
Multidimensional Problem Solving in Lucid�Technical Report SRI-CSL-93-03A.A. FaustiniDepartment of Computer ScienceArizona State UniversityTempe, Arizona 85287, U.S.A.phone: (602) 965-3983, email: faustini@lu.eas.asu.eduandR. JagannathanComputer Science LaboratorySRI InternationalMenlo Park, California 94025, U.S.A.phone: (415) 859-2717, email: jaggan@csl.sri.com

�Expanded version of paper titled \Indexical Lucid" by the authors in the Fourth International Symposium onLucid and Intensional Programming (ISLIP 91) held at SRI International in April, 1991.

1 BACKGROUND 1AbstractOne of the limitations of Original Lucid is its inability to deal easily with multidimen-sional data structures such as arrays and trees. Over the past ten years, Lucid hasevolved su�ciently to express and manipulate multidimensional data structures thatchange | thus making multidimensional problem solving naturally possible in the lat-est version of Lucid, called Indexical Lucid.In this report, we trace the evolution of Lucid from 1984 to its current form. Wediscuss the novel aspects of Indexical Lucid by contrasting it with Original Lucid. Wealso illustrate the expressiveness of Indexical Lucid by solving selected multidimensionalproblems.1 BackgroundLucid (Original Lucid) was invented in 1976 by Ashcroft and Wadge as a system for writing andproving properties about programs [2, 3]. The most unusual aspect of Lucid, in addition to beingnon-procedural, is its dynamic view of computation: one in which data is in motion that is generatedand consumed by stationary operations and functions. Because of this view, commonly known asdata
ow, Original Lucid can be considered to be one of the �rst data
ow programming languages[11].In an Original Lucid program, a variable or an expression denotes an in�nite sequence of valuesthat is thought of as a temporal sequence. The basic Original Lucid operators first, next, andfby (for \followed by") appeal to this temporal view of sequences. It is also possible to specifysubcomputations in the language by using nested time. In particular, variables can be de�ned tovary in a nested time dimension such that variables de�ned in outer time dimensions appear to beconstant or \frozen."One of the main drawbacks of Original Lucid is that it does not naturally support multidimen-sional data structures such as arrays or trees. Such structures are commonplace in many applicationdomains, especially scienti�c computing. This need to solve multidimensional problems in OriginalLucid resulted in two extensions: Ferd Lucid [4, 1] and Field Lucid [7, 5, 10].Ferd Lucid Ferd Lucid advocates an \extensional" way of using multidimensional data struc-tures, notably arrays. It does so by changing the underlying data algebra of Lucid to allow sequencesto vary in space as the elements of sequences that vary in time. These space-varying sequences arecalled ferds (an obsolete word in the Oxford English Dictionary meaning \warlike arrays"). Multidi-mensional data structures in Ferd Lucid are de�ned and manipulated using the operators initial,rest and cby (\continued by"). This complements the first, next and fby of Original Lucid.Moreover, the proposed operators are information preserving. In other words, a multidimensionaldata structure can be de�ned and manipulated without losing any of its information. Ordinarytemporal streams built with the operators first, next and fby are not information preserving

2 SYNOPSIS 2because fby does not nest; rather it combines its arguments by taking the �rst value of the leftargument of fby and combining it with all the stream of values associated with the second argumentof fby. This means that only the �rst value of the left argument of fby can be retrieved from anobject built using fby. The operator cby preserves information by augmenting the dimensionalityof its result. For example, if two simple one-dimensional objects are the arguments of cby as inarg1 cby arg2, the result is a two-dimensional object. The approach is analogous to the way inwhich a cons operator of functional programming nests its �rst argument at the head of the listthat is produced by cons.The main drawback of Ferd Lucid is that the extensional treatment of arrays (i.e., a 3D objectis a sequence of 2D objects and a 2D object is a sequence of 1D objects) makes the language todi�cult to use it in solving multidimensional problems where the dimensions are not only orthog-onal but transposable. In addition, in Ferd Lucid, one needs to be aware of the \rank" (or thedimensionality) of the multidimensional data structure one is dealing with since cby and initialoperators respectively increase and decrease the rank.Field Lucid Field Lucid advocates an \intensional" way of de�ning and using multidimensionaldata structures by allowing a sequence to vary simultaneously in multiple, orthogonal dimensions.A simple extension to the Original Lucid temporal operators deals with this type of multidimen-sionality but distinct operators are de�ned for each new dimension. They are simply de�nitionssimilar to first, next and fby but for particular dimensions rather than for time where both thedimension name and the associated operators are prede�ned. These operators are initial0, succ0and sby0 to de�ne objects varying in the �rst dimension, initial1, succ1 and sby1 the seconddimension and so on.The main drawback of Field Lucid is that it adopts an \absolute" view of the multidimension-ality; the names of the multiple (orthogonal) dimensions are preordained. Thus, it is not possibleto apply a function that expects its arguments to be de�ned over space dimension 0 to argumentsde�ned over space dimension 1.2 SynopsisThe objective of this report is to present a generalization of Original Lucid for multidimensionalproblem solving and demonstrate its expressiveness by solving selected multidimensional problemsin it. The new language, which for the purposes of this report we shall refer to as \IndexicalLucid," is presented after brie
y reviewing Original Lucid. The two novel aspects of the proposedlanguage are user-de�ned dimensions and dimensional abstraction both of which are extensivelyused in the three problems that we solve: prime number generation, mergesort, and block matrixmultiplication.3 Programming in Original LucidIn a procedural language, a variable is associated with a sequence of values. When there is an initialassignment of a value to a variable, it is usually the �rst time an assignment is made with respect to

3 PROGRAMMING IN ORIGINAL LUCID 3the control
ow of the program. As control moves through the procedural program, each assignmentthat is encountered modi�es the memory location associated with the variable. If we trace thevalues that were associated with the variable we can associate a sequence of values with eachvariable. This sequence denotes the \history" of the variable. In a conventional procedural languagethere is usually no trace or history of the value associated with a variable because assignmentis destructive. A variable in an Original Lucid program is not associated with a destructivelymodi�able memory location. Like its procedural counterpart, an Original Lucid variable takes ondi�erent values at di�erent times during the computation. The \history" or sequence of valuesassociated with an Original Lucid variable is achieved through equational de�nitions rather thandestructive assignment and control
ow. The equation x = 1 de�nes the variable x to be a constant,that is, x is equal to 1 at all times. On the other hand y = 1 fby 2 fby 3 is an equation thatsays that the initial value time = 0 of y is 1, the next (time = 1) value of y is 2 and at all timesbeyond this the value of y is always 3. There is no destructive assignment; the history of a variableis always available, and previous values of a variable can be used to de�ne the value of othervariables. The following is the syntax used in [3] to express the idea of an Original Lucid variabletaking on di�erent values at di�erent times. The pair of equations given below de�ne the variableeven:first even = 2next even = even+2The �rst equation de�nes the �rst or initial value of the even stream (2) and the second equationthe successive values of even in terms of the current value of even plus two1.We can think of the above equations as equivalent to the following recurrence relation :-t = 0 event = 2t > 0 event+1 = even+ 2tThe t in the recurrence relation is the implicit dimension or time context of Original Lucid. Thereis no explicit mention of t or time other than the �rst equation that states that the initial value ofeven is 2 and yet the above Original Lucid equations de�ne the stream of values < 2; 4; 6; 8; : : : >without the explicit use of indices. (In this sense we can think of Original Lucid as an intensionallanguage, that is a language based on intensional logic [7]). In Original Lucid the implicit dimensionis used simply as the time or iteration dimension. Consequently, a multidimensional problem wouldhave to be solved using time and some form of monolithic data structure such as a list or string[6]. multidimensional problems can be expressed directly in Indexical Lucid in a manner akin tomathematical function de�nitions and without use of monolithic data structures. The latter hasimportant implications for parallel and distributed implementations. multidimensional problemsare found in many applications areas and specially in scienti�c computing and computer graphics.The rest of this report deals with the \operational" details of Indexical Lucid and how to usedimensional constructs to solve problems.1This syntax comes from the Original Lucid papers and is often a better way of expressing the idea of a variablechanging with time than the more modern semantically equivalent equation:-even = 2 fby even+2

4 ADDING MULTIDIMENSIONALITY 44 Adding MultidimensionalityThe simplest way of extending the number of dimensions available to the Lucid programmer is toallow objects in Lucid to vary over an in�nite number of space dimensions. This was �rst suggestedin [11] in which the dimensions where thought of as space dimensions whose names correspondedto the natural numbers. All the Original Lucid operators can then be extended to work over theseprede�ned space dimensions. For example, the fby operator can be extended by naming a newoperator for each of the prede�ned space dimensions sby0, sby1, sby2, etc. This is the absoluteapproach to multidimensionality.Indexical Lucid permits the programmer to extend the dimensions explicitly giving appropriatenames to the new dimensions as and when they are needed. A dimensional where clause is one thatcontains declarations of new dimension names (or equivalently dimension names) through the useof an dimension declaration. The scope of the dimensions introduced by the dimension declarationis the same as the scope of the variables de�ned in an Original Lucid where clause. Dimensionalwhere clauses may be nested to arbitrary depths in the same way as where clauses in Original Lucidare nested. The scope rules for dimension names are the same as the scope rules for variables inwhere clauses [9]. Within the same scope it is not permitted to de�ne a variable with the samename as a dimension name.The following is an example of an dimensional where clause with two new dimension namesheight and width.a+b wheredimension height,width;a = ...b = ...endIn the above program the variables a and b may be de�ned to vary over the two new dimensionnames height and width. To determine how a or b vary with any of the dimensions just mentionedwe need to examine the actual de�nitions of a or b. For example, if a = 10; then a is a constant, ifa = 1 fby a+1; then a varies with dimension time. To make a or b vary with height or width weneed to introduce operators speci�c to the new dimension names. All of the usual Original Lucidoperators can be extended to operate on any dimension name in a simple and natural manner. Forexample, the in�x binary operator fby is extended to work on say the height dimension throughuse of the operator fby.height. In a similar manner all of the usual Original Lucid operators canbe extended to work on any dimension name that has been previously introduced by a dimensiondeclaration and is still in scope. The following is a more complete enumeration of the extendedoperators.first first.time first.hnext next.time next.hprev prev.time prev.hfby fby.time fby.hbefore before.time before.hupon upon.time upon.h

4 ADDING MULTIDIMENSIONALITY 5asa asa.time asa.hwvr wvr.time wvr.h@ @.time @.hNote that it is not necessary to write first as first.time. Any implementation of IndexicalLucid will recognize first as an abbreviation for first.time. Each of the extended Lucid oper-ators works on its particular dimension in the same way that the ordinary Lucid operators workson the time dimension. This makes the new operators easy for the Lucid programmer to use.Dimensional locators are an important part of Indexical Lucid. Each dimension name introducedby a dimension declaration also introduces a new dimensional locator having the same name as thedimension name. The dimensional locator height can be used in the expression part of a programand the value it takes depends on when it is used. In general, the value of height at position i inthe height \dimension" is i. In other words, dimensional locators tell the programmer where theyare in the dimensional space that has been built up with dimensional where clauses. Note thatall dimensions in Indexical Lucid vary over the integer set (ergo, the name Indexical Lucid). It ispossible to use other dimension sets but we will not discuss that here.Here is a fragment of simple Indexical Lucid code:-.... wheredimension i,j;alt_i = 0 fby.i alt_i + 1;alt_j = 0 fby.j alt_j + 1;alt_i_j = (0 fby.i alt_i_j + 1) fby.j alt_i_j + 1;endIn this example, the variable alt i is another way of de�ning the dimensional locator i. In otherwords, alt i at position k in the i \dimension" takes on the value k. In a similar manner, alt j isequivalent to the dimensional locator j. In addition, alt i j illustrates the way in which variablescan be de�ned over more than one dimension name. In the above example alt i j is equivalentto the dimensional locator i in the i \dimension" and equivalent to dimensional locator j in thej \dimension". In original ISWIM [9] simple variables like alt i and alt j can only be given asingle value because of the functional nature of ISWIM. In Original Lucid, such variables can bede�ned to take on di�erent values at di�erent point in Lucid time. In other words, Original Lucidvariables are temporal but Indexical Lucid variables take on values over a multidimensional spaceof dimension names as well as the usual temporal dimension time.In Original Lucid, the \is current" declaration within a where-clause is used to de�ne a nestedcomputation (or subcomputation) [6]. The where clause is said to de�ne a \frozen environment"since variables in it can only vary in the new dimension. The following program is an example of anested computation in Original Lucid to compute the running root mean square of its input. Notethe use of the is current in the de�nition of sqroot. In Original Lucid, where clauses with iscurrent declarations implicitly introduces a new dimension into the program. That is, for eachpoint in time outside an \is currented" where-clause, there corresponds a possibly di�erent set oftime sequences for each of the variables in the clause.sqroot(avg(square(a)))

4 ADDING MULTIDIMENSIONALITY 6wheresquare(x) = x*x;avg(y) = meanwheren = 2 fby n+1;mean = y fby mean + d;d = (next y - mean) / n;end;sqroot(z) = approx asa err < 0.0001whereZ is current z;approx = Z/2 fby (approx + Z/approx)/2;err = abs(square(approx)-Z);end;endThe dimensional version of the same programmakes this implicit dimension visible (as in dimen-sion i). In a similar manner \is currented" where clauses nested within other \is currented" clausesintroduce a new implicit dimension for each level of nesting. This can again be implemented usingdimensional where clauses nested in the same manner but explicitly introducing a new dimensionof each level of nesting of the \is currented" where clauses.An equivalent program written using a dimensional where clause:-sqroot(avg(square(a)))wheresquare(x) = x*x;avg(y) = meanwheren = 2 fby n+1;mean = y fby mean + d;d = (next y - mean) / n;end;sqroot(z) = approx asa.i err < 0.0001wheredimension i;approx = z/2 fby.i (approx + z/approx)/2;err = abs(square(approx)-z);end;endThe introduction of extra dimensions whether implicit, as in Original Lucid or Field Lucid,or explicit, as in Indexical Lucid, means that the language can directly de�ne objects in terms ofobjects of higher dimensionality. In other words the subject part of an \is currented" or dimensionalwhere clause is de�ned in terms of functions and variables inside the body of the where clause and

5 DIMENSIONAL ABSTRACTION 7these functions and variables will probably be de�ned in terms of the extra dimensions introducedby the dimension declaration (otherwise there would be no point in having the subcomputation).The question then arises as to which of the values associated with the extra dimensionality is usedto give meaning to the outside objects ? In Field Lucid, a diagonalization method is used. Thatis, for each point in time (say k) in the outer world, we associate the ith point in time of the innerworld. That is, if a variable v is de�ned in terms of an \is currented" where clause, the value thevariable will take on for each point in time, say k, in the outer environment is the value of thesubject part of the \is currented" where clause at inner time k. This works well in Original Lucidbecause inner subcomputations are always one dimension higher than their immediately enclosinglexical environment.In Indexical Lucid diagonalization is not appropriate. The reason for this is that if a variable v isde�ned directly in terms of an dimensional where clause, v itself might already be in an environmentin which it varies with respect to many dimensions (not just time as in Original Lucid). Whichof these dimensions will be used to diagonalize the inner subcomputation? Fortunately, we canuse a solution that is far simpler than diagonalization. If a variable v (which may vary in manydimensions) is de�ned directly in terms of an dimensional where clause (which can vary in evenmore dimensions) we can make the inner dimensionality compatible with the outer dimensionalityby setting all the new dimensions created by the dimension declaration of the where clause to 0.This means that whichever result that is being computed by the dimensional where clause is carriedto the outside by being placed at the origin of the dimensional where clause. We call this methodof collapsing the \origin" method. Note that in practice most Original Lucid programs use theorigin method since the subject part of an \is currented" where clause is usually de�ned in termsof an asa operator. In Indexical Lucid values can be pinned to the origin by the use of asa or @operators.5 Dimensional AbstractionIn Original Lucid, function de�nitions are used to encapsulate or abstract temporal or streamfunctions as well as simple �rst order data functions as in the following examples.g(x) = first x + next x;f(x,y) = x*y+4;The function de�nitions of Original Lucid need to be generalized if we want to use them tode�ne multidimensional functions. In Original Lucid the time dimension is absolute and so ordinaryfunction de�nition notation is adequate. This means that function like g(x) above can be de�ned inOriginal Lucid without di�culty. This does not extend to multidimensional user-de�ned dimensionnames. In other words, we have no means of abstracting dimension names in function de�nitions.For example the function, VectorSum sums the �rst 100 elements along the x dimension:-......where dimension x,y;.....

5 DIMENSIONAL ABSTRACTION 8VectorSum(V1) = sum asa.x x>100wheresum = 0 fby.x V1+sum;end;A = 0.2 fby.x A + 1;B = 3.3 fby.y B + 2;sum1 = VectorSum(A);sum2 = VectorSum(B);....endThe problem with the above de�nition of VectorSum is that it will only compute the sum ofthe �rst 100 elements along the x dimension. Thus the value of sum1 will be as expected and thevalue of sum2 will be the 100 � B because B does not vary with respect to the x dimension. In orderto abstract dimensional names so that we can write one vector sum function for any dimension,we need to augment the way in which Original Lucid (and ISWIM) de�nes and uses functions.We choose to augment Original Lucid function de�nition by permitting the declaration of formaldimensional names on the left hand side of equations. To be more precise a function name may befollowed by a sequence of formal dimension names each pre�xed with a period (.). Here are twoexamples:-f.k(x) = ...g.a,b(x,y) =;The following is a rewritten version of the vector sum example with both dimensional parametersand value parameters :-....where dimension x,y;.....VectorSum.k(V1) = sum asa.k k>100wheresum = 0 fby.k V1+sum;end;A = 0.2 fby.x A + 1;B = 3.3 fby.y B + 2;sum1 = VectorSum.x(A);sum2 = VectorSum.y(B);....endThe k dimension is a formal dimension name, the actual dimension name is determined whenthe function VectorSum is used, as in VectorSum.x(A) or VectorSum.y(B). In the �rst of these,the actual dimension name is x; this name is used in the actual computation of the vector sum

6 SELECTED MULTIDIMENSIONAL APPLICATIONS 9by the function VectorSum. We note that simple variable de�nitions can also have dimensionalparameters. They can be thought of as nullary function de�nitions, that is, function de�nitionswith dimensional parameters but without value parameters. Here are some examples:-a.x =;b.x,y =;This may seem less useful than the non-nullary form but there are instances in which it is useful.For example if m is a multidimensional variable with formal dimension parameters x and y as inthe following example :-dimension h,i,j;m.x,y = if(x==y) then 1 else 0 fi;use1 = m.h,i;use2 = m.i,j;......The variable use1 is a unit matrix with respect to the h and i dimension names and use2 a unitmatrix with respect to the i and j dimension names.We can now show how the built-in Indexical Lucid functions can be de�ned. It is interestingto note that all dimensional functions can be de�ned using the primitive operator @.<dimensionname>, dimensional locators and the Lucid if-then-else-fi operator. To illustrate this we givede�nitions to all of the Lucid built-in operators in terms of these operators. The reader should alsonote that none of the de�nitions are in terms of recursive non-nullary functions.first.i(x) = x @.i 0next.i(x) = x @.i (i+1)prev.i(x) = x @.i (i-1)fby.i(x,y) = if i<=0 then x @.i i else prev.i y fibefore.i(x,y) = if i>=0 then y @.i i else next.i x fiasa.i(x,y) = x @.i (c1 @.i 0)wherec1 = if y then i else next.i c1 fi;end;upon.i(x,y) = x @.i t1wheret1 = 0 fby.i if y then t1+1 else t1 fi;end;swap.i.j(x) = x @.i j @.j irightChild.i(x) = x @.i (2*i+1);leftChild.i(x) = x @.i (2*i);6 Selected Multidimensional ApplicationsWith the above description of Indexical Lucid, we will now illustrate its expressiveness in solvingmultidimensional problems. The three \standard" problems we consider are prime number gener-

6 SELECTED MULTIDIMENSIONAL APPLICATIONS 10ation using the sieve of Eratosthenes algorithm, sorting using the mergesort algorithm, and matrixmultiplication using a recursive block decomposition algorithm.6.1 Prime Number GenerationThe sieve of Eratosthenes is an ancient method for computing prime numbers. The algorithmbegins with a �nite sequence of all natural numbers from 2 in increasing order. Successive passesare made over this sequence �ltering out multiples of numbers that are found to be primes. Theprocess begins by removing multiples of 2 from the sequence. The next number after 2, in this case3, is the next prime and it then is used to �lter out all multiples of 3. This process continues untilonly prime numbers are left in the �nite sequence. The following sequence of sequences illustratesthis process:-2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.2,3,5,7,9,11,13,15,17.2,3,5,7,11,13,17.In Lucid we can write this application using two dimensions or we can use one dimension andfunction recursion. Either way we begin with a sequence of all numbers greater than or equal to2. We will call this natsFrom2. This sequence or one dimensional variable is in�nite and so ourprogram will be a little more general than the process described above. Once we have natsFrom2we need to sieve the sequence to remove multiples of numbers that we know to be primes. Inthe �rst program below we will do the sieving using a recursive function Sieve. Each call of therecursive function will work on a new sequence of numbers to �lter. This corresponds to eachsequence in the above sequence of sequences except that out sequence of sequences is in�nite. Thesecond example program does not use recursive functions. It uses a new dimension in which toexpress the sequence of sequences. In either program the same �ltering mechanism is used. Thewvr operator, appropriately indexed, is used to do the actual work of �ltering. In our case we wantthe control stream of the wvr to be true when ever the current data element is not a multiple ofthe �rst element of the stream we are �ltering. This is why the �rst program uses the expression nwvr (n mod ((first n) ne 0)) where n is the stream being �ltered. and the second programuses the expression sieve wvr.i (sieve mod ((first.i sieve) ne 0)). (Note the useof dimensional locator i in the de�nition of natsFrom2 in Program 2.)// Program 1Primes(natsFrom2) wherePrimes(n) = n fby Primes(n wvr (n mod ((first n) ne 0)));natsFrom2 = 2 fby natsFrom2+1;end// Program 2primes where

6 SELECTED MULTIDIMENSIONAL APPLICATIONS 11dimension i;primes = first.i sieve;natsFrom2 = i+2;sieve = natsFrom2 fby.time(sieve wvr.i (sieve mod ((first.i sieve) ne 0)));end6.2 MergesortThe merge sort problem is to sort a list of data items by repeatedly merging sorted lists starting witheach data item as a sorted singleton list. The solution to the mergesort problem in Indexical Luciduses three dimensions. Dimension t is used as the iteration dimension. Two other dimensions arerequired. In the program, they are v and h. The h dimension is used as the dimension in which theunsorted data is initial put. The v dimension is used to accumulate sorted sub-sequences. At time0 the mergeSort is simple the original input spread out along the h dimension. At successive pointsin time the function merge combines the ordered sub-sequences that are being accumulated in the vdimension by previous applications of the merge function. As the algorithm iterates through time,the sorted data are accumulated in the v dimension.rOt8.v,time(output)wheredimension v,h,t;output = mergeSort asa.t inputSize == sizeOfMerge;merge(x,y) = if iseod xx then yyelse if iseod yy then xxelse if xx <= yy then xx else yy fi fi fiwhere xx = x upon.v iseod yy || xx <= yy;yy = x upon.v iseod xx || xx > yy;end;mergeSort = Inputdata(h) fby.tmerge(leftChild.h(mergeSort), rightChild.h(mergeSort));sizeOfMerge = 1 fby.t 2*sizeOfMerge;rOt8.a,b(x) = x @.a b;endThe program computes values of output over time by rotating (using rOt8) the values of outputwhich are computed over dimension v. In particular, the value of the program computed at time tis the value of output and hence mergeSort asa inputSize == sizeOfMerge at t-context 0 andv-dimension-context t. The expression mergeSort asa inputSize == sizeOfMerge is evaluatedas follows: the expression inputSize == sizeOfMerge is evaluated from t-context 0 until equalityholds at which time mergeSort is evaluated.The variable mergeSort is de�ned over context t. It is initially the values of Inputdata(h)de�ned over dimension h. (Note that in dimension v, values of Inputdata(h) at all but the initial

6 SELECTED MULTIDIMENSIONAL APPLICATIONS 12v-context is assumed to be eod (or end of data).) At some later t-dimension context (say T), thevalue of mergeSort for a particular h-dimension-context (say i) is obtained by applying functionmerge to the appropriate values of mergeSort at the previous time (T � 1). (The appropriatevalues would be at h-dimension contexts 2i and 2i+1 as computed by leftChild and rightChild.)Function merge essentially takes two sorted sub-sequences in the v dimension and produces a singlesorted sequence in the v dimension for a particular point in the h dimension.Assuming the value of inputSize is n, mergesort initially consists of n singleton sequencesacross dimension h, and half-as-many sequences of twice the size at each subsequent t-dimensioncontext, and eventually a single sequence of length n in dimension v when inputSize is the sameas the value of sizeOfMerge (log2(n)).6.3 Block Matrix MultiplicationThe recursive block decomposition algorithm for matrix multiplication can be expressed as follows:-Let A and B be two n by n matrices where n is a power of two (without loss of generality). Wecan divide each of A and B into four n=2 by n=2 matrices and express the product of A and B interms of these n=2 by n=2 matrices. Product matrix C (also n by n) can be obtained according tothe following formula. " C11 C12C21 C22 # = " A11 A12A21 A22 # " B11 B12B21 B22 #where C11 = A11B11 + A12B21;C12 = A11B12 + A12B22;C21 = A21B11 + A22B21;C22 = A21B12 + A22B22:The Indexical Lucid program that embodies this algorithm is given below. The unusual aspectof this program is that its intensional realization of the extensional divide-and-conquer basis of thealgorithm, this being possible because of multidimensionality.The matrices to be multiplied, A and B are of order given by n and the elements of the matricesare stored in dimensions aux i and aux j corresponding to row and column respectively. Thedesired result is a particular element of the product matrix at row and column position given byr and c. Function matmult performs the multiplication and it uses two dimensionally abstractfunctions in doing so: rOt8.a.b for rotating dimensions (i.e., dimension a becomes dimension b)and append.dim that \appends" its second argument to its �rst argument of size given by the thirdargument, with the �rst two arguments assumed to vary in dimension dim.(matmult(A, B, n) @.aux_i r) @.aux_j c wheredimension aux_i, aux_j;matmult(aux_a, aux_b, n) = c asa.t s == (n*n*n) wheredimension t, i, j, k;s = 1 fby.t 8*s;d = 1 fby.t 2*d;

6 SELECTED MULTIDIMENSIONAL APPLICATIONS 13a = rOt8.aux_i.i(rOt8.aux_j.j(aux_a));b = rOt8.aux_i.i(rOt8.aux_j.j(aux_b));c = (a @.j k) * (b @.i k)fby.t((reduce @.k (2*k)) @.j (2*j)) @.i (2*i) wherereduce = block(c + next.k c,next.j c + next.k next.j c,next.i c + next.k next.i c,next.j next.i c + next.k next.j next.i c,d);block(tl, tr, bl, br, d) = p wherep = append.aux_i(append.aux_j(tl, tr, d),append.aux_j(bl, br, d),d);append.dim(a, b, d) = if(dim < d) then aelse b @.dim (dim-d) fi;end;end;rOt8.a.b(x) = x @.a b;end;endFunction matmult introduces four dimensions:- i, j, and k as the row, column and inner productdimensions over which matrix blocks are de�ned, each of whose elements are de�ned over theorthogonal and outer dimensions aux i and aux j; and t as the iteration dimension over whichproduct matrix is iteratively built starting with singleton matrices.Expression c asa.t s == (n*n*n) captures at which iteration the product matrix is built, i.e.,in log2(n3) iterations. Variable c can be thought of as a 3-dimensional array in dimensions i, j,and k, each dimension of size given by n although it is not such a monolithic object. Initially, (whent is 0) the each element of c identi�ed by (i; j; k) is the product of element (i; k) of a and element(k; j) of b. Variables a and b are equivalent to A and B except that they vary in dimensions i andj instead of dimensions aux i and aux j, this being achieved using the rOt8 operator. At eachsuccessive iteration (iteration index given by t), variable c can be thought of as a 3-dimensionalarray with 1=8th the number of elements in the dimensions i, j, and k except that each elementcan be thought of as a 2-dimensional array in dimensions aux i and aux j of four times as manyelements as in the previous iteration as per the formula given above. This building of matrix blocksin dimensions aux i and aux j is achieved by using function block which is de�ned in terms ofappend. When log2(n3) iterations have been completed, the size of the 3-dimensional array that ccan be thought of as denoting is precisely 1 and the size of the 2-dimensional array, which representsthe matrix product, it denotes in the aux i and aux j dimensions is the same as that of matricesA and B.

7 CONCLUSIONS 14It is worth reiterating that while we have referred to variables as denoting monolithic objectsof various dimensionality, this is simply meant to be a mental device. In actuality, all objects arede�ned and manipulated elementwise.7 ConclusionsIndexical Lucid, Lucid circa 1993, enables the programmer to implicitly and intensionally de�neand manipulate multidimensional data structures that change. The features of the language thatmake this possible and natural are user-de�ned dimensions and dimensional abstraction.Being able to de�ne dimensionality in Indexical Lucid enables the programmer to naturallyexpress solutions to diverse multidimensional problems. We have illustrated this by expressingthree dissimilar applications in Indexical Lucid: prime number generation, mergesort, and matrixmultiplication. Being able to de�ne dimensionally-abstract functions in Indexical Lucid enablesthe programmer not only to write succinct programs but also to reuse these functions in diverseapplications.One of the important practical consequences of Indexical Lucid is that it expresses parallelismsuccinctly | an aspect of the language we have not discussed in this report. In fact, IndexicalLucid is the parallel composition language of GLU, a coarse-grained system for programming con-ventional parallel computers [8]. Through GLU, it has been extensively used in implicitly expressingparallelism in applications ranging from scienti�c computations to graphics to real-time processing.References[1] E.A. Ashcroft. Ferds { massive parallelism in Lucid. In Proc. 1985 Phoenix Computer andCommunications Conference, pages 16{21. IEEE, March 1985.[2] E.A. Ashcroft and W.W. Wadge. Lucid - a formal system for writing and proving programs.SIAM Journal on Computing, 5(3):336{354, September 1976.[3] E.A. Ashcroft and W.W. Wadge. Lucid, a nonprocedural language with iteration. CACM,20(7):519{526, 1977.[4] E.A. Ashcroft and W.W. Wadge. The syntax and semantics of Lucid. Technical ReportCSL-146, SRI International, Menlo Park, CA 94025, 1984. Computer Science Laboratory.[5] W-C. Du. Indexical Programming. PhD thesis, University of Victoria, Victoria, B.C., Canada,1991. Department of Computer Science.[6] A.A. Faustini, S.G. Matthews, and A.A.G. Yaghi. The pLucid Programmer's Manual. Tech-nical Report TR84-004, Arizona State University, Computer Science Department, Tempe,Arizona 85287, U.S.A., 1984.[7] A.A. Faustini and W.W. Wadge. Intensional programming. In J.C. Boudreaux, B.W. Hamill,and R. Jernigan, editors, The Role of Languages in Problem Solving 2. Elsevier Science Pub-lishers B.V. (North-Holland), 1987.

REFERENCES 15[8] R. Jagannathan and A.A. Faustini. The GLU Programming Language. Technical Report SRI-CSL-90-11, SRI International, Computer Science Laboratory, Menlo Park, California 94025,USA, 1990.[9] P.J. Landin. The next 700 programming languages. Communications of the ACM, 9:157{166,1966.[10] B.K. Szymanski, editor. An Intensional Parallel Processing Language for Applications Pro-gramming, chapter 2. ACM Press, 1991.[11] W.W. Wadge and E.A. Ashcroft. Lucid, the Data
ow Programming Language. Academic PressU.K., 1985.

