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Much research remains to be done. First, we have focused on three components of themediation architecture, namely the mediation language, the query mediator, and the conictdetectors. Research is needed in the other components. Although it is often straightforwardto translate participating schemas into the mediation language, it is tricky to translate thequeries of participating databases into the mediation language if they could involve higher-order constructs, such as in the case of object-oriented databases. It is even more challengingto bind queries in the mediation language to the representational constructs of participatingdatabases such that they could be e�ciently evaluated.Second, we have assumed that the knowledge in the mediator's knowledge base is available.How to obtain such knowledge is certainly an important issue. Although the acquisition ofsuch knowledge is likely to be a highly interactive process, automated acquisition tools wouldbe valuable.Third, we have restricted ourselves to constraints, relationships, and queries that do notinvolve negation. The semantics of query mediation could certainly be generalized to allownegation, as long as for example the result is strati�ed [31]. The approach could also be easilygeneralized to deductive databases containing rules in addition to constraints.Finally, research is needed in the autonomous optimization of mediated query evaluation.Due to the autonomy of participating databases, the query mediator often does not have accessto the performance information that is crucial in query optimization. The query mediator needsa cost model that is independent of the implementation structures of participating databases.Techniques are also needed for the mediator to obtain performance information by querying [9].AcknowledgmentThe �rst author would like to thank Louiqa Raschid, Alon Levy, Michael Siegel, Amit Sheth,James Richardson, and Umesh Dayal for helpful discussions.References[1] Y. Arens and C. Knoblock. Planning and reformulating queries for semantically-modeledmultidatabase systems. In Proceedings of the First International Conference on Informa-tion and Knowledge Management, 1992.[2] T. Barsalou and D. Gangopadhyay. M(DM): An open framework for interoperation ofmultimodel multidatabase systems. In Proceedings of the Eighth International Conferenceon Data Engineering, 1992.[3] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies fordatabase schema integration. ACM Computing Surveys, 18(4):323{364, December 1986.[4] B. W. Beach. Connecting software components with declarative glue. In Proceedings ofthe Fourteenth International Conference on Software Engineering, pages 120{137, 1992.[5] R. J. Brachman. The future of knowledge representation. In Proceedings of the EighthNational Conference on Arti�cial Intelligence, pages 1082{1092, 1990.26



Employee2(e#, citizen?)Project2(p#, manager)PE(p#, e#)Employee2(x; y1)^ Employee2(x; y2)! y1 = y2Project2(x; y1)^ Project2(x; y2)! y1 = y2Project2(x; y)! (9z)Employee2(y; z)PE(x; y)! (9z)Employee2(y; z)PE(x; y)! (9z)Project2(x; z)The relationships between these two relational schemas, as contained in the mediator'sknowledge base, would be:Employee1(x; y) � Employee2(x; y) (S7)Project1(x; y)� Project2(x; y) (S8)EP(x; y) � PE(y; x) (S9)The original query Q7 would be translated into the following relational query Q9:SELECT p#FROM EP t, Employee1 s (Q9)WHERE t.e# = s.e# AND s.citizen? = false.A mediated query of Q9 to DB2 would be:SELECT p#FROM PE t, Employee2 s (Q10)WHERE t.e# = s.e# AND s.citizen? = false.It is straightforward for the mediator to derive Q10 from Q9 using its knowledge S7 and S9,which involves simple substitutions of equivalent subformulas.6 ConclusionWe have presented a query mediation approach to the interoperation of autonomous hetero-geneous databases containing data with semantic and representational mismatches. We havedeveloped an architecture of interoperation that facilitates query mediation, and have formal-ized the semantics of query mediation and conict detection. Queries are mediated betweenmultiple databases, and users of a local database access data in multiple databases using thelocal language and schema, making both the data and the applications accessing the data inlegacy databases interoperable. Queries are automatically mediated, relieving users from thedi�cult task of resolving semantic and representational mismatches. Semantic heterogeneityis separated from representational heterogeneity by minimizing the representational bias inthe mediation language, which reduces the space of potential heterogeneity, and improves thee�ciency of automated query mediation. 25



(8x; y)(x 2 Employee1 ^y 2 x:assignment !(9x0; y0)(y0 2 Project2 ^x0 2 y0:team^x:e#= x0:e#^x:citizen?= x0:citizen?^y:p#= y0:p#^y:manager= y0:manager)) (S5)(8x; y)(y 2 Project2 ^x 2 y:team !(9x0; y0)(x0 2 Employee1 ^y0 2 x0:assignment^x0:e#= x:e#^x0:citizen?= x:citizen?^y0:p#= y:p#^y0:manager= y:manager)) (S6)Suppose that users of DB1 pose a query to retrieve all projects that involve employees whoare not US citizens, which could be expressed in an object-oriented SQL-like query language asfollows:SELECT YFROM Employee1 X, Project1 Y (Q7)WHERE Y in X.assignment AND X.citizen? = false.A mediated query of Q7 to DB2 would be:SELECT new-obj(Project1, X.p#, X.manager)FROM Project2 X, Employee2 Y (Q8)WHERE Y in X.team AND Y.citizen? = false.The mediator would have to derive Q8 from Q7 using S5 and S6, which could be expensivebecause it involves inference in a logic for object-oriented databases such F-logic. If insteadour mediation language is �rst-order predicate calculus, then translation into and out of themediation language acts like the attening and nesting operators in the nested relational model.In particular, DB1 would be translated into the following relational schema:Employee1(e#, citizen?)Project1(p#, manager)EP(e#, p#)Employee1(x; y1)^ Employee1(x; y2)! y1 = y2Project1(x; y1)^ Project1(x; y2)! y1 = y2Project1(x; y)! (9z)Employee1(y; z)EP(x; y)! (9z)Employee1(x; z)EP(x; y)! (9z)Project1(y; z)and DB2 would be translated into the following relational schema:24



Sta�-Salary(x; r� y)! Employee-Salary(x; y) (I11)Sta�-Title(x; y0)^ R(y; y0)! Employee-Title(x; y) (I12)Sta�-Manager(x; z)! (9y)(Regular(x; y)^ Department(y; z)) (I13)Employee-Salary(x; y)^ Regular(x; z)! Sta�-Salary(x; r� y) (I21)Employee-Title(x; y)^ Regular(x; z) ^R(y; y0)! Sta�-Title(x; y0) (I22)Regular(x; y)^ Department(y; z)! Sta�-Manager(x; z) (I23)Consultant(x; r� y)! Employee-Salary(x; y) (I31)Consultant(x; y)! Employee-Title(x, consultant) (I32)Now it is possible to perform the query mediation of Section 3.4 in the Horn fragment of�rst-order logic, namely Prolog. Moreover, it eliminates the need to derive the trivial mediatedquery Q2 in order to derive the nontrivial mediated query Q3.In summary, an appropriate mediation language should be based on �rst-order logic, andshould be minimized in terms of representational bias . First-order logic without uninterpretedfunction symbols and with predicate symbols of minimal arities is such a language.6 It isthe language of relational and deductive databases. With such a mediation language, querymediation could often be performed by theorem provers for fragments of �rst-order logic, suchas Prolog or even Datalog, which are well known to be much more e�cient than query mediationin full �rst-order logic.5.4 ExampleLet us consider two object-oriented databases DB1 and DB2 on employees and projects, anda many-to-many relationship between them about which employees work on which projects.Suppose that DB1 chooses to represent the relationship as a set-valued attribute of employeeobjects, as follows:class Employee1e# : string,citizen? : boolean,assignment : set(Project1). class Project1p# : string,manager : Employee1.Suppose also that DB2 chooses to represent the relationship as a set-valued attribute ofproject objects, as follows:class Employee2e# : string,citizen? : boolean. class Project2p# : string,manager : Employee2,team : set(Employee2).If the mediation language is full �rst-order logic, then the relationships between DB1 andDB2, as contained in the mediator's knowledge base, could be speci�ed as follows, which statethat every employee-assignment pair in DB1 corresponds to a project-team pair in DB2, andvice versa:6We are not claiming that representational bias is completely eliminated in this language. In fact, thearguments of nonunary predicate symbols could always be ordered in more than one way. The key point is thatrepresentational bias is reduced su�ciently to make query mediation reasonably e�cient.23



5.3 Minimal Mediation LanguageHence, instead of trying to entirely separate semantics and representations, we aim for a medi-ation language in which the amount of representational bias (i.e., the number of ways that thesame semantics could be represented di�erently) is minimized. This e�ectively separates se-mantic heterogeneity from representational heterogeneity, and reduces the complexity of querymediation. Semantic heterogeneity is handled by the mediator, while representational hetero-geneity is handled by the translators.The number of representational constructs should be minimized in the mediation language[25]. Languages based on relational, functional, or object-oriented models all qualify, in thesense that each of them contains only one representational construct | relation, function, orobject. On the other hand, languages based on the ER model do not qualify, since they containtwo representational constructs: entity and relationship.However, minimizing the number of representational constructs alone is not enough, becausethe same representational construct might be capable of encoding the same semantics in morethan one way. For example, the Stock relationship in Section 5.1 could be represented infunctional models as S1; S3, or even the partial functions:Date 7! (Company 7! Price) (S4)In fact, a relationship could always be encoded in many biased ways in a language withuninterpreted function symbols, depending on which argument is chosen as the output of thefunction. Hence, uninterpreted function symbols should not be allowed. Notice that attributesin object-oriented models are essentially functions from objects to values. Thus languages basedon functional or object-oriented models are not good candidates as mediation languages. Forexample, the binary marriage relationship could be represented as a Wife attribute of the Maleobject, or as a Husband attribute of the Female object, or as a Family object with Wife andHusband attributes, etc.Even predicate symbols could be biased in representing relationships, since an n-ary rela-tionship could always be represented either by an n-ary predicate or by a collection of binarypredicates. Hence the arities of uninterpreted predicate symbols should be minimized to repre-sent only the atomic information. For example, we could decompose relation schemes Employeeof Figure 4 and Sta� of Figure 6 into atomic ones, as follows:Employee-Salary(Name1, Salary1)Employee-Title(Name1, Title1)Employee-Phone(Name1, Phone#)Sta�-Salary(Name2, Salary2)Sta�-Title(Name2, Title2)Sta�-O�ce(Name2, O�ce)Sta�-Manager(Name2, Manager2)This decomposition allows us to express most knowledge in Figure 9 as Horn clauses, asfollows: 22



Stock(Company1,x; y) � Company1(x; y)...Stock(CompanyN,x; y) � CompanyN(x; y).In comparison, the relationships in [7, 12, 15, 17] relate schema B1 to an in�nite set of schemasB, each representing a relationship similar to S2 for some �nite subset of the in�nite Companydomain, leading to the need for higher-order languages. Since we consider the interoperation ofa �nite set of databases, the need for higher-order languages does not arise. In fact, the in�niteset B of schemas is an approximation of the partial functions:Company 7! (Date 7! Price) (S3)which are equivalent to S1. Just because S3 cannot be represented directly in the at relationalmodel,5 it does not imply that S3 cannot be represented in �rst-order logic. We could easilythink of �rst-order representations of S3 in nested relational models, functional models, orobject-oriented models.Therefore, �rst-order logic should be su�cient as the semantic basis of mediation languages.Of course, this does not prevent us from having higher-order syntactic sugaring in mediationlanguages for the convenient speci�cation of relationships between autonomous heterogeneousdatabases. The advantage of having �rst-order instead of higher-order logic as the semanticbasis of mediation languages is obvious. Query mediation involves logical inference, and logicalinference is more e�cient in �rst-order than in higher-order logic.5.2 Separate Semantics and RepresentationA main source of complexity in the mediator's knowledge base is the potentially exponentialcombination of semantic and representational heterogeneity. Since representations are oftenapplication-speci�c, we would like to separate semantics from representations in the mediationlanguage, thus making the semantics of data interoperable without requiring the representa-tions of data to be interoperable. This minimizes the need for query mediation to deal withrepresentational heterogeneity, and reduces the complexity of query mediation.But what is semantics and what are representations? In the Dual Model [13], an attemptwas made to distinguish the two in object-oriented databases, where the type system is consid-ered to express representations and the class hierarchy is considered to express semantics. Thisdistinction is inappropriate, because both type systems and class hierarchies capture represen-tations, the former representing value semantics and the latter representing object semantics.Semantics and representations correspond respectively to concepts and symbols in the mean-ing triangle [21]. For �rst-order logic, representations are captured by a theory, and semanticsis captured by models of a theory. The relationship between semantics and representations ischaracterized by G�odel's completeness theorem. In essence, any language encodes some repre-sentation constructs, and any semantics has to be expressed in some language. There cannot bea language of semantics completely independent of representations, and hence semantics andrepresentations cannot be completely separated in the mediation language.5Notice that S1 is an indirect representation of S3 in the at relational model.21



Functional dependencies are a subclass of equality-generating dependencies, and techniques forderiving functional dependencies on queries are available [16].For instance, the conicts in the examples of Section 4.2 could be easily detected. Thereis a derived functional dependency on the answers of query Q1 from Name1 to Title1, whichis not satis�ed in the answers of the mediated query Q1 union Q3 union Q4. There is also aderived functional dependency on the answers of query Q5 from Name1 to Manager1, which isnot satis�ed in the answers of the mediated query of Q5.5 The Mediation LanguageAs is obvious from Section 3, the e�ciency of query mediation depends critically on the expres-siveness of the mediation language | the more expressive the mediation language is, the lesse�cient the query mediation will be. In Section 3, we chose �rst-order predicate calculus asour mediation language. Here we discuss why this choice is justi�ed, and what should be theappropriate features of a mediation language.5.1 First-Order or Higher-Order LogicExisting approaches [7, 12, 15, 17] argue that higher-order languages are necessary for reasoningwith relationships between multiple databases, all of which demonstrate such need using thefollowing stock example.Suppose that schema B1 contains the following relation scheme and constraint about com-panies, dates, and closing prices of stocks:Stock(Company, Date1, Price1)Stock(x; y; z1)^ Stock(x; y; z2)! z1 = z2.B1 represents the partial functions:Company � Date 7! Price (S1)Now suppose that schema B2 contains the following N relation schemes and constraints, forthe dates and closing prices of the stocks of Company1, : : :, CompanyN:Company1(Date2, Price2)Company1(x; y1)^ Company1(x; y2)! y1 = y2...CompanyN(Date2, Price2)CompanyN(x; y1)^ CompanyN(x; y2)! y1 = y2.B2 represents the partial functions:fCompany1, : : :, CompanyNg 7! (Date 7! Price) (S2)Are the relationships between B1 and B2 representable in �rst-order logic? Yes, of course:20



Name1 Manager1Sam MarkMark MarkTom TomMary JohnSam John... ...Again, there cannot be a database that contains both DB1 and the fact that Sam's manageris John, since constraints C1 and C2 in Figure 5 state that employees have unique departmentsand departments have unique managers. The conict is due to an inconsistency between thetwo databases. However, if we ask instead for the name and manager of regular employees whowork in the database department:SELECT Name1, Manager1FROM Regular, Department (Q6)WHERE Dept = database AND Dname = databasethen no data from DB2 would be accessed by query mediation, and no conict would result,because no sta� members are known in DB2 to work in the database department.4.3 Constraint DerivationConict detection is not computable using the de�nition of Section 4.1. Hence it is worthwhileto identify su�cient conditions under which conicts could be detected e�ciently.Consider the interoperation of n databases bi over schemas Bi = (Vi; Ai) for 1 � i � n.Also suppose that the mediator's knowledge base consists of theory B = (Sni=1 Vi [ V;A) andstructure b. Given a query q on B1 with free variables x1; : : : ; xm and a mediated query pof q on the combined schema Sni=1Bi [ B, let C be an equality-generating dependency overvocabulary V 01 = V1 [ fPg such thatA1; (8x1; : : : ; xm)(P (x1; : : : ; xm) � q) ` Cwhere P is a new predicate symbol not in V1. Also let d be the structure over V 01 which is b1plus the answers of p in the combined database Sni=1 bi[b assigned to P . Suppose that C is notsatis�ed in d. Notice that C must involve P . If there is a database b01 over B1 where b1 � b01such that the answers of q in b01 are identical to the answers of p in Sni=1 bi [ b, then there is astructure d0 over V 01 which is b01 plus the answers of p in Sni=1 bi [ b assigned to P . Since d � d0and C is satis�ed in d0, we have that C is satis�ed in d, a contradiction. Hence b01 does notexist, and there is a conict in the answers of p in Sni=1 bi [ b.The above analysis suggests that the equality-generating dependencies on query q couldserve as su�cient conditions for detecting conicts in the answers of the mediated queries of q.19



Name2 PayPeter 80,000... ...Assuming that one US dollar is worth two German marks, the answers of the original queryQ1 of Section 3.4 are the following:Name1 Title1Sam software engineer... ...and the answers of the mediated query Q1 union Q3 union Q4 of Section 3.4 are the following:Name1 Title1Sam software engineerSam computer scientistPeter consultant... ...Obviously, there cannot be a database that contains both DB1 and the fact that Sam's jobtitle is computer scientist, since constraint C1 in Figure 5 states that employees have uniquejob titles. The conict is due to an uncertainty in the mediator's knowledge of Figure 8, whichstates that an MTS could correspond to either a software engineer or a computer scientist. Ifwe ask for the name and manager of regular employees in DB1:SELECT Name1, Manager1FROM Regular, Department (Q5)WHERE Dept = Dnamequery mediation would return the following answers, even though DB2 does not know whichdepartment Mary is in: 18



be imported from other participating databases as well as the mediator's knowledge base. Theadditional data in the answers of p but not in the answers of q, combined with data in b1, donot necessarily form a valid database over B1, in which case a conict has occurred.4More formally, the answers of the mediated query p in the combined database Sni=1 bi [ bare conict-free if there is a database b01 over B1, where b1 � b01, such that the answers of q inb01 are identical to the answers of p in Sni=1 bi [ b:(8x1; : : : ; xm)(b01 j= q () Sni=1 bi [ b j= p).4.2 Example (Continued)We continue with the example of Section 3.4. Suppose that the contents of DB1 are thefollowing: Name1 Salary1 Title1 Phone#Sam 35,000 software engineer 856-2232Mark 60,000 program director 856-1596Tom 58,000 principal scientist 856-6015... ... ... ...Dname Manager1database MarkAI Tom... ... Name1 DeptSam databaseMark databaseTom AI... ...and the contents of DB2 are the following:Name2 Salary2 Title2 O�ce Manager2Mary 100,000 distinguished MTS 2D-232 JohnSam 70,000 MTS 2C-301 John... ... ... ... ...4Notice the di�erence between this and the intuition of the federated database approach. For example,employees and sta� members are similar concepts. Query mediation tries to access both concepts by importingsta� members into the employee context to which name uniqueness should apply. In contrast, a federateddatabase tries to access both concepts by creating another concept, say workers, which is the union of employeesand sta� members. Name uniqueness does not have to apply to the context of the new concept.17



Q1[fi(x1; : : : ; xm)=yi]1�i�n  P1; : : : ; Pk...Ql[fi(x1; : : : ; xm)=yi]1�i�n  P1; : : : ; Pkwhere fi(x1; : : : ; xm) is a skolem function. For every m-ary predicate symbol P in V1; : : : ; Vn,or V , we add a new m-ary predicate symbol P0 and the following de�nite Horn clause:P (x1; : : : ; xm) P0(x1; : : : ; xm).A deductive database (with equality) [11] could be constructed by taking these Horn clauses asthe IDB. The EDB consists of, for every predicate P in V1; : : : ; Vn, or V , the new predicate P0whose extent is the relation assigned to P by b1; : : : ; bn, or b.Let M be the initial model of this deductive database [18]. Also let U be the universe ofM which is the set of equivalence classes of ground terms over Sni=1 Vi [ V [ ff1; : : : ; fng, andG � U be the set of equivalence classes containing ground terms over Sni=1 Vi [ V . Given aquery q on B1 with free variables x1; : : : ; xm, the de�nite answers of q in M are the answers ofq in M that are in Gm.Given a mediated query p of q on the combined schema Sni=1Bi [ B. If p is sound, thenevery answer of p in the combined database Sni=1 bi [ b is a de�nite answer of q in M . If p istrivial, then every answer of p in Sni=1 bi [ b is an answer of q in b1 and hence a de�nite answerof q in M . If p is complete, then every de�nite answer of q in M is an answer of p in Sni=1 bi[ b.When the IDB of this deductive database is bounded [31], there is a query p not involvingIDB predicates, such that every answer of q in M is an answer of p in M and vice versa. Hencethere is a query p0 on the combined schema Sni=1Bi [ B, such that every de�nite answer of qin M is an answer of p0 in the combined database Sni=1 bi [ b and vice versa. In other words, p0is the sound and complete mediated query of q.In general, we could view query mediation as the �rst-order approximation of de�nite an-swers in the initial model of a deductive database, which is formed by taking participatingdatabases as the EDB, and by taking (the skolemization of) the mediator's knowledge and theconstraints in participating schemas as the IDB. The more complete a mediated query is, thecloser its answers are to the de�nite answers of the original query in the initial model. Theboundedness of the IDB serves as a su�cient condition for the existence of sound and completemediated queries.4 Conict Detection4.1 The Semantics of ConictsConsider the interoperation of n databases bi over schemas Bi = (Vi; Ai) for 1 � i � n. Alsosuppose that the mediator's knowledge base consists of theoryB = (Sni=1 Vi[V;A) and structureb. Given a query q on B1 with free variables x1; : : : ; xm, suppose that the evaluation of q in b1is replaced by the evaluation of the mediated query p of q in the combined database Sni=1 bi [ b.Intuitively, the need for query mediation arises because b1 does not capture a complete pictureof the real world as far as q is concerned, thus additional data (in the answers of p) need to16



SELECT Name2, consultantFROM Consultant t (Q4)WHERE t.Pay=r < 50,000.where consultant in the select clause is a constant. It could be veri�ed that the combinedquery Q1 union Q3 union Q4 is the sound, nontrivial, and complete mediated query of Q1.3.5 Meaning of Query MediationConsider the interoperation of n databases bi over schemas Bi = (Vi; Ai) for 1 � i � n. Alsosuppose that the mediator's knowledge base consists of theoryB = (Sni=1 Vi[V;A) and structureb. Given a query q on B1, the objective of query mediation is to replace the evaluation of qin b1 by the evaluation of the sound, nontrivial, and complete mediated query p of q in thecombined database Sni=1 bi[b. The soundness of p ensures that such replacement is meaningfulwith respect to the constraints in B1; : : : ; Bn and the relationships in B. In the example ofSection 3.4, the mediated queries ensure that salary values from DB2 are properly convertedto US dollars before they are compared to the constant 50; 000, and that job titles from DB2are properly converted according to the correspondence relation R in Figure 8 before they arereturned to the user.If the mediated query p is trivial, then the answers of p are contained in the answers of theoriginal query q, since databases b1; : : : ; bn are valid and Sni=1 bi j= (8x1; : : : ; xm)(p! q). Hencequery mediation does not yield additional data. In the example of Section 3.4, the answers ofthe mediated query Q2 are contained in the answers of the original query Q1. Hence replacingQ1 by Q2 does not yield additional data. In comparison, the answers of mediated queries Q3and Q4 could yield additional data, because DB2 might contain sta� members or consultantswho are not recorded as employees in DB1.The completeness of the mediated query p ensures that all the data that satisfy the originalquery q, whether they are in databases b1; : : : ; bn, or the mediator's knowledge base b, will beaccessed by evaluating p. In the example of Section 3.4, the mediated query Q1 union Q3union Q4 ensures that the name and title of all the employees who earn less than $50,000 willbe accessed, whether they are recorded as employees in DB1, or as sta� members or consultantsin DB2.Query mediation could be easily automated with the help of a �rst-order theorem proverthat is tuned to goal-directed reasoning, such as a theorem prover based on algebraic rewriting.3.6 Semantics of Query MediationConsider the interoperation of n databases bi over schemas Bi = (Vi; Ai) for 1 � i � n. Supposethat the mediator's knowledge base consists of theory B = (Sni=1 Vi [ V;A) and structureb. Every equality-generating dependency in A1; : : : ; An is a de�nite Horn clause. Throughskolemization, every tuple-generating dependency in A1; : : : ; An, or A of the form(8x1; : : : ; xm)(P1 ^ � � � ^ Pk ! (9y1; : : : ; yn)(Q1 ^ � � � ^Ql))could also be transformed into l de�nite Horn clauses:15



A mediated query p is complete if it is logically implied by all possible mediated queries p0 ofq. Intuitively completeness means that every valid answer of the original query is an answer ofthe mediated query. This is expressed as follows:Sni=1Ai ` (8x1; : : : ; xm)(p0 ! p)for every mediated query p0 of q.When the mediator's knowledge base is empty: A = ;, any query q is the sound, trivial,and complete mediated query of itself. However, the sound, nontrivial, and complete mediatedquery of q does not exist. In general, if a sound, nontrivial, and complete mediated query exists,then it is always unique up to equivalence, because if p and p0 are two sound, nontrivial, andcomplete mediated queries of q, then they are equivalent: Sni=1Ai ` (8x1; : : : ; xm)(p � p0).3.4 Example (Continued)In the example of Section 3.2, suppose that we pose the following query to DB1,3 which asksfor the name and title of all the employees who earn less than $50,000:SELECT Name1, Title1FROM Employee (Q1)WHERE Salary1 < 50,000.Using constraints C4 and C5 in Figure 5, which state that every regular employee is an employeeand Dept is a foreign key to Department, we could derive from Q1 the following sound but trivialmediated query, which asks for the name and title of all regular employees who earn less than$50,000:SELECT Name1, Title1FROM Employee t, Regular s, Department u (Q2)WHERE t.Name1 = s.Name1 AND s.Dept = u.Dname AND Salary1 < 50,000.This mediated query is sound because every name-title pair in the answers of Q2 is also in theanswers of Q1. It is trivial however since the mediator's knowledge is not needed to derive it.Using relationship I1 in Figure 9, which says that every sta� member is a regular employee,we could derive from Q2 the following sound and nontrivial mediated query, which asks for thename and (converted) title of sta� members who earn less than (converted) $50,000:SELECT Name2, Title1FROM Staff t, R s (Q3)WHERE t.Salary2=r < 50,000 AND t.Title2 = s.Title2where R is the correspondence relation between job titles in Figure 8, and r is the exchangerate between US dollars and German marks. Similarly, using relationship I3 in Figure 9, whichsays that every consultant is an employee with job title consultant, we could derive anothersound and nontrivial mediated query of Q1, which asks for the name of consultants who earnless than (converted) $50,000:3For ease of reading, all the queries in this section are expressed in SQL. It is straightforward to translatethem into �rst-order predicate calculus. 14



Sta�(x; r� y; z0; u0; w)^ R(z; z0)! (9u; v)(Employee(x; y; z; u)^ Regular(x; v)^ Department(v; w)) (I1)Employee(x; y; z; u)^R(z; z0)^Regular(x; v)^ Department(v; w)! (9u0)Sta�(x; r� y; z0; u0; w) (I2)Consultant(x; r� y)! (9z)Employee(x; y, consultant, z) (I3)Figure 9: Relationships in the Mediator's Knowledge Base3.2.3 Semantic and Representational MismatchesThere are both semantic and representational mismatches between the schemas of DB1 andDB2. The domain mismatches in salaries and job titles are examples of semantic mismatches.In addition, DB1 cares about phone numbers, while DB2 cares about o�ces.There are also representational mismatches. The relationship between regular employeesand managers is represented indirectly in DB1 through departments, but the same relationshipbetween sta� members and managers is represented directly in DB2. In addition, consultantsare represented by a value in the domain of attribute Title1 in DB1, but by a relation schemein DB2.Moreover, the mediator's knowledge about these mismatches is uncertain and sometimesincomplete. For example, a software engineer in DB1 could be either a programmer or an MTSin DB2, and there could be a job title contract administrator in DB1 whose correspondencein DB2 is not known to the mediator.3.3 Properties of Query MediationConsider the interoperation of n databases bi over schemas Bi = (Vi; Ai) for 1 � i � n. Alsosuppose that the mediator's knowledge base consists of theoryB = (Sni=1 Vi[V;A) and structureb. Given a query q on B1 with free variables x1; : : : ; xm, a mediated query p of q is a queryon the combined schema Sni=1Bi [ B = (Sni=1 Vi [ V;Sni=1Ai [ A) with the same list of freevariables. Notice that, although q is expressed on one schema B1, p could encompass multipleschemas from B1; : : : ; Bn and the mediator's knowledge base B.A mediated query p is sound if it logically implies the original query using the mediator'sknowledge. Intuitively soundness means that every answer of the mediated query should be avalid answer of the original query. This is expressed as follows:Sni=1Ai [ A ` (8x1; : : : ; xm)(p! q).A mediated query p is trivial if it is sound even when the mediator's knowledge base is empty:A = ;. Intuitively trivialness means that every answer of the mediated query is obtainable byasking the original query. This is expressed as follows:Sni=1Ai ` (8x1; : : : ; xm)(p! q). 13



Sta�(Name2, Salary2, Title2, O�ce, Manager2) (R01)Consultant(Name2, Pay) (R02)Figure 6: Schema of DB2Sta�(x; y1; z1; w1; u1)^ Sta�(x; y2; z2; w2; u2)! y1 = y2 ^ z1 = z2 ^ w1 = w2 ^ u1 = u2 (C 01)Consultant(x; y1)^ Consultant(x; y2)! y1 = y2 (C 02)Sta�(x; y1; z1; w1; u1)! (9y2; z2; w2; u2)Sta�(u1; y2; z2; w2; u2) (C 03)Figure 7: Constraints of DB2mediator's knowledge base. In addition, suppose that there is not an exact one-to-one corre-spondence between job titles in DB1 and job titles in DB2. The mediator keeps track of thecorrespondence between job titles in the two databases as relation R in Figure 8.Title1 Title2software engineer programmerprogram director department headprincipal scientist distinguished MTScomputer scientist MTSsoftware engineer MTS... ...Figure 8: Relation R in the Mediator's Knowledge BaseThe mediator's knowledge also states that sta� members are regular employees and viceversa, and consultants are employees with the job title consultant. These are expressed bythe dependencies in Figure 9. 12



3.2 An Example of Query MediationSuppose that a US-based company is merged with a Europe-based company, which bringsthe need to interoperate the two relational databases DB1 and DB2 previously developed andmaintained independently by the two companies respectively.3.2.1 SchemasThe schema of DB1 in Figure 4 consists of three relation schemes. Figure 5 shows �ve constraintsin DB1. The �rst three constraints state that employees, departments, and regular employeeshave unique names. The last two constraints state that every regular employee is an employee,and attribute Dept in relation scheme Regular is a foreign key to relation scheme Department.Employee(Name1, Salary1, Title1, Phone#) (R1)Department(Dname, Manager1) (R2)Regular(Name1, Dept) (R3)Figure 4: Schema of DB1Employee(x; y1; z1; w1)^ Employee(x; y2; z2; w2)! y1 = y2 ^ z1 = z2 ^ w1 = w2 (C1)Department(x; y1)^ Department(x; y2)! y1 = y2 (C2)Regular(x; y1)^ Regular(x; y2)! y1 = y2 (C3)Regular(x; y)! (9z; w; u)Employee(x; z;w; u) (C4)Regular(x; y)! (9z)Department(y; z) (C5)Figure 5: Constraints of DB1The schema of DB2 in Figure 6 consists of two relation schemes. Figure 7 shows threeconstraints in DB2. The �rst two constraints state that sta�s and consultants have uniquenames. The last constraint states that attribute Manager2 in relation scheme Sta� is a foreignkey to the same relation scheme.3.2.2 Mediator's KnowledgeThe mediator's knowledge about the relationships between DB1 and DB2 consists of the fol-lowing. Suppose that salary in DB1 is represented in US dollars, and salary and pay in DB2are represented in German marks. The exchange rate is represented by a constant r in the11



of autonomous heterogeneous databases. As a result, translation becomes straightforward. Wewill illustrate translation in general by an example in Section 5, after we present the justi�cationfor choosing �rst-order predicate calculus as the mediation language. Formal treatment of thetranslation is out of the scope of this paper.3.1 Schemas and DatabasesIntuitively a database represents a perception (called the perceived world [20] or the modelworld [27]) of the real world. Data in a database represents the knowledge of truth values ofstatements about the real world. A schema speci�es the vocabulary in which data is expressed,and the invariant properties of data. It also supplies a context within which queries could beexpressed meaningfully.Formally, a dependency is a sentence in �rst-order predicate calculus of the form(8x1; : : : ; xm)(P1 ^ � � � ^ Pk ! (9y1; : : : ; yn)(Q1 ^ � � � ^Ql))where m;n � 0, Pi is an atomic formula for 1 � i � k, and Qi is either an atomic formulaor an equality (when n = 0 and l = 1) for 1 � i � l. A dependency is equality generating ifn = 0; l = 1, and Q1 is an equality. A dependency is tuple generating if Qi is an atomic formulafor 1 � i � l [10].A schema B is a theory (V;A) in �rst-order predicate calculus, where V is a vocabulary ofpredicate symbols called relation schemes , arguments of relation schemes are called attributes ,and A is a set of equality-generating or tuple-generating dependencies expressed in V calledintegrity constraints .A database b over B is a structure over V , consisting of a nonempty domain D and ann-ary relation over D assigned to every n-ary predicate symbol in V . It is valid if b is a modelof B. Given two databases b1 and b2 over schema B, b1 � b2 is true if, for every predicateP 2 V , the relation assigned to P by b1 is contained in the relation assigned to P by b2. Giventwo databases b1 and b2 over schemas B1 = (V1; A1) and B2 = (V2; A2) respectively whereV1 \ V2 = ;, b1 [ b2 is the database over (V1 [ V2; A1 [ A2) such that b1 [ b2 assigns the samevalue to P as bi does for every predicate P 2 Vi, for i = f1; 2g.A conjunctive query q on B is a conjunction of atomic formulas over V with a (possiblyempty) list of free variables. A query q on B is a disjunction of conjunctive queries on B. Givena database b over B with domain D and a query q with free variables x1; : : : ; xm, the answersof q in b are the m-tuples (v1; : : : ; vm) in Dm such that q instantiated by v1; : : : ; vm is satis�edin b: b j= q[v1=x1; : : : ; vm=xm].We consider the interoperation of n valid, autonomous, and heterogeneous databases bi withdomains Di and over schemas Bi = (Vi; Ai) respectively for 1 � i � n, where Vi \ Vj = ; for1 � i 6= j � n. We assume that bi is empty if the i-th database is virtual. The mediator'sknowledge base consists of a theory B = (Sni=1 Vi [ V;A) in �rst-order predicate calculus anda structure b over V with domain D, where V \ Vi = ; for 1 � i � n, and A is a set of tuple-generating dependencies. The mediator's knowledge captures the relationships among schemasB1; : : : ; Bn, which specify how data in databases b1; : : : ; bn should be related semantically.10



3. The mediator's knowledge base is not the schema with which users interact.4. The knowledge in the mediator's knowledge base is not enforced as constraints crossdatabase boundaries; thus the participating databases do not form a model of it.Point (2) above shows a big advantage of our architecture over the federation architecturein terms of automation: users or database designers only need to identify, but do not haveto resolve, the semantic and representational mismatches in order to access data in multipledatabases, thus removing a big hurdle to automation.Point (3) above shows another important advantage of our architecture over the federationarchitecture in terms of autonomy: users of a local database access data in multiple databasesthrough the local language and schema instead of a federated schema or a multidatabase lan-guage. This is especially appealing for legacy databases: both the data and the applicationsaccessing the data are interoperable.Point (4) above shows a third advantage of our architecture over the federation architecture:the following di�cult issues associated with the federated database approach become nonissueswith the query mediation approach.� Global consistency . Consistency is always relative to a view of the world. Since partici-pating databases are not required to form a single logical view, there is no need to enforceglobal consistency at update time. In other words, updates are not interoperatable.2� View update. Since query mediation does not require the establishment of a single logicalview over participating databases, updates are not performed through views. Instead,updates are carried out directly in participating databases.� Object identity . Object identi�ers are used by an object-oriented database to identifyobjects in a view of the world. They are essentially LISP Gensyms. Their correspondenceto real-world objects is not capturable anywhere within the database, and hence they donot carry any semantics. Since the participating object-oriented databases do not forma single logical view, sharing object identi�ers between them is meaningless. In otherwords, object identi�ers are not interoperable.In general, mediators are knowledge base systems. Since it is unrealistic to expect a single,general-purpose mediator with optimal power [5], multiple mediators should coexist (just likethe coexistence of multiple federated schemas in the federated database approach), o�eringinformation communication services at various levels [19, 33]. These mediators could di�erin their tradeo�s between communication cost and capability (bandwidth), and users wouldsubscribe to the services that are optimal for their applications.3 Query MediationFor easy presentation of query mediation and conict detection, we choose �rst-order predicatecalculus both as the mediation language of the mediator, and as the representation language2Of course, one database could always monitor changes in other databases, or notify them of its own changes.But participating databases are not required to synchronize with each other.9



has, the more data it could help communicate. In other words, a participating databasedoes not have to be completely de�nable as a view on other participating databases.If a certain part of the database is (directly or indirectly) related to other databases,then accessing that part would lead to accessing data in multiple databases. Otherwise,accessing that part would only result in accessing data in the local database.We emphasize that our architecture accommodates the federation architecture [30] as aspecial case. For example, the virtual database on the right in Figure 1 could be considered asa federated schema. If a schema mapping is constructed from the mediator's knowledge baseby removing semantic and representational discrepancies, and queries are mediated only in thedirection from the federated schema to databases A and B, then we get a federated databasein which all queries go through the federated schema in order to access data in both databasesA and B, as shown in Figure 3 (arrows represent data ow).
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7. The Mediator derives answer D0A expressed in the mediation language from answer D0Bbased on its knowledge about the relationships between databases A and B, and sends itto Translator A.8. Translator A translates answer D0A to answer DA expressed in the language/schema ofdatabase A, and sends it to Wrapper A.9. Wrapper A merges answers LA and DA, detects conicts in the merged answer, andpresents it to users as the answer to query QA.This mediation process is shown in Figure 2.
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MediatorFigure 2: Query Mediation2.3 DiscussionWe could make several important observations of the mediation architecture in Figure 1 andthe mediation process of Figure 2.� Legacy Databases. A legacy database (e.g., the dotted boxes in Figure 1) could bemade interoperable by wrapping it up with a translator, which makes the database talkin the mediation language, and a conict detector, which gives users the option of beingnoti�ed of potential problems in query mediation. The applications that access data in thelegacy database become capable of accessing data in multiple databases without havingto switch �rst to a new language or new schema.� Virtual Databases. A participating database could be a virtual one containing only aschema but no data, serving purely as an interface to autonomous heterogeneous databases(e.g., the one on the right in Figure 1). For example, an application designer could de�nehis favorite schema, and specify some relationships of his schema with other participatingdatabases. From then on, users of the application could formulate queries in this schema,and get meaningful access to related data in other databases through query mediation.� Incomplete Knowledge Base. Although we assume that the mediator's knowledge isgiven, this knowledge does not have to be complete. The more knowledge the mediator7
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RelationshipsFigure 1: Mediation Architecture2. Translator A translates query QA to query Q0A expressed in the mediation language, andsends it to the Mediator.3. From query Q0A, the Mediator computes a mediated query Q0B expressed in the mediationlanguage based on its knowledge about the relationships between databases A and B, andsends it to Translator B.4. Translator B translates query Q0B to query QB expressed in the language/schema ofdatabase B, and sends it to Wrapper B.5. Wrapper B sends query QB to Query Processor B to get answer DB expressed in thelanguage/schema of database B, and sends it to Translator B.6. Translator B translates answer DB to answer D0B expressed in the mediation language,and sends it to the Mediator. 6



this type of languages di�ers from the representation languages (i.e., data models) ofparticipating databases. A representation language captures the knowledge about datafor the appropriate abstraction and e�cient representation of one class of applications,while a mediation language captures the knowledge about data for the meaningful ande�cient communication between many classes of applications.� Knowledge Base. Meaningful communication between autonomous heterogeneous data-bases is based on the relationships between participating databases. These relationshipscapture the commonalities and mismatches in semantics or representations between thesedatabases. They are expressed in the mediation language and form a knowledge base.� Mediator. A mediation language alone is not su�cient to ensure meaningful communi-cation, because autonomous heterogeneous databases might contain data that mismatchin semantics or representations. We need a mediator [33] to mediate the communicationby resolving potential mismatches. Equipped with the knowledge base of relationshipsbetween participating databases, the mediator accepts queries from one database, deter-mines which other databases contain relevant data, generates queries to these databases,and mediates resulting data back to the original database. The mediation is carried outin the mediation language.� Translators. Since the representation languages of participating databases very likelydi�er from the mediation language of the mediator, we need translators to translatequeries and data between these representation languages and the mediation language, inorder for queries and data to be communicable by the mediator.� Conict Detectors. When related data from multiple participating databases aremerged to give answers to a query, conicts are always possible because the merged datamight be inconsistent with respect to the constraints of the original database in which thequery is speci�ed. We need conict detectors to detect such potential problems. The con-ict detectors support the communication of globally inconsistent but locally reasonabledata [19].� Wrappers. Participating databases are wrapped up by interface modules to redirectincoming queries to the mediator, to respond to queries from the mediator, and to mergeanswers from the mediator.Figure 1 shows this mediation architecture of interoperation (arrows represent data ow),with three autonomous heterogeneous databases interoperating through a mediator | a databus .2.2 How Queries are MediatedSuppose that users issue query QA in database A in Figure 1, expressed in the language/schemaof database A. The mediation of query QA proceeds as follows.1. Wrapper A intercepts query QA, and sends it both to Query Processor A to get answerLA and to Translator A for mediation. 5



minimal representational bias. There, the relational model is proposed as such a language,from which object-oriented views are compiled by binding relational data to object templates.The relational model has been used as the mediation language for resolving domain mismatches[8] and as the glue language for interconnecting software components [4]. In [14], �rst-orderlogic is recommended as the language for knowledge sharing.We present a query mediation approach to the interoperation of autonomous heterogeneousdatabases containing data with semantic and representational mismatches [23]. We develop anarchitecture of interoperation that facilitates query mediation, and formalize the semantics ofquery mediation and conict detection. Queries are mediated between multiple databases, andusers of a local database access data in multiple databases using the local language and schema,making both the data and the applications accessing the data in legacy databases interoperable.Queries are automatically mediated, relieving users from the di�cult task of resolving semanticand representational mismatches. Semantic heterogeneity is separated from representationalheterogeneity by minimizing the representational bias in the mediation language, reducing thespace of potential heterogeneity, and improving the e�ciency of automated query mediation.2 Mediation ArchitectureThe ultimate goal of the interoperation of autonomous heterogeneous databases is to sharethe data stored in these databases. As observed in [19], data sharing does not necessarilymandate the sharing of representations. In fact, since many databases are legacy databases,and today's modern databases will be tomorrow's legacy databases, it is not practical to expectrepresentation sharing. As long as autonomous heterogeneous databases could communicatewith one another, they could bene�t from each other's data without having to be bound to acommon representation. In fact, the history of database systems has demonstrated precisely thistrend of data sharing with less and less representation sharing: centralized databases mandatephysical database sharing, distributed databases mandate logical but not physical databasesharing, and federated databases mandate schema but not database sharing.With the advance in semantic data models and knowledge base systems, data processinghas evolved into intelligent information processing, where the availability of semantics andknowledge about data greatly enhances the capability of information abstraction. A similarevolution from data communication into intelligent information communication is essential forthe interoperation of autonomous heterogeneous databases. Data should not be communicatedas raw bits (i.e., syntactic communication). Instead, they should be mediated (i.e., semanticcommunication) to ensure that data from the sender will be correctly understood for processingby the receiver.2.1 ComponentsOur architecture consists of the following components that together support the interoperationof autonomous heterogeneous databases.� Mediation Language. Communication between autonomous heterogeneous databasesmust be carried out in a mediation language or interlingua. As pointed out in [19],4



1.2 Existing ApproachesThe distributed database approach ensures interoperation by forcing users to share a singlelogical database [6]. Although data might be physically distributed in many databases, con-ceptually there is only one database, one schema, and one query language | there are nomismatches between the many physical databases either in semantics or in representations.Database autonomy is completely sacri�ced with this approach.The dominating approach to the interoperation of heterogeneous databases has been thefederated database approach [1, 30]. With this approach, users of a local database have toswitch to a federated schema or a multidatabase language in order to access data in multipledatabases, which almost always involve di�erent data models and query languages.1 In otherwords, the data in a local database are made interoperable, but the applications in the localdatabase that access the data remain not interoperable, since these applications are coded inthe data model and query language of the local database. This is especially impractical forlegacy databases because the bulk of the signi�cant investment made by organizations in suchdatabases is in the applications that access the data.In the federated database approach, either a federated database administrator or a user hasto �rst identify the semantic and representational mismatches, and then construct a federatedschema to resolve these mismatches, before data in multiple databases could be accessed. Theconstruction of the federated schema is essentially a schema integration process [3], which o�erslittle hope for automation [28].In addition, most researchers advocate the use of a powerful interoperation language infederated databases that could directly express all the representational constructs of heteroge-neous databases [7, 2, 15, 17]. Although mapping heterogeneous databases into constructs ofthe language becomes straightforward, all the semantic and representational mismatches stillhave to be resolved in the language, which o�ers little hope for e�ciency because of the richsemantics and representations of the language. For example, higher-order logic has to be usedin [12] to reason about the equivalence of heterogeneous representations.In [22], the existence of conicts in merging data from multiple databases is recognized, anda method is proposed to resolve conicts when they are detected. However, the semantics ofconicts is not formally de�ned, and conict detection is not handled.The idea of information processing and communication via intelligent mediation is intro-duced in [33] as a framework of future information systems. Meta-attributes have been usedin [26] to specify the contexts associated with attribute values. Relationships between contextsare encoded as conversion rules, and queries are mediated through these relationships to en-sure that they are meaningful with respect to their contexts. This is a special case of querymediation, where the mediation is restricted to context matching and value conversion. Anexample of query mediation from object-oriented databases to relational databases is given in[24], where the schemas and the relationships between schemas are encoded as rules in F-logic.It is �rst observed in [32] that data should be shared in some mediation language with1Theoretically it is possible, in the reference architecture of [30], to have external schemas whose data modelsand query languages are di�erent from a federated schema. However, it remains open whether and how thiscould be done with the federated database approach. Moreover, having an external schema identical to a localschema would introduce architectural redundancy. 3



� Scope. The set of employees includes retirees as de�ned by the bene�ts department,whereas it includes consultants as de�ned by the payroll department.� Granularity. Gross personal salary is used for job survey, whereas adjusted familyincome is used for taxation.� Temporal Basis. Branch o�ces are concerned with weekly sales, whereas the centralo�ce is more interested in monthly revenue.Direct comparison and combination of data with such semantic mismatches would be mean-ingless. In addition to semantic mismatches, the same data could be represented in variousincompatible structures, and the same structure could be used to represent data with incom-patible semantics [29]. The representational di�erences are caused by the need to bind data torepresentations that are most natural and e�cient with respect to speci�c applications. In gen-eral, there simply does not exist a universal representation that is perfect for every application[5, 14, 19]. Examples of representational mismatches are:� Identi�cation. Employees could be identi�ed by employee ID numbers in the personneldepartment, but by social security numbers in the payroll department. The nature ofoperations in these two departments demands that di�erent identi�ers be used, since em-ployee data is most likely accessed by social security numbers, not employee ID numbers,in the payroll department.� Type Conict. Marriage is considered by the Internal Revenue Service as a one-to-onerelationship between men and women for current marriages, but by the Census Bureauas a many-to-many relationship between men and women for marriage history. It wouldcomplicate the operation of the IRS if current marriage had to be represented as a many-to-many relationship.� Biased View. The one-to-one marriage relationship between men and women could berepresented as a binary predicate, a binary boolean function, a wife attribute attachedto man objects, or a husband attribute attached to woman objects. It is impractical torepresent the relationship in all possible structures.Because of the diverse needs of autonomous organizations, heterogeneity will persist ratherthan disappear. To support the interoperation of autonomous heterogeneous databases con-taining data with semantic and representational mismatches, three critical issues have to beaddressed:� Autonomy. Database autonomy should be respected and preserved. Users should notbe required to switch to new query languages or new schemas in order to access data inmultiple databases.� Automation. Interoperation should be automated. Users should not be required tomanually resolve all the semantic and representational mismatches in order to access datain multiple databases.� E�ciency. Automated interoperation should be computationally e�cient. In particular,it should not require expensive mechanisms such as theorem-proving in higher-order logics.2



Semantic Interoperation:A Query Mediation Approach�Xiaolei Qian and Teresa F. LuntComputer Science Laboratory, SRI International333 Ravenswood Avenue, Menlo Park, CA 94025AbstractWe present a query mediation approach to the interoperation of autonomous hetero-geneous databases containing data with semantic and representational mismatches. Wedevelop an architecture of interoperation that facilitates query mediation, and formalizethe semantics of query mediation. The main contributions are the automated mediation ofqueries between databases, and the separation of semantic heterogeneity from representa-tional heterogeneity. Query mediation in heterogeneous legacy databases makes both thedata and the applications accessing the data interoperable. Automated query mediationrelieves users from the di�cult task of resolving semantic and representational mismatches.Decoupling semantic and representational heterogeneity improves the e�ciency of auto-mated query mediation.1 IntroductionThe interoperation of heterogeneous databases is a pressing need today as organizations at-tempt to share data stored in legacy databases. These databases are independently developedand maintained to each serve the needs of a single organization. The exchange of data betweensuch databases could be problematic not only because of di�erences in the representation (syn-tax) of data but also due to often subtle di�erences in the intended interpretation (semantics)of data. Thus, although translators could be constructed to reformat data from one represen-tation to another, such a translation does not guarantee that the combined, translated data aremeaningful | we could be attempting to compare apples with oranges.1.1 Problems and IssuesHeterogeneity in the semantics of data arises naturally. The semantic di�erences are causedby the diverse needs of applications. Moreover, the relationships between heterogeneous datacould be incomplete or uncertain. Examples of semantic mismatches are:�This work was supported in part by U.S. Department of Defense Advanced Research Projects Agency andU.S. Air Force Rome Laboratory under contract F30602-92-C-0140.1


