scheme.5.2 The Alpha Programming ModelThe Alpha real-time distributed operating system kernel was designed to supportsupervisory-control real-time processing in a distributed computing system. The concepts ofthe Alpha programming model, described here, can be used to develop real-time distributedsoftware.The Alpha kernel provides the following abstractions for writing real-time distributedsoftware:

Adaptive Distributed-Thread Integrity 89� Objects, which are passive abstract data types that contain data and code organizedinto data-access and control operations� Distributed threads, which are execution control points that move among objects viaoperation invocation� Operation invocation, which is an approach similar to procedure calling by whichdistributed threads execute object operationsWe will refer to distributed threads as threads except as necessary for clarity.5.2.1 ObjectsAn Alpha object is an instance of an abstract data type, and exists entirely on a singlenode in the computing system. All resources in an Alpha system, such as devices, �les, anddistributed threads, appear as objects to the programmer.5.2.2 Distributed ThreadsAn Alpha distributed thread is used to represent a distributed real-time activity or compu-tation. It is a continuous, distributed execution point that transparently and reliably spansphysical nodes in the computer system. A thread performs a computation by invoking oper-ations on objects. Each invoked object can be located locally on the node where the threadis currently executing or remotely on another node. After several invocations, a thread canextend across a collection of nodes.A thread begins executing by invoking an object operation. The object and the operationare speci�ed when the thread is created. The portion of a thread executing an objectoperation is called a thread segment. Consequently, a thread is composed of a concatenationof thread segments. The initial segment of a thread is called its root and the most recentsegment of a thread is called its head. The head of a thread is the only segment that isactive.When a thread invokes an object operation, we say that the thread enters the objectand becomes threaded in the object. A thread becomes unthreaded from (leaves) an objectby returning from an invocation. A thread can simultaneously be threaded in a group ofobjects, and the kernel maintains a history of the objects in which a thread is currentlythreaded. A thread can also be viewed as being composed of a sequence of sections, wherea section is a maximal length sequence of contiguous thread segments on a node. The �rstsegment in the section results from an invocation from another node, and the last segmentin the section performs a remote invocation. At any time, a thread is executing only withinthe object associated with its head and may directly access only the contents of that object.A thread maintains its identity, its local state, and its attributes for timeliness, robust-ness, and so on, as it executes and moves among objects and nodes. These attributes areused by the Alpha kernel at each node to perform resource management on a system-widebasis. This makes it possible for the decisions of individual nodes to be in the best interestsof the entire distributed application.

90 Adaptive Distributed-Thread Integrity5.2.3 Invocation and Thread CreationThe invocation of an object operation is the vehicle for all interactions in Alpha, includingoperating system calls. Invocation has synchronous request/reply semantics similar to thoseof remote procedure calls (RPCs). As a result, operation invocations can be nested. Ifdesired, the e�ect of an asynchronous operation invocation can be obtained through the useof thread creation.An invocation may fail for various reasons, such as a protection violation, the use ofincorrect parameters, a node failure, a machine exception, or the expiration of a timeconstraint. Noti�cation of an invocation failure is returned to the invoking thread.When a thread invokes an operation, a new segment is created for the thread. Theinvoking thread segment provides the initial parameters and capabilities to the new threadsegment, which then executes the invoked operation. When that operation invocation sub-sequently returns, the returning thread segment passes any return values to the invokingthread segment, and is then removed. Invoking an operation of a local object does notinvolve the scheduler because, in this case, the successive thread segments resemble stackframes supporting nested procedure calls more than they resemble coordinated, independentthreads.Thread creation works similarly to ordinary operation invocation, except that it causesa new thread to be created and invoked on a speci�ed object operation. The actual creationand initiation of the new thread occurs asynchronously from the execution of the creationoperation. The new thread runs concurrently with and independently from the thread thatcreates it, and does not return any values to the thread that creates it when it terminates.5.2.4 Illustration of Alpha Programming Model ConceptsFigure 5.1 presents a snapshot of a system employing the Alpha programming model. Thesystem contains four nodes, and currently four distributed threads are executing. Eachthread root is marked by the thread name, and each thread head is marked by a dot. As anexample, thread 1 is rooted on node 1, it is threaded through objects on nodes 1, 2, 3, andthen 2 again, and its head is located on node 2. Thread 1 may actually be executing on node2, but we cannot tell for sure from this snapshot. Each operation execution forms a threadsegment, and each maximal contiguous sequence of operation executions on a node forms athread section. Thread 1 currently has four sections, two of which are located on node 2.The segment structure of section 3 is shown in more detail. Here we see that thread 1 hassequentially invoked operations for objects 1, 2, 3, and then 2 again, creating segments 12through 15 for the thread.5.3 Distributed-Thread IntegrityA computer programming model speci�es the entities that represent computations, theentities that represent stored application information, and the means by which the compu-tations interact with each other and the information. For example, a common programmingmodel uses processes to represent computation, �les to store application information, re-mote procedure calls to implement interprocess communication, and �le reading and writingto enable processes to access �les.

Adaptive Distributed-Thread Integrity 91
Section 3

Thread 2

Section 1

Section 2

Section 2

Section 3

●

●

Thread 1

Section 1

Thread 3

Section 1 ●
Thread 4

Section 1

Section 2

Section 4 ●

Node 1 Node 4Node 3Node 2

Seg 12

Seg 15

Seg 14Seg 13

Object 1 Object 2 Object 3

Figure 5.1: Illustration of the Alpha programming model conceptsProgramming models like the one provided by Alpha are growing in popularity. In thisapproach, distributed threads are used to represent computations, and objects with opera-tions are used to represent application information. Threads access application informationby invoking object operations, and communicate with each other indirectly through sharedobject information. Except for timeliness, which is a primary concern in a real-time op-erating system like Alpha, the same issues must be addressed in any system that employsdistributed threads in its programming model.A variety of active entities called threads have been used in di�erent programmingmodels. A distributed thread (not necessarily an Alpha distributed thread) is unique inseveral ways. First, it moves from one node to another when it makes a remote operationinvocation. Second, it maintains its identity when it makes an operation invocation, evenif it is a remote invocation. The identity can include a variety of information, such as thethread's timing requirements and functional importance. Third, it usually does not possessits own address space, but enters and uses the address spaces of the objects it references.The integrity of a distributed thread is important because it is a basic part of the pro-gramming model. Unlike thread abstractions that are bound to a single node, a distributedthread can experience a partial failure when a node fails because a single distributed threadcan span several nodes. A node failure can break a distributed thread in one or more ofthe following ways: it can divide the thread into several pieces, remove the thread's root,or remove the thread's head. In addition, it can simultaneously damage several threads.The operating system kernel must address the problem of thread breaks to provide theabstraction of a reliable, continuous distributed thread. There are two high-level approachesto providing thread integrity. In the �rst approach, which could be called optimistic, the

92 Adaptive Distributed-Thread Integritysystem tries to identify thread breaks. When a break is found, the system trims the threadback to the longest continuous piece from its root, and removes the remaining orphan sec-tions. We will refer to this as the thread trimming approach. In the second approach, whichcould be called pessimistic, the system always maintains enough replicated information toendure thread breaks. When a thread break is encountered while returning from an invo-cation, the system transparently repairs the break and continues. For this study, we willonly consider approaches of the �rst kind.In Figure 5.2, we demonstrate the e�ects of a node failure on the set of operating threads.Assume that node 3 fails immediately after the snapshot shown in Figure 5.1. The failurehas broken threads 1, 2, and 4. Threads 1 and 4 have been divided into two pieces, andthread 2 has lost its head. The orphan sections are indicated by dashed outlines. Noticethat no thread had its head removed. The orphan sections with heads retain their heads,and can continue to execute until they are stopped by TMAR or until they try to return toan operation on a failed node.
Section 2

Section 3

Thread 1

Section 1

Thread 3

Section 1 ●
Thread 4

Section 1

Section 2

Section 4

Node 1 Node 4Node 2

●

●

●Figure 5.2: E�ects of a node failure on executing threadsTMAR is responsible for detecting and recovering from the damaged state shown inFigure 5.2. In Figure 5.3, we show a snapshot of the system after TMAR has repairedthe damage. This is only one of many possible states that could result after TMAR hascompleted its repair work. While TMAR is detecting the failure, analyzing the damage,and repairing the threads, undamaged threads such as thread 3 could continue to execute,and new threads could be created. All of the orphan sections and any further executionthey may have performed have been removed. In addition, new heads have been identi�edand activated for threads 1 and 4.5.3.1 System AssumptionsAssumptions about the expected operating environment have a strong in
uence on thee�cacy of using adaptation. Fewer degrees of freedom in the operating environment implythat a single approach will be more likely to provide adequate service for the entire range ofoperating conditions. Consequently, we will make only a few general assumptions here. Weconsider the operating environment to consist of the hardware resources that are available,the con�guration of the hardware resources, the fault model, the characteristics of theapplication workload, and the objectives of the users and the applications. In addition to

Adaptive Distributed-Thread Integrity 93
Thread 1

Section 1

Thread 3

Section 1 ●
Thread 4

Section 1

Section 2

Node 1 Node 4Node 2

●

●Figure 5.3: Repair actions performed by TMARassumptions about the operating environment, we assume that the application may havereal-time processing requirements and that the application may interact with the real world.In general, we assume that the system is asynchronous. We assume that it is organizedas a group of processing nodes connected by a communication network. Each node canhave one or more independent processors. A node can experience crash, performance, andomission failures. If a node requires several processors to operate and one of the processorsfails, the node will undergo a crash failure.We assume that the communication network can experience performance and omissionfailures. We make no assumptions about its size or about whether it can perform a hardwarebroadcast.Because we are focusing on thread integrity, we will take an abstract view of the appli-cation workload. We will consider only the load it places on communication processing andthe communication network and the characteristics of distributed threads, which includetheir structure, lifetime, and placement. We will make no assumptions in these areas. Ex-amples of di�erent thread characteristics include the number of threads rooted on a node,the number of nodes through which a thread is threaded, and the number of invokes duringa thread's lifetime.Similarly, we are concerned only with user and application requirements that a�ectthread integrity. We make no assumptions in this area except that the thread integrityservice will only be expected to handle requirements for which it has provided an interface.For example, an application may be allowed to specify the relative weight that it places onbreak detection latency and certainty.5.3.2 Components of the Thread Trimming ApproachThe thread trimming approach to TMAR works as follows. First, the system looks for abroken thread. When one is found, the system identi�es the longest continuous invocationchain starting from the thread's root. The last segment in this chain will become the headof the trimmed thread. The system then identi�es the orphan sections of the thread andmanages their removal. Part of orphan removal involves executing application-suppliedrepair code to undo or compensate for the actions of the orphans. After the orphans havebeen removed, the thread can resume execution from its new head. If a thread's root isremoved, the entire thread essentially becomes an orphan.

94 Adaptive Distributed-Thread IntegrityWe can divide the TMAR protocol into the following tasks. The tasks must be able tosimultaneously handle multiple threads and multiple failures.� Collect break detection informationThe system must gather enough information to allow it to determine that a threadbreak has occurred. It is desirable to detect a thread break early, but speed of detectionmust be balanced against the overhead that is incurred for normal operations.� Analyze break detection information.At some point, the system must examine the information that has been collected todetermine whether a thread break has occurred. Once again, the speed of detectionmust be balanced against the overhead of analysis. In addition, the analysis maybe inconclusive and the system may need to gather more information to re�ne itsdiagnosis.� Declare break.After enough evidence has been obtained, the system must declare that a thread hasbeen broken. Once again, speed of detection must be balanced against certainty ofdetection. Because the system is asynchronous and can experience omission and per-formance failures for both processing and communication, TMAR may inadvertentlydeclare a healthy thread broken. While this is unavoidable, it is very undesirablebecause it causes repair overhead, wastes correct work, and delays completion of thethread.� Collect repair information.In addition to declaring a thread break, the system must analyze information thatwill allow it to repair the break. This information may have been collected previously,say with the break detection information, but if not, it must be collected now. Thethread repair information will allow the system to identify the new thread head, theorphan thread sections, and the scheduling constraints for orphan removal.� Analyze thread repair information.After collecting the thread repair information, the systemmust identify the new threadhead and identify all of the thread's orphan sections.� Manage orphan removal.The system is responsible for managing orphan removal. The old thread head mustbe prevented from executing, the orphan sections must be placed in their exceptionhandlers, and the exception handlers must be supplied with scheduling constraints togovern their execution.� Resume thread execution.After all of the orphans have been removed, the new thread head can be allowed toresume execution.5.3.3 Alternative Task DesignsThe thread integrity tasks can be implemented in a variety of ways, leading to TMARprotocols that emphasize di�erent tradeo�s. When collecting information, whether for

Adaptive Distributed-Thread Integrity 95break detection or break repair, the major questions are when, how frequently, how much,what, by whom, and from whom. When analyzing information, whether for break detectionor break repair, the major questions are when, what, and by whom. The system must decidewhen it is certain enough to declare a thread broken, and what criteria it will use to makethat judgment. When repairing broken threads the major questions are how, when, and whocoordinates, and who participates. The system must also decide when to resume executinga repaired thread.The design choices that are made establish di�erent tradeo�s in the TMAR mechanismsand policies. These di�erences can be seen when the TMAR protocols are exposed to dif-ferent operating environments. The major design properties that are found in the tradeo�sare � Break detection latency | the time between the occurrence of a thread break and itsdiscovery� Break repair latency| the time between the discovery of a thread break and its repair� System overhead| the amount of processing and communication overhead introducedwhen collecting break detection and break repair information, when analyzing breakdetection and break repair information, and when repairing thread breaks� Break certainty | the likelihood that a thread is actually broken when the systemdeclares it broken5.3.4 Interactions with Other System ComponentsThe subsystem that maintains thread integrity does not exist in isolation. It must interactwith and be compatible with other major system components such as remote invocation,exception handling, and scheduling. The remote invocation subsystem is responsible formoving threads between nodes when an operation invocation or return occurs. It andTMAR have access to similar information about threads and nodes, and both are concernedwith the reliable movement of threads. Remote invocation and TMAR should be designedto support each other without either one duplicating the other's activities.The exception-handling subsystem provides a mechanism that allows the applicationto respond to exception conditions in an application-speci�c way. TMAR is responsiblefor placing a trimmed thread head in an appropriate exception handler at the right timeafter a thread has been repaired, and for placing orphan sections in appropriate threadhandlers at the right times during thread repair. The application is responsible for providingsemantically meaningful exception handler code to allow the application to recover fromthread breaks.The scheduling subsystem is responsible for deciding when computations will execute.In a real-time system, this will probably include the TMAR computations. TMAR mayhave to accommodate situations where application threads are scheduled ahead of TMARwork, and it will have to be designed to operate in a timely manner. In addition, TMARwill have to specify scheduling constraints for thread repair work, including applicationexception handlers.

96 Adaptive Distributed-Thread Integrity5.4 The Alpha TMAR ProtocolThe TMAR protocol that was implemented in Alpha was based on the assumptions de-scribed here. Other TMAR approaches that might be more appropriate under a di�erentset of assumptions are discussed in the next section.5.4.1 Alpha TMAR AssumptionsThe term design considerations, as originally used for the Alpha TMAR facility, is intendedto encompass not only requirements, but also preferences and any metrics that a designermight consult to make decisions. Adaptability, as discussed for AFRS, was not a designconsideration.The TMAR design considerations include the following objectives:� Failure of the TMAR function should not harm or impede the progress of intactdistributed threads.� TMAR processing should not introduce signi�cant overhead when threads invoke op-erations on remote nodes. It should be possible to use operations with a short durationthat quickly read or write a value. It might be possible to write a better TMAR pro-tocol, that is, one that would be more accurate, detect breaks sooner, recover frombreaks sooner, and so forth, if TMAR processing could be executed on every remoteinvocation and/or return. However, this would be inappropriate if the duration of theTMAR processing swamped the duration of the operation itself.� It should be possible to manage the resources consumed by the TMAR protocol,including memory, processing time, and communication bandwidth.� It should be possible to adjust the desired thread break detection latency.Many of the straightforward functional requirements, such as detecting a thread breakand repairing it in a timely manner, have been omitted so that we can focus on thoseconsiderations that allow some leeway in design.Alpha is currently implemented on multiprocessor nodes with three processors, each ofwhich has a dedicated function. The Application Processor (AP) executes application code.The Scheduling Coprocessor executes the scheduling policy for both application and systemthreads. The Communication Coprocessor executes a group of communication-orientedprotocols, including Remote Invoke and TMAR. The Alpha nodes are connected by anEthernet.The following assumptions underlie the Alpha Release 1.0 TMAR protocol:� Alpha nodes are interconnected by a bus, and the bus can broadcast messages to allof the nodes.� Communication errors are not common, which implies that datagrams are likely tobe successfully received.� Thread integrity is a basic function of the system, and its costs are viewed as overhead.

Adaptive Distributed-Thread Integrity 97� Communication is heavily used, which implies that TMAR should be aware of thenumber and size of messages it uses.� The number of nodes and distributed threads is small enough to permit thread in-tegrity to be tracked on a per-thread basis.� TMAR processing is hosted by the Communication Virtual Machine (CVM), whichhosts several communication protocols on the Communication Coprocessor.� TMAR is a decentralized protocol with each node responsible for all distributedthreads that are rooted locally.� Following a thread break, all orphan computations must be eliminated before a re-paired distributed thread can resume execution.5.4.2 The Alpha TMAR ProtocolThe Alpha TMAR protocol monitors the integrity of threads and repairs threads whena broken thread is detected. Repair is based on trimming a broken thread back to itsmost recent viable point and then allowing it to proceed. Before the trimmed threadcan be allowed to continue, orphaned remnants of the original distributed thread mustbe removed, and the state of the internal and external system must be restored or madeacceptable. TMAR is also responsible for coordinating the trimming of a thread that hasbeen aborted | for instance, because of an unsatis�ed time constraint. It is a decentralizedprotocol executed by a number of identical peers executing asynchronously on each node inthe system.Responsibility for thread integrity is divided among several components. The primarycomponent, the TMAR protocol, is responsible for detecting broken threads and coordi-nating their repair. The restoration of internal state and the execution of compensatingactions are performed by application code executed by the exception-handling mechanism.5.4.2.1 Detecting Thread BreaksEvery thread has a root segment, which is located on the node containing the object inwhich the thread was created. Each node is referred to as the root node for all of thethreads that are rooted on that node. Each root node is responsible for maintaining theintegrity of the threads rooted on it.A root node accomplishes this task by periodically executing a three-phase protocol. Inthe �rst phase, the root node broadcasts a polling message containing a list of all of thethreads rooted at that node that have made remote invocations. In the second phase, eachof the nodes that contains sections of the listed threads reports this information to the rootnode, along with information about the location of the thread's head. This information isexamined by the polling node to verify that an unbroken sequence of sections exists betweenthe root and head of each thread in the list. (Some missing section and head reports aretolerated, because communication over an Ethernet is subject to omission failures. However,a consistently missing section or thread head is certainly a problem.) In the third phase, thepolling node broadcasts a refresh message that announces the health of its locally rooted

98 Adaptive Distributed-Thread Integritythreads to all of the other nodes. If a thread is unbroken, the message indicates that theentire thread should be refreshed; if it is broken, only the continuous portion of the threadthat begins at the root and ends at the point of the break is refreshed. The sections beyondthe break must be eliminated (aborted) before the thread may resume execution at thepoint of the break. Upon receipt of a refresh message, the other nodes refresh local threadsections as directed.If a speci�ed time interval is exceeded since the last refresh message for the sections ofa thread on a node, then it is assumed that the root node for that thread has failed. Inthat case, all of the surviving sections are orphans and must be eliminated. Over time, thisthree-phase poll-respond-refresh sequence keeps all of the unbroken threads intact, withoutinterrupting the AP.5.4.2.2 Trimming Broken ThreadsThe Alpha programming model requires threads to be trimmed according to the proper ap-plication-de�ned scheduling parameters. When scheduling parameters are needed to sched-ule thread section aborts during a thread repair, TMAR locates the proper parameters andcirculates them to the nodes that need them. Until the proper scheduling parameters arereceived, the abortion of thread sections is scheduled on each node using a default timeconstraint.When a thread is being trimmed, each node trims the sections local to it that arebeyond the point of the break or abort. When a node trims a thread section, it executes allapplicable exception handlers. After all of these sections have been aborted, the root nodefor the thread is noti�ed. The root node continues to perform its normal polling cycle forthe thread, refreshing only that portion preceding the break or abort point. It keeps trackof the aborted sections as it is noti�ed of them and determines when the entire thread-trimming operation has been completed | that is, when each section beyond the break orabort point has either been aborted or determined to have failed (presumably because of anode or communication link failure).Once the entire thread has been trimmed, the thread's root node noti�es the nodecontaining the thread's new head that the trimmed thread may resume execution.5.4.2.3 Responsiveness and OverheadThe use of broadcast and multicast messages allows the amount of information that mustbe maintained for each thread in the system to be kept small. For instance, a root node maynever know exactly where the head of one of its rooted threads is, or how many sectionsthe thread has. It cannot be sure because it only knows what it received in response toits most recent polling message. Because messages may be lost, it cannot be sure that itreceived a report about all of the existing sections. Furthermore, even if it did receive allof the responses, the thread may have subsequently executed a new invocation that took itto another node, thereby creating a new thread section. Threads can move freely withoutexplicitly reporting their movements to their root node as long as they respond to the rootnode's polling messages.Polling messages are sent periodically by each node in the system. In addition, thetime limit within which a thread must be refreshed is a programmable, integral number of

Adaptive Distributed-Thread Integrity 99polling cycles, as is the number of responses for any thread that must be missed before itis assumed to be broken. Therefore, the polling frequency establishes the responsivenessof the system|that is, the length of time that passes after a thread break occurs untilit is conclusively detected. This allows the protocol to trade communications bandwidthfor thread break responsiveness: if necessary, a system can be made more responsive byemploying su�cient bandwidth to achieve a polling interval short enough to satisfy anyresponsiveness requirements.The TMAR protocol can handle successive failures because it continues to perform itsnormal three-phase refresh function on a thread's root node even while the thread is beingtrimmed. Subsequent thread breaks or aborts will be handled as soon as they are recognized.This makes the protocol somewhat more complicated than it would have to be if subsequentbreaks and aborts could be deferred, but it will improve responsiveness and reduce the timethat the trimmed thread must wait before proceeding in several cases, most notably whenmultiple nested time constraints cover a relatively small interval of time.Although it is straightforward for the root node to wait for the next polling cycle to takemany actions, responsiveness can be enhanced if it acts as soon as possible. Consequently,optimizations have been inserted into the protocol to allow the root node, and in some casesother nodes, to act without waiting for a polling cycle.5.5 Alternative TMAR ProtocolsTo gain some understanding for the adaptations that were possible, we examined numerousalternative designs for TMAR. Our goal was to explore the design space and try to identifyapproaches that were better suited for di�erent assumptions or tradeo�s. Here is a briefdescription of the idea behind some of the alternative schemes (or portions of schemes) weconsidered. (The �rst bullet is a generic description of the Alpha TMAR approach.)� Thread Polling. Each node is responsible for the threads rooted on it. The other nodesare polled for information about these threads. When a broken thread is detected, thenew head and orphan sections are identi�ed, and instructions are issued for removingthe orphans. All threads are treated equally. One advantage of having a thread's rootnode be in charge of TMAR is that a thread is usually considered irrevocably brokenif its root fails. We will refer to this as the Thread Polling protocol.� Self Checking. Each thread is responsible for checking its own health; the systemis not responsible. Part of a thread's execution time will be devoted to performingTMAR functions. A disadvantage of this approach is that it is di�cult to predictwhen a thread's TMAR functions will be performed. An advantage is that the TMARfunctions are scheduled as part of the thread's activity, and they will not be performedif the thread is not considered bene�cial enough to execute.� Partner Checking. Each thread with more than one section (i.e., it has at least oneactive remote invocation) has a partner thread that performs TMAR for it. The part-ner is a stub on the original thread's root node that never makes a remote invocation.This is similar to the previous idea except that a thread is not directly blocked by its

100 Adaptive Distributed-Thread Integrityown TMAR activity and the stub can execute with di�erent scheduling parametersthan its partner.� Synchronous Head Movement. When a thread executes a remote invocation or return,it synchronously reports its movement to its root node. This allows its root node toknow where all sections of the thread are located, including the head. If the root nodeis responsible for checking on the thread, it can direct its polls to this set of nodes. Adisadvantage of this approach is the execution delay that a thread experiences afterevery remote invocation or return. This might be acceptable in systems where manythreads rarely make remote invocations or returns.� Node Health. Thread break detection may be based on checking node health insteadof thread health. If a failed node is identi�ed, additional checks are then made todetermine what threads are broken and where they are damaged. Information aboutthreads that can be used for thread break detection and repair can be gathered in avariety of ways and at several di�erent times relative to the node health checks. Thiscould be an attractive approach if there are many threads with many sections, becauseof the reduction in overhead during correct operation. A sudden burst of thread repairprocessing immediately after detection of a failed node could be inappropriate for areal-time system. It is probably less desirable to falsely identify a broken node ratherthan a broken thread because of the extensive repair that could occur.� Selective Section Checking. TMAR could ignore the health of certain thread sections.This could reduce processing and communication overhead and reduce unnecessarythread repairs. For example, the initial sections of a thread could be ignored if thethread does not need to return to them again. A similar situation is when a sectionwill just be passed through by a return because the remote invocation was the lastinstruction of the section. To make this approach work, the system will need toproperly handle time constraints and exception blocks.� Invoked-Node Checking. Each node could check on the health of the nodes to whichit has made a remote invocation on behalf of some thread. A node failure would beindependently detected by all of the nodes that were checking its health. While thechecking nodes would know which threads were broken, additional information wouldneed to be exchanged at some time to make it possible to determine the new threadheads, the orphan sections, and the proper scheduling parameters for repair.� Section History. Each thread could carry history information about its sections with itwhen it makes a remote invocation. This would avoid the need to constantly relearnthe location of the thread's sections, but it could introduce overhead into remotethread movement. If node health checking is used, this approach could supply thethread break and repair information. This approach could be attractive if threadsrarely make remote invocations and returns.� Thread Walking. A thread's health could be checked by sending a pulse down thethread. The thread's root node would send a message to the node with the thread's�rst section, which would send a message to the node with the thread's second section,

Adaptive Distributed-Thread Integrity 101and so on, until the node with the thread's head is reached. If a break is found, repairinformation would have to be collected. This approach could reduce processing andcommunication overhead, but it might result in high break detection and break repairlatencies. One optimization would be to allow a node with multiple sections for athread to simultaneously send multiple check messages.In general, TMAR considers all of the threads in the same way and all of the nodesin the same way. It may be bene�cial to divide the threads and nodes into groups thatwould receive special treatment. For example, threads with a high functional importanceor threads that are close to completing might have their health checked more frequently.Similarly, nodes that have been slow to respond or nodes with many threads may have theirhealth checked more frequently. The system could adapt by dynamically forming groupsand moving threads or nodes between groups.Another idea is to create a hybrid TMAR protocol that combines several of the ideasdiscussed above. Threads or nodes with certain workloads or other characteristics could beprotected by suitably matched protocols. For example, a low overhead approach with highbreak detection and repair latencies could be used for most threads, while a high overheadapproach with low break detection and repair latencies could be used for a small number ofspecial threads. The system could adapt by dynamically selecting which protocols wouldbe active and which threads or nodes would use them.5.6 The Node Alive TMAR ProtocolAfter considering the various ideas for performing TMAR, we selected several of them toform an alternative TMAR protocol that we call the Node Alive protocol. Our goal was toconstruct a credible alternative to the existing Alpha TMAR protocol, or more genericallythe Thread Polling protocol, that would be based on di�erent assumptions and wouldoccupy a di�erent portion of the design space. We would then be able to study an adaptiveTMAR protocol that could switch between these two protocols, either on command or asthe expected operating environment changes.The Node Alive protocol is based on the node health and synchronous head movementschemes described in the previous section. The node health approach is used to detectsystem failures. Instead of directly looking for thread breaks, the protocol will look fornode failures, which will then be used to identify problems with threads. Thread breakdetection and repair information will be collected through the use of synchronous headmovement. Every time a thread executes a remote invocation or return, it will reliablyinform its root node about its movement. This will allow the root node to always knowwhere all of the thread's sections are located.5.6.1 Node Alive TMAR AssumptionsTo allow a reasonable comparison between the Node Alive and Thread Polling protocols,we have retained most of the Alpha TMAR assumptions for the Node Alive protocol. Onlya few key assumptions have been changed.We assume the same hardware base and architecture. The system is asynchronous andconsists of a collection of nodes in a local area network. The nodes are multiprocessors with

102 Adaptive Distributed-Thread Integritythree processors, each of which has a dedicated function: application processing, scheduling,and communication. The local area network is an Ethernet with broadcast capability.The nodes can experience crash, omission, and performance failures, and the network canexperience omission and performance failures.The system is assumed to be a real-time system. This means that the system and appli-cation computations have time constraints associated with them, and that their executionis scheduled. The scheduling policy will probably not provide fair access to the applicationprocessor, and application computations may interact with the real world. Care should betaken so that the TMAR protocol will not cause a sudden overhead when an exception isdiscovered.Of the four Alpha TMAR design objectives, we were able to maintain two.:� The resources consumed by TMAR should be manageable.� The thread break detection latency should be adjustable.The third objective is that the failure of TMAR should not harm or impede intactthreads. The node health portion of the protocol could delay or block the execution of agood thread if it took a long time or was unable to determine the set of good nodes. Thesynchronous head movement portion of the protocol could delay or block the execution ofa good thread if it took a long time or was unable to respond to a thread's movementnoti�cation. However, it should not be di�cult to write a relatively reliable agreementprotocol to identify the good nodes, and the system should be able to quickly respond to asynchronous head movement interrupt.The fourth objective is that TMAR should not introduce signi�cant overhead whenthreads perform remote invocations or returns. Synchronous head movement could intro-duce signi�cant overhead, including four remote message delays and two interrupt handlingdelays. This is mitigated by assumptions about the relative size of communication delays,the relative execution duration of remote operations, and the relative frequency of remotethread movement.We retained all but one of the Alpha thread-polling TMAR assumptions for the Node-alive protocol. Those assumptions are� The nodes are connected by a bus that can broadcast messages.� Thread integrity is a basic system function and its cost are overhead.� Communication errors are not common, which implies that datagrams are likely tobe successfully received.� Communication is heavily used, which implies that the protocol should be aware ofthe amount of message tra�c it generates.� TMAR processing is hosted by the CVM on the Communication Coprocessor.� TMAR is a decentralized protocol with each node responsible for all locally rootedthreads.� All orphan sections must be eliminated before a repaired thread can resume execution.

Adaptive Distributed-Thread Integrity 103The Thread-polling protocol assumption that we do not retain is that the number ofnodes and threads is small enough to permit thread integrity to be tracked on a per-threadbasis. We do not make any assumption about the number of nodes and threads, or aboutthe number of sections per thread or the number of threads per node.For the Node-alive protocol we make the following new assumptions:� The communication latency is relatively small compared to the execution duration ofremote computations.� It is not common to make frequent remote invocations to computations with shortexecution durations.5.6.2 Description of the Node Alive TMAR ProtocolThe Node Alive protocol is based on the idea of having a group of good nodes, where allnodes in the group agree on the membership of the group. A good node is a node thatis healthy, able to participate in system activities, and known to the other good nodes.The set of good nodes is identi�ed by running a system-wide node group membership(NGM) protocol. When this protocol is run, new healthy nodes can join the group andfailed nodes will be removed from the group. The NGM protocol will be based on ideasin group membership protocols that have been proposed for synchronous systems and forasynchronous systems [41].5.6.2.1 Detecting and Repairing Thread BreaksWhen an NGM protocol is run, the good nodes will agree on the group membership. Inaddition, they will agree on a circular ordering for the nodes. Each node is responsible formonitoring the health of the node that follows it in the circular order. Depending on howthe protocol is designed, each node will exchange one or more messages with its neighborto determine whether its neighbor is still alive. If it becomes suspicious of its neighbor'shealth, it will request that a new NGM be run.After the NGM protocol is completed, a new group will be formed. If nodes are missing,then they will be considered to have failed. Any threads with sections on a failed nodewill have to be repaired. If a broken thread was rooted on a failed node, then other nodeswith sections of that thread will independently recover from the work performed by thosesections and remove them. A node recovers by executing an exception handler containingapplication-speci�c code provided for a section (if one exists).The repair of other broken threads will be coordinated by the root nodes for thosethreads. As in the Thread Polling protocol, the root node will identify the new thread head,the orphan sections, and the scheduling parameters for the repair work. It will notify thenodes with the orphan sections that they need to perform thread repair, and will supplythem with the appropriate scheduling information. When all of the nodes with orphansnotify the root node that they have completed their repair work, the root node will notifythe node with the new thread head that it can resume execution of the thread.

104 Adaptive Distributed-Thread Integrity5.6.2.2 Collecting Thread-Break Detection and Repair InformationThread break detection and repair information is collected by synchronous head movement.When a thread executes a remote invocation or return, it reports its movement to its rootnode. This allows the root node to have accurate information about the location of allof the sections of all of its rooted threads, including the location of their heads. When anode failure is identi�ed, each node can immediately check to see whether any of its rootedthreads are broken. It will also have all the information it needs to manage their repair.Synchronous head movement involves the following steps:� A thread's current node noti�es the thread's root node that the thread is going tomove.� After some delay, the root node handles the noti�cation.� The root node sends an acknowledgment to the current node.� The thread is moved to its destination.� The thread's destination node noti�es the thread's root node of the thread's arrival.� After some delay, the root node handles the noti�cation.� The root node sends an acknowledgment to the destination node.� The thread is added to the destination node's ready queue and scheduled for execution.A thread will be blocked if its root node is unresponsive.Notice that synchronous head movement might cause a thread to experience a signi�cantexecution delay due to the four communication delays and the two noti�cation-handlingdelays. Because, in general, little work is needed to handle movement noti�cation theyprobably will cause little execution delay. However, a node might be busy with a morebene�cial computation. A smaller overhead will result if the root node is the same as eitherthe current node or the destination node.A root node needs scheduling information for its rooted threads so that it can sendappropriate scheduling parameters during thread repair. This scheduling information, whichis the same as the scheduling information needed by the Thread Polling protocol, could becollected during synchronous head movement, or the root node could request it after a nodefailure is detected.5.6.2.3 False Break DetectionBecause of the asynchronous nature of the system and the possibility of omission and per-formance failures in the nodes or the network, it is possible for a node to become suspiciousof its neighbor even though its neighbor is still healthy. In fact, the node that called forthe NGM may be the node that is having problems. For example, it may have failed toreceive proper response messages from its neighbor, or it may not be participating in thecheck protocol in a timely way.Identifying the group of good nodes is a two-step protocol. First, a node checks onthe health of its neighbor. If it is suspicious, it starts an NGM protocol where all of the

Adaptive Distributed-Thread Integrity 105good nodes come to agreement about the set of good nodes. If a node is mistaken about itsneighbor having failed, this will most likely be caught by the NGM protocol, which will thenkeep the node in the group. A node can expend more e�ort to increase the likelihood thatits diagnosis is correct, but this will increase node failure detection latency and hence threadbreak detection and repair latencies. Thus, a balance must be struck between diagnosticrisk and speed of detection.There must also be a balance between the amount of work performed by the initialneighbor check and the following NGM protocol. A node should not casually call for anNGM protocol because it is potentially expensive. All good nodes must participate in theprotocol, and a number of rounds of message exchanges may be needed.Because the system is asynchronous, an NGM protocol can also incorrectly identify agood node as failed. Unlike a true distributed consensus protocol, which has the propertiesthat� all good nodes are in the group� only good nodes are in the group� all good nodes agree on the groupan NGM protocol has the properties that� only good nodes are in the group� all nodes in the group agree on the groupThis means that a good node may accidentally be left out of the group. While such a nodecan later rejoin the group, the cost of a mistake in a TMAR protocol is high because thesystem must incorrectly endure a great deal of repair work. An NGM protocol can expendmore e�ort to increase the likelihood that the group membership is correct, but once againthis will increase detection and repair latencies for true failures. The Node Alive TMARprotocol will probably be designed so that the NGM protocol is more likely to be correctthan the neighbor checking protocol.5.7 Adaptive TMARAdaptive TMAR protocols can be constructed from the Thread Polling and Node AliveTMAR protocols we have described. Here, we discuss changing parameters associated withthe two protocols, and switching between the two protocols. In the next section, we considerthe adaptive functions needed to carry out these adaptive changes.5.7.1 An Adaptive Thread Polling ProtocolThe Thread Polling protocol has several parameters that can be adjusted. They are thepolling frequency, the poll response time-out period, and the number of polling roundsneeded to declare a thread break. In addition, the protocol does not have to treat allthreads identically. Adjusting all of these factors dynamically will allow the Thread Pollingprotocol to be tuned to a wide range of operating environments.

106 Adaptive Distributed-Thread IntegrityThe polling frequency controls a tradeo� between overhead and break detection latency.Each poll requires a root node to prepare a poll packet, broadcast the poll packet to allother nodes, and analyze the poll responses. The other nodes must prepare and send a re-sponse packet. This could constitute a signi�cant amount of processing and communicationoverhead. On the other hand, the more frequently this information is collected, the soonera broken thread can be detected. The setting of this parameter would depend on factorssuch as the load on the network, the load on the nodes, the number of threads, the averagenumber of sections per threads, the number of nodes, the application's need for quick breakdetection, and so forth.The poll response time-out period would govern a tradeo� between break detectioncertainty and break detection latency. By waiting for a longer time period before analyzingpoll response packets, a root node would be more likely to have received all of the pollresponses, in spite of network and node performance failures. Thus, it would be less likelyto mistakenly declare a thread broken. On the other hand, it would take longer before atruly broken thread could be detected. This parameter could be a�ected by the load onthe nodes, the load on the network, historical information about performance failures, theapplication's need for quick break detection, and so forth.The number of polling rounds needed to declare a thread break also a�ects the tradeo�between break detection certainty and break detection latency. Because of the asynchronousnature of the system and the protocol, each polling round can produce incomplete or contra-dictory information. For example, a thread section may be missing because a poll responsewas lost, and two nodes might report that they have a certain thread's head. Examiningthe responses from several polling rounds would help to clear up mistakes and identify trueproblems. It is desirable to avoid mistakenly declaring a thread broken because of the sig-ni�cant repair work involved and the detrimental e�ect on the thread. On the other hand,it is desirable to detect a truly broken thread as soon as possible. This parameter would bea�ected by the same factors as the poll response timeout period.Currently, the Thread Polling protocol treats all threads identically. Let's say thatquick break detection is needed for some thread. This would require the protocol to providefrequent polling for all threads, which could result in high overhead, or a small numberof polling rounds for break detection for all threads, which could result in numerous falsethread break repairs, and so forth. The protocol could dynamically select threads for specialtreatment according to the current situation. For example, polling information could becollected more frequently for the most important threads, and threads that had executedfor a long period of time and were close to completing could require a problem to persistfor a larger number of polling rounds before they could be declared broken. The number ofthreads chosen for special treatment and the speci�c parameters selected for them would begoverned by factors such as those listed above, as well as the thread's functional importance,the amount of work the thread had already done, the thread's closeness to completing, andso forth.5.7.2 An Adaptive Node Alive ProtocolSeveral parameters can also be adjusted in the Node Alive protocol to allow it to adapt tothe current operating environment. They are the strength of the neighbor-checking protocol,

Adaptive Distributed-Thread Integrity 107the strength of the NGM protocol, and the frequency of neighbor checking. By strength, wemean the e�ort expended by the protocol to overcome omission and performance failures.The strength of the neighbor-checking protocol a�ects the tradeo� between the certaintywith which a node failure (and hence a thread failure) is detected and the node failuredetection latency. By using a larger time out period to wait for late messages and byusing retries to overcome lost messages, this protocol can reduce the likelihood that it willincorrectly deduce that a node has failed. However, this will increase the amount of timebefore a true node failure can be addressed. This protocol also a�ects the tradeo� betweensystem overhead and failure detection latency. If a node suspects that its neighbor hasfailed, it will start an NGM protocol, which requires the participation of all nodes andan exchange of several rounds of messages. This overhead can be reduced by decreasingthe likelihood that a node will start an NGM protocol, at the cost of increasing detectionlatency for a truly failed node.The strength of the NGM protocol has a similar a�ect on the tradeo� between thecertainty and latency of failure detection, and on the tradeo� between system overhead andthe latency of failure detection. Increasing the strength of the NGM protocol will increasesystem overhead, will reduce the likelihood of incorrectly deducing that a node has failed,and will increase failure detection latency. A mistaken node failure detection by an NGMprotocol can result in a signi�cant amount of thread repair work and wasted applicationexecution, as well as the ripple e�ect of an increased likelihood that application threads willexperience timing constraint failures.The frequency with which nodes check the health of their neighbors a�ects the tradeo�between system overhead and the speed with which node failures are detected. More fre-quent checks result in more network tra�c and more processing interruptions, but unlessthese checks tend to result in relatively frequent unnecessary NGM protocol executions, thisoverhead is relatively modest.5.7.3 Switching between Thread Polling and Node Alive ProtocolsAnother approach is to use algorithmic adaptation and dynamically switch between theThread Polling and Node Alive protocols. The idea would be to identify operating envi-ronments that would favor one of the protocols over the other, to monitor the state of theoperating environment, and to activate the protocol that was best suited for the currentenvironment. The adaptation could be caused by the user or application announcing thatthe system was entering a particular operating environment, or it could be accomplishedby the system deducing the expected operating environment.The adaptation will center around tradeo�s among system overhead, break detectionlatency, break repair latency, and the certainty with which a break is detected. Althoughthe protocols can a�ect these tradeo�s in a variety of ways, two key factors will be theoverhead caused by thread polling and the overhead caused by synchronous head movement.Thread polling will place a burden on the communication network and the CommunicationCoprocessor, while synchronous head movement will delay thread execution.Let us consider some other factors that can a�ect the choice between the two protocols.It appears that the Node Alive protocol is more likely than the Thread Polling protocolto experience bursts of overhead and repair when exceptions occur. For example, the

108 Adaptive Distributed-Thread IntegrityNGM protocol can cause widespread delay as all nodes participate in the protocol to reachagreement about the group of good nodes. In addition, the declaration of a node failureby the NGM protocol can cause widespread thread repair work. These e�ects, which areundesirable in a real-time system because of their adverse a�ect on system predictability,would be more harmful in certain operating environments than in others.Both of these protocols can mistakenly declare that a failure has occurred. It appearsthat it is more costly for the Node Alive protocol to do so. If the Node Alive protocolmakes a mistake, all good nodes will declare that another node has failed. This can becostly because it will require the system to repair all threads with sections on that node. Ifa mistake is made with the Thread Polling protocol, some node will declare broken thoseof its threads with sections on some other speci�c node. (It will come to this conclusionbecause it will have missed one or more response packets from that other node.) This willprobably involve signi�cantly less repair work.On the other hand, it appears that it is more likely for the Thread Polling protocol tomake this kind of mistake for a given amount of break detection and repair latency. Onereason for this is that the Thread Polling protocol would require multiple polling roundsover a relatively long period of time to increase its certainty. Another is that the ThreadPolling protocol does not expend a lot of e�ort on any individual polling round to avoidmissing and inconsistent information. The Node Alive protocol, on the other hand, makes aconcerted e�ort over a short period of time to obtain an accurate census of the good nodes.In order for adaptation between the two protocols to be warranted, there will have to bedistinct real operating environments that favor each of the protocols. Looking at some ex-treme cases, we conjecture that the Node Alive protocol would be favored in an environmentwith many threads, many nodes, many sections per thread, and small communication delay,while the Thread Polling protocol would be favored in an environment with few threads,few nodes, few sections per node, and a large communication delay. In the �rst case, therewould be a large overhead for producing poll packets and poll responses, and for analyzingpoll responses, while there would be a small delay for synchronous head movement. Thesituation would be reversed in the second case. Less extreme situations would be morebalanced, but we expect that there will be numerous operating environments favoring eachof the protocols.5.8 Adaptivity FunctionsTo provide an autonomous adaptive TMAR protocol, the system will have to supply theadaptivity functions of monitoring, diagnosis, control, and metacontrol, as discussed inChapter 2. These functions can be implemented in a variety of ways in a concrete systemarchitecture. They can be organized into one or more components and can be placed in oneor more of several system layers. The control functions could be specialized for TMAR, orcould serve a larger group of fault tolerance needs.TMAR is located in the operating system kernel. At this low layer of the system, it wouldprobably be inappropriate to implement extensive versions of the adaptivity functions.Simpli�ed versions could probably coexist with the TMAR protocols, but more elaborateversions would probably have to be located at a higher system layer. This should not be a

Adaptive Distributed-Thread Integrity 109problem, however, because adaptive changes would probably take place at a relatively slowpace, based on longer-term changes in the operating environment.We assume that the TMAR protocols that are to be controlled will have been analyzedbefore the adaptivity functions are designed. This analysis will indicate what informationneeds to be collected to guide the control decisions, how well each version of the TMARprotocols performs with respect to di�erent operating environments, how di�erent changeswill a�ect the performance of the protocols, and so forth. The analysis could be performedanalytically, by simulation, or by observing a running system.Interestingly, TMAR itself could be considered to be a simple adaptive fault tolerancetechnique based on the principle of recon�guration. TMAR monitors the state of thesystem looking for broken threads. When it diagnoses that a thread is broken, it issuescontrol commands to clean up orphans and to resume the thread. Adaptive adjustment of aTMAR protocol's parameters and adaptive switching between two simple adaptive TMARprotocols can be viewed as a higher, re
ective layer of adaptive control. Higher layers ofadaptivity will be discussed in Section 5.8.4.5.8.1 MonitoringThe monitoring function is responsible for obtaining the information that will be usedto decide whether a change will be made to the current TMAR protocol, and what thatchange will be. From the point of view of TMAR, the goal is to collect enough informationto characterize the operating environment for TMAR, not the complete environment. Afteranalyzing the TMAR protocols, it may turn out that only a small amount of informationis necessary to guide the adaptation decision. For example, it may be su�cient to know,for some recent time period, the average number of thread sections in the system and theaverage communication delay. Some of the information that is needed could be extractedfrom the information already collected by TMAR. Some additional information could beobtained by piggybacking it on TMAR messages that are already exchanged. If moreelaborate information about the state of the system is needed, it should probably be collectedoutside the kernel.5.8.2 DiagnosisThe information gathered by the monitoring function is analyzed by the diagnosis func-tion. Its goal is to determine whether the current instantiation of the TMAR protocolsu�ciently matches the expected operating environment. Things to look for might be achange in the communication load, the frequency of message omission failures, the num-ber of threads in the system, the execution patterns of threads, and so forth. Note thatproblems experienced by the current TMAR instantiation, such as mistaken declarations ofbreaks and high communication overhead, may not indicate that the TMAR protocol needsto be changed. Similarly, an instantiation of the protocol that is not currently experiencingany problems may need to be changed because it is not the best match for the expectedoperating environment. If a mismatch is found, this fact is conveyed to the control function.

110 Adaptive Distributed-Thread Integrity5.8.3 ControlThe control function is responsible for modifying the current instantiation of the TMARprotocol to bring it in line with the expected operating environment. The diagnosis functionwill notify the control function if it discovers a mismatch. The control function uses thisinformation plus the information gathered by the monitor function to decide whether achange should be made, what change to make, and how to make the change. The controlfunction may decide not to make a change even though a mismatch was identi�ed becauseit is an inappropriate time or because there is nothing better to do.With the two TMAR protocols we have been considering, the control function coulddecide to adjust a protocol parameter or to switch between protocols. A variety of strategiescould be used. For example, if the Thread Polling protocol was currently running, thecontrol function could decide to change the polling frequency based on the information ithad available. This could be done incrementally, with the control function observing thee�ect on the system. (Recall that the information available to diagnosis and control willinevitably, to some extent, be incomplete, inconsistent, and out of date.)If the control function decided to switch between the two protocols, it would be desirableto do so quickly without delaying the execution of application threads. We believe that itwould be possible to do so, although while the switch occurred, some threads might notbe covered and some extra overhead might be incurred. (Failures that occurred during theswitch would eventually be discovered, although after a somewhat longer delay than usual.)An example of a control function would be to instantiate the Thread Polling protocolor the Node Alive protocol, depending on the value of a key metric such as the averagecommunication delay. The monitoring function would measure the average communicationdelay over a recent time period. If the value rose above a certain threshold, the systemcould switch to the Thread Polling protocol. If it fell below a certain threshold, the systemcould switch to the Node Alive protocol. (Recall that synchronous head movement, whichis used by the Node Alive protocol, is adversely a�ected by a high level of communicationdelay.) A hysteresis gap could be used to prevent the system from thrashing. This is shownin Figure 5.4.
Comm
Delay

Time

Thread Polling ()

last active protocol

Node Alive ()Figure 5.4: Example control function using hyst.pseresis

Adaptive Distributed-Thread Integrity 1115.8.4 MetacontrolThe metacontrol function adjusts how the control function operates, based on informa-tion gathered about the state of the system and the past performance of adaptive control.In the case of TMAR, it could tell the control function how certain it should be about amismatch before a change is made, how big a mismatch is needed before a change shouldbe made, how large a hysteresis gap to use, or how quickly to adjust a protocol parameter,such as the number of polling rounds needed to detect a thread break. It could even changethe control function's preference for addressing a mismatch by changing a parameter orswitching protocols.5.9 SimulationTo validate the idea of adaptive TMAR, we developed a proof-of-concept simulation systemwith two alternative protocols, Thread Polling and Node Alive, and a threshold-basedcontrol strategy. The simulation enabled us to improve our understanding of how thesealternative TMAR protocols are in
uenced by the operating environment. It also allowedus to demonstrate that use of an adaptive control strategy could improve system behaviorin the area of distributed-thread integrity.5.9.1 Simulation SystemThe simulation system was written using the CSIM1 simulation package, which was devel-oped at Microelectronics and Computer Technology Company (MCC) [43, 44]. CSIM sup-ports the writing of process-oriented discrete-event simulations with the C programming lan-guage. The abstractions provided by the package include simulated time, processes, events,facilities, storage, mailboxes, histograms, tables, queues, reports, and random-number dis-tributions.In this approach, the activities being modeled are represented by processes written inC. The processes can cause events to occur, wait for events to occur, and wait for a periodof simulated time to pass. Simulated time advances only when processes are blocked.The computing system being simulated contains a collection of nodes connected by anetwork. Each node contains a single processor that must execute the application code andthe active TMAR protocol.Our simulation is organized around two major types of processes called GEN andNODE. During startup, con�guration information is read from a �le. A GEN processis started for each active workload. It periodically generates distributed threads accordingto the workload parameters, and randomly assigns them to nodes.A NODE process is started for each node in the simulated network. Each NODE pro-cess selects a distributed thread from its ready queue and simulates a burst of executionfor that thread. Threads are selected, �rst-come �rst-served. After a burst of execution,NODE decides whether the thread will execute a remote invocation or return. If an invo-cation occurs, the destination node is selected randomly.1All product names mentioned in this document are the trademarks of their respective holders.

112 Adaptive Distributed-Thread IntegrityEach NODE process is also responsible for executing a TMAR protocol. Only one ofthe two TMAR protocols is active at a time, and all of the nodes execute the same protocol.When an adaptation occurs, all nodes switch to the new protocol at the same time.CSIM processes are also used to cause events to happen in the future, after speci�c peri-ods of simulated time have passed. One type of process is used to simulate communicationdelay between nodes, while another is used to post interrupts to nodes. Node execution isinterruptible, and many kinds of interrupts can occur. More speci�cally, an interrupt canpreempt a distributed thread executing application code, but an interrupt handler cannotbe preempted.Nodes may crash without warning. When a crash occurs, the TMAR protocols areresponsible for repairing the system. They must detect the crash, identify the brokenthreads, identify the new thread heads, identify the orphan thread sections, remove theorphans, and resume execution of broken threads.The system can adapt between the two TMAR protocols. Adaptation can occur intwo ways. First, the system can automatically adapt when the adaptation metric passesa threshold. The adaptation metric used is the number of distributed-thread sections thatexist in the network. Our hypothesis is that it will be better for the system to use theNode Alive protocol as the number of thread sections increases. Second, the system canalso adapt by switching TMAR protocols when a speci�ed simulated time occurs.The overheads associated with the control function are not modeled in the currentsimulation. As a result, the automated control function does not have to be associated withthe nodes, and automated control is implemented with a separate control process.5.9.2 AssumptionsA variety of assumptions were made for the current version of the simulation. Some re
ectedthe choice of a particular style of distributed system, while others reduced the complexitythat had to be addressed in the �rst implementation. Another group abstracted away detailsthat were not relevant at this time. Future versions of the simulation should address otherenvironments and, when appropriate, more closely model certain system features.Only the �nal group of assumptions about adaptation control a�ect the experiment thatwas performed. While more realistic modeling of adaptation control would be desirable, webelieve that the basic outcome of the experiment would not change. Adding latency andoverhead to control should just add some overhead to the nodes, delay adaptation switches,and reduce certainty about the current value of the metric. These e�ects should not havea big impact if adaptation is not too �ne grained.The current version of the simulation is based on the following assumptions:� The nodes are assumed to be homogeneous with the same hardware features. Inaddition, all nodes run the same protocols and operate in the same way.� The network is assumed to be homogeneous with all pairs of nodes connected in thesame way. All pairs of nodes are assumed to experience the same communicationdelay.� Processing nodes are assumed to be uniprocessors. Other choices would be to havededicated-function multiprocessors like those in the current Alpha implementation,

Adaptive Distributed-Thread Integrity 113or symmetric multiprocessors. Employing uniprocessors means that the applicationcode, the TMAR code, and the control code must share the same processor.� The only kind of failure that can occur is a node crash. Omission and performancefailures are not simulated, either for nodes or the communication network, and com-munication link failures are not simulated. This has the e�ect of ruling out falsefailure detections of broken threads or failed nodes.2� Node failures are permanent.� Simultaneous node failures are not allowed. Another node cannot fail until the e�ectof the previous failure on threads and on the system has been completely repaired.� The only thread-scheduling policy available is �rst-come �rst-served. Speci�cally, BestE�ort thread scheduling is not available.� In general, an interrupt is not allowed to preempt an interrupt handler. This is im-portant because the processing for some interrupts can be lengthy. However, a fewspecial events with short execution times are allowed to occur while an interrupt han-dler is executing, such as notifying a node that one of its rooted threads is performinga remote invocation or return in the Node Alive protocol.� Adaptation control is assumed to operate without overhead. This includes the timeneeded to monitor the system, to determine that adaptation is needed, and to e�ectadaptation. It is also assumed that when the time arrives to make an adaptation, thechange occurs instantly throughout the system.5.9.3 The TMAR ProtocolsWe simulated simpli�ed versions of the two TMAR protocols that were developed, theThread-Polling protocol and the Node-Alive protocol. Most of the simpli�cations resultedfrom the assumptions mentioned above, such as the fact that the only kind of failure was anode crash and that only one could occur at a time. Also, in some cases we simulated thee�ect of an event and did not try to directly model the way it would be implemented in areal system. For example, in the Thread Polling protocol, a node actually looks at globaldata structures, not the information in response packets, to determine if a thread breakhas occurred. These abstractions were reasonable for the activities we planned to examine;further detail would be overkill.5.9.3.1 Thread Polling ProtocolThe bulk of the Thread Polling protocol is performed by the NODE process. Each nodeis periodically interrupted to check the health of the threads rooted on that node, and the2A false failure detection occurs when a node erroneously assumes that a missing message was caused bya failed node, when it was actually caused by a di�erent kind of failure. This cannot happen in a systemwhere the only kind of failure is a node crash. This type of system is known as synchronous and has theproperty that a message will arrive within a known period of time unless the sending node has crashed. [35]

114 Adaptive Distributed-Thread Integrityhealth of threads rooted on other nodes that have sections on that node. The time betweenhealth checks is con�gurable.A poll packet is composed and sent to the other nodes. When a node receives a pollpacket, it composes and returns a response packet. After response packets have been re-ceived from all nodes or a timeout has occurred, the polling node checks to see if any ofits rooted threads have been broken because of a node failure. Because node crashes arethe only kind of failure that can occur, a node always makes an accurate diagnosis. If oneof its rooted threads had a section on a failed node, it notices that no response packet hasaccounted for the section and correctly deduces that the thread is broken.When a node detects that one of its rooted threads is broken, it repairs the thread. Ifthe thread is executing, the root node causes the thread to be preempted. It then identi�esthe new thread head and removes all of the thread's orphan sections. Next, it noti�es nodeswhere orphan sections were removed so they can simulate the orphan removal work. Aftera delay, it allows the thread to resume execution at its new thread head.During its health check, a node also determines whether any of the thread sectionsexecuting on the node is an orphan because its root node has died. A node is always ableto detect that it has not received a poll packet from another node within a reasonable time,and correctly deduce that the other node has failed. The node immediately removes anythread section executing on it that was orphaned by the failure of the section's root node.5.9.3.2 Node Alive ProtocolThe bulk of the Node Alive protocol is also performed by the NODE process. Each nodeis periodically interrupted to check the health of its neighbor node. The healthy nodes arearranged in a ring, with node 1 watching node 2, node 2 watching node 3, and so on. Thetime between health checks is con�gurable.A node is immediately able to determine if its neighbor has failed. When a node failureis detected, all healthy nodes execute a node group management protocol. This allows themto reach consensus about the group of healthy nodes. After the NGM protocol is completed,all nodes know about the failed node and can identify the broken threads. Each node thenfollows the same repair procedure that was described for the Thread Polling protocol torepair its broken threads and to remove the failed node's orphaned sections.5.9.4 Adaptation Control StrategyThe simulation uses a threshold-based adaptation control strategy with a simple adaptationmetric, as described in Section 5.8.3. Two thresholds are used with hysteresis to reducethe system's potential for thrashing. The metric that was selected is the total number ofthread sections that exist. We believe this metric is both relatively easy to gather andrepresentative enough to guide adaptation.In the simulation, The number of existing thread sections is always globally known.3The control process periodically compares the current number of thread sections againstthe thresholds to see if an adaptation is warranted. Because this check is made periodically,3In a real system, nodes would have to exchange information to determine the number of existing threadsections. Because of communication and processing delays, the calculated value would vary somewhat fromthe real value.

Adaptive Distributed-Thread Integrity 115it is possible for the system to momentarily cross a signi�cant threshold without this factbeing detected. The checking period is con�gurable.When the control process detects that a signi�cant threshold has been crossed, it causesall nodes to instantly switch their TMAR protocols. An interesting interaction is that anode failure can cause an adaptation because it can suddenly cause many thread sectionsto be removed.5.9.5 User InterfaceA user can provide directives to the simulation program through a con�guration �le. Everytime the simulation program is run, it reads the con�guration �le to obtain its controllingparameters. When the simulation run is complete, the program produces an output �lewith the results. The simulation program always produces the same output when startedwith a particular con�guration �le.The user can assign values to several groups of con�guration parameters to set up asimulation experiment. These parameters control the general system, two thread workloads,the TMAR protocols, adaptation, and node death. A sample con�guration �le is shown inFigure 5.5. The con�guration parameters do not have to be speci�ed in this order, but thelast line of the con�guration �le must contain the word \quit".5.9.5.1 General System ParametersThe general system parameters set up the simulation and the network architecture:� Master random seed (seed) | the seed that is used to set the seeds for all of theindependent random number sequences that control the behavior of the simulationprogram. By varying just the seed and keeping all of the other con�guration pa-rameters constant, the user can generate independent trials for a given simulationcontext.� Number of nodes (num nodes) | the initial number of nodes in the computer network.Some of the nodes can fail during the simulation, which results in a smaller numberof active nodes. The nodes are identi�ed with numbers from 1 to num nodes.� Communication Delay (comm delay) | the number of basic time units required tosend a message from one node to another. Currently, it is constant for any messagebetween any pair of nodes.5.9.5.2 Thread WorkloadsA thread workload is a prototypical pattern of thread activity in the network. Some charac-teristics of a thread workload are the frequency with which threads are created, the averagenumber of sections per thread, and the average lifetime of a thread.The user can specify two thread workloads, which can be run sequentially or simulta-neously. Each workload allows the user to specify information about thread creation andexecution. These parameters indirectly determine more general characteristics for the groupof threads. For example, specifying when threads are created, the average amount of time

116 Adaptive Distributed-Thread Integrityseed 7num nodes 8comm delay 5max threads 50thread iatm 500min exec t 5max exec t 50sec bound 6ir ratio r 80ir ratio 50ir ratio b 20start 2 10000max threads 2 10thread iatm 2 300min exec t 2 5max exec t 2 100sec bound 2 8ir ratio r 2 80ir ratio 2 50ir ratio b 2 20node alg 0thread alg 1na health wait 200tp health wait 200control wait 250adapt t 0auto adapt 1sec TH hi 45sec TH lo 35death 26 120004 16000quitFigure 5.5: Sample simulation program con�guration �le

Adaptive Distributed-Thread Integrity 117needed for a thread section to execute, and the likelihood of threads performing remoteinvocations or returns indirectly determines the average number of existing thread sectionsin the system and the average number of threads per node.The primary thread workload starts when the simulation begins. The general parametersfor the primary workload are� Maximum number of threads (max threads) | the number of threads that will begenerated by the primary workload.� Mean Thread Interarrival Time (thread iatm) | the mean of the thread interarrivaltime distribution. Thread arrival is assumed to follow an exponential distribution.We simulate the execution of a thread section with a burst of local execution on a node.During a burst, local segments can be added and/or removed from the thread, or the threadmay execute within a single object operation. A burst ends when the thread performs aremote invocation or a remote return to an object on another node. The amount of timefor a particular section execution is randomly selected from a bounded range:� Minimum Section Execution Time (min exec t) | the minimum time needed to per-form a section execution.� Maximum Section Execution Time (max exec t) | the maximum time needed toperform a section execution.During its lifetime, a thread adds and removes sections as it executes remote invocationsand returns. The following parameters control the way in which a thread randomly growsand shrinks, and indirectly determine a thread's lifetime and number of sections. Greatervalues for the ratio parameters lead to longer thread lifetimes. A larger value for the sectionbound leads to greater numbers of sections per thread and longer lifetimes.� Section Bound (sec bound) | used to limit thread growth. After a thread has grownto sec bound sections, its probability of further growth is reduced.� Invoke/Return Ratio for the Root (ir ratio r) | the probability that a thread willperform a remote invocation when execution of the thread's root section has justbeen simulated. As an example, a value of 80 indicates that 80% of the time thethread will perform a remote execution and 20% of the time it will terminate.� Invoke/Return Ratio for the Middle (ir ratio) | the probability that a thread willperform a remote invocation when execution of a section between the root and sectionsec bound has just been simulated.� Invoke/Return Ratio for the Bound Section (ir ratio b) | the probability with whicha thread will perform a remote invocation when execution of a section at or beyondsection sec bound has just been simulated.The secondary thread workload has the same parameters as the primary workload. Auser can also specify when the secondary workload will begin:� Starting Time (start 2) | the simulation time when the simulation program willbegin to generate threads from the second workload. A value of 0 indicates that thesecondary workload does not exist.

118 Adaptive Distributed-Thread Integrity5.9.5.3 TMAR ProtocolsThe simulation can run with the Thread Polling protocol active, the Node Alive protocolactive, or no TMAR protocol active. Longer time periods between health checks reduceoverhead, but they also increase the time needed to detect and hence repair broken threads.The following parameters can be speci�ed about the TMAR protocols:� Node Alive Protocol (node alg) | 1 if the Node Alive protocol is active, and 0 if it isnot active.� Thread Polling Protocol (thread alg) | 1 if the Thread Polling protocol is active, and0 if it is not active.� Time Between Node Alive Health Checks (na health wait) | the time period betweenhealth checks for the Node Alive protocol.� Time Between Thread Polling Health Checks (tp health wait) | the time periodbetween health checks for the Thread Polling protocol.5.9.5.4 Adaptation ControlTwo kinds of adaptation are available. First, the user can specify a simulation time whenthe simulation program will switch between the TMAR protocols. Second, the user canindicate that the simulation program should automatically switch between the protocols.At most one of these adaptation modes can be active. Switching between protocols isassumed to occur instantly throughout the system.Automatic adaptation is controlled by a threshold-based scheme with hysteresis and asingle adaptation metric. The adaptation metric is the number of existing thread sections.When the number of existing thread sections is greater than the upper threshold, the NodeAlive protocol is active. When the number of sections is less than the lower threshold, theThread Polling protocol is active.The user can specify the following adaptation parameters:� Time Between Adaptation Checks (control wait) | the time period between adapta-tion checks by the adaptation controller. When the time period is over, the controllerwakes up and checks the current value of the metric to determine whether an adap-tation should occur. A longer time period may delay a valid adaptation, and maycause the controller to miss a momentary metric value that would have triggered anadaptation.� Time-Based Adaptation Time (adapt t) | the simulation time when a time-basedadaptation will occur. If adapt t is 0, time-based adaptation is not active.� Automatic Adaptation (auto adapt) | 1 if automatic adaptation is active, and 0 ifit is not active.� Upper Threshold (sec TH hi) | the number of existing thread sections used for theupper adaptation threshold.

Adaptive Distributed-Thread Integrity 119� Lower Threshold (sec TH lo) | the number of existing thread sections used for thelower adaptation threshold.5.9.5.5 Node Death Speci�cationThe user can specify when node deaths will occur and which nodes will die. Because nodescannot be repaired and new nodes cannot be created, no more than num nodes � 2 nodedeaths can be speci�ed, and the nodes that die must be unique. The node death parameteris � Node Death Control (death) | indicates the number of node deaths that will occur.Exactly that number of death indications must follow the death parameter. A deathindication consists of a node identi�er and a simulation time. For each death indica-tion, the simulation program causes the speci�ed node to die at the speci�ed time.No node deaths will occur if death has a value of 0.5.9.6 Adaptive Control ExperimentWe performed an experiment to examine the bene�ts of adapting between the TMARprotocols. Our goal was to demonstrate that a simple adaptation controller would be ableto distinguish between di�erent operating regimes and dynamically select the appropriateTMAR protocol for the current operating regime. In this experiment, we focused on theoverhead caused by the two TMAR protocols during normal system operation. Otherexperiments could study di�erences in thread break detection latency, thread repair latency,or a combination of these properties.We used the automatic adaptation feature supported by the simulation program. Themetric used for adaptation was the number of thread sections in the network at a givenmoment. The adaptation thresholds and hysteresis determined the two operating regimes.The Thread Polling protocol would be active if the number of thread sections was belowthe lower threshold, and the Node Alive protocol would be active if the number of threadsections was above the higher threshold. The active protocol would not change if the numberof thread sections entered the region between the two thresholds.5.9.6.1 ConjecturesWe thought that these regions would distinguish between the two protocols for the followingreasons. The overhead required for the Thread Polling protocol to perform a health checkis related to characteristics such as the number of existing threads, the number of sectionsper thread, and the number of nodes spanned by a thread. We believed that the numberof thread sections would serve as a su�ciently good representation of these characteristicsto allow us to say that the Thread Polling overhead would rise as the number of threadsections increased. The time spent performing Thread Polling overhead reduces the amountof time available to execute threads and delays their completion.On the other hand, the overhead for the Node Alive protocol is much less related tothese factors. The major overhead for threads executing under the Node Alive protocol iscaused by synchronous head movement, and is closely related to the communication delay.This is not an important problem for the Thread Polling protocol.

120 Adaptive Distributed-Thread IntegrityThus, we conjectured that throughput would be higher if the Thread Polling protocolwas active in the regime when there were relatively few thread sections, and if the NodeAlive protocol was active in the regime when there were relatively many thread sections.Stated another way, we conjectured that a thread whose lifetime bridges periods with fewand many thread sections will complete sooner if it operates under both protocols for asu�cient period of time than if it operates exclusively under either protocol. In addition,a thread whose execution is all or mostly under the protocol selected by the adaptationcontroller should complete sooner than if it executes under the opposite protocol. On theother hand, a thread whose execution is mostly under a single protocol during an adaptiverun should, on average, �nish at about the same time as it would in a nonadaptive run wherethat was the only protocol employed. The success of this approach depends on achievinga good match between the thresholds and the thread workload for the existing networkcon�guration.5.9.6.2 The ExperimentFor our experiment, we used the con�guration parameters shown in Figure 5.5, with a fewexceptions. We ran the simulation program for �ve trials, varying only the seed. Eachtrial consisted of three runs, one with only the Thread Polling protocol active and noadaptation, one with only the Node Alive protocol active and no adaptation, and one withautomatic adaptation active. The adaptive runs began with the Thread Polling protocolactive because initially no thread sections exist. Note that the parameter death was set to0 in the con�guration �les used for the experiment because the experiment did not generateany node deaths.Threads were generated with both thread workloads. The primary workload generateda large number of relatively short threads over a relatively long period of time. During thisbackground workload, the secondary workload generated a few relatively long threads over arelatively short period of time. Together with the other system parameters, these workloadswere expected to produce two exploitable operating regimes. A thread was considered tohave executed under a protocol for a signi�cant amount of time if it spent 10% of its lifetimeunder that protocol.The results are summarized in Figure 5.6. The extent to which both protocols wereused during the adaptive runs is indicated by the second through fourth columns, whichdisplay the total simulation time for the run, the amount of time spent under the NodeAlive protocol as a result of adaptation, and the percentage of time spent under the NodeAlive protocol. As can be seen from these columns, the results varied widely, from a runwhere adaptation almost didn't occur, to a run where the Node Alive protocol was executed27% of the time. The trials have been ordered by the amount of time spent under the NodeAlive protocol.The Dual Protocol columns compare the lifetimes of threads that executed under bothprotocols for a signi�cant portion of time during the adaptive run to their lifetimes under thenonadaptive single-protocol runs. <=TN refers to dual-protocol threads that executed atleast as fast as in either of the single-protocol runs, <=T refers to dual-protocol threads thatexecuted at least as fast as in the Thread Polling run, <=N refers to dual-protocol threadsthat executed at least as fast as in the Node Alive run, and >TN refers to dual-protocol

Adaptive Distributed-Thread Integrity 121
Trial <=TN <=T <=N >TN

Opposite
Protocol

Same
ProtocolDual Protocol

Initial
Opposite

<= >
Total
Time

Node
Alive
Time

Percent
Node
Alive

a
b
c
d
e

avg
e’

3

17

7
8

2

7.4
8

3

6
5

6

1

0

1

1
3

3

1.6
5

3

2

4
1

2

2.4
2

16

10

12
5

11

10.8
11

13

4

12
7

18

10.8
13

18

15

12
8

24

15

11

8

12
4

5

9

16

12

13
21

13

15

7

2

5
10

5

5

1000

11000

6250
7250

4000

5900
11000

31700

40033

33281
34910

33282

34641
31630

3

27

14
21

12

17
35

<= > <= >

2
4.4 12.8 6.8 15.6 7Figure 5.6: Results of the adaptive control experimentthreads that were beaten by both of the single-protocol runs.The Same Protocol, Opposite Protocol, and Initial Opposite columns compare threadsthat executed mostly under one protocol in the adaptive runs against their performance inthe single-protocol runs. Because the adaptive runs always start with the Thread Pollingprotocol active, we divide these threads into an initial group whose entire lifetimes precedethe �rst adaptation and a remainder group. The Initial Opposite columns compare theperformance of the initial threads in the adaptive run and the Node Alive run. The SameProtocol and Opposite Protocol columns compare the performance of the remainder threadsin the adaptation run and the appropriate single-protocol run. For example, assume thatmost of a thread's lifetime was spent under the Thread Polling protocol in the adaptationrun. Then its performance in the adaptation run would be compared against its performancein the Thread Polling run for the Same Protocol columns, and against its performance in theNode Alive run for the Opposite Protocol columns. <= refers to threads that executed atleast as fast, and > refers to threads that executed more slowly. Because the Same Protocoland Opposite Protocol columns refer to the same group of threads, the thread total acrossa row will be greater than the number of threads in the experiment, in this case sixty.45.9.6.3 AnalysisThe top three trials appear to have been successful when comparing the adaptive runs to thesingle-protocol runs. A good percentage of the threads executed for a signi�cant portionof time under both protocols, meaning that they had the opportunity to perform betterthan under either of the protocols alone. The net number of these dual-protocol threadsthat ended up improved over both of the protocols alone was encouraging. In addition, theinitial threads showed improvement, and the threads that mostly executed under a singleprotocol tended to do better than under the opposite protocol.The other two trials were neutral with respect to the dual-protocol threads. Theydid show good improvement, though, when the performance of single-protocol threads wascompared with their performance in the opposite single-protocol runs.On average, automatic adaptation was successful and helped improve performance. 26%of the sixty threads operated for a signi�cant portion of time in both regimes, and of4The sixty threads speci�ed by the con�guration �le in Figure 5.5 consist of �fty threads in the primaryworkload (max threads) and ten threads in the secondary workload (max threads 2).

122 Adaptive Distributed-Thread Integritythese threads, 47% showed clearly better performance. For all threads, 12% showed clearlybetter performance as a result of executing in both regimes. As expected, threads thatoperated mostly under a single protocol did not show any change when compared withtheir performance in the single-protocol run using the same protocol. However, they didimprove when compared against the single-protocol run using the opposite protocol; 69%of the initial threads and 65% of the remainder threads �nished at least as soon.Trial e appeared to perform poorly because of a mismatch between the settings for thethresholds and the number of thread sections that were generated. To see whether auto-matic adaptation would work for trial e at all, we reran the trial with di�erent thresholdsettings. A dramatic improvement was found for the threshold settings of 35 and 25, andwe have recorded these results as trial e0 . Now, in trial e0 , 27% of the threads operatedin both regimes for a signi�cant portion of their time, 50% of them showed clearly bet-ter performance, and 13% of all threads showed clearly better performance. In addition,single-protocol threads continued to show signi�cant improvement when compared with theopposite protocol, and essentially broke even when compared with the same protocol.5.9.6.4 ConclusionsThis experiment illustrates the potential bene�ts of adaptive fault tolerance. Even with asimple adaptation control strategy and a crude metric, we were able to show a signi�cantimprovement in performance. The improvement for trial e when the new thresholds wereused demonstrates the need to match the adaptation control parameters to the situation,and shows the potential bene�t of dynamically adjusting the adaptation control strategyitself. In general, it will not be possible to make micro adjustments for every situation, andadaptation control will have to be tuned for an average situation.5.9.7 Further Development of the Simulation SystemThe simulation system could be signi�cantly improved in several directions. This includesimprovements to the simulated TMAR protocols, the control strategy, and the simulationsystem itself.The existing simulation system contains basic versions of the Thread Polling and NodeAlive protocols. While they were adequate for this case study, their sophistication andrealism should be improved. More detail should be added to the way the system modelsexecution and communication overhead, especially in the area of thread repair. The faultmodel should be enhanced in several ways. First, simultaneous node failures should bepermitted so that a node failure can occur during repair. Second, omission and perfor-mance failures should be added so that false failure detections can be modeled. It wouldalso be bene�cial to simulate additional TMAR protocols, such as a hybrid protocol thatsimultaneously uses Thread Polling and Node Alive for di�erent portions of the network.Modeling of the control strategy should be improved so that its e�ects on the simulatedsystem can be observed. Execution and communication overhead should be added forthe monitoring and analysis needed to perform control, and adaptation latency shouldbe modeled for the switch between TMAR protocols. New adaptation metrics should beimplemented, and it should be possible to base the adaptation decision on multiple metrics.History and �ltering could also be added to control monitoring. Presently, adaptation is

Adaptive Distributed-Thread Integrity 123based on the current value of the metric. History will allow adaptation to be based on theadditional information provided by a sequence of values, and a �lter will allow an appropriateportion of the history to be selected. For example, adaptation could be based on the averagevalue of the metric over a window of time or over the metric's last n values. The controllermight also be allowed to dynamically set its thresholds based on its experience. The e�ecton control of incomplete, inconsistent, and out-of-date monitoring information should alsobe considered.The simulation system would bene�t from an improved user interface, an importantpart of which would be better ways to generate thread workloads. More statistics should begathered to help with analysis of the TMAR protocols and the adaptation control strategy.Additional improvements include better modeling of the communication subsystem, theability to repair nodes, and the ability to add new nodes.5.10 Conclusions and RecommendationsWe believe that this e�ort has helped to validate the adaptive fault tolerance ideas developedduring the AFRS project. Using these ideas, we designed alternative TMAR protocols withdi�erent operating characteristics. We then identi�ed aspects of the operating environmentthat would cause the protocols to be better suited for di�erent regions of the operatingenvironment. We also identi�ed aspects of the operating environment that would causedi�erent parameter settings to be preferred for the protocols. Finally, we identi�ed ways inwhich the adaptivity functions could be implemented for TMAR. Our simulation experimentallowed us to demonstrate these ideas, and to show the potential bene�t of adaptive faulttolerance.Further study of this important fault tolerance service could proceed in several direc-tions. First, a more detailed design should be developed for the Node Alive protocol.Second, it would be desirable to develop a better understanding of how these protocols arein
uenced by factors in the operating environment. This could be accomplished throughfurther development of the simulation system. Third, the e�ects and e�ectiveness of di�er-ent control strategies should be studied, possibly through simulation. Finally, a great dealcould be learned from a proof-of-concept prototype.

124 Adaptive Distributed-Thread Integrity

Chapter 6Implementing AdaptiveFault-Tolerant Services for HybridFaults6.1 IntroductionIn building fault tolerance services in a distributed system, there are two major approaches,namely, the Primary-Backup approach (PB) (e.g., [1, 10]) and the State-Machine approach(SM) (e.g., [50, 42]). Each approach has its distinctive advantages. To tolerate simplefaults such as crash and omission, PB protocols are generally signi�cantly cheaper thanSM protocols in terms of the numbers of processors, messages, and rounds (which directlya�ects the service response time). PB protocols are also much simpler than SM protocols,and thus the e�orts of debugging or formal veri�cation of PB protocols are also easier.On the other hand, in choosing to run a PB protocol instead of a SM protocol, one risksproviding incorrect service functions or values, which may cause the overall system to fail,in the face of more serious types of faults such as arbitrary (Byzantine) faults1. Therefore, itis common practice for critical applications to run a SM protocol, possibly using Byzantineagreement [28]. The high cost of running such a protocol is compensated by the belief thatall possible faults (up to a certain number) are adequately tolerated.Instead of being forced to make a design choice between using SM or PB, thus ei-ther incurring a high running cost or risking system failure when unexpected faults occur,we advocate an approach of adaptive fault tolerance [14]. Given that in many situationsByzantine or other nontrivial faults occur only relatively infrequently, we develop intelligentadaptive algorithms, using PB and SM protocols as building blocks, that runs typically ata cost close to that of a PB protocol and switches to a more expensive SM protocol onlyas complicated faults (which cannot be tolerated by a PB protocol) occur. This adaptiveapproach thus has the potential to retain the best of both worlds. In addition, our adaptiveapproach is modular in that any PB or SM protocol can be used.1Any given system con�guration can tolerate only up to a certain number of faults. The emphasis hereis on the distinction that a PB protocol cannot tolerate Byzantine faults.125

126 Adaptive Distributed-Thread IntegrityFor noncritical applications, our approach may be seen as a way of extending PB tocover more complex faults at low additional cost. For critical applications, our approachmay be seen as a way of allowing some of the processing resources required for SM to beused for other services when full SM functionality is not needed. For example, when onlymanifest faults occur, an adaptive algorithm runs in the PB mode and can thus tolerate amaximum number of such benign faults. The adaptation can also be viewed as between anoptimistic algorithm and a pessimistic one where the former is the default mode of operationand the latter is invoked only when necessary.In the rest of this paper2, we �rst outline a general strategy of adaptation for handlinghybrid faults. We then present two adaptive fault tolerance algorithms, analyze their cor-rectness and complexity, and compare them with nonadaptive approaches. We concludewith a summary and suggestions for future research.6.2 An Adaptation StrategySystem functions can be concentrated in some central location or distributed around anetwork, and the software for these functions can consist of modules on separate processorsor can be more closely integrated. Conceptually, however, a fault-tolerant service generallycontains some or all of the following functions: processing of requests, fault forecast, faultdetection, fault masking, fault diagnosis, fault removal, repair, and reintegration of repairedcomponents.To explain our general adaptation strategy, suppose that in the course of operations,faults of two types, A and B, may occur. Also suppose that type A faults occur morefrequently and are less expensive to tolerate than type B faults. If both types of faults mustbe tolerated, the traditional approach has been to assume the worst and constantly run an(expensive) algorithm that can handle both types of faults.We observe that detecting a fault is in general less expensive than tolerating it. Basedon this premise, our strategy is to run, as a default, an algorithm that can tolerate typeA faults and can also reliably detect the occurrences of type B faults. When type B faultsoccur, the default algorithm switches to a more expensive one that can tolerate both typeA and type B faults. Some decision procedure then decides when to switch back to thedefault algorithm. For example, when the occurrences of type B faults are bursty accordingto a fault forecast, it may be wise to continue running the expensive algorithm for someperiod of time.If the di�erence in the cost of tolerating the two types of faults is signi�cant, such as inthe case of simple crash faults versus Byzantine faults, then an adaptive strategy gains agreat deal by reducing the average running cost. The strategy is at its best if (1) the cost ofadding the extra fault detection mechanism to an algorithm that tolerates type A faults isnegligible (so that the service e�ciency is near optimal when type B faults do not occur) and(2) the default algorithm or the fault detection algorithm forms the initial segment of themore expensive algorithm (so that nothing is lost when type B faults do occur). The nextsection gives adaptive algorithms that exhibit such desirable behaviours. The strategy can2This chapter has appeared as a separate technical report under the same title, by Li Gong and JackGoldberg, SRI-CSL-94-03, March 22, 1994, revised September 30, 1994.

Adaptive Distributed-Thread Integrity 127be extended to handle faults of multiple types, in this case a more elaborate fault diagnosismechanism (especially the online variety) is needed to determine the exact types of fault inorder to direct the adaptation.6.3 Two Adaptive Fault Tolerance AlgorithmsTwo algorithms are described that adapt between the primary-backup approach and thestate-machine approach. But �rst, we need to explain the assumptions we make about theexecution environment of ourr adaptive algorithms.6.3.1 System ModelThe environment we assume is the following. Clients send their requests to the servers whoprocess the requests and respond, all by exchanging messages. For simplicity, we assumethat the communication channel between a client and any server is reliable and FIFO, andwe aim to tolerate faulty servers but not faulty clients. We also assume that the serversare deterministic { because in the state-machine approach it is usually undesirable to allownondeterministic behaviours in the (correct) servers. Moreover, we assume that the systemis synchronous, and thus we can use a model of computation based on rounds. The reason forthis limitation is that it is impossible to guarantee both safety and liveness in asynchronoussystems [7, p.19].Following the literature, we classify faults into three categories [30]:� Manifest fault { one that produces detectably missing values (e.g., crash and omissionfaults) or that produces a value that all nonfaulty recipients can detect as bad (e.g.,it fails checksum or format or typing tests).� Symmetric fault { one that delivers the same wrong value to every nonfaulty receiver.3� Asymmetric fault { an arbitrary fault with no constraints, also known as Byzantinefault.We assume that the reader is familiar with both primary-backup and state-machineapproaches, and omit non-essential details of the algorithms. Brie
y, in PB, one and atmost one server is designated as the primary at any time. A client sends a request to theprimary, who processes it and then broadcasts the necessary state change to all backupservers. In a nonblocking PB protocol, the primary server responds to the client beforereceiving acknowledgements to its broadcast whereas in a blocking protocol, the primaryblocks until all backups have acknowledged or after a timeout period. The schema for aserver consists of three modules for: (1) deciding whether it is a primary or a backup,(2) processing requests, and (3) fault detection and recovery [7, p.56]. It is apparent thatthe PB approach can tolerate only manifest faults. For example, an incorrect primary canbroadcast an incorrect state change and backup servers cannot detect this fact because theydo not know the client's service request.3It will become clear later that we can weaken this de�nition to that all nonfaulty recipients receive somewrong values, although they may not receive the same wrong value.

128 Adaptive Distributed-Thread IntegrityIn a SM protocol, a client broadcasts its request to all servers, and then takes a voteon the responses it receives. Therefore, the client will decide on the correct response if amajority of the servers are nonfaulty. For correctness, all nonfaulty servers must processrequests (possibly from multiple clients) in the same order. This requirement is calledreplica coordination [42] and is not necessary in a PB protocol. Satisfying this coordinationrequirement is quite expensive { for example, a Byzantine agreement protocol is a typicalsolution. With this heavy cost in resources and performance, the SM approach gains theability to tolerate symmetric as well as asymmetric faults, in addition to manifest faults.In our adaptive algorithms given below, the high-cost Byzantine agreement machineryis used only when needed, thus we call these algorithms Byzantine-On-Demand or BOD.6.3.2 Manifest versus Symmetric FaultsOur �rst adaptive algorithm BOD-1 is to tolerate both manifest and symmetric faults,but not asymmetric faults. For the moment, we assume that links connecting servers arenonfaulty.Given any PB protocol (blocking or nonblocking), we need only make a few simplechanges to make it adaptive. We assume the servers have implemented a Byzantine agree-ment (BA) protocol { for agreeing on the next client request for processing, or replicacoordination { that can handle symmetric faults. Strictly speaking, any protocol that canmask symmetric faults is su�cient for BOD-1, but for convenient discussion, we alwaysrefer to a BA protocol.The basic idea is to let the backup servers participate in the service passively as in thePB protocol, except that they now also receive the original request from the client andwatch the primary for any inconsistency (compared with themselves). If they detect aninconsistency, they report an error to the client (who will then wait for further action onthe part of the servers) and initiate a Byzantine agreement protocol among the servers tomask the error.Notice that since we are using a primary-backup approach as default, it is important,from the viewpoint of providing a correct service to the client, to detect non-manifestfaults only in the primary, from whom the client takes a response. Nonmanifest faults inbackups will lower the overall degree of fault tolerance (for additional faults) but can besafely ignored for the meantime because once such a faulty backup becomes a primary, itserratic behaviour will be immediately detected. It is this property that makes the adaptivealgorithm so cost-e�ective.Nevertheless, it may not be desirable to allow a signi�cant proportion of backups tobecome faulty because the chance of detecting faults in the primary and the ability to replaceit will be reduced. Faulty backup servers can be dealt with by an additional fault diagnosisand removal mechanism. For example, if only one backup disagrees with the primary, thenthis backup must be faulty (on the assumption that the majority is nonfaulty) and canimmediately be removed and repaired.The outline of the BOD-1 algorithm is in Table 6.1. We use r to denote a request, a(r)for the response, and s-c for information regarding state change.A few points need to be clari�ed about the algorithm. For simplicity, we have omittedsome details of the PB protocol, especially its failure detector and the handling of manifest

Adaptive Distributed-Thread Integrity 129
Round 0. Client: Broadcast request r to all servers.Primary: Wait for request from client.Backup: Wait for request from client.Round 1. Client: Wait for response from primary.Primary: Broadcast (r, a(r), s-c) to all backups.Respond a(r) to client.Backup: Queue r. Wait for message from primary.Round 2. Client: Wait for error report from backup.Primary: Wait for error report from backup.Backup: Verify the correctness of a(r).If error, broadcast ERROR to client and all servers,and start BA protocol (to agree on which client request to process).Wait for error report from other backups.Round 3. Client: If receive ERROR from a majority of servers,wait for the BA protocol to complete; then vote on the responses.Otherwise, accept a(r).Primary: If receive ERROR from a majority of servers, switch to the BA protocol,process request and respond to client.Return to Round 1.Backup: If receive ERROR from a majority of servers, switch to or continue withthe BA protocol, process request and respond to client.Otherwise, terminate BA protocol it started earlier, if any.Return to Round 1.Table 6.1: Byzantine-On-Demand Algorithm BOD-1

130 Adaptive Distributed-Thread Integrityfaults. The mechanism for detecting (and masking) symmetric fault in BOD-1 is in additionto the failure detector of the PB protocol. In theory, either detection mechanism can takeprecedence over the other. For example, if manifest and symmetric faults occur concurrently,we can deal with the manifest faults �rst (e.g., arranging a new primary) and the symmetricfaults later. Or we can mask the symmetric faults �rst and handle the manifest faults later.The latter scheme has the advantage that the client receives responses earlier than in theformer scheme. Variations are possible. For example, if both fault detection mechanismsdetect faults related to the primary, a symmetric fault can be assumed and the BA protocolinitiated.We have used a nonblocking PB protocol in BOD-1 such that the primary respondsto the client without waiting for acknowledgement from the backups. In such a case, it isimportant that the primary's response to the client and its broadcast to the backups mustbe in the same round because otherwise, a fault may occur when the primary is respondingto the client so that the client receives an incorrect response while all backups receive thecorrect response (and thus do not complain). Obviously, any blocking PB protocols will alsowork in this framework and our algorithm BOD-1 needs only minor modi�cations (whichwe do not go into here).In addition, we have assumed that the client always expects to get the response a(r)from the primary. Some PB protocols are \pass-the-buck" in that the response always comesfrom a di�erent server [7, p.100]. Our framework can also accommodate these protocols.If the primary has failed manifestly, the identity of the new primary is decided accordingto the PB protocol and is conveyed to the client. When the identity of the primary is indispute, a non-manifest fault has occurred and a BA protocol can be used to reach anagreement. It is not di�cult to see how this additional BA protocol can be added, so wewill not discuss this issue in more detail.A backup server checks for two new errors in Round 2. One is that the primaryprocesses a client's request not according to a FIFO order. The other is that the primary'sresponse is wrong. A backup server can check the �rst error by looking at its local queue ofrequests, and can check the second by taking the request the primary broadcast, processingit, and comparing its own result with the one sent by the primary. A discrepancy signi�esthat a symmetric fault has occurred. Note that when a server broadcasts an error message,it can use the same message to carry out the next step of the BA protocol, instead of waitingtill Round 3. We do not discuss such optimizations.In BOD-1, a server does a majority voting on error messages before deciding to switchto the BA protocol. This is because of the assumption that the links between the servers arenonfaulty, thus a symmetric error will be detected and reported by all nonfaulty servers.Without this assumption, a server may need to switch to the BA protocol even whenreceiving just one error report.A backup server that has detected an error in Round 2 immediately starts the BAprotocol. This is the earliest possible time to convert to running the BA protocol. Underthe assumption that links connecting the servers are nonfaulty, if the primary is faulty, thenall nonfaulty backups will have started running the BA protocol in Round 2. Thus it mayappear to contribute little for the primary and the faulty backups to start catching up torunning the BA protocol in Round 3. However, a server experiencing a transient fault inRound 2 may have recovered by Round 3 and thus could be quite useful in the vote. If

Adaptive Distributed-Thread Integrity 131the primary is not faulty, then a backup server will receive error report from only a minorityof servers in Round 3, and those who have started running the BA protocol earlier shouldterminate it. Without this assumption of nonfaulty links, a server need not vote on errorreport and must continue to complete the BA protocol.In BOD-1, at the end of the protocol, servers return to start from the beginning, inthe default PB mode. This can be changed easily. For example, if the occurrence of non-manifest faults has been frequent for a period of time, the algorithm can stay in the SMmode for a while before returning to the PB mode. Here, fault forecast and heuristicmethods can be useful.Finally, the adaptive algorithm imposes no ordering among the processing of requestsfrom multiple clients. The primary is free to choose the next request to process, as longas the order among requests from the same client is FIFO. The backups simply follow theprimary's lead. This arrangement satis�es the Replica Coordination requirement [42], andis crucial for keeping the cost down. This is in the same spirit of the coordinator-cohortscheme [4, 6]. Any additional ordering can be enforced with other methods, which arebeyond the scope of this paper.Proof of correctness. We give a proof outline by enumerating all cases. (1) If there isno fault, then the protocol terminates essentially as the PB protocol. (2) If the primary andbackups exhibit only manifest fault, then the PB protocol's fault detection and recoverymechanism handles these faults. (3) If the primary exhibits a symmetric fault, then somenonfaulty backups (or all nonfaulty backups, if there are no link faults) will detect thefault (by the additional fault detection mechanism in BOD-1) and report to the client. Asubsequent BA protocol will mask this fault and the client can obtain the correct responseby simple majority voting [42]. (4) If the primary is nonfaulty, then at most a minority ofbackup servers will report error (note that no protocol can tolerate a majority of serversbeing non-manifestly faulty), and these error messages are false alarms and rightly ignored.2 Analysis of complexity. Compared with the PB approach, when there are no faults,BOD-1 requires m extra messages in the client's initial broadcast, m being the number ofbackup servers. BOD-1 also uses one more round than a nonblocking PB protocol, the samenumber of round as a \pass-the-buck" PB protocol, but one fewer round than a blocking PBprotocol. The primary's broadcast message in Round 2 is slightly longer (it contains boththe request and response), and the backups will all have to process the request individually(thus consume more CPU cycles). Therefore, BOD-1 is slightly more expensive than atypical PB protocol, and this is quite reasonably compensated by the fact that symmetricfaults can now be detected and masked.If there are only manifest faults, then a PB protocol requires more rounds to recover.Thus the overall response time for BOD-1 is no worse than the PB protocol it uses asdefault, and the only additional expense in BOD-1 is the client's initial broadcast.When symmetric faults occur, all nonfaulty servers in BOD-1 convert to running a BAprotocol (or whatever algorithm that can tolerate this type of fault) in Round 2, assumingno link faults, but with some overhead. Compared with the state-machine approach, BOD-1uses one more round because in SM the BA protocol can start in Round 1. However, theclient's broadcast and that of the primary in the �rst two rounds of BOD-1 are not wasted{ they can be used as part of the early rounds of the BA protocol { and the only extra

132 Adaptive Distributed-Thread Integritymessages are those reporting errors to the client. On the other hand, if the state-machineapproach is used as default, then even when no fault or only manifest faults occur, therunning cost is signi�cantly higher than that of BOD-1. 2In Table 6.2 below, we compare the algorithm complexity of blocking PB (denoted asbPB, and including \pass-the-buck" protocols), State Machine (SM), and BOD-1. We giveonly the di�erence between the complexity of BOD-1 and that of other algorithms becausethe absolute complexity varies depending on the PB or SM protocol we use as buildingblocks. For brevity, we do not include nonblocking PB protocols because their runningcost di�ers from \pass-the-buck" protocols only in that nonblocking protocols use one fewerround. Suppose there are a total of m backup servers.bPB BOD-1 SMmsgs rounds msgs rounds msgs roundsfault-free msg(bPB) r(bPB) msg(bPB)+m r(bPB) msg(SM) r(SM)manifest msg(bPB) r(bPB) msg(bPB)+m r(bPB) msg(SM) r(SM)symmetric msg(SM)+m r(SM)+1 msg(SM) r(SM)Table 6.2: Complexity ComparisonWe can clearly see that when no fault occurs, BOD-1 uses one more broadcast (fromclient to all the servers) and one more round than the cheapest nonblocking PB protocol.However, nonblocking protocols need additional mechanisms for error recovery, such ascheckpointing, and cannot handle send-omission and general-omission faults. Also, in afault-free run, some blocking protocols (such as \pass-the-buck" protocols) use just onemore round than nonblocking protocols, while other blocking protocols use more rounds.When only manifest faults occur, BOD-1 uses one more broadcast than either nonblockingor blocking Primary-Backup, but no more rounds. When symmetric faults occur, BOD-1is as slightly more expensive than the SM protocol.Since SM is much more expensive than PB, but non-manifest faults occur relativelyrarely, the adaptive algorithm BOD-1 is superior than the PB approach in that non-manifestfaults can now be tolerated and also superior than the SM approach in that the averagerunning cost is greatly reduced. It should be pointed out that in our discussion we useByzantine agreement protocol to tolerate symmetric faults, so the comparison in cost inTable 6.2 may be a little unfair because a cheaper protocol may also tolerate such faults.However, it is intuitive that any method that can tolerate symmetric faults will likely besigni�cantly more expensive than the PB approach, and thus adaptive algorithms similarto ours will likely be bene�cial.6.3.3 Manifest versus Asymmetric FaultsBOD-1 cannot handle asymmetric faults. For example, the primary can send correct re-sponses to all backup servers but send a wrong one to the client. Therefore, the clientcannot rely on the primary's response as before, and it is not enough for backup servers towatch the primary.

Adaptive Distributed-Thread Integrity 133Our second algorithm BOD-2 is a simple modi�cation of BOD-1 and can tolerate mani-fest and asymmetric faults. As before, we assume the availability of a PB protocol (blockingor nonblocking) and a Byzantine agreement (BA) protocol.As can be seen in Table 6.3, there are only two major di�erences between BOD-1 andBOD-2. First, when a backup server is satis�ed with the primary's response, instead ofremaining silent, it sends the response back to the client as well. Second, the client votes onall the responses and reports an error (to initiate the BA protocol) if the primary's responseis not the majority vote of all responses from the servers. Note also that it is no longermeaningful to vote on error reports since faults can be arbitrary.Round 0. Client: Broadcast request r to all servers.Primary: Wait for request from client.Backup: Wait for request from client.Round 1. Client: Wait for response from primary.Primary: Broadcast (r, a(r), s-c) to all backups. Respond a(r) to client.Backup: Queue r. Wait for message from primary.Round 2. Client: Wait for a(r) or error report from backup.Primary: Wait for error report from backup.Backup: Verify the correctness of a(r). If correct, respond a(r) to client.If error, broadcast ERROR to client and all servers,and start BA protocol (to agree on which client request to process).Wait for error report from other backups.Round 3. Client: If receive an error report,wait for the BA protocol to complete; then vote on the responses.If no error is reported but primary's a(r) is not the majority voteof the a(r)'s, broadcast to all servers to initiate BA protocol.Otherwise, accept a(r).Primary: If receive an error report, switch to the BA protocol, process request,respond to client, and return to Round 1. Otherwise, go to Round 4.Backup: If receive an error report, switch to or continue with the BA protocol,process request, respond to client, and return to Round 1.Otherwise, go to Round 4.Round 4. Primary: Wait to see if client report error. If error, switch to BA protocol.Otherwise, return to Round 1.Backup: Wait to see if client report error. If error, switch to BA protocol.Otherwise, return to Round 1.Table 6.3: Byzantine-On-Demand Algorithm BOD-2The correctness argument for BOD-2 is similar to that of BOD-1 { any non-manifest

134 Adaptive Distributed-Thread Integrityfault is detected and a Byzantine agreement protocol is initiated to mask it.The complexity of BOD-2 is higher than BOD-1. In a fault-free run, an extrammessageswill be needed in Round 2 (for the \backup" servers to respond to the clients). When onlymanifest faults occur, it is still much cheaper than a full-
edged state-machine approachin that backup servers simply follow the lead by the primary in deciding the next requestto process. This arrangement eliminates the need for extra e�ort to satisfy the ReplicaCoordination requirement [42]. When asymmetric faults occur, BOD-2 may use one moreround than BOD-1, for example, when the backup servers have to wait till Round 4 todecide whether to switch to the BA protocol. However, if the client does not report errorin Round 3, it can complete the protocol after Round 3, earlier than the servers.6.4 Related WorkOur work is undertaken within the general framework outlined in [14] and can be viewed asa realization of some of the principles of adaptive fault tolerance. We have made heavy useof materials on primary-backup protocols [10, 9, 7] and the state-machine approach [42].In particular, our adaptive algorithms use those protocols as building blocks, in a modularfashion.Previous work on handling hybrid faults appears to focus on extending protocols forByzantine agreement so that they can tolerate a higher number of benign or hybrid faults(e.g., [30, 32, 46]) than a standard Byzantine agreement protocol. These algorithms typicallycan tolerate as many Byzantine faults as possible (bounded by one third of the number ofprocessors [28]). However, when other non-manifest faults do not occur, the algorithm byThambidurai and Park [46] cannot tolerate many manifest faults whereas our algorithmscan tolerate a maximum number of manifest faults because they will be running a Primary-Backup protocol. The algorithm by Lincoln and Rushby [30] can tolerate a maximumnumber o� manifest faults but, like the algorithm by Thambidurai and Park [46], it is non-adaptive in that the number of rounds of each execution of the protocol is decided in advanceso the complexity of the protocol does not decrease when no or fewer faults occur. Moreover,the complexity of such algorithms is typically comparable to that of Byzantine agreementbecause they aim to tolerate arbitrary faults, including symmetric and asymmetric faults,all the time. In contrast, our adaptive algorithms are much less expensive because for mostof the time they merely attempt to detect arbitrary faults, and activate the heavy machineryto tolerate arbitrary faults only as they occur.Our adaptation strategy is in
avour similar to early-stopping protocols (e.g., [12, 8, 3]).The complexity (i.e., numbers of messages and rounds) of these protocols is proportionalto the number of actual faults occurring instead of the maximum number of faults that canbe tolerated. In other words, the protocols terminate earlier if fewer faults occur. This lineof work has largely been focused on Byzantine-agreement-type problems, so the protocolsare adaptive only to the extent of the number of actual faults, not distinguishing the typesof faults. Therefore, they are usually much more expensive than our algorithms, whichtake advantage of the common observation that in most applications Byzantine faults occuronly infrequently. Nevertheless, our algorithms can use early-stopping Byzantine agreementprotocols or those above for hybrid faults to further increase e�ciency.

Adaptive Distributed-Thread Integrity 135Garay and Perry [13] recently proposed a continuum of failure models with crash-onlyfaults and Byzantine faults at the extremes. This can be taken as a combination of earlystopping and dealing with hybrid faults. Although their model is
exible in that a designdoes not have to choose one of the two extremes, their method again concentrates on solvingagreement-type problems. Our algorithms, on the other hand, are aimed at building generalfault-tolerant services. In particular, the algorithms adapt between two di�erent approaches,namely primary-backup and state-machine, and utilize to the maximum the e�ciency of aprimary-backup protocol.There have been e�orts to evaluate the relative merits of various fault tolerance tech-niques for di�erent applications (e.g., [49]), especially following the recent precise formula-tion and analysis of the widely used primary-backup approach [10, 9, 7]. Our work providessome insight in that one can adaptively use these di�erent approaches and retain (almost)the best of both worlds.Finally, since our adaptation is modular in that it uses existing primary-backup andByzantine agreement protocols as building blocks, our algorithms are conceptually simple.An important bene�t is that the correctness proof is much simpler than that for earlierprotocols for handling hybrid faults. We need only show that the adaptation correctlydetects and adapts to the occurrence of certain types of faults. The potential reduction inthe e�ort of formal veri�cation is then signi�cant.6.5 Summary and Future WorkWe have shown how to apply the principles of adaptive fault tolerance to handle hybridfaults. We have presented algorithms that intelligently adapt between the Primary-Backup(PB) approach and the State-Machine (SM) approach. Such an adaptive algorithm runsa default PB protocol but also attempts to detect the occurrence of non-manifest faults.When these fault occur, a Byzantine agreement type protocol is activated to mask the faults.Given that in practice manifest faults (e.g., crash and omission faults) are the most commonones, our adaptive approach is more cost-e�ective than the traditional \one or the other"approach because it retains (almost) the best of both worlds. Our approach is modularin that any speci�c PB or SM protocol can be plugged in. This keeps our algorithmsconceptually simple, and it also signi�cantly reduces the complexity of the correctnessargument and the e�ort of formal veri�cation.There are many directions for future research. One is to investigate optimizations ofour algorithms. For example, given an assumption of the number of possible faults in aperiod of time (such as predicted by the fault forecast component), some messages in BOD-1 may not need to be broadcast to all backup servers. This is because non-manifest faultsare symmetric, so only one nonfaulty server is needed to detect a fault, depending on theassumptions of link faults. Some simulation may also provide fresh insights.Another is to examine other possible adaptations, such as between symmetric and asym-metric faults, and between various manifest faults. As we already mentioned, other mech-anisms for fault diagnosis and fault removal can be integrated. They can run parallel toour algorithms. To reintegrate a repaired component, if only symmetric faults are possible,algorithms can be developed so that the repaired server obtains state information from asmall number of existing servers. If asymmetric faults are possible, then those methods

136 Adaptive Distributed-Thread Integritymentioned in [42] can be used. Other aspects of adaptation, such as fault transparency toclients and the cost to repair damaged servers, may also be worth investigating.Our adaptive algorithms not only o�er some theoretical insight into the relationshipbetween the primary-backup and state-machine approaches to implementing fault-tolerantservices, they also appear to be very practical. For example, given the existing support forprocess groups and virtual synchrony in the ISIS/Horus system [5], it should not be di�cultto add an adaptation facility so that non-manifest faults can be tolerated as needed.

Chapter 7ConclusionsThe challenge of new environments The research on adaptive systems has been mo-tivated by the needs of new, highly dynamic computing environments. The new kind ofarchitecture strongly departs from the assumptions of past computer system design, in thatmany of the decisions about the use of computing resources that are normally reservedfor the design time will, in adaptive systems, be made during operation. This new modeof operation requires qualitatively new design methods | which were the target of ourresearch.The need for new system design methodology Our research results represent a the-oretical and methodological approach to the design of adaptive fault-resistant computers.We have illustrated a formalisms for specifying adaptive fault resistant behavior and forbuilding models for predicting performance and failure behavior. We think that such for-malisms are essential to making adaptive design a standard design process that can meetdemands for unambiguous speci�cation and predictable behavior.Managing service trade-o�s and design alternatives We have examined the trade-o� relations in system service{such as timeliness, precision and accuracy, that are induced byadaptability, and have suggested ways to use these relations in making adaptation decisionsthat serve the needs of users in particular operating situations. We have also observedand categorized the rich range of choices available for modifying system con�guration{fromalgorithms to parameters.The criticality of meta-control It is clear that adaptivity requires a kind of higher-levelof control intelligence to make proper decisions about system con�guration. We have foundinspiration in the concepts of modern control theory, whose central issues{model-basedcontrol, environmental and system state estimation and prediction, are vitally concernedwith accuracy and stability. We have found these concepts to be directly mappable toadaptive control of digital systems, where system state is the con�guration of resources andthe algorithms that employ them. A direct example of this mapping of concepts is the use ofmultiple diagnostic models to improve the speed and accuracy of system characterization.In implementing this model, we have found the scheme of re
ective architecture to beattractive for its logical power and generality. We also note the usefulness of classical137

138 Conclusions(pre-modern) control ideas, such as �ltered, hysteresis-based, reactive control, for simpleadaptive components.New requirements for distributed and layered adaptation We also explored prop-agation e�ects in layered and distributed systems, noting the possible danger of endlesspropagation of adaptation, and the need to provide economical system support for thevarious operating modes.Results from case studies We have conducted several case studies to explore the prac-tical potential and design problems of adaptive designs. The major case study was AdaptiveDistributed Recovery Blocks (ADRB). This scheme provides several modes of fault toler-ance, including serial recovery, parallel recovery, and reduced-accuracy recovery. We devel-oped a general architecture for ADRB and built a demonstration of multiple-mode behaviorin a highly simpli�ed C2 application. The demonstration runs on the Alpha environments atRome and Concurrent Computers. The alpha computing model is particularly well suited toadaptive, distributed systems, because of its support for a wide range of resource-utilizationalgorithms, and for its uncompromised control of distributed computations.A second case study focused on the Alpha programming model. We analyzed opportu-nities for adaptation in the vital problem of fault recovery | in this case, the isolation andtermination of unrecoverable sections of broken distributed threads. We described a widerange of protocols that are suitable for various operating conditions. We also simulated twoof these protocols, and demonstrated the bene�ts of adaptive control with a hysteresis-basedcontrol scheme.Using the adaptive model, we also invented a new algorithm for tolerating hybrid faults| faults that range from simple crashes to complex patterns of inconsistency among redun-dant processors. Adaptation actually allowed a signi�cant economy in processing overhead| compared to existing solutions, for systems that must tolerate occasional complex faults.Future issues We have only started on the path of developing and demonstrating ageneral and practical design methodology for adaptive systems. The formal models ofadaptation need to be strengthened to assure users that adaptive systems can be well-speci�ed and behave predictably. More examples of practical design are needed to determinethe most robust design approaches. Techniques that we have outlined | real-time diagnosis,re
ective architecture, and distributed adaptation management, should be elaborated inpractical design situations.We are pleased at the interest of some academic researchers. We hope that this willencourage other researchers and practitioners to advance the art that we have tried tode�ne.

Bibliography[1] P.A. Alsberg and J.D. Day. A Principle for Resilient Sharing of Distributed Resources.In Proceedings of the 2nd International Conference on Software Engineering, pages627{644, October 1976.[2] Lorenzo Alvisi, Bruce Hoppe, and Keith Marzullo. Nonblocking and Orphan-Free Mes-sage Logging Protocols. In Twenty-Third International Symposium on Fault-TolerantComputing, pages 145{154, Toulouse, France, June 1993.[3] P. Berman, J.A. Garay, and K.J. Perry. Optimal Early Stopping in Distributed Con-sensus. In Proceedings of the 6th International Workshop on Distributed Algorithms,volume 647 of Lecture Notes in Computer Science, pages 221{237, Haifa, Israel, Novem-ber 1992. Springer-Verlag.[4] K.P. Birman. Replication and Availability in the ISIS System. In Proceedings ofthe 10th ACM Symposium on Operating System Principles, volume 19(5) of ACMOperating Systems Review, pages 79{86, December 1985.[5] K.P. Birman. The Process Group Approach to Reliable Distributed Computing. Com-munications of the ACM, 36(12):37{53/103, December 1993.[6] K.P. Birman, T.A. Joseph, T. Raeuchle, and A. El Abadi. Implementing Fault-tolerantDistributed Objects. IEEE Transactions on Software Engineering, 6(11):502{508, June1985.[7] N. Budhiraja. The Primary-Backup Approach: Lower and Upper Bounds. Ph.d. dis-sertation, Cornell University, Ithaca, New York, June 1993. Available as TechnicalReport 93-1353.[8] N. Budhiraja, A. Gopal, and S. Toueg. Early Stopping Distributed Bidding and Ap-plications. In Proceedings of the 4th International Workshop on Distributed Algo-rithms, volume 486 of Lecture Notes in Computer Science, pages 304{320, Haifa, Israel,September 1990. Springer-Verlag.[9] N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg. Optimal Primary-BackupProtocols. In Proceedings of the 6th International Workshop on Distributed Algorithms,volume 647 of Lecture Notes in Computer Science, pages 362{378, Haifa, Israel, Novem-ber 1992. Springer-Verlag. 139

140 Conclusions[10] N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg. Primary-Backup Protocols:Lower Bounds and Optimal Implementations. In Proceedings of the 3rd IFIP WorkingConference on Dependable Computing for Critical Applications, pages 187{196, Sicily,Italy, September 1992.[11] Raymond K. Clark, E. Douglas Jensen, and Franklin D. Reynolds. An ArchitecturalOverview of the Alpha Real-Time Distributed Kernel. In Proceedings of the USENIXWorkshop on Microkernels and Other Kernel Architectures, Seattle, WA, April 1992.[12] D. Dolev, R. Reischuk, and H.R. Strong. Early Stopping in Byzantine Agreement.Journal of the ACM, 37(4):720{741, October 1990.[13] J.A. Garay and K.J. Perry. A Continuum of Failure Models for Distributed Computing.In Proceedings of the 6th International Workshop on Distributed Algorithms, volume647 of Lecture Notes in Computer Science, pages 153{165, Haifa, Israel, November1992. Springer-Verlag.[14] J. Goldberg, I. Greenberg, and T.F. Lawrence. Adaptive Fault Tolerance. In Proceed-ings of the IEEE Workshop on Advances in Parallel and Distributed Systems, pages127{132, Princeton, New Jersey, October 1993.[15] M. Hecht, J. Agron, H. Hecht, and K.H. Kim. A Distributed Fault Tolerant Archi-tecture for Nuclear Reactor and Other Critical Process Control Applications. In Pro-ceedings of the Twenty-First International Symposium on Fault-Tolerant Computing,pages 462{469, Montreal, June 1991. IEEE Computer Society.[16] M. Hecht, J. Agron, and S. Hochhauser. A Distributed Fault Tolerant Architecturefor Nuclear Reactor Control and Safety Functions. In Proceedings of the Real-TimeSystems Symposium, pages 214{221. IEEE Computer Society, December 1989.[17] Maurice Herlihy, Nancy Lynch, Michael Merritt, and William Weihl. On the Correct-ness of Orphan Elimination Algorithms. In Seventeenth International Symposium onFault-Tolerant Computing, pages 8{13, Pittsburgh, PA, July 1987.[18] Maurice P. Herlihy and Martin S. McKendry. Timestamp-Based Orphan Elimination.IEEE Transactions on Software Engineering, 15(7):825{831, July 1989.[19] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, and B. Randall. A Program Structurefor Error Detection and Recovery. In Lecture Notes in Computer Science, volume 16,pages 171{187. Springer-Verlag, New York, NY, 1974.[20] Editor J.C. Laprie. Dependability: Basic Concepts and Terminology. Springer-Verlag,Wien, New York, 1991.[21] K. H. Kim and T. F. Lawrence. Adaptive Fault Tolerance in Complex Real-TimeDistributed Computer System Applications. Computer Communications, 15(4):243{251, May 1992.

Conclusions 141[22] K.H. Kim. Process Scheduling and Prevention of Communication Deadlocks in anExperimental Microcomputer Network. In Proceedings of the Real-Time Systems Sym-posium, pages 124{132. IEEE Computer Society, December 1982.[23] K.H. Kim. Distributed Execution of Recovery Blocks: An Approach to Uniform Treat-ment of Hardware and Software Faults. In Proceedings of the Fourth InternationalConference on Distributed Computing Systems, pages 526{532. IEEE Computer soci-ety, May 1984.[24] K.H. Kim. Structuring DRB Computing Stations in Highly Decentralized LAN Sys-tems. In Proceedings of the International Symposium on Autonomous DecentralizedSystems, pages 305{314, Kawasaki, Japan, March 1993. IEEE Computer Society.[25] K.H. Kim and B.J. Min. Approaches to Implementation of Multiple DRB Stationsin Tightly Coupled Computer Networks and an Experimental Validation. In Proceed-ings of the Fifteenth International Computer Software and Applications Conference(COMPSAC 91), pages 550{557, Tokyo, Japan, September 1991. IEEE Computer So-ciety.[26] K.H. Kim and H.O. Welch. Distributed Execution of Recovery Blocks: An Approachto Uniform Treatment of Hardware and Software Faults in Real-Time Applications.IEEE Transactions on Computers, pages 626{636, May 1989.[27] H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-Tolerant Membership Service ina Synchronous Distributed Real-Time System. In Proceedings of the InternationalWorking Conference on Dependable Computing for Critical Applications, pages 167{174, Santa Barbara, CA, August 1989. IFIP WG 10.4.[28] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACMTransactions on Programming Languages and Systems, 4(3):382{401, July 1982.[29] J.R. Leigh. Applied Digital Control, 2nd Edition. Prentice-Hall, New York, NY, 1992.[30] P. Lincoln and J. Rushby. A Formally Veri�ed Algorithm for Interactive ConsistencyUnder a Hybrid Fault Model. In Proceedings of the 23rd Fault-Tolerant ComputingSymposium, pages 402{411, Toulouse, France, June 1993.[31] B. H. Liskov, R. Schei
er, E. Walker, and W. E. Weihl. Orphan Detection. In Seven-teenth International Symposium on Fault-Tolerant Computing, pages 2{7, Pittsburgh,PA, July 1987.[32] F.J. Meyer and D.K. Pradhan. Consensus with Dual Failure Modes. IEEE Transactionson Parallel and Distributed Systems, 2(2):214{222, April 1991.[33] K. Mori. Autonomous Decentralized Software Structure and its Application. In Pro-ceedings of the Fall Joint Computer Conference, pages 1056{1063, Dallas, TX, Novem-ber 1986.[34] K. Mori and H. Ihara. Autonomous Decentralized Loop Network. In Proceedings ofthe Spring COMPCON, 1982.

142 Conclusions[35] Sape Mullender, editor. Distributed Systems. Addison-Wesley, 2 edition, 1993.[36] B. Nelson. Remote Procedure Call. Technical Report CSL-79-3, Xerox Palo AltoResearch Center, Palo Alto, CA, 1981.[37] J. Duane Northcutt and Raymond K. Clark. The Alpha Operating System: KernelInternals. Archons Project Technical Report TR #88051, Department of ComputerScience, Carnegie Mellon University, Pittsburgh, PA, May 1988.[38] J. Duane Northcutt and Raymond K. Clark. The Alpha Operating System: Program-ming Model. Archons Project Technical Report TR #88021, Department of ComputerScience, Carnegie Mellon University, Pittsburgh, PA, February 1988.[39] F. Panzieri and S. K. Shrivastava. Rajdoot: A Remote Procedure Call Mechanism Sup-porting Orphan Detection and Killing. IEEE Transactions on Software Engineering,14(1):30{37, January 1988.[40] B. Randell. System Structure for Software Fault Tolerance. IEEE Transactions onSoftware Engineering, pages 220{232, June 1975.[41] A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement Failure Detec-tion in Asynchronous Environments. In Proceedings of the Tenth ACM Symposium onPrinciples of Distributed Computing, pages 341{351, August 1991.[42] F.B. Schneider. Implementing Fault-Tolerant Services Using the State-Machine Ap-proach: A Tutorial. ACM Computing Surveys, 22(4):299{319, December 1990.[43] Herb Schwetman. CSIM: A C-Based, Process-Oriented Simulation Language. In Pro-ceedings of the 1986 Winter Simulation Conference, pages 387{396, December 1986.[44] Herb Schwetman. CSIM Reference Manual (Revision 16). MCC Technical ReportACT-ST-252-87, Austin, Texas, May 1992.[45] S. K. Shrivastava. On the Treatment of Orphans in Distributed Systems. In Proceedingsof the Third Symposium on Reliability in Distributed Software and Database Systems,pages 155{162, FL, October 1983. y.[46] P. Thambidurai and Y.K. Park. Interactive Consistency with Multiple Failure Modes.In Proceedings of 7th IEEE Symposium on Reliable Distributed Systems, pages 93{100,Columbus, Ohio, October 1988.[47] W.N. Toy. Fault-Tolerant Computing. In Advances in Computers, volume 27, pages201{279. Academic Press, 1987.[48] Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing, and CmputerScience Applications. Prentice-Hall, Englewood Cli�s, NJ, 1982.[49] A. Waterworth, P.D. Ezhilchelvan, and S.K. Shrivastava. Understanding the Cost ofReplication in Distributed Systems. Technical report, Computing Laboratory, Univer-sity of Newcastle upon Tyne, U.K., January 1993.

Conclusions 143[50] J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith,R.E. Shostak, and C.B. Weinstock. SIFT: Design and Analysis of a Fault-TolerantComputer for Aircraft Control. Proceedings of the IEEE, 66(10):1240{1255, October1978.[51] D. Wilson. The STRATUS Computer System. In T. Anderson, editor, Resilient Com-puting Systems, volume I, chapter 12, pages 45{67. John Wiley and Sons, Inc., 1985.

144 Conclusions

Appendix AAdaptive Fault Tolerance

145

