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Abstract

One of the limitations of Original Lucid is its inability to deal easily with multidimen-
sional data structures such as arrays and trees. Over the past ten years, Lucid has
evolved sufficiently to express and manipulate multidimensional data structures that
change — thus making multidimensional problem solving naturally possible in the lat-
est version of Lucid, called Indexical Lucid.

In this report, we trace the evolution of Lucid from 1984 to its current form. We
discuss the novel aspects of Indexical Lucid by contrasting it with Original Lucid. We
also illustrate the expressiveness of Indexical Lucid by solving selected multidimensional
problems.

1 Background

Lucid (Original Lucid) was invented in 1976 by Ashcroft and Wadge as a system for writing and
proving properties about programs [2, 3]. The most unusual aspect of Lucid, in addition to being
non-procedural, is its dynamic view of computation: one in which datais in motion that is generated
and consumed by stationary operations and functions. Because of this view, commonly known as
dataflow, Original Lucid can be considered to be one of the first dataflow programming languages
[11].

In an Original Lucid program, a variable or an expression denotes an infinite sequence of values
that is thought of as a temporal sequence. The basic Original Lucid operators first, next, and
fby (for “followed by”) appeal to this temporal view of sequences. It is also possible to specify
subcomputations in the language by using nested time. In particular, variables can be defined to
vary in a nested time dimension such that variables defined in outer time dimensions appear to be
constant or “frozen.”

One of the main drawbacks of Original Lucid is that it does not naturally support multidimen-
sional data structures such as arrays or trees. Such structures are commonplace in many application
domains, especially scientific computing. This need to solve multidimensional problems in Original
Lucid resulted in two extensions: Ferd Lucid [4, 1] and Field Lucid [7, 5, 10].

Ferd Lucid Ferd Lucid advocates an “extensional” way of using multidimensional data struc-
tures, notably arrays. It does so by changing the underlying data algebra of Lucid to allow sequences
to vary in space as the elements of sequences that vary in time. These space-varying sequences are
called ferds (an obsolete word in the Oxford English Dictionary meaning “warlike arrays”). Multidi-
mensional data structures in Ferd Lucid are defined and manipulated using the operators initial,
rest and cby (“continued by”). This complements the first, next and fby of Original Lucid.
Moreover, the proposed operators are information preserving. In other words, a multidimensional
data structure can be defined and manipulated without losing any of its information. Ordinary
temporal streams built with the operators first, next and fby are not information preserving
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because fby does not nest; rather it combines its arguments by taking the first value of the left
argument of £by and combining it with all the stream of values associated with the second argument
of £by. This means that only the first value of the left argument of fby can be retrieved from an
object built using fby. The operator cby preserves information by augmenting the dimensionality
of its result. For example, if two simple one-dimensional objects are the arguments of cby as in
argl cby arg2, the result is a two-dimensional object. The approach is analogous to the way in
which a cons operator of functional programming nests its first argument at the head of the list
that is produced by cons.

The main drawback of Ferd Lucid is that the extensional treatment of arrays (i.e., a 3D object
is a sequence of 2D objects and a 2D object is a sequence of 1D objects) makes the language to
difficult to use it in solving multidimensional problems where the dimensions are not only orthog-
onal but transposable. In addition, in Ferd Lucid, one needs to be aware of the “rank” (or the
dimensionality) of the multidimensional data structure one is dealing with since cby and initial
operators respectively increase and decrease the rank.

Field Lucid Field Lucid advocates an “intensional” way of defining and using multidimensional
data structures by allowing a sequence to vary simultaneously in multiple, orthogonal dimensions.
A simple extension to the Original Lucid temporal operators deals with this type of multidimen-
sionality but distinct operators are defined for each new dimension. They are simply definitions
similar to first, next and fby but for particular dimensions rather than for time where both the
dimension name and the associated operators are predefined. These operators are initial0O, succO
and sby0 to define objects varying in the first dimension, initiall, succl and sbyl the second
dimension and so on.

The main drawback of Field Lucid is that it adopts an “absolute” view of the multidimension-
ality; the names of the multiple (orthogonal) dimensions are preordained. Thus, it is not possible
to apply a function that expects its arguments to be defined over space dimension 0 to arguments
defined over space dimension 1.

2 Synopsis

The objective of this report is to present a generalization of Original Lucid for multidimensional
problem solving and demonstrate its expressiveness by solving selected multidimensional problems
in it. The new language, which for the purposes of this report we shall refer to as “Indexical
Lucid,” is presented after briefly reviewing Original Lucid. The two novel aspects of the proposed
language are user-defined dimensions and dimensional abstraction both of which are extensively
used in the three problems that we solve: prime number generation, mergesort, and block matrix
multiplication.

3 Programming in Original Lucid

In a procedural language, a variable is associated with a sequence of values. When there is an initial
assignment of a value to a variable, it is usually the first time an assignment is made with respect to
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the control flow of the program. As control moves through the procedural program, each assignment
that is encountered modifies the memory location associated with the variable. If we trace the
values that were associated with the variable we can associate a sequence of values with each
variable. This sequence denotes the “history” of the variable. In a conventional procedural language
there is usually no trace or history of the value associated with a variable because assignment
is destructive. A variable in an Original Lucid program is not associated with a destructively
modifiable memory location. Like its procedural counterpart, an Original Lucid variable takes on
different values at different times during the computation. The “history” or sequence of values
agsociated with an Original Lucid variable is achieved through equational definitions rather than
destructive assignment and control flow. The equation x = 1 defines the variable x to be a constant,
that is, x is equal to 1 at all times. On the other hand y = 1 fby 2 fby 3 is an equation that
says that the initial value time = 0 of y is 1, the next (time = 1) value of y is 2 and at all times
beyond this the value of y is always 3. There is no destructive assignment; the history of a variable
is always available, and previous values of a variable can be used to define the value of other
variables. The following is the syntax used in [3] to express the idea of an Original Lucid variable
taking on different values at different times. The pair of equations given below define the variable

even:

first even = 2
next even = even+2

The first equation defines the first or initial value of the even stream (2) and the second equation
the successive values of even in terms of the current value of even plus two'.
We can think of the above equations as equivalent to the following recurrence relation :-

t=0 even; =2
t >0 evens; = even+ 2

The t in the recurrence relation is the implicit dimension or time context of Original Lucid. There
is no explicit mention of t or time other than the first equation that states that the initial value of
even is 2 and yet the above Original Lucid equations define the stream of values < 2,4,6,8,...>
without the explicit use of indices. (In this sense we can think of Original Lucid as an intensional
language, that is a language based on intensional logic [7]). In Original Lucid the implicit dimension
is used simply as the time or iteration dimension. Consequently, a multidimensional problem would
have to be solved using time and some form of monolithic data structure such as a list or string
[6]. multidimensional problems can be expressed directly in Indexical Lucid in a manner akin to
mathematical function definitions and without use of monolithic data structures. The latter has
important implications for parallel and distributed implementations. multidimensional problems
are found in many applications areas and specially in scientific computing and computer graphics.
The rest of this report deals with the “operational” details of Indexical Lucid and how to use
dimensional constructs to solve problems.

!This syntax comes from the Original Lucid papers and is often a better way of expressing the idea of a variable
changing with time than the more modern semantically equivalent equation:-
even = 2 fby even+2
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4 Adding Multidimensionality

The simplest way of extending the number of dimensions available to the Lucid programmer is to
allow objects in Lucid to vary over an infinite number of space dimensions. This was first suggested
in [11] in which the dimensions where thought of as space dimensions whose names corresponded
to the natural numbers. All the Original Lucid operators can then be extended to work over these
predefined space dimensions. For example, the fby operator can be extended by naming a new
operator for each of the predefined space dimensions sby0, sbyl, sby2, etc. This is the absolute
approach to multidimensionality.

Indexical Lucid permits the programmer to extend the dimensions explicitly giving appropriate
names to the new dimensions as and when they are needed. A dimensional where clause is one that
contains declarations of new dimension names (or equivalently dimension names) through the use
of an dimension declaration. The scope of the dimensions introduced by the dimension declaration
is the same as the scope of the variables defined in an Original Lucid where clause. Dimensional
where clauses may be nested to arbitrary depths in the same way as where clauses in Original Lucid
are nested. The scope rules for dimension names are the same as the scope rules for variables in
where clauses [9]. Within the same scope it is not permitted to define a variable with the same
name as a dimension name.

The following is an example of an dimensional where clause with two new dimension names
height and width.

a+b where
dimension height,width;

end

In the above program the variables a and b may be defined to vary over the two new dimension
names height and width. To determine how a or b vary with any of the dimensions just mentioned
we need to examine the actual definitions of a or b. For example, if a = 10; then a is a constant, if
a = 1 fby a+1; then a varies with dimension time. To make a or b vary with height or width we
need to introduce operators specific to the new dimension names. All of the usual Original Lucid
operators can be extended to operate on any dimension name in a simple and natural manner. For
example, the infix binary operator fby is extended to work on say the height dimension through
use of the operator fby.height. In a similar manner all of the usual Original Lucid operators can
be extended to work on any dimension name that has been previously introduced by a dimension
declaration and is still in scope. The following is a more complete enumeration of the extended

operators.
first first.time first.h
next next.time next.h
prev prev.time prev.h
fby fby.time fby.h
before before.time before.h

upon upon.time upon.h
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asa asa.time asa.h
Wwvr Wvr.time wvr.h
Q Q.time @.h

Note that it is not necessary to write first as first.time. Any implementation of Indexical
Lucid will recognize first as an abbreviation for first.time. Each of the extended Lucid oper-
ators works on its particular dimension in the same way that the ordinary Lucid operators works
on the time dimension. This makes the new operators easy for the Lucid programmer to use.

Dimensional locators are an important part of Indexical Lucid. Each dimension name introduced
by a dimension declaration also introduces a new dimensional locator having the same name as the
dimension name. The dimensional locator height can be used in the expression part of a program
and the value it takes depends on when it is used. In general, the value of height at position ¢ in
the height “dimension” is ¢. In other words, dimensional locators tell the programmer where they
are in the dimensional space that has been built up with dimensional where clauses. Note that
all dimensions in Indexical Lucid vary over the integer set (ergo, the name Indexical Lucid). It is
possible to use other dimension sets but we will not discuss that here.

Here is a fragment of simple Indexical Lucid code:-

. Where
dimension 1,j;

alt_i = 0 fby.i alt_i + 1;

alt_j = 0 fby.j alt_j + 1;

alt_i_j = (O fby.i alt_i_j + 1) fby.j alt_i_j + 1;
end

In this example, the variable alt_i is another way of defining the dimensional locator i. In other
words, alt_i at position k in the i “dimension” takes on the value k. In a similar manner, alt_j is
equivalent to the dimensional locator j. In addition, alt_i_j illustrates the way in which variables
can be defined over more than one dimension name. In the above example alt_i_j is equivalent
to the dimensional locator i in the i “dimension” and equivalent to dimensional locator j in the
j “dimension”. In original ISWIM [9] simple variables like alt_i and alt_j can only be given a
single value because of the functional nature of ISWIM. In Original Lucid, such variables can be
defined to take on different values at different point in Lucid time. In other words, Original Lucid
variables are temporal but Indexical Lucid variables take on values over a multidimensional space
of dimension names as well as the usual temporal dimension time.

In Original Lucid, the “is current” declaration within a where-clause is used to define a nested
computation (or subcomputation) [6]. The where clause is said to define a “frozen environment”
since variables in it can only vary in the new dimension. The following program is an example of a
nested computation in Original Lucid to compute the running root mean square of its input. Note
the use of the is current in the definition of sqroot. In Original Lucid, where clauses with is
current declarations implicitly introduces a new dimension into the program. That is, for each
point in time outside an “is currented” where-clause, there corresponds a possibly different set of
time sequences for each of the variables in the clause.

sqroot(avg(square(a)))
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where
square(x) = x*x;
avg(y) = mean
where
n = 2 fby n+1;
mean = y fby mean + d;
d = (next y - mean) / n;
end;
sqroot(z) = approx asa err < 0.0001
where
Z is current z;
approx = Z/2 fby (approx + Z/approx)/2;
err = abs(square(approx)-Z);
end;
end

The dimensional version of the same program makes this implicit dimension visible (as in dimen-
sion i). In a similar manner “is currented” where clauses nested within other “is currented” clauses
introduce a new implicit dimension for each level of nesting. This can again be implemented using
dimensional where clauses nested in the same manner but explicitly introducing a new dimension
of each level of nesting of the “is currented” where clauses.

An equivalent program written using a dimensional where clause:-

sqroot(avg(square(a)))
where
square(x) = x*x;
avg(y) = mean
where
n = 2 fby n+1;
mean = y fby mean + d;
d = (next y - mean) / n;
end;
sqroot(z) = approx asa.i err < 0.0001
where
dimension 1i;
approx = z/2 fby.i (approx + z/approx)/2;
err = abs(square(approx)-z);
end;
end

The introduction of extra dimensions whether implicit, as in Original Lucid or Field Lucid,
or explicit, as in Indexical Lucid, means that the language can directly define objects in terms of
objects of higher dimensionality. In other words the subject part of an “is currented” or dimensional
where clause is defined in terms of functions and variables inside the body of the where clause and
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these functions and variables will probably be defined in terms of the extra dimensions introduced
by the dimension declaration (otherwise there would be no point in having the subcomputation).
The question then arises as to which of the values associated with the extra dimensionality is used
to give meaning to the outside objects 7 In Field Lucid, a diagonalization method is used. That
is, for each point in time (say k) in the outer world, we associate the i*" point in time of the inner
world. That is, if a variable v is defined in terms of an “is currented” where clause, the value the
variable will take on for each point in time, say k, in the outer environment is the value of the
subject part of the “is currented” where clause at inner time k. This works well in Original Lucid
because inner subcomputations are always one dimension higher than their immediately enclosing
lexical environment.

In Indexical Lucid diagonalization is not appropriate. The reason for this is that if a variable v is
defined directly in terms of an dimensional where clause, v itself might already be in an environment
in which it varies with respect to many dimensions (not just time as in Original Lucid). Which
of these dimensions will be used to diagonalize the inner subcomputation? Fortunately, we can
use a solution that is far simpler than diagonalization. If a variable v (which may vary in many
dimensions) is defined directly in terms of an dimensional where clause (which can vary in even
more dimensions) we can make the inner dimensionality compatible with the outer dimensionality
by setting all the new dimensions created by the dimension declaration of the where clause to 0.
This means that whichever result that is being computed by the dimensional where clause is carried
to the outside by being placed at the origin of the dimensional where clause. We call this method
of collapsing the “origin” method. Note that in practice most Original Lucid programs use the
origin method since the subject part of an “is currented” where clause is usually defined in terms
of an asa operator. In Indexical Lucid values can be pinned to the origin by the use of asa or @
operators.

5 Dimensional Abstraction

In Original Lucid, function definitions are used to encapsulate or abstract temporal or stream
functions as well as simple first order data functions as in the following examples.

g(x) = first x + next x;
f(x,y) = x*xy+4;

The function definitions of Original Lucid need to be generalized if we want to use them to
define multidimensional functions. In Original Lucid the time dimension is absolute and so ordinary
function definition notation is adequate. This means that function like g(x) above can be defined in
Original Lucid without difficulty. This does not extend to multidimensional user-defined dimension
names. In other words, we have no means of abstracting dimension names in function definitions.
For example the function, VectorSum sums the first 100 elements along the x dimension:-
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VectorSum(V1) = sum asa.x x>100
where
sum = O fby.x Vi+sum;
end;
A=0.2 fby.x A + 1;
B=23.3 fby.y B + 2;

suml = VectorSum(A);
sum2 = VectorSum(B);

end

The problem with the above definition of VectorSum is that it will only compute the sum of
the first 100 elements along the x dimension. Thus the value of sum1 will be as expected and the
value of sum2 will be the 100 * B because B does not vary with respect to the x dimension. In order
to abstract dimensional names so that we can write one vector sum function for any dimension,
we need to augment the way in which Original Lucid (and ISWIM) defines and uses functions.
We choose to augment Original Lucid function definition by permitting the declaration of formal
dimensional names on the left hand side of equations. To be more precise a function name may be
followed by a sequence of formal dimension names each prefixed with a period (.). Here are two

examples:-

f.k(x) = ...
g.a,b(x,y) = ..... ;

The following is a rewritten version of the vector sum example with both dimensional parameters
and value parameters :-

where
dimension x,V;
VectorSum.k(V1) = sum asa.k k>100
where
sum = O fby.k Vi+sum;
end;
A=0.2 fby.x A + 1;
B = 3.3 fby.y B + 2;
suml = VectorSum.x(A);
sum2 = VectorSum.y(B);
end

The k dimension is a formal dimension name, the actual dimension name is determined when
the function VectorSum is used, as in VectorSum.x(A) or VectorSum.y(B). In the first of these,

the actual dimension name is x; this name is used in the actual computation of the vector sum
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by the function VectorSum. We note that simple variable definitions can also have dimensional
parameters. They can be thought of as nullary function definitions, that is, function definitions
with dimensional parameters but without value parameters. Here are some examples:-

a.x = ..... ;

b.x,y = ..... ;

This may seem less useful than the non-nullary form but there are instances in which it is useful.
For example if m is a multidimensional variable with formal dimension parameters x and y as in
the following example :-

dimension h,i,j;

m.x,y = if(x==y) then 1 else 0 fi;
usel = m.h,i;

use2 = m.i,j;

The variable usel is a unit matrix with respect to the h and i dimension names and use2 a unit
matrix with respect to the 1 and j dimension names.

We can now show how the built-in Indexical Lucid functions can be defined. It is interesting
to note that all dimensional functions can be defined using the primitive operator @.<dimension
name>, dimensional locators and the Lucid if-then-else-fi operator. To illustrate this we give
definitions to all of the Lucid built-in operators in terms of these operators. The reader should also
note that none of the definitions are in terms of recursive non-nullary functions.

first.i(x) = x @.1 0
next.i(x) = x @.1 (i+1)
prev.i(x) = x @.1 (i-1)
fby.i(x,y) = if i<=0 then x @.1 i else prev.i y fi
before.i(x,y) = if i>=0 then y @.i i else next.i x fi
asa.i(x,y) = x @.i (c1 @i O0)
where
cl = if y then i else next.i cl fi;
end;
upon.i(x,y) = x @.1i t1
where
tl = 0 fby.i if y then ti1+1l else t1 fi;
end;
swap.i.j(x) = x @.i j @.j i
rightChild.i(x) = x @.1 (2%i+1);
leftChild.i(x) = x @.1 (2%1i);

6 Selected Multidimensional Applications

With the above description of Indexical Lucid, we will now illustrate its expressiveness in solving
multidimensional problems. The three “standard” problems we consider are prime number gener-
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ation using the sieve of Eratosthenes algorithm, sorting using the mergesort algorithm, and matrix
multiplication using a recursive block decomposition algorithm.

6.1 Prime Number Generation

The sieve of Eratosthenes is an ancient method for computing prime numbers. The algorithm
begins with a finite sequence of all natural numbers from 2 in increasing order. Successive passes
are made over this sequence filtering out multiples of numbers that are found to be primes. The
process begins by removing multiples of 2 from the sequence. The next number after 2, in this case
3, is the next prime and it then is used to filter out all multiples of 3. This process continues until
only prime numbers are left in the finite sequence. The following sequence of sequences illustrates
this process:-

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.
2,3,5,7,9,11,13,15,17.
2,3,5,7,11,13,17.

In Lucid we can write this application using two dimensions or we can use one dimension and
function recursion. Either way we begin with a sequence of all numbers greater than or equal to
2. We will call this natsFrom2. This sequence or one dimensional variable is infinite and so our
program will be a little more general than the process described above. Once we have natsFrom2
we need to sieve the sequence to remove multiples of numbers that we know to be primes. In
the first program below we will do the sieving using a recursive function Sieve. Fach call of the
recursive function will work on a new sequence of numbers to filter. This corresponds to each
sequence in the above sequence of sequences except that out sequence of sequences is infinite. The
second example program does not use recursive functions. It uses a new dimension in which to
express the sequence of sequences. In either program the same filtering mechanism is used. The
wvr operator, appropriately indexed, is used to do the actual work of filtering. In our case we want
the control stream of the wvr to be true when ever the current data element is not a multiple of
the first element of the stream we are filtering. This is why the first program uses the expression n
wvr ( n mod ( (first n) ne 0) ) where n is the stream being filtered. and the second program
uses the expression sieve wvr.i ( sieve mod ( ( first.i sieve ) ne 0 ) ). (Note the use
of dimensional locator i in the definition of natsFrom2 in Program 2.)

// Program 1

Primes(natsFrom2) where
Primes(n) = n fby Primes(n wvr ( n mod ( ( first n ) ne 0 ) ) );
natsFrom2 = 2 fby natsFrom2+1;

end

// Program 2

primes where
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dimension 1i;
primes = first.i sieve;
natsFrom2 = i+2;
sieve = natsFrom2 fby.time
( sieve wvr.i ( sieve mod ( ( first.i sieve ) ne 0 ) ) );
end

6.2 Mergesort

The merge sort problem is to sort a list of data items by repeatedly merging sorted lists starting with
each data item as a sorted singleton list. The solution to the mergesort problem in Indexical Lucid
uses three dimensions. Dimension t is used as the iteration dimension. Two other dimensions are
required. In the program, they are v and h. The h dimension is used as the dimension in which the
unsorted data is initial put. The v dimension is used to accumulate sorted sub-sequences. At time
0 the mergeSort is simple the original input spread out along the h dimension. At successive points
in time the function merge combines the ordered sub-sequences that are being accumulated in the v
dimension by previous applications of the merge function. As the algorithm iterates through time,
the sorted data are accumulated in the v dimension.

r0t8.v,time( output )
where
dimension v,h,t;
output = mergeSort asa.t inputSize == size0fMerge;
merge(x,y) = if iseod xx then yy
else if iseod yy then xx
else if xx <= yy then xx else yy fi fi fi

where
XX = x upon.v iseod yy || xx <= yy;
yy = x upon.v iseod xx || xx > yy;
end;

mergeSort = Inputdata(h) fby.t
merge(leftChild.h(mergeSort), rightChild.h(mergeSort)) ;
size0fMerge = 1 fby.t 2%size0fMerge;
r0t8.a,b( x ) = x @.a b;
end

The program computes values of output over time by rotating (using r0t8) the values of output
which are computed over dimension v. In particular, the value of the program computed at time ¢
is the value of output and hence mergeSort asa inputSize == size0fMerge at t-context 0 and
v-dimension-context ¢. The expression mergeSort asa inputSize == size0fMerge is evaluated
as follows: the expression inputSize == sizeO0fMerge is evaluated from t-context 0 until equality
holds at which time mergeSort is evaluated.

The variable mergeSort is defined over context t. It is initially the values of Inputdata(h)
defined over dimension h. (Note that in dimension v, values of Inputdata(h) at all but the initial
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v-context is assumed to be eod (or end of data).) At some later t-dimension context (say 1'), the
value of mergeSort for a particular h-dimension-context (say ¢) is obtained by applying function
merge to the appropriate values of mergeSort at the previous time (7' — 1). (The appropriate
values would be at h-dimension contexts 2¢ and 2i+4 1 as computed by leftChild and rightChild.)
Function merge essentially takes two sorted sub-sequences in the v dimension and produces a single
sorted sequence in the v dimension for a particular point in the h dimension.

Assuming the value of inputSize is n, mergesort initially consists of n singleton sequences
across dimension h, and half-as-many sequences of twice the size at each subsequent t-dimension
context, and eventually a single sequence of length n in dimension v when inputSize is the same
as the value of sizeOfMerge (logy(n)).

6.3 Block Matrix Multiplication

The recursive block decomposition algorithm for matrix multiplication can be expressed as follows:-
Let A and B be two n by n matrices where n is a power of two (without loss of generality). We
can divide each of A and B into four n/2 by n/2 matrices and express the product of A and B in
terms of these n/2 by n/2 matrices. Product matrix C' (also n by n) can be obtained according to

_ All A12 Bll B12
A21 A22 B21 B22

Cni = A B + Ai2Bo,

the following formula.
Cin Cra
Car Ca

where

Ch2 = A1 Bi2 + Ai2Baa,
Co = Ao B + A2 Boy,
Cag = Ao1Bia + A Boo.

The Indexical Lucid program that embodies this algorithm is given below. The unusual aspect
of this program is that its intensional realization of the extensional divide-and-conquer basis of the
algorithm, this being possible because of multidimensionality.

The matrices to be multiplied, A and B are of order given by n and the elements of the matrices
are stored in dimensions aux_i and aux_j corresponding to row and column respectively. The
desired result is a particular element of the product matrix at row and column position given by
r and c¢. Function matmult performs the multiplication and it uses two dimensionally abstract
functions in doing so: r0t8.a.b for rotating dimensions (i.e., dimension a becomes dimension b)
and append.dim that “appends” its second argument to its first argument of size given by the third
argument, with the first two arguments assumed to vary in dimension dim.

( matmult( A, B, n ) @.aux_i r ) @.aux_j c where
dimension aux_i, aux_j;
matmult( aux_a, aux_b, n ) = c asa.t s == (n*n*n) where
dimension t, i, j, k;
1 fby.t 8%*s;
1 fby.t 2x%d;

s
d
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r0t8.aux_1.i( r0t8.aux_j.j( aux_a ) );

[o )
non

r0t8.aux_1.i( r0t8.aux_j.j( aux_b ) );

(a @.j k) * (b @e.ik)

fby.t

( ( reduce @.k (2%k) ) @.j (2%j) ) @.i (2*i) where
reduce = block( ¢ + next.k c,

next.j c + next.k next.j c,
next.i ¢ + next.k next.i c,
next.j next.i ¢ + next.k next.j next.i c,
d
)3
block( tl, tr, bl, br, d ) = p where
p = append.aux_i( append.aux_j( t1, tr, d ),
append.aux_j( bl, br, d ),
d
)3
append.dim( a, b, d ) = if( dim < d ) then a
else b @.dim (dim-d) fi;
end;
end;
r0t8.a.b( x ) = x @.a b;
end;
end

Function matmult introduces four dimensions:- i, j, and k as the row, column and inner product
dimensions over which matrix blocks are defined, each of whose elements are defined over the
orthogonal and outer dimensions aux_i and aux_j; and t as the iteration dimension over which
product matrix is iteratively built starting with singleton matrices.

Expression ¢ asa.t s == (n*n#*n) captures at which iteration the product matrix is built, i.e.,
in log,(n?) iterations. Variable ¢ can be thought of as a 3-dimensional array in dimensions i, j,
and k, each dimension of size given by n although it is not such a monolithic object. Initially, (when
t is 0) the each element of ¢ identified by (¢, 7, k) is the product of element (i, %) of a and element
(k,j) of b. Variables a and b are equivalent to A and B except that they vary in dimensions i and
j instead of dimensions aux_i and aux_j, this being achieved using the r0t8 operator. At each
successive iteration (iteration index given by t), variable ¢ can be thought of as a 3-dimensional
array with 1/8th the number of elements in the dimensions i, j, and k except that each element
can be thought of as a 2-dimensional array in dimensions aux_i and aux_j of four times as many
elements as in the previous iteration as per the formula given above. This building of matrix blocks
in dimensions aux_i and aux_j is achieved by using function block which is defined in terms of
append. When log,(n?) iterations have been completed, the size of the 3-dimensional array that c
can be thought of as denoting is precisely 1 and the size of the 2-dimensional array, which represents
the matrix product, it denotes in the aux_i and aux_j dimensions is the same as that of matrices
A and B.
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It is worth reiterating that while we have referred to variables as denoting monolithic objects
of various dimensionality, this is simply meant to be a mental device. In actuality, all objects are
defined and manipulated elementwise.

7 Conclusions

Indexical Lucid, Lucid circa 1993, enables the programmer to implicitly and intensionally define
and manipulate multidimensional data structures that change. The features of the language that
make this possible and natural are user-defined dimensions and dimensional abstraction.

Being able to define dimensionality in Indexical Lucid enables the programmer to naturally
express solutions to diverse multidimensional problems. We have illustrated this by expressing
three dissimilar applications in Indexical Lucid: prime number generation, mergesort, and matrix
multiplication. Being able to define dimensionally-abstract functions in Indexical Lucid enables
the programmer not only to write succinct programs but also to reuse these functions in diverse
applications.

One of the important practical consequences of Indexical Lucid is that it expresses parallelism
succinctly — an aspect of the language we have not discussed in this report. In fact, Indexical
Lucid is the parallel composition language of GLU, a coarse-grained system for programming con-
ventional parallel computers [8]. Through GLU, it has been extensively used in implicitly expressing
parallelism in applications ranging from scientific computations to graphics to real-time processing.
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