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Much research remains to be done. First, we have focused on three components of the
mediation architecture, namely the mediation language, the query mediator, and the conflict
detectors. Research is needed in the other components. Although it is often straightforward
to translate participating schemas into the mediation language, it is tricky to translate the
queries of participating databases into the mediation language if they could involve higher-
order constructs, such as in the case of object-oriented databases. It is even more challenging
to bind queries in the mediation language to the representational constructs of participating
databases such that they could be efficiently evaluated.

Second, we have assumed that the knowledge in the mediator’s knowledge base is available.
How to obtain such knowledge is certainly an important issue. Although the acquisition of
such knowledge is likely to be a highly interactive process, automated acquisition tools would
be valuable.

Third, we have restricted ourselves to constraints, relationships, and queries that do not
involve negation. The semantics of query mediation could certainly be generalized to allow
negation, as long as for example the result is stratified [31]. The approach could also be easily
generalized to deductive databases containing rules in addition to constraints.

Finally, research is needed in the autonomous optimization of mediated query evaluation.
Due to the autonomy of participating databases, the query mediator often does not have access
to the performance information that is crucial in query optimization. The query mediator needs
a cost model that is independent of the implementation structures of participating databases.
Techniques are also needed for the mediator to obtain performance information by querying [9].
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Employee2(e#, citizen?)
Project2(p#, manager)
PE(p#, e#)

Employee2(z, y1)A Employee2(z,y2) — 11 = y2
Project2(z, y1)A Project2(z,y2) — 11 = y2
Project2(z,y) — (3z)Employee2(y, 2)

PE(z,y) — (3z)Employee2(y, z)

PE(z,y) — (3z)Project2(z, 2)

The relationships between these two relational schemas, as contained in the mediator’s
knowledge base, would be:

Employeel(z,y) = Employee2(z, y) (S7)
Projectl(z,y) = Project2(x,y) (Sg)
EP(z,y) = PE(y, z) (:59)

The original query )7 would be translated into the following relational query Qg:

SELECT p#
FROM EP t, Employeel s (Q9)
WHERE t.e# = s.ei#t AND s.citizen? = false.

A mediated query of ()9 to DB2 would be:

SELECT p#
FROM PE t, Employee2 s (Q10)
WHERE t.e# = s.ei#t AND s.citizen? = false.

It is straightforward for the mediator to derive ()19 from (g using its knowledge 57 and Sg,
which involves simple substitutions of equivalent subformulas.

6 Conclusion

We have presented a query mediation approach to the interoperation of autonomous hetero-
geneous databases containing data with semantic and representational mismatches. We have
developed an architecture of interoperation that facilitates query mediation, and have formal-
ized the semantics of query mediation and conflict detection. Queries are mediated between
multiple databases, and users of a local database access data in multiple databases using the
local language and schema, making both the data and the applications accessing the data in
legacy databases interoperable. Queries are automatically mediated, relieving users from the
difficult task of resolving semantic and representational mismatches. Semantic heterogeneity
is separated from representational heterogeneity by minimizing the representational bias in
the mediation language, which reduces the space of potential heterogeneity, and improves the
efficiency of automated query mediation.

25



(Vz,y)(« € Employeel Ay € z.assignment —
(32’ y")(y' € Project2 Az’ € y' .team
Ax.eft= o' . e Ax.citizen?= 2’.citizen?
Ay.p#= y'.p#Ay.manager= y' .manager)) (S5)

(Va,y)(y € Project2 Az € y.team —
(32',y") (2’ € Employeel Ay' € 2’ .assignment
Az’ .eft= x.eft Az’ .citizen?= z.citizen?
Ny . p#= y.p#Ay'.manager= y.manager)) (S6)

Suppose that users of DB1 pose a query to retrieve all projects that involve employees who
are not US citizens, which could be expressed in an object-oriented SQL-like query language as
follows:

SELECT Y
FROM Employeel X, Projectl Y (Q7)
WHERE Y in X.assignment AND X.citizen? = false.

A mediated query of ()7 to DB2 would be:

SELECT new-obj(Projectl, X.p#, X.manager)
FROM Project2 X, Employee2 Y (Qs)
WHERE Y in X.team AND Y.citizen? = false.

The mediator would have to derive Jg from )7 using S5 and Sg, which could be expensive
because it involves inference in a logic for object-oriented databases such F-logic. If instead
our mediation language is first-order predicate calculus, then translation into and out of the
mediation language acts like the flattening and nesting operators in the nested relational model.
In particular, DB1 would be translated into the following relational schemas:

Employeel(e#, citizen?)
Project1(p#, manager)
EP(e#, p#)

Employeel(z,y1)A Employeel(z,y2) — 11 = y2
Project1(z, y1)A Projectl(z,y2) — 11 = y2
Projectl(z,y) — (3z)Employeel(y, 2)

EP(z,y) — (3z)Employeel(z, z)

EP(z,y) — (3z)Projectl(y, z)

and DB2 would be translated into the following relational schemas:
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Staff-Salary(z,r X y) — Employee-Salary(z, y) (I11)
Staff-Title(z, y") A R(y,y") — Employee-Title(x, y) (I12)
Staff-Manager(z, z) — (3y)(Regular(z, y)A Department(y, 2)) (I13)
Employee-Salary(z, y)A Regular(z, z) — Staff-Salary(z,r X y) (I21)
Employee-Title(z, y)A Regular(z,z) A R(y,y') — Staff-Title(z,y’) (Ia2)
Regular(z,y)A Department(y, z) — Staff-Manager(z, z) (I23)
Consultant(z,r X y) — Employee-Salary(z, y) (Is1)
Consultant(z,y) — Employee-Title(z, consultant) (I32)

Now it is possible to perform the query mediation of Section 3.4 in the Horn fragment of
first-order logic, namely Prolog. Moreover, it eliminates the need to derive the trivial mediated
query (J9 in order to derive the nontrivial mediated query @s.

In summary, an appropriate mediation language should be based on first-order logic, and
should be minimized in terms of representational bias. First-order logic without uninterpreted
function symbols and with predicate symbols of minimal arities is such a language.b It is
the language of relational and deductive databases. With such a mediation language, query
mediation could often be performed by theorem provers for fragments of first-order logic, such
as Prolog or even Datalog, which are well known to be much more efficient than query mediation
in full first-order logic.

5.4 Example

Let us consider two object-oriented databases DB1 and DB2 on employees and projects, and
a many-to-many relationship between them about which employees work on which projects.
Suppose that DB1 chooses to represent the relationship as a set-valued attribute of employee
objects, as follows:

class Employeel class Projectl
et : string, pP# : string,
citizen? : boolean, manager : Employeel.
assignment : set(Projectl).

Suppose also that DB2 chooses to represent the relationship as a set-valued attribute of
project objects, as follows:

class Employee2 class Project2
et : string, pP# : string,
citizen? : boolean. manager : Employee2,
team : set(Employee2).

If the mediation language is full first-order logic, then the relationships between DB1 and
DB2, as contained in the mediator’s knowledge base, could be specified as follows, which state
that every employee-assignment pair in DB1 corresponds to a project-team pair in DB2, and
vice versa:

We are not claiming that representational bias is completely eliminated in this language. In fact, the
arguments of nonunary predicate symbols could always be ordered in more than one way. The key point is that
representational bias is reduced sufficiently to make query mediation reasonably efficient.
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5.3 Minimal Mediation Language

Hence, instead of trying to entirely separate semantics and representations, we aim for a medi-
ation language in which the amount of representational bias (i.e., the number of ways that the
same semantics could be represented differently) is minimized. This effectively separates se-
mantic heterogeneity from representational heterogeneity, and reduces the complexity of query
mediation. Semantic heterogeneity is handled by the mediator, while representational hetero-
geneity is handled by the translators.

The number of representational constructs should be minimized in the mediation language
[25]. Languages based on relational, functional, or object-oriented models all qualify, in the
sense that each of them contains only one representational construct — relation, function, or
object. On the other hand, languages based on the ER model do not qualify, since they contain
two representational constructs: entity and relationship.

However, minimizing the number of representational constructs alone is not enough, because
the same representational construct might be capable of encoding the same semantics in more
than one way. For example, the Stock relationship in Section 5.1 could be represented in
functional models as 57,53, or even the partial functions:

Date — (Company — Price) (S4)

In fact, a relationship could always be encoded in many biased ways in a language with
uninterpreted function symbols, depending on which argument is chosen as the output of the
function. Hence, uninterpreted function symbols should not be allowed. Notice that attributes
in object-oriented models are essentially functions from objects to values. Thus languages based
on functional or object-oriented models are not good candidates as mediation languages. For
example, the binary marriage relationship could be represented as a Wife attribute of the Male
object, or as a Husband attribute of the Female object, or as a Family object with Wife and
Husband attributes, etc.

Even predicate symbols could be biased in representing relationships, since an n-ary rela-
tionship could always be represented either by an n-ary predicate or by a collection of binary
predicates. Hence the arities of uninterpreted predicate symbols should be minimized to repre-
sent only the atomic information. For example, we could decompose relation schemes Employee
of Figure 4 and Staff of Figure 6 into atomic ones, as follows:

Employee-Salary(Namel, Salaryl)
Employee-Title(Namel, Titlel)
Employee-Phone(Namel, Phone#)

Staff-Salary(Name2, Salary2)
Staff-Title(Name2, Title2)
Staff-Office(Name2, Office)
Staff-Manager(Name2, Manager2)

This decomposition allows us to express most knowledge in Figure 9 as Horn clauses, as
follows:
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Stock(Company1,z,y) = Companyl(z,y)

Stock(CompanyN,z,y) = CompanyN(z, y).

In comparison, the relationships in [7, 12, 15, 17] relate schema By to an infinite set of schemas
B, each representing a relationship similar to S5 for some finite subset of the infinite Company
domain, leading to the need for higher-order languages. Since we consider the interoperation of
a finite set of databases, the need for higher-order languages does not arise. In fact, the infinite
set B of schemas is an approximation of the partial functions:

Company +— (Date — Price) (53)

which are equivalent to 5. Just because S3 cannot be represented directly in the flat relational
model,’ it does not imply that S3 cannot be represented in first-order logic. We could easily
think of first-order representations of 53 in nested relational models, functional models, or
object-oriented models.

Therefore, first-order logic should be sufficient as the semantic basis of mediation languages.
Of course, this does not prevent us from having higher-order syntactic sugaring in mediation
languages for the convenient specification of relationships between autonomous heterogeneous
databases. The advantage of having first-order instead of higher-order logic as the semantic
basis of mediation languages is obvious. Query mediation involves logical inference, and logical
inference is more efficient in first-order than in higher-order logic.

5.2 Separate Semantics and Representation

A main source of complexity in the mediator’s knowledge base is the potentially exponential
combination of semantic and representational heterogeneity. Since representations are often
application-specific, we would like to separate semantics from representations in the mediation
language, thus making the semantics of data interoperable without requiring the representa-
tions of data to be interoperable. This minimizes the need for query mediation to deal with
representational heterogeneity, and reduces the complexity of query mediation.

But what is semantics and what are representations? In the Dual Model [13], an attempt
was made to distinguish the two in object-oriented databases, where the type system is consid-
ered to express representations and the class hierarchy is considered to express semantics. This
distinction is inappropriate, because both type systems and class hierarchies capture represen-
tations, the former representing value semantics and the latter representing object semantics.

Semantics and representations correspond respectively to concepts and symbols in the mean-
ing triangle [21]. For first-order logic, representations are captured by a theory, and semantics
is captured by models of a theory. The relationship between semantics and representations is
characterized by Godel’s completeness theorem. In essence, any language encodes some repre-
sentation constructs, and any semantics has to be expressed in some language. There cannot be
a language of semantics completely independent of representations, and hence semantics and
representations cannot be completely separated in the mediation language.

5Notice that S; is an indirect representation of Ss; in the flat relational model.

21



Functional dependencies are a subclass of equality-generating dependencies, and techniques for
deriving functional dependencies on queries are available [16].

For instance, the conflicts in the examples of Section 4.2 could be easily detected. There
is a derived functional dependency on the answers of query )1 from Namel to Titlel, which
is not satisfied in the answers of the mediated query ()1 union (3 union (J4. There is also a
derived functional dependency on the answers of query (J5 from Namel to Managerl, which is
not satisfied in the answers of the mediated query of (5.

5 The Mediation Language

As is obvious from Section 3, the efficiency of query mediation depends critically on the expres-
siveness of the mediation language — the more expressive the mediation language is, the less
efficient the query mediation will be. In Section 3, we chose first-order predicate calculus as
our mediation language. Here we discuss why this choice is justified, and what should be the
appropriate features of a mediation language.

5.1 First-Order or Higher-Order Logic

Existing approaches [7, 12, 15, 17] argue that higher-order languages are necessary for reasoning
with relationships between multiple databases, all of which demonstrate such need using the
following stock example.

Suppose that schema By contains the following relation scheme and constraint about com-
panies, dates, and closing prices of stocks:

Stock(Company, Datel, Pricel)
Stock(x,y, 21)A Stock(z,y, z2) — 21 = 23.

By represents the partial functions:
Company x Date — Price (51)

Now suppose that schema Bs contains the following N relation schemes and constraints, for
the dates and closing prices of the stocks of Companyl, ..., CompanyN:

Companyl(Date2, Price2)
Companyl(z,y1)A Companyl(z,y2) — 11 = ¥2

CompanyN(Date2, Price2)
CompanyN(z,y1)A CompanyN(z,y2) — 11 = y2.

B, represents the partial functions:
{Company1, ..., CompanyN} — (Date — Price) (52)

Are the relationships between By and Bj representable in first-order logic? Yes, of course:
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Namel | Managerl

Sam Mark
Mark Mark
Tom Tom
Mary John
Sam John

Again, there cannot be a database that contains both DB1 and the fact that Sam’s manager
is John, since constraints Cy and C5 in Figure 5 state that employees have unique departments
and departments have unique managers. The conflict is due to an inconsistency between the
two databases. However, if we ask instead for the name and manager of regular employees who
work in the database department:

SELECT Namel, Manageril
FROM Regular, Department (Qs)
WHERE Dept = database AND Dname = database

then no data from DB2 would be accessed by query mediation, and no conflict would result,
because no staff members are known in DB2 to work in the database department.

4.3 Constraint Derivation

Conflict detection is not computable using the definition of Section 4.1. Hence it is worthwhile
to identify sufficient conditions under which conflicts could be detected efficiently.

Consider the interoperation of n databases b; over schemas B; = (V;, 4;) for 1 < i < n.
Also suppose that the mediator’s knowledge base consists of theory B = (Ji; Vi UV, A) and
structure b. Given a query g on By with free variables zq,...,2,, and a mediated query p
of ¢ on the combined schema |J;—; B; U B, let C' be an equality-generating dependency over
vocabulary V] = V; U {P} such that

A, (Yo, .oz (Play,. . em) =) F C

where P is a new predicate symbol not in V3. Also let d be the structure over V{ which is b,
plus the answers of p in the combined database |J;_, b; Ub assigned to P. Suppose that C' is not
satisfied in d. Notice that C' must involve P. If there is a database b| over By where b; C b}
such that the answers of ¢ in 0] are identical to the answers of p in |J; b; U b, then there is a
structure d’ over V{ which is b} plus the answers of p in (Jiuq b; U b assigned to P. Since d C d’
and C is satisfied in d’, we have that C is satisfied in d, a contradiction. Hence b| does not
exist, and there is a conflict in the answers of p in [Ji; b; U b.

The above analysis suggests that the equality-generating dependencies on query ¢ could
serve as sufficient conditions for detecting conflicts in the answers of the mediated queries of ¢.
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Name?2 Pay

Peter | 80,000

Assuming that one US dollar is worth two German marks, the answers of the original query
()1 of Section 3.4 are the following;:

Namel Titlel

Sam software engineer

and the answers of the mediated query )1 union ()5 union ()4 of Section 3.4 are the following:

Namel Titlel
Sam software engineer
Sam computer scientist
Peter consultant

Obviously, there cannot be a database that contains both DB1 and the fact that Sam’s job
title is computer scientist, since constraint (7 in Figure 5 states that employees have unique
job titles. The conflict is due to an uncertainty in the mediator’s knowledge of Figure 8, which
states that an MTS could correspond to either a software engineer or a computer scientist. If
we ask for the name and manager of regular employees in DB1:

SELECT Namel, Manageril
FROM Regular, Department (@s)
WHERE Dept = Dname

query mediation would return the following answers, even though DB2 does not know which
department Mary is in:
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be imported from other participating databases as well as the mediator’s knowledge base. The
additional data in the answers of p but not in the answers of ¢, combined with data in b, do
not necessarily form a valid database over By, in which case a conflict has occurred.*

More formally, the answers of the mediated query p in the combined database (J7_; b; Ub
are conflict-free if there is a database b} over By, where by C b}, such that the answers of ¢ in
b} are identical to the answers of p in (i b; U b:

(Vaq,...,25)0) F ¢ <= UL b;Ub = p).
4.2 Example (Continued)

We continue with the example of Section 3.4. Suppose that the contents of DB1 are the
following:

Namel | Salaryl Titlel Phone#

Sam 35,000 software engineer | 856-2232
Mark | 60,000 program director 856-1596
Tom 58,000 | principal scientist | 856-6015

Namel Dept

Dname | Managerl

Sam database

database Mark Mark | database
AT Tom
Tom AT
and the contents of DB2 are the following;:
Name2 | Salary2 Title2 Office | Manager?2

Mary | 100,000 | distinguished MTS | 2D-232 John
Sam 70,000 MTS 2C-301 John

*Notice the difference between this and the intuition of the federated database approach. For example,
employees and staff members are similar concepts. Query mediation tries to access both concepts by importing
staff members into the employee context to which name uniqueness should apply. In contrast, a federated
database tries to access both concepts by creating another concept, say workers, which is the union of employees
and staff members. Name uniqueness does not have to apply to the context of the new concept.
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Qilfizr, - 2m)/Yihi<i<n < Pry- ., Py

Qilfi(xr, - 20)/Yilicicn = Pr,y.. o, P

where fi(z1,...,2y) is a skolem function. For every m-ary predicate symbol P in Vi,...,V,,
or V, we add a new m-ary predicate symbol Py and the following definite Horn clause:

Plzy,...;xm) — Po(z1, ..., 2m).

A deductive database (with equality) [11] could be constructed by taking these Horn clauses as
the IDB. The EDB consists of, for every predicate P in Vi,...,V,, or V, the new predicate Fy
whose extent is the relation assigned to P by by,...,b,, or b.

Let M be the initial model of this deductive database [18]. Also let U be the universe of
M which is the set of equivalence classes of ground terms over [Jiy V,UV U{f1,..., fu}, and
G C U be the set of equivalence classes containing ground terms over [Ji; V; U V. Given a
query ¢ on By with free variables x1,...,x,,, the definite answers of ¢ in M are the answers of
¢ in M that are in G™.

Given a mediated query p of ¢ on the combined schema |J/_; B; U B. If p is sound, then
every answer of p in the combined database (Ji_; b; U b is a definite answer of ¢ in M. If p is
trivial, then every answer of p in (J;_; b; U b is an answer of ¢ in b; and hence a definite answer
of gin M. If p is complete, then every definite answer of ¢ in M is an answer of p in [Ji—; b; UD.

When the IDB of this deductive database is bounded [31], there is a query p not involving
IDB predicates, such that every answer of ¢ in M is an answer of p in M and vice versa. Hence
there is a query p’ on the combined schema [J; B; U B, such that every definite answer of ¢
in M is an answer of p’ in the combined database [J_; b; Ub and vice versa. In other words, p’
is the sound and complete mediated query of ¢.

In general, we could view query mediation as the first-order approximation of definite an-
swers in the initial model of a deductive database, which is formed by taking participating
databases as the EDB, and by taking (the skolemization of) the mediator’s knowledge and the
constraints in participating schemas as the IDB. The more complete a mediated query is, the
closer its answers are to the definite answers of the original query in the initial model. The
boundedness of the IDB serves as a sufficient condition for the existence of sound and complete
mediated queries.

4 Conflict Detection

4.1 The Semantics of Conflicts

Consider the interoperation of n databases b; over schemas B; = (V;, A;) for 1 < ¢ < n. Also
suppose that the mediator’s knowledge base consists of theory B = (|Ji~; V;UV, A) and structure
b. Given a query q on By with free variables z1,...,2,,, suppose that the evaluation of ¢ in by
is replaced by the evaluation of the mediated query p of ¢ in the combined database |Ji—; b; Ub.
Intuitively, the need for query mediation arises because b; does not capture a complete picture
of the real world as far as ¢ is concerned, thus additional data (in the answers of p) need to
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SELECT Name2, consultant
FROM Consultant t (Q4)
WHERE t.Pay/r < 50,000.

where consultant in the select clause is a constant. It could be verified that the combined
query (J1 union ()3 union ()4 is the sound, nontrivial, and complete mediated query of (J.

3.5 Meaning of Query Mediation

Consider the interoperation of n databases b; over schemas B; = (V;, A;) for 1 < ¢ < n. Also
suppose that the mediator’s knowledge base consists of theory B = (|JiL, V;UV, A) and structure
b. Given a query g on By, the objective of query mediation is to replace the evaluation of ¢
in by by the evaluation of the sound, nontrivial, and complete mediated query p of ¢ in the
combined database [Ji; b; Ub. The soundness of p ensures that such replacement is meaningful
with respect to the constraints in By,..., B, and the relationships in B. In the example of
Section 3.4, the mediated queries ensure that salary values from DB2 are properly converted
to US dollars before they are compared to the constant 50,000, and that job titles from DB2
are properly converted according to the correspondence relation R in Figure 8 before they are
returned to the user.

If the mediated query p is trivial, then the answers of p are contained in the answers of the
original query ¢, since databases by, ..., b, are valid and U=, b; = (Va1,...,2,)(p — ¢). Hence
query mediation does not yield additional data. In the example of Section 3.4, the answers of
the mediated query ()5 are contained in the answers of the original query ¢);. Hence replacing
)1 by 2 does not yield additional data. In comparison, the answers of mediated queries ()3
and )4 could yield additional data, because DB2 might contain staff members or consultants
who are not recorded as employees in DB1.

The completeness of the mediated query p ensures that all the data that satisfy the original
query ¢, whether they are in databases by,...,b,, or the mediator’s knowledge base b, will be
accessed by evaluating p. In the example of Section 3.4, the mediated query ¢); union ()3
union Y4 ensures that the name and title of all the employees who earn less than $50,000 will
be accessed, whether they are recorded as employees in DB1, or as staff members or consultants
in DB2.

Query mediation could be easily automated with the help of a first-order theorem prover
that is tuned to goal-directed reasoning, such as a theorem prover based on algebraic rewriting.

3.6 Semantics of Query Mediation

Consider the interoperation of n databases b; over schemas B; = (V;, A;) for 1 <1 < n. Suppose
that the mediator’s knowledge base consists of theory B = (UL, V; UV, A) and structure
b. Every equality-generating dependency in Ay,..., A, is a definite Horn clause. Through
skolemization, every tuple-generating dependency in Ay,..., A,, or A of the form

(Var,..o,xm)(PrA APy — (Fy1, ..y yn)( Q1 A~ AQ)))

could also be transformed into [ definite Horn clauses:
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A mediated query p is complete if it is logically implied by all possible mediated queries p’ of
g. Intuitively completeness means that every valid answer of the original query is an answer of
the mediated query. This is expressed as follows:

UL, A F(Yaq, ..., 20)(p — p)

for every mediated query p’ of q.

When the mediator’s knowledge base is empty: A = (J, any query ¢ is the sound, trivial,
and complete mediated query of itself. However, the sound, nontrivial, and complete mediated
query of ¢ does not exist. In general, if a sound, nontrivial, and complete mediated query exists,
then it is always unique up to equivalence, because if p and p’ are two sound, nontrivial, and
complete mediated queries of ¢, then they are equivalent: iy A; F (Yaqi,...,2,)(p = p').

3.4 Example (Continued)

In the example of Section 3.2, suppose that we pose the following query to DB1,®> which asks
for the name and title of all the employees who earn less than $50,000:

SELECT Namel, Titlel
FROM Employee (Q1)
WHERE Salaryl < 50,000.

Using constraints C'y and C'5 in Figure 5, which state that every regular employee is an employee
and Dept is a foreign key to Department, we could derive from ¢ the following sound but trivial
mediated query, which asks for the name and title of all regular employees who earn less than

$50,000:

SELECT Namel, Titlel
FROM Employee t, Regular s, Department u (Q2)
WHERE t.Namel = s.Namel AND s.Dept = u.Dname AND Salaryl < 50,000.

This mediated query is sound because every name-title pair in the answers of (J5 is also in the
answers of (J1. It is trivial however since the mediator’s knowledge is not needed to derive it.
Using relationship [y in Figure 9, which says that every staff member is a regular employee,
we could derive from ()5 the following sound and nontrivial mediated query, which asks for the
name and (converted) title of staff members who earn less than (converted) $50,000:

SELECT Name2, Titlel
FROM Staff t, R s (Q3)
WHERE t.Salary2/r < 50,000 AND t.Title2 = s.Title2

where R is the correspondence relation between job titles in Figure 8, and r is the exchange
rate between US dollars and German marks. Similarly, using relationship I5 in Figure 9, which
says that every consultant is an employee with job title consultant, we could derive another
sound and nontrivial mediated query of ()1, which asks for the name of consultants who earn
less than (converted) $50,000:

*For ease of reading, all the queries in this section are expressed in SQL. It is straightforward to translate
them into first-order predicate calculus.
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Staff(z,r x y, 2/, v/, w) A R(z, %)

— (Ju, v)(Employee(z, y, 2, u)A Regular(z, v)A Department(v,w)) (Iy)
Employee(z, y, z,u) A R(z, 2" )A

Regular(z,v)A Department(v, w)— (3u’)Staff(z,r x y, 2/, v, w) (I3)
Consultant(z,r X y) — (3z)Employee(z, y, consultant, 2) (I3)

Figure 9: Relationships in the Mediator’s Knowledge Base

3.2.3 Semantic and Representational Mismatches

There are both semantic and representational mismatches between the schemas of DB1 and
DB2. The domain mismatches in salaries and job titles are examples of semantic mismatches.
In addition, DB1 cares about phone numbers, while DB2 cares about offices.

There are also representational mismatches. The relationship between regular employees
and managers is represented indirectly in DB1 through departments, but the same relationship
between staff members and managers is represented directly in DB2. In addition, consultants
are represented by a value in the domain of attribute Titlel in DB1, but by a relation scheme
in DB2.

Moreover, the mediator’s knowledge about these mismatches is uncertain and sometimes
incomplete. For example, a software engineer in DB1 could be either a programmer or an MTS
in DB2, and there could be a job title contract administrator in DB1 whose correspondence
in DB2 is not known to the mediator.

3.3 Properties of Query Mediation

Consider the interoperation of n databases b; over schemas B; = (V;, A;) for 1 < ¢ < n. Also
suppose that the mediator’s knowledge base consists of theory B = (|Ji~; V;UV, A) and structure
b. Given a query ¢ on B; with free variables zq,...,2,,, a mediated query p of ¢ is a query
on the combined schema |Joy B; U B = (UL, V; U VUL, 4; U A) with the same list of free
variables. Notice that, although ¢ is expressed on one schema By, p could encompass multiple
schemas from By,..., B, and the mediator’s knowledge base B.

A mediated query p is sound if it logically implies the original query using the mediator’s
knowledge. Intuitively soundness means that every answer of the mediated query should be a
valid answer of the original query. This is expressed as follows:

PLAUAE Vo, .o 20)(p — q).

A mediated query p is trivial if it is sound even when the mediator’s knowledge base is empty:
A = (. Intuitively trivialness means that every answer of the mediated query is obtainable by
asking the original query. This is expressed as follows:

LA Ve, an)(p— q).
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Staff(Name2, Salary2, Title2, Office, Manager2) (R})
Consultant(Name2, Pay) (R)

Figure 6: Schema of DB2

Staff(z, y1, 21, wi, w1 )A Staff(z, y2, 22, w2, ua)

— Y1 =Y N2 =2 ANwy = we AUy = U (1)
Consultant(z, y; )A Consultant(z,y2) — y1 = y2 (C5)
Staff(x, y1, 21, w1, u1) — (yz2, 22, wa, ug)Staff(ur, y2, 22, we, uz) (C%)

Figure 7: Constraints of DB2

mediator’s knowledge base. In addition, suppose that there is not an exact one-to-one corre-
spondence between job titles in DB1 and job titles in DB2. The mediator keeps track of the

correspondence between job titles in the two databases as relation R in Figure 8.

Titlel Title2
software engineer programmer
program director department head

principal scientist | distinguished MTS
computer scientist MTS
software engineer MTS

Figure 8: Relation R in the Mediator’s Knowledge Base

The mediator’s knowledge also states that staff members are regular employees and vice
versa, and consultants are employees with the job title consultant. These are expressed by

the dependencies in Figure 9.
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3.2 An Example of Query Mediation

Suppose that a US-based company is merged with a Furope-based company, which brings
the need to interoperate the two relational databases DB1 and DB2 previously developed and
maintained independently by the two companies respectively.

3.2.1 Schemas

The schema of DB1 in Figure 4 consists of three relation schemes. Figure 5 shows five constraints
in DB1. The first three constraints state that employees, departments, and regular employees
have unique names. The last two constraints state that every regular employee is an employee,
and attribute Dept in relation scheme Regular is a foreign key to relation scheme Department.

Employee(Namel, Salaryl, Titlel, Phone#) (R)
Department(Dname, Manager]) (R
Regular(Namel, Dept) (R3)

Figure 4: Schema of DB1

Employee(z, y1, 21, w1)A Employee(z, y3, 22, w3)
=YL =Y Nz =2 Aw = wy (Ch)
Department(z, y1)A Department(z,y2) — y1 = y2  (C2)
Regular(z, y1)A Regular(z,y2) — 11 = 2 (C3)
Regular(z,y) — (3z, w, u)Employee(z, z, w, u) (Cy)
Regular(x,y) — (3z)Department(y, z) (Cs)

Figure 5: Constraints of DB1

The schema of DB2 in Figure 6 consists of two relation schemes. Figure 7 shows three
constraints in DB2. The first two constraints state that staffs and consultants have unique
names. The last constraint states that attribute Manager2 in relation scheme Staff is a foreign
key to the same relation scheme.

3.2.2 Mediator’s Knowledge

The mediator’s knowledge about the relationships between DB1 and DB2 consists of the fol-
lowing. Suppose that salary in DB1 is represented in US dollars, and salary and pay in DB2
are represented in German marks. The exchange rate is represented by a constant r in the
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of autonomous heterogeneous databases. As a result, translation becomes straightforward. We
will illustrate translation in general by an example in Section 5, after we present the justification
for choosing first-order predicate calculus as the mediation language. Formal treatment of the
translation is out of the scope of this paper.

3.1 Schemas and Databases

Intuitively a database represents a perception (called the perceived world [20] or the model
world [27]) of the real world. Data in a database represents the knowledge of truth values of
statements about the real world. A schema specifies the vocabulary in which data is expressed,
and the invariant properties of data. It also supplies a context within which queries could be
expressed meaningfully.

Formally, a dependency is a sentence in first-order predicate calculus of the form

(Var,..o,xm)(PrA APy — (Fy1, ..y yn)( Q1 A~ AQ)))

where m,n > 0, P; is an atomic formula for 1 < i < k, and (); is either an atomic formula
or an equality (when n = 0 and [ = 1) for 1 <@ <. A dependency is equality generating if
n=0,l =1, and @ is an equality. A dependency is tuple generating if J; is an atomic formula
for 1 < ¢ <1 [10].

A schema B is a theory (V, A) in first-order predicate calculus, where V' is a vocabulary of
predicate symbols called relation schemes, arguments of relation schemes are called attributes,
and A is a set of equality-generating or tuple-generating dependencies expressed in V called
integrity constraints.

A database b over B is a structure over V', consisting of a nonempty domain D and an
n-ary relation over D assigned to every n-ary predicate symbol in V. It is valid if b is a model
of B. Given two databases b; and by over schema B, by C by is true if, for every predicate
P €V, the relation assigned to P by by is contained in the relation assigned to P by by. Given
two databases by and by over schemas By = (Vi, A1) and By = (V3, Az) respectively where
ViNnVy = 0,0 Uby is the database over (V4 U Va2, A; U Ag) such that by U by assigns the same
value to P as b; does for every predicate P € V;, for i = {1,2}.

A conjunctive query ¢ on B is a conjunction of atomic formulas over V' with a (possibly
empty) list of free variables. A query q on B is a disjunction of conjunctive queries on B. Given
a database b over B with domain D and a query ¢ with free variables z4,...,x,,, the answers
of ¢ in b are the m-tuples (vy,...,v,) in D™ such that ¢ instantiated by vy, ..., v, is satisfied
inb:bl=qlvr/ag, ... om/2m].

We consider the interoperation of n valid, autonomous, and heterogeneous databases b; with
domains D; and over schemas B; = (V;, A;) respectively for 1 < i < n, where V; N V; = () for
1 <4 # j < n. We assume that b; is empty if the ¢-th database is virtual. The mediator’s
knowledge base consists of a theory B = (Ji=; V; U V, A) in first-order predicate calculus and
a structure b over V with domain D, where VNV, = 0 for 1 <7 < n, and A is a set of tuple-
generating dependencies. The mediator’s knowledge captures the relationships among schemas
Bi,...,B,, which specify how data in databases bq,...,b, should be related semantically.
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3. The mediator’s knowledge base is not the schema with which users interact.

4. The knowledge in the mediator’s knowledge base is not enforced as constraints cross
database boundaries; thus the participating databases do not form a model of it.

Point (2) above shows a big advantage of our architecture over the federation architecture
in terms of automation: users or database designers only need to identify, but do not have
to resolve, the semantic and representational mismatches in order to access data in multiple
databases, thus removing a big hurdle to automation.

Point (3) above shows another important advantage of our architecture over the federation
architecture in terms of autonomy: users of a local database access data in multiple databases
through the local language and schema instead of a federated schema or a multidatabase lan-
guage. This is especially appealing for legacy databases: both the data and the applications
accessing the data are interoperable.

Point (4) above shows a third advantage of our architecture over the federation architecture:
the following difficult issues associated with the federated database approach become nonissues
with the query mediation approach.

o (Global consistency. Consistency is always relative to a view of the world. Since partici-
pating databases are not required to form a single logical view, there is no need to enforce
global consistency at update time. In other words, updates are not interoperatable.?

o View update. Since query mediation does not require the establishment of a single logical
view over participating databases, updates are not performed through views. Instead,
updates are carried out directly in participating databases.

o Object identity. Object identifiers are used by an object-oriented database to identify
objects in a view of the world. They are essentially LISP Gensyms. Their correspondence
to real-world objects is not capturable anywhere within the database, and hence they do
not carry any semantics. Since the participating object-oriented databases do not form
a single logical view, sharing object identifiers between them is meaningless. In other
words, object identifiers are not interoperable.

In general, mediators are knowledge base systems. Since it is unrealistic to expect a single,
general-purpose mediator with optimal power [5], multiple mediators should coexist (just like
the coexistence of multiple federated schemas in the federated database approach), offering
information communication services at various levels [19, 33]. These mediators could differ
in their tradeoffs between communication cost and capability (bandwidth), and users would
subscribe to the services that are optimal for their applications.

3 Query Mediation

For easy presentation of query mediation and conflict detection, we choose first-order predicate
calculus both as the mediation language of the mediator, and as the representation language

20f course, one database could always monitor changes in other databases, or notify them of its own changes.
But participating databases are not required to synchronize with each other.



has, the more data it could help communicate. In other words, a participating database
does not have to be completely definable as a view on other participating databases.
If a certain part of the database is (directly or indirectly) related to other databases,
then accessing that part would lead to accessing data in multiple databases. Otherwise,
accessing that part would only result in accessing data in the local database.

We emphasize that our architecture accommodates the federation architecture [30] as a
special case. For example, the virtual database on the right in Figure 1 could be considered as
a federated schema. If a schema mapping is constructed from the mediator’s knowledge base
by removing semantic and representational discrepancies, and queries are mediated only in the
direction from the federated schema to databases A and B, then we get a federated database
in which all queries go through the federated schema in order to access data in both databases
A and B, as shown in Figure 3 (arrows represent data flow).

Df\a Cofﬂid?

Query Dgta Query Dgta
T
Federated Interface

uer
Prgcr A

Federated Query Processor

Schema Mappings

Figure 3: Federation Architecture

We also emphasize that the mediator’s knowledge base, together with all the participating
schemas, should not be equated to a global or federated schema, for the following reasons.

1. The mediator’s knowledge base is at most a very poor schema, because it contains semantic
and representational discrepancies and redundancies.

2. The semantic and representational discrepancies and redundancies in the mediator’s
knowledge base are not removed, since the removal would violate autonomy and would
have high complexity.



7. The Mediator derives answer D’y expressed in the mediation language from answer D'y
based on its knowledge about the relationships between databases A and B, and sends it
to Translator A.

8. Translator A translates answer D', to answer D4 expressed in the language/schema of
database A, and sends it to Wrapper A.

9. Wrapper A merges answers L4 and D4, detects conflicts in the merged answer, and
presents it to users as the answer to query @) 4.

This mediation process is shown in Figure 2.

DB A DB B
QA DA DB QB

N D'A=—D'B
QA

- ' B
M ediator

Figure 2: Query Mediation

2.3 Discussion

We could make several important observations of the mediation architecture in Figure 1 and
the mediation process of Figure 2.

¢ Legacy Databases. A legacy database (e.g., the dotted boxes in Figure 1) could be
made interoperable by wrapping it up with a translator, which makes the database talk
in the mediation language, and a conflict detector, which gives users the option of being
notified of potential problems in query mediation. The applications that access data in the
legacy database become capable of accessing data in multiple databases without having
to switch first to a new language or new schema.

¢ Virtual Databases. A participating database could be a virtual one containing only a
schema but no data, serving purely as an interface to autonomous heterogeneous databases
(e.g., the one on the right in Figure 1). For example, an application designer could define
his favorite schema, and specify some relationships of his schema with other participating
databases. From then on, users of the application could formulate queries in this schema,
and get meaningful access to related data in other databases through query mediation.

¢ Incomplete Knowledge Base. Although we assume that the mediator’s knowledge is
given, this knowledge does not have to be complete. The more knowledge the mediator
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Figure 1: Mediation Architecture

. Translator A translates query @4 to query )’; expressed in the mediation language, and
sends it to the Mediator.

. From query @'y, the Mediator computes a mediated query Q’g expressed in the mediation
language based on its knowledge about the relationships between databases A and B, and
sends it to Translator B.

. Translator B translates query Q5 to query @p expressed in the language/schema of
database B, and sends it to Wrapper B.

. Wrapper B sends query ¢Jp to Query Processor B to get answer Dp expressed in the
language/schema of database B, and sends it to Translator B.

. Translator B translates answer Dp to answer D' expressed in the mediation language,
and sends it to the Mediator.



this type of languages differs from the representation languages (i.e., data models) of
participating databases. A representation language captures the knowledge about data
for the appropriate abstraction and efficient representation of one class of applications,
while a mediation language captures the knowledge about data for the meaningful and
efficient communication between many classes of applications.

Knowledge Base. Meaningful communication between autonomous heterogeneous data-
bases is based on the relationships between participating databases. These relationships
capture the commonalities and mismatches in semantics or representations between these
databases. They are expressed in the mediation language and form a knowledge base.

Mediator. A mediation language alone is not sufficient to ensure meaningful communi-
cation, because autonomous heterogeneous databases might contain data that mismatch
in semantics or representations. We need a mediator [33] to mediate the communication
by resolving potential mismatches. Equipped with the knowledge base of relationships
between participating databases, the mediator accepts queries from one database, deter-
mines which other databases contain relevant data, generates queries to these databases,
and mediates resulting data back to the original database. The mediation is carried out
in the mediation language.

Translators. Since the representation languages of participating databases very likely
differ from the mediation language of the mediator, we need translators to translate
queries and data between these representation languages and the mediation language, in
order for queries and data to be communicable by the mediator.

Conflict Detectors. When related data from multiple participating databases are
merged to give answers to a query, conflicts are always possible because the merged data
might be inconsistent with respect to the constraints of the original database in which the
query is specified. We need conflict detectors to detect such potential problems. The con-
flict detectors support the communication of globally inconsistent but locally reasonable
data [19].

Wrappers. Participating databases are wrapped up by interface modules to redirect
incoming queries to the mediator, to respond to queries from the mediator, and to merge
answers from the mediator.

Figure 1 shows this mediation architecture of interoperation (arrows represent data flow),

with three autonomous heterogeneous databases interoperating through a mediator — a data

2.2 How Queries are Mediated

Suppose that users issue query @) 4 in database A in Figure 1, expressed in the language/schema
of database A. The mediation of query () 4 proceeds as follows.

1. Wrapper A intercepts query ) 4, and sends it both to Query Processor A to get answer

L 4 and to Translator A for mediation.



minimal representational bias. There, the relational model is proposed as such a language,
from which object-oriented views are compiled by binding relational data to object templates.
The relational model has been used as the mediation language for resolving domain mismatches
[8] and as the glue language for interconnecting software components [4]. In [14], first-order
logic is recommended as the language for knowledge sharing.

We present a query mediation approach to the interoperation of autonomous heterogeneous
databases containing data with semantic and representational mismatches [23]. We develop an
architecture of interoperation that facilitates query mediation, and formalize the semantics of
query mediation and conflict detection. Queries are mediated between multiple databases, and
users of a local database access data in multiple databases using the local language and schema,
making both the data and the applications accessing the data in legacy databases interoperable.
Queries are automatically mediated, relieving users from the difficult task of resolving semantic
and representational mismatches. Semantic heterogeneity is separated from representational
heterogeneity by minimizing the representational bias in the mediation language, reducing the
space of potential heterogeneity, and improving the efficiency of automated query mediation.

2 Mediation Architecture

The ultimate goal of the interoperation of autonomous heterogeneous databases is to share
the data stored in these databases. As observed in [19], data sharing does not necessarily
mandate the sharing of representations. In fact, since many databases are legacy databases,
and today’s modern databases will be tomorrow’s legacy databases, it is not practical to expect
representation sharing. As long as autonomous heterogeneous databases could communicate
with one another, they could benefit from each other’s data without having to be bound to a
common representation. In fact, the history of database systems has demonstrated precisely this
trend of data sharing with less and less representation sharing: centralized databases mandate
physical database sharing, distributed databases mandate logical but not physical database
sharing, and federated databases mandate schema but not database sharing.

With the advance in semantic data models and knowledge base systems, data processing
has evolved into intelligent information processing, where the availability of semantics and
knowledge about data greatly enhances the capability of information abstraction. A similar
evolution from data communication into intelligent information communication is essential for
the interoperation of autonomous heterogeneous databases. Data should not be communicated
as raw bits (i.e., syntactic communication). Instead, they should be mediated (i.e., semantic
communication) to ensure that data from the sender will be correctly understood for processing
by the receiver.

2.1 Components

Our architecture consists of the following components that together support the interoperation
of autonomous heterogeneous databases.

¢ Mediation Language. Communication between autonomous heterogeneous databases
must be carried out in a mediation language or interlingua. As pointed out in [19],



1.2 Existing Approaches

The distributed database approach ensures interoperation by forcing users to share a single
logical database [6]. Although data might be physically distributed in many databases, con-
ceptually there is only one database, one schema, and one query language — there are no
mismatches between the many physical databases either in semantics or in representations.
Database autonomy is completely sacrificed with this approach.

The dominating approach to the interoperation of heterogeneous databases has been the
federated database approach [1, 30]. With this approach, users of a local database have to
switch to a federated schema or a multidatabase language in order to access data in multiple
databases, which almost always involve different data models and query languages.! In other
words, the data in a local database are made interoperable, but the applications in the local
database that access the data remain not interoperable, since these applications are coded in
the data model and query language of the local database. This is especially impractical for
legacy databases because the bulk of the significant investment made by organizations in such
databases is in the applications that access the data.

In the federated database approach, either a federated database administrator or a user has
to first identify the semantic and representational mismatches, and then construct a federated
schema to resolve these mismatches, before data in multiple databases could be accessed. The
construction of the federated schema is essentially a schema integration process [3], which offers
little hope for automation [28].

In addition, most researchers advocate the use of a powerful interoperation language in
federated databases that could directly express all the representational constructs of heteroge-
neous databases [7, 2, 15, 17]. Although mapping heterogeneous databases into constructs of
the language becomes straightforward, all the semantic and representational mismatches still
have to be resolved in the language, which offers little hope for efficiency because of the rich
semantics and representations of the language. For example, higher-order logic has to be used
in [12] to reason about the equivalence of heterogeneous representations.

In [22], the existence of conflicts in merging data from multiple databases is recognized, and
a method is proposed to resolve conflicts when they are detected. However, the semantics of
conflicts is not formally defined, and conflict detection is not handled.

The idea of information processing and communication via intelligent mediation is intro-
duced in [33] as a framework of future information systems. Meta-attributes have been used
in [26] to specify the contexts associated with attribute values. Relationships between contexts
are encoded as conversion rules, and queries are mediated through these relationships to en-
sure that they are meaningful with respect to their contexts. This is a special case of query
mediation, where the mediation is restricted to context matching and value conversion. An
example of query mediation from object-oriented databases to relational databases is given in
[24], where the schemas and the relationships between schemas are encoded as rules in F-logic.

It is first observed in [32] that data should be shared in some mediation language with

!Theoretically it is possible, in the reference architecture of [30], to have external schemas whose data models
and query languages are different from a federated schema. However, it remains open whether and how this
could be done with the federated database approach. Moreover, having an external schema identical to a local
schema would introduce architectural redundancy.



e Scope. The set of employees includes retirees as defined by the benefits department,
whereas it includes consultants as defined by the payroll department.

¢ Granularity. Gross personal salary is used for job survey, whereas adjusted family
income is used for taxation.

e Temporal Basis. Branch offices are concerned with weekly sales, whereas the central
office is more interested in monthly revenue.

Direct comparison and combination of data with such semantic mismatches would be mean-
ingless. In addition to semantic mismatches, the same data could be represented in various
incompatible structures, and the same structure could be used to represent data with incom-
patible semantics [29]. The representational differences are caused by the need to bind data to
representations that are most natural and efficient with respect to specific applications. In gen-
eral, there simply does not exist a universal representation that is perfect for every application
[5, 14, 19]. Examples of representational mismatches are:

¢ Identification. Employees could be identified by employee ID numbers in the personnel
department, but by social security numbers in the payroll department. The nature of
operations in these two departments demands that different identifiers be used, since em-
ployee data is most likely accessed by social security numbers, not employee ID numbers,
in the payroll department.

¢ Type Conflict. Marriage is considered by the Internal Revenue Service as a one-to-one
relationship between men and women for current marriages, but by the Census Bureau
as a many-to-many relationship between men and women for marriage history. It would
complicate the operation of the IRS if current marriage had to be represented as a many-
to-many relationship.

¢ Biased View. The one-to-one marriage relationship between men and women could be
represented as a binary predicate, a binary boolean function, a wife attribute attached
to man objects, or a husband attribute attached to woman objects. It is impractical to
represent the relationship in all possible structures.

Because of the diverse needs of autonomous organizations, heterogeneity will persist rather
than disappear. To support the interoperation of autonomous heterogeneous databases con-
taining data with semantic and representational mismatches, three critical issues have to be

addressed:

¢ Autonomy. Database autonomy should be respected and preserved. Users should not
be required to switch to new query languages or new schemas in order to access data in
multiple databases.

¢ Automation. Interoperation should be automated. Users should not be required to
manually resolve all the semantic and representational mismatches in order to access data
in multiple databases.

¢ Efficiency. Automated interoperation should be computationally efficient. In particular,
it should not require expensive mechanisms such as theorem-proving in higher-order logics.
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Abstract

We present a query mediation approach to the interoperation of autonomous hetero-
geneous databases containing data with semantic and representational mismatches. We
develop an architecture of interoperation that facilitates query mediation, and formalize
the semantics of query mediation. The main contributions are the automated mediation of
queries between databases, and the separation of semantic heterogeneity from representa-
tional heterogeneity. Query mediation in heterogeneous legacy databases makes both the
data and the applications accessing the data interoperable. Automated query mediation
relieves users from the difficult task of resolving semantic and representational mismatches.
Decoupling semantic and representational heterogeneity improves the efficiency of auto-
mated query mediation.

1 Introduction

The interoperation of heterogeneous databases is a pressing need today as organizations at-
tempt to share data stored in legacy databases. These databases are independently developed
and maintained to each serve the needs of a single organization. The exchange of data between
such databases could be problematic not only because of differences in the representation (syn-
tax) of data but also due to often subtle differences in the intended interpretation (semantics)
of data. Thus, although translators could be constructed to reformat data from one represen-
tation to another, such a translation does not guarantee that the combined, translated data are
meaningful — we could be attempting to compare apples with oranges.

1.1 Problems and Issues

Heterogeneity in the semantics of data arises naturally. The semantic differences are caused
by the diverse needs of applications. Moreover, the relationships between heterogeneous data
could be incomplete or uncertain. Examples of semantic mismatches are:
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