Elements of Trusted Multicasting

Li Gong and Nachum Shacham

SRI Computer Science Laboratory
Menlo Park, California 94025, U.S.A.
{gong,shacham }@csl.sri.com

Abstract

Multicast is rapidly becoming an itmportant mode of
communication as well as a good platform for build-
mg group-oriented services. However, to be used
for trusted commaunication, current multicast schemes
must be supplemented by mechanisms for protecting
traffic, controlling participation, and restricting access
of unauthorized users to the data exchanged by the
participants. In this paper, we consider fundamen-
tal security issues in building a trusted multicast fa-
cility. We discuss techniques for group-based data en-
cryption, authentication of participants, and prevent-
g unauthorized transmissions and receptions.

1 Introduction

Emerging distributed applications, such as multi-
media teleconferencing, computer-supported collabo-
rative work, and remote consultation and diagnosis
systems for medical applications, depend on efficient
information exchange among multiple participants.
Network-based multi-destination switching is an es-
sential mode of communication for such applications.

Little concrete consideration has been given to the
security and privacy issues brought about by multicas-
ting, resulting in sessions without any control over who
participates and the level of participation. Tradition-
ally, teleconferencing has been conducted over private
networks or dial-up lines, which provided some phys-
ical security measures. However, in integrated net-
works like Internet or ATM, multicast traffic shares
network resources with other traffic. Such integration
allows a quick setup and flexible maintenance of multi-
cast sessions, but it also brings about serious security
and trust issues.

In the current Internet-based IP-Multicast de-
sign [b, 2], for example, a broadcast message is not
guaranteed to arrive at only the intended destinations.

There is no security control as to who can register a
(dynamic) session address, who can or cannot join a
session or inject traffic into the session, or how to deal
with the security implications when a host leaves a ses-
sion. Furthermore, no security management is speci-
fied for the multicast hosts or routers. Several ad-hoc
fixes has been recently proposed, but no systematic
security architecture design is available.

Some of this openness was done by choice to fa-
cilitate large-scale distribution of unrestricted data,
as the successful deployment of IP-Multicast demon-
strates. However, many multicast sessions in military,
business, commerce, and medicine are not feasible in
such an open environment, and will require controlled
participation and data privacy (possibly at multiple
security levels).

What is needed is a trusted multicast architecture
(with associated procedures) to handle these security
issues in a coherent manner and to protect network
services and applications. Careful investigation of
such an architecture can save duplicated, and quite
possibly unsophisticated, efforts of inserting security
technology into individual applications.

In the rest of this paper, we consider fundamental
security issues in building a trusted multicast facility.
We discuss new security challenges in multicast and
currently available solutions for them. We conclude
with an overview of related prior work and directions
for future work.

2 New Challenges in Multicast

Due to page limit, we skip an overview of existing
network multicast mechanisms and refer the reader to
the following references [5, 6, 15, 2].

In multicast, just as in unicast, an adversary (who
can be a legitimate network user) may eavesdrop
on confidential communication, disrupt or distort a
session’s data exchange, inject unauthorized or bo-



gus traffic, block a session’s progress, masquerades
as someone else to join in a session, or initiate and
operate a bogus session. Therefore, the privacy, in-
tegrity, availability, and authenticity of a multicast
service must be protected.

However, the nature of multicast presents new
problems that cannot be effectively dealt with using
trivial extensions of techniques for secure unicast. For
example, in setting up a secure point-to-point commu-
nication channel, one knows the identity of the party
at the other end. In a multicast session, knowing who
are present within the session is typically not guar-
anteed, let alone controlling session membership. An-
other problem is group-oriented secure data exchange.
Although using O(n?) end-to-end secure channels can
provide secure group communication, such an archi-
tecture loses all the advantages a multicast facility has
over unicast. Also, in group-oriented communication,
additional mechanism is needed to reliably establish
the identity of the originator of a message. More-
over, group-oriented authentication (and key distribu-
tion) is not necessarily O(n?) pairwise authentication,
because of the many possible interpretations of the
meaning of belonging to a multicast session.

In short, new protocols are needed to perform secu-
rity functions for controlling session organization and
management, secure broadcast, and user access to the
network. We will elaborate on these functions and
protocols in the next section.

3 Trusted Multicast

The architecture design should consider the place-
ment of the many control functions at appropriate net-
work protocol layers and appropriate network sites,
and the trust relationship between network sites and
hosts (some of which may function as multicast man-
agement centers).

Apart from satisfying the security requirements
mentioned earlier, a desirable design should also be
compatible with existing network protocols, scalable
to the scope of the global Internet, and transparent
so that higher level applications and services are free
from concerns for details (such as authentication, and
the checking of credentials and policies). In partic-
ular, the security mechanisms residing at the session
and presentation levels will place no restriction on the
underlying networking mechanisms. As such they will
coexist with networking standards and will not depend
on modification of transport and switching elements in
the (inter)network. Moreover, the architectural design
should be localizable in that an area of a network can

install the trusted multicast facility and achieve fire-
wall-style self-protection even if other portions of the
(inter)network do not yet support trusted multicast.
This feature is important to facilitate a gradual intro-
duction of the new technology to the existing millions
of host machines. Finally, the architecture has to be
flexible to support a variety of policies of session con-
trol as required by higher level applications. These
features together will make trusted multicast easier to
be integrated into an existing environment such as the
Internet.

3.1 Awuthentication

Authentication — a process by which one satisfies
another about one’s claim of identity — is an essential
mechanism in trusted multicast to control the regis-
tration of a multicast address and screen hosts that
request to join an existing session. Often, the request-
ing party and the existing session members need to au-
thenticate each other. Sometimes one party may del-
egate some of its authority to another party. This can
be achieved by letting the former issue a credential,
such as a signed and verifiable certificate, to the lat-
ter who later presents such credentials together with
a proof of its identity.

There 1s a very rich body of literature on the topic
of authentication and delegation in distributed sys-
tems (see [1] for references). Thus we only concentrate
on the extension of the basic pairwise authentication
model to the internal and external authentication of
all existing members of a multicast session as a group.

There are two distinct issues here. One is who con-
trols the membership of a group and how to enforce
such a membership policy. The other is what consti-
tutes being admitted to an existing group. We tackle
the second issue first.

Except in the case of anonymous sessions, a mini-
mum requirement for belonging to a group is that the
new party should be introduced to (some or all) exist-
ing members. This introduction merely announces the
identity (i.e., the name) of the new party, and can be
done by any member, by at least some preset number
of members, or by a group leader. Whoever handles
the introduction process in essence implements the ad-
mission policy. A more stringent requirement can be
that each existing member and the new member must
successfully authenticate each other after an initial in-
troduction. An even more strict requirement can be
that every member must also know that every other
member knows about the new party.

To require pairwise authentication, there need to be
O(n?) runs of an authentication protocol for a group



of size n, although such runs are done incrementally
as new members join the group. A more efficient
method is to elect a group leader who is trusted (by
other group members) to properly authenticate the
new member. In this case, the group leader in ef-
fect controls the group membership policy. A natural
choice of the leader is the session initiator. When it
registers the session, it becomes the leader and specify
an admission policy. If the leader crashes or retires, a
new leader must be elected through a secure protocol,
possibly according to the session policy. It i1s con-
ceivable that some members may monitor the leader’s
actions for checking conformance with the policy.

When a member voluteeringly or otherwise leaves
a session, especially long running sessions, the mem-
ber should properly “sign off” and erase any sensitive
information related to this session, such as the group
key. Otherwise, this member can later eavesdrop with-
out explicitly joining the group, or the residue infor-
mation a departing member leaves behind may be ex-
ploited by potential attackers. Since a benign member
may forget to clear up, it is always prudent to update
the group key at this point. For the same reason,
a member must be garbage collected when a proper
sign-off fails to take place. In other words, the group
may sign him off to make sure that he cannot par-
ticipate in future discussions. The status of members
can be monitored by a number of methods, such as by
exchanging “heart-beat” messages.

3.2 Secure Sessions

Based on (our and others’) previous experience in
the area of secure group-oriented distributed systems,
we can identify several crucial issues in forming secure
sessions, which we now discuss in some detail.

Session membership policies. Sessions can be
set up for various purposes with different member-
ship policies. Below are a few “typical” policies for
managing multicast. At one end of the spectrum is
a totally open policy. Anyone is free to take part in
such an open session, which resembles a mass gather-
ing or an unmoderated USENET newsgroup. A more
restricted session, as a presidential town hall meeting,
has open participation but members have to pass a se-
curity check and there is a session moderator. An even
more restricted session is like a board meeting where
only board members can participate. From time to
time non-members are invited, but only if a major-
ity of the members consent. We can easily imagine
an infinite number of such policies (including the mul-
tilevel security variety) and, at the other end of the
spectrum, is an ultra secure and closed session. As

we argued earlier, the architecture should be flexible
enough to accommodate many policies so that each
individual application or each session can choose to
implement one policy or a set of basic policies.

In some applications, membership information it-
self 1s sensitive, thus rules have to be defined for dis-
closing the current group membership. However, traf-
fic analysis may still reveal membership. One solution
is to have trusted gateways that will mask all sources
and destinations. Another solution is to saturate the
network so that an observer cannot distinguish be-
tween a meaningful packet and a junk one.

Registration and deregistration. When a host
or user requests a network address to establish a mul-
ticasting session, a multicasting management center
(MMC) must verify the requester’s identity and check
the session policy dictating who can register a session.
Similarly, the requester may also wish to verify the
identity of the MMC so as to be sure that the session
is correctly registered.

Information such as membership policy, user cre-
dentials, and records of registered sessions can be
stored at the MMC in the form of access control list.

The MMC can be a centralized service or a dis-
tributed one. When there are more than one MMC
in a network, they must coordinate among themselves
to ensure consistency and uniqueness of multicast ad-
dresses. They may or may not adopt an identical ad-
mission policy.

When a request to deregister a session arrives at
an MMC, it must authenticate the requester and de-
termine if 1t is authorized for such a request. Nor-
mally, only the session leader, or its representative,
can deregister the session. When the session leader
crashes or when it forgets to deregister, a “dead ses-
sion” must be garbage collected. This can be done
by having the MMCs periodically checking the activi-
ties of all registered sessions. Similarly, if a multicast
session is deemed undesirable (e.g., when it floods the
network with junk), the session must be terminated.

Joining and leaving a session. The communica-
tions among session members can be public or private.
This can be specified at registration time, and can be
changed later. It is also possible to leave this attribute
to the discretion of the individual members, so that
some communications may be private while the rest
remain public. For private sessions, adequate privacy
provisions are required in multicasting. Because most
networks are open in the sense that anyone may eaves-
drop on network traffic we need to encrypt message
contents, when requested, to ensure that only those
authorized can correctly decrypt them.



Secure session communication. There are two
strategies for this purpose. The traditional approach
is to arrange the distribution of a common encryp-
tion key, shared by all session members, and encrypt
broadcast messages with this group key.

With this approach, an initial key distribution must
take place when a session is registered. This key can
be chosen either by the session leader or the authen-
tication server. The key is then maintained by the
session leader or stored at the MMC where the ses-
sion is registered. When someone applied to join a
session, the group leader or the MMC checks the ses-
sion policy to make a decision. When a new member
is accepted into the session, it receives the group key
from the MMC or the group leader. When the group
leader crashes, a new leader is elected, using any of
the many known election protocols.

A significant shortcoming of this method is that, if
session members can be dishonest, the group key does
not identify the source of a message. Another problem
is that frequent key change (and their synchronization
among group members) during a busy session is obvi-
ously not very desirable for performance reasons. Se-
cure broadcast algorithms alleviate these two issues,
as we describe below.

Secure and efficient broadcast. When a mem-
ber can choose a new encryption key for a new mem-
bership on a per message basis, the risk of key leakage
by a departing member is considerably reduced and a
new group key is unnecessary.

Suppose each member has a pair of public and pri-
vate keys, for example, for use in the RSA cryptosys-
tem [13]. Each member must have knowledge of the
group membership — at least he must know the public
keys of all the other members. To broadcast a mes-
sage, a member chooses an encryption key (for use in
DES) at random and encrypts the message. The mem-
ber then signs a timestamp (to defend against replay
attacks), the DES key, and a one-way hash function
[12] of the original message (to serve as an integrity
checksum), using its private key. The member then
encrypts this signature with each other member’s pub-
lic key. Finally, the member broadcast (or multicast)
the (n — 1) encrypted signatures and the encrypted
message. (Here, n is the size of the group.) At the
receiving end, a group member decrypts a suitably en-
crypted signature (with its private key), obtains the
DES key (using the broadcaster’s public key), and
then retrieves the message. Clearly, anyone who is not
a group member would not be able to retrieve the mes-
sage. This simple algorithm has the following attrac-
tive features: (1) the encryption key can be changed

for every message, thus a membership change does not
require additional security measures such as changing
the group key; (2) only the message header (contain-
ing the encrypted signatures), and not the message
body, increases linearly in length with the number of
destinations. Moreover, the computation of a one-way
hash function can be very efficient, and the checksum
adds only a few extra bytes [12].

To use this broadcast primitive, session members
receive and cache others” public keys and other rel-
evant data. When notified of session membership
changes, members simply update their local member-
ship lists and choose new DES keys for future multi-
casts, which are thus made unreadable to those outside
the session (including the members who just left).

If group members do not have public key capability,
the above algorithm cannot be easily extended since
it appears that not only every pair of members must
share a distinct key, thus bringing about the O(n?)
key problem, but also the message body need to be
encrypted (n — 1) times (e.g., using DES) and thus
the broadcast message body also increases with the
size of the group, making the algorithm less scalable.

Nevertheless, there exist secure broadcast algo-
rithms (see [8] for references) with the same attrac-
tive features of the one using public-key cryptosys-
tems. Due to page limit, we do not discuss these al-
gorithms further except by noting that the message
header in the NED-B(n) protocol [8] has O(nlogn)
bits. This algorithm is thus more space efficient com-
pared with the use of public-key systems where the
message header uses O(cxn) bits where ¢ is the greater
of O(logn) and the size of a public key signature (typ-
ically 512 bits or longer).

The NED-B(n) algorithm is also far more compu-
tationally efficient in that the complexity is merely
O(n(logn)?), whereas to use public key systems, n
digital signatures must be signed and verified. Notice
that each pair of members must now share a distinct
encryption key, thus the O(n?) keys problem seems
to persist. However, there are methods to reduce the
complexity from O(n?) to O(n) [10].

Encryption mode. It is generally undesirable to
use the basic Electronic Code Book (ECB) mode be-
cause each block is independently encrypted thus the
mode is more vulnerable to slicing attacks (e.g., by
reordering blocks) and cryptanalysis.

In the plaintext-feedback mode, the encryption of
a block depends on the plaintext of the preceding
block(s). This results in infinite error propagation
in that a block cannot be correctly decrypted unless
all preceding blocks are correctly decrypted. In other



words, a single lost packet (or cell) or any data cor-
ruption during transit renders the rest of a message
unreadable. This undesirable property may necessi-
tate excessive retransmission when the network or a
stream is unreliable.

The ciphertext-feedback mode, on the other hand,
has a limited and controllable error propagation, typ-
ically of 2 encryption blocks. As long as 2 consecu-
tive ciphertext blocks are received correctly, decryp-
tion can proceed and resynchronization is automatic.
Moreover, in some applications involving audio and
video, occasional packet loss does not matter much
because 1t causes only minor degradation in voice or
video quality. All these made this encryption mode
the favorable choice.

The multicast facility may need to adapt between
multiple encryption modes, and between using block
ciphers and using stream ciphers, according to the ap-
plication environment. For example, ECB mode al-
lows random access to individual blocks of a message.
Also, a stream cipher, especially if precomputation of
the stream is possible (e.g., using DES as a pseudo-
random number generator), is faster than a typical
block cipher, but due to the cost of resynchronization
when data loss occurs, it is more suitable in a highly
reliable environment.

Finally, we consider the case of partial encryption
of streams. One motivation to avoid encrypting the
whole stream is efficiency, e.g., when it is possible to
identify crucial data (such as control information) that
are the only portion to be encrypted for security. The
sending and the receiving ends must be in synchrony
as to which portion is encrypted and which is not.

Another motivation for partial encryption is that
not all receiving ends require the same amount or
type of information from the source. One member
may want to hear the voice more clearly while another
wants to improve the image quality.

Similarly, different portions of the same stream may
need to be encrypted differently. For example, the
background of a picture may be public knowledge, but
the human image in the center may be highly classified
and need special treatment.

In such cases, it 1s conceptually simpler to view
partial streams as many layers of the same stream,
and techniques developed for Heterogeneous Multicast
(HMC) [14] can be used to explore the concept of mul-
ticast sessions in which users participate at different
bandwidth levels.

Session advertising. Many services need to be
advertised. The existence of a registered session can
be announced, e.g., by a bulletin board service. Proper

credentials and identification information must be pro-
vided so that one can verify the authenticity of the ad-
vertisement. Sometimes it is necessary to restrict the
dissemination of service information. For example, the
bulletin board can be made multilevel secure.

3.3 Control of Tree Access

Authentication guarantees that only certified users
become legitimate participants, and group-oriented
encryption enables only those participants to decode
the data that is being sent. Yet, the current network
level multicast routing and forwarding mechanisms al-
low any user to establish a path to the tree and to
inject traffic at will. It is thus of interest to employ
network level mechanism that limit physical access to
the distribution tree.

A simple approach, used by ST-II [15], is to require
all tree attachments to be initiated by the source of
the tree. This makes the source aware of who is lis-
tening and allows it to reject unwanted requests. If
the source approves a connection request, it sends a
message down the tree toward the destination. At one
point, the message leaves the tree and establishes an
extension path while progressing toward the destina-
tion. While this technique provide some level of con-
trol, it adds significant processing load to the source
thereby limiting the session size.

In a teleconference, receivers usually initiate attach-
ment to a specific distribution tree. If the distribution
is by multiple source-based trees, a typical receiver is
likely to shift attention from source to source thereby
changes frequently its attachment to the respective
source-trees. Even if the distribution is over a sin-
gle core-based tree [2], a receiver changes its resource
allocation on that tree to reflect the shifting emphases
on different sources. Both resource allocation and es-
tablishing and disconnecting path involve actions by
multicast agent residing at network nodes.

As was argued above, requiring the sources to medi-
ate these actions reduces efficiency and performance.
It is thus desirable to allow receivers to interact di-
rectly with the multicast agents with minimal if any
involvement by the sources. This receiver-agent in-
teraction must be supported by proper authentication
measures that prevent unauthorized users from direct-
ing traffic in their direction.

The process of authentication of end hosts to net-
work switches is somewhat different from authenti-
cation among peer hosts. First, due to storage and
processing limitations, switches cannot be expected to
maintain keys, public or private for all hosts connected
to the network. Moreover, at a time a connection is



initiated, a host does not know which switches will
actually modify their routing tables to support its re-
quest. That is, advance key exchange with the “right”
switches is not feasible.

Each network switch could maintain a small num-
ber of public keys, with the corresponding private keys
held at one or more authentication servers. Before ini-
tiating a request for a new connection or modification
of an existing connection, a host first send the request
message to the authentication server. After authen-
ticating the host, the server sends back the message
with a signature attached. That message is sent along
the network path, and every switch on the way checks
it against the signature, using its locally held public
key of the server.

Similarly, a node that wishes to inject traffic must
first obtain a signature from the server. A network
node will not accept traffic from a source without such
a signature.

Notice that authentication of receivers are done rel-
atively infrequently and are not likely to impose a
great processing burden on the switches. In contrast,
to block unauthorized sources, packets must carry a
signature, which results in a much heavier load on
the switches, especially in the case of stream traffic,
e.g., video. For stream traffic switches, only a frac-
tion of the packet should carry signatures, and the
switches should cache the signatures for forwarding of
those packets that do not carry signatures. The cache
should be refreshed every so often.

It is also conceivable that malicious or stupid par-
ties may misuse network resources, for example, by
flooding a multicast address, or by setting up a bo-
gus multicast session with the sole purpose of using
up network bandwidth. Simply ignoring such “junk”
packets (like people throwing away junk mail) is inad-
equate because by the time such packets reach their
destinations, precious network resources have already
been consumed. Thus we need to block such usages
(as soon as they are identified) as near to the mul-
ticast source as possible. We can imagine that the
MMCs acting as warning posts that send out advisory
messages to individual hosts, who in terms regulate
the local network access it controls. Many Internet
sites have already started filtering incoming and out-
going packets, but mostly for different reasons. Al-
ternatively, ideas similar to those developed for the
Visa protocol [7] can also be used. However, blocking
misuse seems to require modifications to the existing
multicast (and unicast) protocols and softwares.

3.4 Scalability and Trade-off

The task of assigning initial encryption keys for
user or host authentication grows only linearly with
the number of users and hosts interested in partici-
pating in secure multicast. The number of messages
for establishing a session and for changing the session
membership is also linear to the size of the session.
A secure broadcast algorithm (e.g., NED-B(n)) allows
dynamic encryption key change on a per-message ba-
sis, thus eliminating the need for a new group key upon
group membership change. Software implementations
of encryption algorithms are sufficiently fast while
hardware implementations will further enhance per-
formance. More importantly, in protocol NED-B(n),
the most costly activity — the encrypting of broad-
cast messages — remains constant when the session
size increases. Only the message header (which con-
tains instructions for decryption) increases in length,
and only linearly, when the session size increases.

Nevertheless, at present, a quality public-key cryp-
tosystem such as RSA typically has a key length of
512 bits. This means that a multicast message header
increases 64 bytes for each additional member. Such
an increase may not be practical in some situations.
One trade-off is to use short RSA keys or use different
public key algorithms. Another is to selectively (and
dynamically) choose between using a group key and
using secure broadcast, depending on the importance
of each session and perhaps each message. For ex-
ample, when group membership becomes reasonably
stable, it is more efficient to use a group key.

Sometimes, members of a session also forms a large
number of (sub)groups. For example, in a teleconfer-
encing application, although everyone’s voice is broad-
cast to all destinations, a member may wish to broad-
cast his physical location information (his coordinates)
only to members in his proximity. To structure such
(sub)groups, the secure broadcast algorithm has the
advantage that, since data encryption keys can be cho-
sen dynamically on a per message basis, a member
need not store a potentially large number of group
keys. Of course a member can optimize by storing
data encryption keys and the corresponding signed
message headers and reusing them until a member-
ship change occurs.

3.5 Multilevel Secure Multicast

End-to-end encryption can be used to control mes-
sage dissemination on a discretionary basis. Manda-
tory control, possibly of a multilevel structure, can
also be implemented. Here, groups and members are



classified at different levels, and a party cannot be-
come a member of a group whose security level is
higher than its own. Levels are also assigned to en-
cryption keys. A member cannot have access to a
key whose level is higher. For encryption, the level of
the key must be equal to or higher than that of the
plaintext. The level of a ciphertext is then the level
of the key. Such an arrangement effectively segregate
the multicast network into virtual networks, each at a
distinct security level.

Multilevel security may require that lower level in-
formation be accessible to higher level group members.
One way to achieve this is for the lower level group
members to be able to “write up” — to send multicast
messages to groups at a higher level. However, since
the sender typically cannot have the suitable higher
level encryption key, there must be a trusted multi-
level network component that either makes the lower
level keys available to the higher level members or acts
as a gateway that decrypts an incoming message with
a lower level key, reencrypts the message with a higher
level key, before relaying the message. Alternatively,
low level users may write up using a high level public
key.

There can be issues of covert channel where lower
level members can observe the existence of high level
network activities. One solution is to use relays to
confuse observers. For example, if messages coming
out of SRI go through a relay that reencrypts them
with a key it shares with the IBM relay, then all a
third party can deduce 1s that someone at SRI sends a
message to someone at IBM. Given a sufficiently ran-
dom communication pattern between SRI and IBM,
the bandwidth of this covert channel can be greatly
reduced. In fact, the two relays can exchange useless
messages at random intervals to further confuse the
third party. It is unclear whether applications care
about the threat of information leakage through covert
channels, though similar techniques can be used to im-
pede traffic analysis.

3.6 Two Trusted Multicast Facilities

Based on the principles and techniques discussed
above, we have developed more specific architectures
for two types of multicast: class-based multicast and
mobile multicast.

In designing the class-based multicast, we take ad-
vantage of the following assumptions: (1) the network
topology is relatively stable; (2) users belong to classes
and this membership does not change often; and (3)
a class is a broader concept than a group or session.
One driving application environment is a corporation

where an employee belongs to a department (which
forms a class) and communication within the same
department is largely open.

Our design of a secure mobile multicast is based the
concept of a secure multicast agent and the (sealed)
floating-letter-bottle analogy, which insulate security
concerns from transport issues and mobility issues.
The scenarios driving our design include a “flying doc-
tor” initiating a multi-party consultation session, a
business traveler taking part in a meeting being con-
ducted at his company headquarters, and members of
geologically separated departments of a corporation
holding a joint meeting, all through multicast in (in-
ter)networks such as today’s Internet.

Due to page limit, we cannot provide details here.
We plan to include them in a revised version of [9].

3.7 Related Work

One of the earliest work on process groups is [4].
In much of the later theoretical and practical work on
broadcast protocols (e.g., [3]), the purpose is largely to
achieve broadcast atomicity and/or to maintain causal
or total ordering of messages, with no or little consid-
erations for security.

When security is considered seriously, such as in
secure reliable broadcast, secure atomic broadcast, or
secure causal broadcast, the tendency is to introduce
security into existing (and often complex) systems in
a rather ad hoc manner. This results in security as-
sumptions and architectures that are incompatible. A
much better approach is to implement these complex
broadcast protocols based on a trusted multicast fa-
cility. In this way, multiple applications share the
same platform, have consistent security assumptions
and protocols, and can thus coexist. This approach
also greatly simplifies the (repetitive) task of getting
the security mechanisms right in all applications.

Another related work is TP-Multicast [5, 6]. Our
trusted multicast facility can be based on IP-Multicast
and should not require modifications to IP-Multicast
or lower layers of the network architecture (except for
preventing misuse of network resources).

Prior efforts have addressed security issues in the
Internet (e.g., [16, 7]). However, there were no ar-
chitecture and protocols for secure multicasting. The
Visa protocol controls the movement of datagrams
(and thus the use of network resources) on a per user
basis whereas in trusted multicast the granularity may
need to be finer.

Heterogeneous Multicast (HMC) [14] explores the
concept of multicast sessions in which users participate



at different bandwidth levels. This concept can be
extended into multicast at different security levels.

Due to the page limit, we are unable to give a more
complete reference list.

4 Summary and Future Work

Advances in networking technologies have made
multiparty communication an active area of research
and development, where multicast i1s an important
mode of communication as well as a good platform
for building group-oriented services. In this paper, we
have considered fundamental security issues in build-
ing a trusted multicast facility. We have discussed
threats, new requirements for security, solutions, and
some trade-offs between scalability and security. In
particular, we have outlined protocols for secure ses-
sion registration, for session membership change, and
for secure and efficient broadcast, as well as architec-
tures for class-based trusted multicast and for secure
mobile multicast.

One area of future work is to prototype the tech-
nologies and protocols we have discussed in this paper.
Such an experiment not only can bring valuable per-
formance results, it can also establish a sound platform
on which to build a wide range of more sophisticated
protocols (e.g., for secure atomic broadcast and secure
causal broadcast [11]) and trusted applications.

References

[1] M. Abadi and R.M. Needham. Prudent Engi-
neering Practice for Cryptographic Protocols. In
Proceedings of the IEEE Symposium on Research
wmn Security and Privacy, pages 122-136, Oakland,
California, May 1994.

[2] T. Ballardie, P. Francis, and J. Crowcroft. Core
Based Trees — An Architecture for Scalable Inter-
Domain Multicast Routing. In Proceedings of
ACM SIGCOMM, pages 85-95, San Francisco,
California, September 1993.

[3] K.P. Birman and T.A. Joseph. Reliable Com-
munication in the Presence of Failures. ACM
Transactions on Computing Systems, 5(1):47-76,
February 1987.

[4] D.R. Cheriton and W. Zwaenepoel. Distributed
Process Groups in the V Kernel. ACM Trans-
actions on Computer Systems, 3(2):77-107, May
1985.

[5]

[6]

[14]

S. Deering. Host Extensions for IP Multicasting.
Request for Comments 1112, Internet Network
Working Group, August 1989.

S.E. Deering and D.R. Cheriton. Multicast Rout-
ing in Datagram Internetworks and Extended
LANs. ACM Transactions on Computer Systems,
8(2):85-110, May 1990.

D. Estrin, J.C. Mogul, and G. Tsudik. Visa Pro-
tocols for Controlling Interorganizational Data-
gram Flow. IEEE Journal on Selected Areas in
Commaunications, 7(4):486-498, May 1989.

L. Gong. Authentication, Key Distribution, and
Secure Broadcast in Computer Networks Using
No Encryption or Decryption. Technical Report
SRI-CSL-94-08, Computer Science Laboratory,
SRI International, Menlo Park, California, May
1994.

L. Gong and N. Shacham. Elements of Trusted
Multicasting. Technical Report SRI-CSL-94-03,
Computer Science Laboratory, SRI International,
Menlo Park, California, March 1994.

L. Gong and D.J. Wheeler. A Matrix Key Distri-
bution Scheme. Journal of Cryptology, 2(2):51-
59, 1990.

M. Reiter and L. Gong. Preventing Denial and
Forgery of Causal Relationships in Distributed
Systems. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, pages 30—

40, Oakland, California, May 1993.

R.L. Rivest. The MD5 Message-Digest Algo-
rithm. Request for Comments 1321, Internet Ac-
tivities Board, April 1992.

R.L. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of
the ACM, 21(2):120-126, February 1978.

N. Shacham. Multicast Routing of Hierarchical
Data. In Proceedings of the International Confer-
ence on Communications, Chicago, Illinois, June

1992.

C. Topolocic. Experimental Internet Stream Pro-
tocol, version 2 (ST-IT). Request for Comments
1190, Internet Activities Board, October 1990.

V.L. Voydock and S.T. Kent. Security Mecha-
nisms in High-Level Network Protocols. ACM
Computing Surveys, 15(2):135-171, June 1983.



