
Elements of Trusted MulticastingLi Gong and Nachum ShachamSRI Computer Science LaboratoryMenlo Park, California 94025, U.S.A.fgong,shachamg@csl.sri.comAbstractMulticast is rapidly becoming an important mode ofcommunication as well as a good platform for build-ing group-oriented services. However, to be usedfor trusted communication, current multicast schemesmust be supplemented by mechanisms for protectingtra�c, controlling participation, and restricting accessof unauthorized users to the data exchanged by theparticipants. In this paper, we consider fundamen-tal security issues in building a trusted multicast fa-cility. We discuss techniques for group-based data en-cryption, authentication of participants, and prevent-ing unauthorized transmissions and receptions.1 IntroductionEmerging distributed applications, such as multi-media teleconferencing, computer-supported collabo-rative work, and remote consultation and diagnosissystems for medical applications, depend on e�cientinformation exchange among multiple participants.Network-based multi-destination switching is an es-sential mode of communication for such applications.Little concrete consideration has been given to thesecurity and privacy issues brought about by multicas-ting, resulting in sessions without any control over whoparticipates and the level of participation. Tradition-ally, teleconferencing has been conducted over privatenetworks or dial-up lines, which provided some phys-ical security measures. However, in integrated net-works like Internet or ATM, multicast tra�c sharesnetwork resources with other tra�c. Such integrationallows a quick setup and exible maintenance of multi-cast sessions, but it also brings about serious securityand trust issues.In the current Internet-based IP-Multicast de-sign [5, 2], for example, a broadcast message is notguaranteed to arrive at only the intended destinations.

There is no security control as to who can register a(dynamic) session address, who can or cannot join asession or inject tra�c into the session, or how to dealwith the security implicationswhen a host leaves a ses-sion. Furthermore, no security management is speci-�ed for the multicast hosts or routers. Several ad-hoc�xes has been recently proposed, but no systematicsecurity architecture design is available.Some of this openness was done by choice to fa-cilitate large-scale distribution of unrestricted data,as the successful deployment of IP-Multicast demon-strates. However, many multicast sessions in military,business, commerce, and medicine are not feasible insuch an open environment, and will require controlledparticipation and data privacy (possibly at multiplesecurity levels).What is needed is a trusted multicast architecture(with associated procedures) to handle these securityissues in a coherent manner and to protect networkservices and applications. Careful investigation ofsuch an architecture can save duplicated, and quitepossibly unsophisticated, e�orts of inserting securitytechnology into individual applications.In the rest of this paper, we consider fundamentalsecurity issues in building a trusted multicast facility.We discuss new security challenges in multicast andcurrently available solutions for them. We concludewith an overview of related prior work and directionsfor future work.2 New Challenges in MulticastDue to page limit, we skip an overview of existingnetwork multicast mechanisms and refer the reader tothe following references [5, 6, 15, 2].In multicast, just as in unicast, an adversary (whocan be a legitimate network user) may eavesdropon con�dential communication, disrupt or distort asession's data exchange, inject unauthorized or bo-

gus tra�c, block a session's progress, masqueradesas someone else to join in a session, or initiate andoperate a bogus session. Therefore, the privacy, in-tegrity, availability, and authenticity of a multicastservice must be protected.However, the nature of multicast presents newproblems that cannot be e�ectively dealt with usingtrivial extensions of techniques for secure unicast. Forexample, in setting up a secure point-to-point commu-nication channel, one knows the identity of the partyat the other end. In a multicast session, knowing whoare present within the session is typically not guar-anteed, let alone controlling session membership. An-other problem is group-oriented secure data exchange.Although using O(n2) end-to-end secure channels canprovide secure group communication, such an archi-tecture loses all the advantages a multicast facility hasover unicast. Also, in group-oriented communication,additional mechanism is needed to reliably establishthe identity of the originator of a message. More-over, group-oriented authentication (and key distribu-tion) is not necessarily O(n2) pairwise authentication,because of the many possible interpretations of themeaning of belonging to a multicast session.In short, new protocols are needed to perform secu-rity functions for controlling session organization andmanagement, secure broadcast, and user access to thenetwork. We will elaborate on these functions andprotocols in the next section.3 Trusted MulticastThe architecture design should consider the place-ment of the many control functions at appropriate net-work protocol layers and appropriate network sites,and the trust relationship between network sites andhosts (some of which may function as multicast man-agement centers).Apart from satisfying the security requirementsmentioned earlier, a desirable design should also becompatible with existing network protocols, scalableto the scope of the global Internet, and transparentso that higher level applications and services are freefrom concerns for details (such as authentication, andthe checking of credentials and policies). In partic-ular, the security mechanisms residing at the sessionand presentation levels will place no restriction on theunderlying networking mechanisms. As such they willcoexist with networking standards and will not dependon modi�cation of transport and switching elements inthe (inter)network. Moreover, the architectural designshould be localizable in that an area of a network can

install the trusted multicast facility and achieve �re-wall-style self-protection even if other portions of the(inter)network do not yet support trusted multicast.This feature is important to facilitate a gradual intro-duction of the new technology to the existing millionsof host machines. Finally, the architecture has to beexible to support a variety of policies of session con-trol as required by higher level applications. Thesefeatures together will make trusted multicast easier tobe integrated into an existing environment such as theInternet.3.1 AuthenticationAuthentication { a process by which one satis�esanother about one's claim of identity { is an essentialmechanism in trusted multicast to control the regis-tration of a multicast address and screen hosts thatrequest to join an existing session. Often, the request-ing party and the existing session members need to au-thenticate each other. Sometimes one party may del-egate some of its authority to another party. This canbe achieved by letting the former issue a credential,such as a signed and veri�able certi�cate, to the lat-ter who later presents such credentials together witha proof of its identity.There is a very rich body of literature on the topicof authentication and delegation in distributed sys-tems (see [1] for references). Thus we only concentrateon the extension of the basic pairwise authenticationmodel to the internal and external authentication ofall existing members of a multicast session as a group.There are two distinct issues here. One is who con-trols the membership of a group and how to enforcesuch a membership policy. The other is what consti-tutes being admitted to an existing group. We tacklethe second issue �rst.Except in the case of anonymous sessions, a mini-mum requirement for belonging to a group is that thenew party should be introduced to (some or all) exist-ing members. This introduction merely announces theidentity (i.e., the name) of the new party, and can bedone by any member, by at least some preset numberof members, or by a group leader. Whoever handlesthe introduction process in essence implements the ad-mission policy. A more stringent requirement can bethat each existing member and the new member mustsuccessfully authenticate each other after an initial in-troduction. An even more strict requirement can bethat every member must also know that every othermember knows about the new party.To require pairwise authentication, there need to beO(n2) runs of an authentication protocol for a group

of size n, although such runs are done incrementallyas new members join the group. A more e�cientmethod is to elect a group leader who is trusted (byother group members) to properly authenticate thenew member. In this case, the group leader in ef-fect controls the group membership policy. A naturalchoice of the leader is the session initiator. When itregisters the session, it becomes the leader and specifyan admission policy. If the leader crashes or retires, anew leader must be elected through a secure protocol,possibly according to the session policy. It is con-ceivable that some members may monitor the leader'sactions for checking conformance with the policy.When a member voluteeringly or otherwise leavesa session, especially long running sessions, the mem-ber should properly \sign o�" and erase any sensitiveinformation related to this session, such as the groupkey. Otherwise, this member can later eavesdrop with-out explicitly joining the group, or the residue infor-mation a departing member leaves behind may be ex-ploited by potential attackers. Since a benign membermay forget to clear up, it is always prudent to updatethe group key at this point. For the same reason,a member must be garbage collected when a propersign-o� fails to take place. In other words, the groupmay sign him o� to make sure that he cannot par-ticipate in future discussions. The status of memberscan be monitored by a number of methods, such as byexchanging \heart-beat" messages.3.2 Secure SessionsBased on (our and others') previous experience inthe area of secure group-oriented distributed systems,we can identify several crucial issues in forming securesessions, which we now discuss in some detail.Session membership policies. Sessions can beset up for various purposes with di�erent member-ship policies. Below are a few \typical" policies formanaging multicast. At one end of the spectrum isa totally open policy. Anyone is free to take part insuch an open session, which resembles a mass gather-ing or an unmoderated USENET newsgroup. A morerestricted session, as a presidential town hall meeting,has open participation but members have to pass a se-curity check and there is a session moderator. An evenmore restricted session is like a board meeting whereonly board members can participate. From time totime non-members are invited, but only if a major-ity of the members consent. We can easily imaginean in�nite number of such policies (including the mul-tilevel security variety) and, at the other end of thespectrum, is an ultra secure and closed session. As

we argued earlier, the architecture should be exibleenough to accommodate many policies so that eachindividual application or each session can choose toimplement one policy or a set of basic policies.In some applications, membership information it-self is sensitive, thus rules have to be de�ned for dis-closing the current group membership. However, traf-�c analysis may still reveal membership. One solutionis to have trusted gateways that will mask all sourcesand destinations. Another solution is to saturate thenetwork so that an observer cannot distinguish be-tween a meaningful packet and a junk one.Registration and deregistration. When a hostor user requests a network address to establish a mul-ticasting session, a multicasting management center(MMC) must verify the requester's identity and checkthe session policy dictating who can register a session.Similarly, the requester may also wish to verify theidentity of the MMC so as to be sure that the sessionis correctly registered.Information such as membership policy, user cre-dentials, and records of registered sessions can bestored at the MMC in the form of access control list.The MMC can be a centralized service or a dis-tributed one. When there are more than one MMCin a network, they must coordinate among themselvesto ensure consistency and uniqueness of multicast ad-dresses. They may or may not adopt an identical ad-mission policy.When a request to deregister a session arrives atan MMC, it must authenticate the requester and de-termine if it is authorized for such a request. Nor-mally, only the session leader, or its representative,can deregister the session. When the session leadercrashes or when it forgets to deregister, a \dead ses-sion" must be garbage collected. This can be doneby having the MMCs periodically checking the activi-ties of all registered sessions. Similarly, if a multicastsession is deemed undesirable (e.g., when it oods thenetwork with junk), the session must be terminated.Joining and leaving a session. The communica-tions among session members can be public or private.This can be speci�ed at registration time, and can bechanged later. It is also possible to leave this attributeto the discretion of the individual members, so thatsome communications may be private while the restremain public. For private sessions, adequate privacyprovisions are required in multicasting. Because mostnetworks are open in the sense that anyone may eaves-drop on network tra�c we need to encrypt messagecontents, when requested, to ensure that only thoseauthorized can correctly decrypt them.

Secure session communication. There are twostrategies for this purpose. The traditional approachis to arrange the distribution of a common encryp-tion key, shared by all session members, and encryptbroadcast messages with this group key.With this approach, an initial key distribution musttake place when a session is registered. This key canbe chosen either by the session leader or the authen-tication server. The key is then maintained by thesession leader or stored at the MMC where the ses-sion is registered. When someone applied to join asession, the group leader or the MMC checks the ses-sion policy to make a decision. When a new memberis accepted into the session, it receives the group keyfrom the MMC or the group leader. When the groupleader crashes, a new leader is elected, using any ofthe many known election protocols.A signi�cant shortcoming of this method is that, ifsession members can be dishonest, the group key doesnot identify the source of a message. Another problemis that frequent key change (and their synchronizationamong group members) during a busy session is obvi-ously not very desirable for performance reasons. Se-cure broadcast algorithms alleviate these two issues,as we describe below.Secure and e�cient broadcast. When a mem-ber can choose a new encryption key for a new mem-bership on a per message basis, the risk of key leakageby a departing member is considerably reduced and anew group key is unnecessary.Suppose each member has a pair of public and pri-vate keys, for example, for use in the RSA cryptosys-tem [13]. Each member must have knowledge of thegroup membership { at least he must know the publickeys of all the other members. To broadcast a mes-sage, a member chooses an encryption key (for use inDES) at random and encrypts the message. The mem-ber then signs a timestamp (to defend against replayattacks), the DES key, and a one-way hash function[12] of the original message (to serve as an integritychecksum), using its private key. The member thenencrypts this signature with each other member's pub-lic key. Finally, the member broadcast (or multicast)the (n � 1) encrypted signatures and the encryptedmessage. (Here, n is the size of the group.) At thereceiving end, a group member decrypts a suitably en-crypted signature (with its private key), obtains theDES key (using the broadcaster's public key), andthen retrieves the message. Clearly, anyone who is nota group member would not be able to retrieve the mes-sage. This simple algorithm has the following attrac-tive features: (1) the encryption key can be changed

for every message, thus a membership change does notrequire additional security measures such as changingthe group key; (2) only the message header (contain-ing the encrypted signatures), and not the messagebody, increases linearly in length with the number ofdestinations. Moreover, the computation of a one-wayhash function can be very e�cient, and the checksumadds only a few extra bytes [12].To use this broadcast primitive, session membersreceive and cache others' public keys and other rel-evant data. When noti�ed of session membershipchanges, members simply update their local member-ship lists and choose new DES keys for future multi-casts, which are thus made unreadable to those outsidethe session (including the members who just left).If group members do not have public key capability,the above algorithm cannot be easily extended sinceit appears that not only every pair of members mustshare a distinct key, thus bringing about the O(n2)key problem, but also the message body need to beencrypted (n � 1) times (e.g., using DES) and thusthe broadcast message body also increases with thesize of the group, making the algorithm less scalable.Nevertheless, there exist secure broadcast algo-rithms (see [8] for references) with the same attrac-tive features of the one using public-key cryptosys-tems. Due to page limit, we do not discuss these al-gorithms further except by noting that the messageheader in the NED-B(n) protocol [8] has O(n logn)bits. This algorithm is thus more space e�cient com-pared with the use of public-key systems where themessage header uses O(c�n) bits where c is the greaterof O(logn) and the size of a public key signature (typ-ically 512 bits or longer).The NED-B(n) algorithm is also far more compu-tationally e�cient in that the complexity is merelyO(n(logn)2), whereas to use public key systems, ndigital signatures must be signed and veri�ed. Noticethat each pair of members must now share a distinctencryption key, thus the O(n2) keys problem seemsto persist. However, there are methods to reduce thecomplexity from O(n2) to O(n) [10].Encryption mode. It is generally undesirable touse the basic Electronic Code Book (ECB) mode be-cause each block is independently encrypted thus themode is more vulnerable to slicing attacks (e.g., byreordering blocks) and cryptanalysis.In the plaintext-feedback mode, the encryption ofa block depends on the plaintext of the precedingblock(s). This results in in�nite error propagationin that a block cannot be correctly decrypted unlessall preceding blocks are correctly decrypted. In other

words, a single lost packet (or cell) or any data cor-ruption during transit renders the rest of a messageunreadable. This undesirable property may necessi-tate excessive retransmission when the network or astream is unreliable.The ciphertext-feedback mode, on the other hand,has a limited and controllable error propagation, typ-ically of 2 encryption blocks. As long as 2 consecu-tive ciphertext blocks are received correctly, decryp-tion can proceed and resynchronization is automatic.Moreover, in some applications involving audio andvideo, occasional packet loss does not matter muchbecause it causes only minor degradation in voice orvideo quality. All these made this encryption modethe favorable choice.The multicast facility may need to adapt betweenmultiple encryption modes, and between using blockciphers and using stream ciphers, according to the ap-plication environment. For example, ECB mode al-lows random access to individual blocks of a message.Also, a stream cipher, especially if precomputation ofthe stream is possible (e.g., using DES as a pseudo-random number generator), is faster than a typicalblock cipher, but due to the cost of resynchronizationwhen data loss occurs, it is more suitable in a highlyreliable environment.Finally, we consider the case of partial encryptionof streams. One motivation to avoid encrypting thewhole stream is e�ciency, e.g., when it is possible toidentify crucial data (such as control information) thatare the only portion to be encrypted for security. Thesending and the receiving ends must be in synchronyas to which portion is encrypted and which is not.Another motivation for partial encryption is thatnot all receiving ends require the same amount ortype of information from the source. One membermay want to hear the voice more clearly while anotherwants to improve the image quality.Similarly, di�erent portions of the same streammayneed to be encrypted di�erently. For example, thebackground of a picture may be public knowledge, butthe human image in the center may be highly classi�edand need special treatment.In such cases, it is conceptually simpler to viewpartial streams as many layers of the same stream,and techniques developed for Heterogeneous Multicast(HMC) [14] can be used to explore the concept of mul-ticast sessions in which users participate at di�erentbandwidth levels.Session advertising. Many services need to beadvertised. The existence of a registered session canbe announced, e.g., by a bulletin board service. Proper

credentials and identi�cation informationmust be pro-vided so that one can verify the authenticity of the ad-vertisement. Sometimes it is necessary to restrict thedissemination of service information. For example, thebulletin board can be made multilevel secure.3.3 Control of Tree AccessAuthentication guarantees that only certi�ed usersbecome legitimate participants, and group-orientedencryption enables only those participants to decodethe data that is being sent. Yet, the current networklevel multicast routing and forwarding mechanisms al-low any user to establish a path to the tree and toinject tra�c at will. It is thus of interest to employnetwork level mechanism that limit physical access tothe distribution tree.A simple approach, used by ST-II [15], is to requireall tree attachments to be initiated by the source ofthe tree. This makes the source aware of who is lis-tening and allows it to reject unwanted requests. Ifthe source approves a connection request, it sends amessage down the tree toward the destination. At onepoint, the message leaves the tree and establishes anextension path while progressing toward the destina-tion. While this technique provide some level of con-trol, it adds signi�cant processing load to the sourcethereby limiting the session size.In a teleconference, receivers usually initiate attach-ment to a speci�c distribution tree. If the distributionis by multiple source-based trees, a typical receiver islikely to shift attention from source to source therebychanges frequently its attachment to the respectivesource-trees. Even if the distribution is over a sin-gle core-based tree [2], a receiver changes its resourceallocation on that tree to reect the shifting emphaseson di�erent sources. Both resource allocation and es-tablishing and disconnecting path involve actions bymulticast agent residing at network nodes.As was argued above, requiring the sources to medi-ate these actions reduces e�ciency and performance.It is thus desirable to allow receivers to interact di-rectly with the multicast agents with minimal if anyinvolvement by the sources. This receiver-agent in-teraction must be supported by proper authenticationmeasures that prevent unauthorized users from direct-ing tra�c in their direction.The process of authentication of end hosts to net-work switches is somewhat di�erent from authenti-cation among peer hosts. First, due to storage andprocessing limitations, switches cannot be expected tomaintain keys, public or private for all hosts connectedto the network. Moreover, at a time a connection is

initiated, a host does not know which switches willactually modify their routing tables to support its re-quest. That is, advance key exchange with the \right"switches is not feasible.Each network switch could maintain a small num-ber of public keys, with the corresponding private keysheld at one or more authentication servers. Before ini-tiating a request for a new connection or modi�cationof an existing connection, a host �rst send the requestmessage to the authentication server. After authen-ticating the host, the server sends back the messagewith a signature attached. That message is sent alongthe network path, and every switch on the way checksit against the signature, using its locally held publickey of the server.Similarly, a node that wishes to inject tra�c must�rst obtain a signature from the server. A networknode will not accept tra�c from a source without sucha signature.Notice that authentication of receivers are done rel-atively infrequently and are not likely to impose agreat processing burden on the switches. In contrast,to block unauthorized sources, packets must carry asignature, which results in a much heavier load onthe switches, especially in the case of stream tra�c,e.g., video. For stream tra�c switches, only a frac-tion of the packet should carry signatures, and theswitches should cache the signatures for forwarding ofthose packets that do not carry signatures. The cacheshould be refreshed every so often.It is also conceivable that malicious or stupid par-ties may misuse network resources, for example, byooding a multicast address, or by setting up a bo-gus multicast session with the sole purpose of usingup network bandwidth. Simply ignoring such \junk"packets (like people throwing away junk mail) is inad-equate because by the time such packets reach theirdestinations, precious network resources have alreadybeen consumed. Thus we need to block such usages(as soon as they are identi�ed) as near to the mul-ticast source as possible. We can imagine that theMMCs acting as warning posts that send out advisorymessages to individual hosts, who in terms regulatethe local network access it controls. Many Internetsites have already started �ltering incoming and out-going packets, but mostly for di�erent reasons. Al-ternatively, ideas similar to those developed for theVisa protocol [7] can also be used. However, blockingmisuse seems to require modi�cations to the existingmulticast (and unicast) protocols and softwares.

3.4 Scalability and Trade-o�The task of assigning initial encryption keys foruser or host authentication grows only linearly withthe number of users and hosts interested in partici-pating in secure multicast. The number of messagesfor establishing a session and for changing the sessionmembership is also linear to the size of the session.A secure broadcast algorithm (e.g., NED-B(n)) allowsdynamic encryption key change on a per-message ba-sis, thus eliminating the need for a new group key upongroup membership change. Software implementationsof encryption algorithms are su�ciently fast whilehardware implementations will further enhance per-formance. More importantly, in protocol NED-B(n),the most costly activity | the encrypting of broad-cast messages | remains constant when the sessionsize increases. Only the message header (which con-tains instructions for decryption) increases in length,and only linearly, when the session size increases.Nevertheless, at present, a quality public-key cryp-tosystem such as RSA typically has a key length of512 bits. This means that a multicast message headerincreases 64 bytes for each additional member. Suchan increase may not be practical in some situations.One trade-o� is to use short RSA keys or use di�erentpublic key algorithms. Another is to selectively (anddynamically) choose between using a group key andusing secure broadcast, depending on the importanceof each session and perhaps each message. For ex-ample, when group membership becomes reasonablystable, it is more e�cient to use a group key.Sometimes, members of a session also forms a largenumber of (sub)groups. For example, in a teleconfer-encing application, although everyone's voice is broad-cast to all destinations, a member may wish to broad-cast his physical location information (his coordinates)only to members in his proximity. To structure such(sub)groups, the secure broadcast algorithm has theadvantage that, since data encryption keys can be cho-sen dynamically on a per message basis, a memberneed not store a potentially large number of groupkeys. Of course a member can optimize by storingdata encryption keys and the corresponding signedmessage headers and reusing them until a member-ship change occurs.3.5 Multilevel Secure MulticastEnd-to-end encryption can be used to control mes-sage dissemination on a discretionary basis. Manda-tory control, possibly of a multilevel structure, canalso be implemented. Here, groups and members are

classi�ed at di�erent levels, and a party cannot be-come a member of a group whose security level ishigher than its own. Levels are also assigned to en-cryption keys. A member cannot have access to akey whose level is higher. For encryption, the level ofthe key must be equal to or higher than that of theplaintext. The level of a ciphertext is then the levelof the key. Such an arrangement e�ectively segregatethe multicast network into virtual networks, each at adistinct security level.Multilevel security may require that lower level in-formation be accessible to higher level group members.One way to achieve this is for the lower level groupmembers to be able to \write up" { to send multicastmessages to groups at a higher level. However, sincethe sender typically cannot have the suitable higherlevel encryption key, there must be a trusted multi-level network component that either makes the lowerlevel keys available to the higher level members or actsas a gateway that decrypts an incoming message witha lower level key, reencrypts the message with a higherlevel key, before relaying the message. Alternatively,low level users may write up using a high level publickey.There can be issues of covert channel where lowerlevel members can observe the existence of high levelnetwork activities. One solution is to use relays toconfuse observers. For example, if messages comingout of SRI go through a relay that reencrypts themwith a key it shares with the IBM relay, then all athird party can deduce is that someone at SRI sends amessage to someone at IBM. Given a su�ciently ran-dom communication pattern between SRI and IBM,the bandwidth of this covert channel can be greatlyreduced. In fact, the two relays can exchange uselessmessages at random intervals to further confuse thethird party. It is unclear whether applications careabout the threat of information leakage through covertchannels, though similar techniques can be used to im-pede tra�c analysis.3.6 Two Trusted Multicast FacilitiesBased on the principles and techniques discussedabove, we have developed more speci�c architecturesfor two types of multicast: class-based multicast andmobile multicast.In designing the class-based multicast, we take ad-vantage of the following assumptions: (1) the networktopology is relatively stable; (2) users belong to classesand this membership does not change often; and (3)a class is a broader concept than a group or session.One driving application environment is a corporation

where an employee belongs to a department (whichforms a class) and communication within the samedepartment is largely open.Our design of a secure mobile multicast is based theconcept of a secure multicast agent and the (sealed)oating-letter-bottle analogy, which insulate securityconcerns from transport issues and mobility issues.The scenarios driving our design include a \ying doc-tor" initiating a multi-party consultation session, abusiness traveler taking part in a meeting being con-ducted at his company headquarters, and members ofgeologically separated departments of a corporationholding a joint meeting, all through multicast in (in-ter)networks such as today's Internet.Due to page limit, we cannot provide details here.We plan to include them in a revised version of [9].3.7 Related WorkOne of the earliest work on process groups is [4].In much of the later theoretical and practical work onbroadcast protocols (e.g., [3]), the purpose is largely toachieve broadcast atomicity and/or to maintain causalor total ordering of messages, with no or little consid-erations for security.When security is considered seriously, such as insecure reliable broadcast, secure atomic broadcast, orsecure causal broadcast, the tendency is to introducesecurity into existing (and often complex) systems ina rather ad hoc manner. This results in security as-sumptions and architectures that are incompatible. Amuch better approach is to implement these complexbroadcast protocols based on a trusted multicast fa-cility. In this way, multiple applications share thesame platform, have consistent security assumptionsand protocols, and can thus coexist. This approachalso greatly simpli�es the (repetitive) task of gettingthe security mechanisms right in all applications.Another related work is IP-Multicast [5, 6]. Ourtrusted multicast facility can be based on IP-Multicastand should not require modi�cations to IP-Multicastor lower layers of the network architecture (except forpreventing misuse of network resources).Prior e�orts have addressed security issues in theInternet (e.g., [16, 7]). However, there were no ar-chitecture and protocols for secure multicasting. TheVisa protocol controls the movement of datagrams(and thus the use of network resources) on a per userbasis whereas in trusted multicast the granularity mayneed to be �ner.Heterogeneous Multicast (HMC) [14] explores theconcept of multicast sessions in which users participate

at di�erent bandwidth levels. This concept can beextended into multicast at di�erent security levels.Due to the page limit, we are unable to give a morecomplete reference list.4 Summary and Future WorkAdvances in networking technologies have mademultiparty communication an active area of researchand development, where multicast is an importantmode of communication as well as a good platformfor building group-oriented services. In this paper, wehave considered fundamental security issues in build-ing a trusted multicast facility. We have discussedthreats, new requirements for security, solutions, andsome trade-o�s between scalability and security. Inparticular, we have outlined protocols for secure ses-sion registration, for session membership change, andfor secure and e�cient broadcast, as well as architec-tures for class-based trusted multicast and for securemobile multicast.One area of future work is to prototype the tech-nologies and protocols we have discussed in this paper.Such an experiment not only can bring valuable per-formance results, it can also establish a sound platformon which to build a wide range of more sophisticatedprotocols (e.g., for secure atomic broadcast and securecausal broadcast [11]) and trusted applications.References[1] M. Abadi and R.M. Needham. Prudent Engi-neering Practice for Cryptographic Protocols. InProceedings of the IEEE Symposium on Researchin Security and Privacy, pages 122{136, Oakland,California, May 1994.[2] T. Ballardie, P. Francis, and J. Crowcroft. CoreBased Trees { An Architecture for Scalable Inter-Domain Multicast Routing. In Proceedings ofACM SIGCOMM, pages 85{95, San Francisco,California, September 1993.[3] K.P. Birman and T.A. Joseph. Reliable Com-munication in the Presence of Failures. ACMTransactions on Computing Systems, 5(1):47{76,February 1987.[4] D.R. Cheriton and W. Zwaenepoel. DistributedProcess Groups in the V Kernel. ACM Trans-actions on Computer Systems, 3(2):77{107, May1985.

[5] S. Deering. Host Extensions for IP Multicasting.Request for Comments 1112, Internet NetworkWorking Group, August 1989.[6] S.E. Deering and D.R. Cheriton. Multicast Rout-ing in Datagram Internetworks and ExtendedLANs. ACM Transactions on Computer Systems,8(2):85{110, May 1990.[7] D. Estrin, J.C. Mogul, and G. Tsudik. Visa Pro-tocols for Controlling Interorganizational Data-gram Flow. IEEE Journal on Selected Areas inCommunications, 7(4):486{498, May 1989.[8] L. Gong. Authentication, Key Distribution, andSecure Broadcast in Computer Networks UsingNo Encryption or Decryption. Technical ReportSRI-CSL-94-08, Computer Science Laboratory,SRI International, Menlo Park, California, May1994.[9] L. Gong and N. Shacham. Elements of TrustedMulticasting. Technical Report SRI-CSL-94-03,Computer Science Laboratory, SRI International,Menlo Park, California, March 1994.[10] L. Gong and D.J. Wheeler. A Matrix Key Distri-bution Scheme. Journal of Cryptology, 2(2):51{59, 1990.[11] M. Reiter and L. Gong. Preventing Denial andForgery of Causal Relationships in DistributedSystems. In Proceedings of the IEEE Symposiumon Research in Security and Privacy, pages 30{40, Oakland, California, May 1993.[12] R.L. Rivest. The MD5 Message-Digest Algo-rithm. Request for Comments 1321, Internet Ac-tivities Board, April 1992.[13] R.L. Rivest, A. Shamir, and L. Adleman. AMethod for Obtaining Digital Signatures andPublic-Key Cryptosystems. Communications ofthe ACM, 21(2):120{126, February 1978.[14] N. Shacham. Multicast Routing of HierarchicalData. In Proceedings of the International Confer-ence on Communications, Chicago, Illinois, June1992.[15] C. Topolocic. Experimental Internet Stream Pro-tocol, version 2 (ST-II). Request for Comments1190, Internet Activities Board, October 1990.[16] V.L. Voydock and S.T. Kent. Security Mecha-nisms in High-Level Network Protocols. ACMComputing Surveys, 15(2):135{171, June 1983.

