
SRI INTERNATIONAL SRI Tehnial Report
The CAPSL Integrated Protool Environment
Grit Denker, Jonathan Millen and Harald Rue�Computer Siene LaboratorySRI-CSL-2000-02, Otober 2000
Supported by DARPA through the Air Fore Researh LaboratoryContrat F30602-98-C-0258 from 14 August 1998 to 31 July 2000Prinipal Investigator Jonathan Millen (650) 859-2358DARPA Req. No. N-8-6136 Amount $972,087.00The views and onlusions ontained in this doument are those of the au-thors and should not be interpreted as representing the oÆial poliies, eitherexpressed or implied, of the Defense Advaned Researh Projets Ageny orthe U.S. Government.

333 Ravenswood Avenue � Menlo Park, CA 94025-3493 � (650) 859-2000

2

The CAPSL Integrated Protool Environment1Grit Denker, Jonathan Millen, and Harald Rue�Computer Siene Laboratory, SRI International, Menlo Park, CA 94025, USAfdenker,millen,ruessg�sl.sri.om
AbstratCAPSL is a Common Authentiation Protool Spei�ation Language in-tended to support analysis of ryptographi protools using formal methods.CAPSL is adapted for use by various protool analysis tools using an inter-mediate language, CIL. This report inludes a CAPSL tutorial, the syntaxof CAPSL and CIL, and the abstrat rewriting model underlying CIL. Algo-rithms are given for translating CAPSL to CIL and for CIL rule optimization.Methods are given for integration of CAPSL and CIL with analysis tools,spei�ally PVS, Maude, and Athena, and for protool analysis using PVSand Maude.

1Supported by DARPA through Air Fore Researh Laboratory under ContratF30602-98-C-0258

Contents
1 Introdution 11.1 Cryptographi Protools . 11.2 Message Modi�ation Attaks 21.3 Spei�ation and Analysis Tools 31.4 CAPSL Features . 41.5 The Intermediate Language CIL 51.6 Summary of This Doument 52 CAPSL 72.1 CAPSL Tutorial . 72.1.1 Enryption . 82.1.2 Fresh Keys . 92.1.3 The Lowe %-Operator 92.1.4 Address Convention 102.1.5 Goals . 112.1.6 The Needham-Shroeder Publi Key Handshake . . . 122.2 Types and Delarations . 122.2.1 The Type Hierarhy 132.2.2 Delarations . 14i

2.2.3 Typespes . 152.3 Protool Spei�ations . 172.3.1 DENOTES Delarations 172.3.2 Assumptions . 182.3.3 Messages . 182.3.4 Goals . 192.4 The MESSAGES Setion . 192.4.1 Message Format . 192.4.2 Ations . 222.4.3 Phrases . 222.4.4 Subprotools and Seletion 232.5 Environment Spei�ations 253 CIL 283.1 Multiset Rewrite Rules . 283.1.1 The MSR Protool Model 293.1.2 CIL Rule Syntax . 303.2 Translator Overview . 313.2.1 CIL Output . 313.2.2 Translation Stages . 333.2.3 DENOTES Proessing 343.3 Abstrat Rule Generation . 353.3.1 Translator State . 363.3.2 Computability and Reeivability 363.3.3 Message Rules . 383.3.4 Equational Ations . 40ii

3.3.5 Subprotools . 413.4 Loal Assertions . 423.5 An Attaker Model . 424 Optimization of CIL Rewrite Rules 454.1 Motivation . 454.2 Optimization Examples . 464.3 Optimization Steps . 494.4 Properties of Optimization . 504.4.1 Soundness . 514.4.2 Termination and Uniqueness 524.5 Implementation . 545 Analysis Tools 575.1 Connetor Design . 575.2 PVS . 595.2.1 Modeling . 605.2.2 Indutive Relations . 625.2.3 Ideals and Coideals . 635.2.4 Protools and Serey 645.2.5 Example: The Otway-Rees Protool 675.2.6 Conlusions . 705.3 Maude . 715.3.1 The Maude Language 725.3.2 Translation of the CAPSL Prelude 735.3.3 De�nition of the CIL model 755.3.4 Maude Attaker Model 76iii

5.3.5 Translating CIL Protools and Environments 785.3.6 Searh Strategy and Optimization 825.3.7 Conlusion . 865.4 Athena . 875.4.1 The Translation Strategy 875.4.2 Normalization: Non-Message Rules 895.4.3 Type and Funtion Limitations 905.4.4 Goal Generation . 906 Conluding Remarks 92Bibliography 93A CAPSL and CIL Syntax 99A.1 CAPSL Syntax . 99A.2 CIL Syntax . 104B The Prelude 106B.1 Basi and Boolean . 106B.2 Field . 107B.3 Symmetri-Key Enryption 108B.4 Publi-Key Enryption . 110B.5 Key Agreement . 111B.6 Publi-Key Sealing . 111B.7 Timestamps . 112B.8 List . 112B.9 End Prelude Marker . 112iv

C CAPSL Examples 114C.1 SSL Handshake . 114C.2 Seure Remote Password (SRP) Protool 116D CIL Output Example 118D.1 CAPSL Spei�ation for NSPK 118D.2 CIL Output for NSPK . 119

v

Chapter 1Introdution
1.1 Cryptographi ProtoolsIn omputer networks, ryptography is used to protet private messages andto authentiate the soure and ontent of messages. Seurity objetives maytake a sequene of several messages, that is, a protool, to ahieve. A pro-tool an be spei�ed diagrammatially as in Figure 1.1. This partiularprotool is supposed to establish a session between prinipals A and B insuh a way that eah prinipal authentiates the identity of the other prini-pal, and they share two session-spei� serets Na and Nb. (This is atuallynot the whole protool in [NS78℄, but just the handshake that omes afteran earlier part in whih the publi keys are obtained.)

{N }
b PB

BA

{N , N }
a

{A, N }
PB

b

a

PA

Figure 1.1: Needham-Shroeder Publi-Key ProtoolThe braketed term fA;NagPB represents the enryption of the onatena-tion of A and Na using the publi key of B. It is assumed here that A haspreviously obtained B's publi key and that only B has the orresponding1

seret key, and vie versa for B. The message �elds Na and Nb are nones,meaning that they are fresh, in the sense that they have not been used beforeby the prinipal that originates them. If they are large enough and randomlygenerated, they ould be used as keys to enrypt subsequent messages.The serey laim is based on the argument that A has given Na diretlyonly to B, beause only B ould have derypted the message in whih Nawas introdued. Similarly for B and Nb. The protool also provides entityauthentiation, i.e., evidene that the other prinipal is urrently ativelypartiipating in the protool, beause it inludes aknowledgments from Band A ontaining the nones they reeived.The same protool is often represented in a more algebrai style, like this:A! B : fA;NagPBB ! A : fNa; NbgPAA! B : fNbgPBCAPSL is an outgrowth of this algebrai message-list style.1.2 Message Modi�ation AttaksThere is a message modi�ation attak on the Needham-Shroeder protool,found by Lowe [Low96℄. Message modi�ation attaks assume that there isan intruder or attaker in the network who an interept messages, reordthem, and replae them with modi�ed or di�erent messages, whih mayappear to have ome from di�erent soures. The intruder may also at asa legitimate prinipal, either beause he is one, or beause he has some-how obtained a long-term seret key of one. Lowe's attak is illustrated inFigure 1.2.In this �gure, the enter olumn represents the intruder playing two roles.One role is as himself, prinipal X, responding to A in the left-hand sessionof the protool. The intruder is also masquerading as A in the right-handsession of the protool, indiated with (A) in parentheses. There is a seuritybreah in the right-hand session, beause B ends up believing he has beentalking to A, and that Nb is shared only with A.
2

{N }
b PX

{N }
b PB

BA

X

X

(A)

(A)

{N , N }
a b

{N , N }
a b

{A, N }
a

{A, N }
a PX

PA

PA

PB

Figure 1.2: Lowe's Attak1.3 Spei�ation and Analysis ToolsThe existene of message modi�ation attaks led to the development ofmethods to detet them. Several approahes have been developed, as rep-resented by papers suh as [MCF87, Mea91℄ on goal-direted state searhtools implemented in Prolog, [Kem89, Pau98℄ on the appliation of general-purpose spei�ation and veri�ation tools, [BAN90, GNY90℄ on speiallydesigned logis of belief, and [Ros95, Low96, CJM98℄ on the appliationof model-heking tools. This is far from a omplete list of papers on thesubjet.These tools and their suessors have been e�etive, but it is diÆult foranalysts other than their developers to apply them. One reason for thisdiÆulty is that the protools must be respei�ed for eah tehnique, and itis not easy to transform the published desription of the protool into therequired formal system.Some tool developers began work on translators or ompilers that wouldperform the transformation automatially. The input to any suh transla-tor still requires a formally de�ned language, but it an be made similarto the message-oriented protool desriptions that are typially published.This approah was taken with an earlier version of CAPSL [Mil97℄; ISL,supporting an appliation of HOL to an extension of the GNY logi [Bra97℄;Casper [Low98℄, for the appliation of FDR using a CSP model-heking ap-proah; and Carlsen's \Standard Notation" [Car94℄, whih was translated3

to per-proess CKT5 spei�ations.A proposal for CAPSL was �rst presented at the 1996 Isaa Newton Insti-tute Programme on Computer Seurity, Cryptology, and Coding Theory atCambridge University. A version of CAPSL very lose to the urrent onewas subsequently implemented as an interfae to the NRL Protool Analyzer[BMM99℄.The CAPSL language and supporting tools are still under development. Thisdoument o�ers a snapshot of the urrent design, not only for CAPSL itself,but also for the strategy by whih CAPSL an be adapted for use by variousprotool analysis tools. The ore of this strategy is the use of an intermediatelanguage, CIL, that is loser to the state-transition representation used byalmost all of these tools. An overview of the CAPSL and CIL environmentwas given in [DM00℄. Current doumentation, the translator, and otherresoures are available on the CAPSL Web site [Mil00b℄.1.4 CAPSL FeaturesThe aronym \CAPSL" stands for \Common Authentiation Protool Spe-i�ation Language." The language is intended to support analysis of ryp-tographi protools using formal methods.The ore of a CAPSL spei�ation is a message setion showing the ab-strat format of a sequene of messages. Message �elds are named and theirtypes are indiated, but details suh as �eld lengths and bit patterns arenot shown. Only that information essential for protool failure analysis isretained, resulting in a lear, simple model of the protool.Enryption operators, hash funtions, and other omputations are treated asabstrat operators whose properties are spei�ed axiomatially in auxiliaryabstrat data type spei�ations. Spei�ations for some popular opera-tors, representing the abstrat features of ryptosystems like DES, RSA,and DiÆe-Hellman, are inluded in a prelude �le supplied with the CAPSLtranslator.Sometimes the protool requires omputations and tests that are not on-veniently expressed using just the message sequene. In CAPSL, one aninsert assignment statements and equations representing omputations andtests. 4

An important part of the protool spei�ation is a statement of its seurityobjetives. There is a \GOALS" setion for this purpose, whih may inludeserey and belief statements. Initial assumptions are also spei�ed formallyand plaed in a setion prior to the message list. It is possible to plaeassertions within the message list as well, to indiate intermediate goals ormessage idealizations, to help support belief logi analysis.Finally, there is also a way to speify senario details to support searh toolsthat require setup of individual sessions.1.5 The Intermediate Language CILThe CAPSL Intermediate Language (CIL) serves two purposes: to helpde�ne the semantis of CAPSL, and to at as an interfae through whihprotools spei�ed in CAPSL an be analyzed using a variety of tools.The idea is illustrated in Figure 1.3. CAPSL is parsed and translated to CIL,and there are di�erent translators, alled onnetors, from CIL to whateverform is required for eah tool. CIL is designed to make the translation totool-spei� representations as easy as possible. The translator from CAPSLto CIL an deal with the universal aspets of input language proessing, suhas parsing, type heking, and unraveling a message-list protool desriptioninto the underlying separate proesses.Fortunately, the protool spei�ations required for most protool analysistools have onsiderable strutural similarity. They generally speify a proto-ol with state-transition rules for ommuniating proesses. CIL uses multi-set term rewriting rules that permit state hanges to be presented onisely,and in a way that losely mathes the requirements of analysis tools. Thisapproah was inuened by an analysis example using Maude, by Denker,Meseguer, and Talott, presented at a LICS '98 workshop [DMT98a℄, and byMithell's multiset rewriting formulation, presented at a Computer AidedVeri�ation workshop in 1998, and also later, in more detail, in [CDL+99℄.1.6 Summary of This DoumentChapter 2 introdues the CAPSL language with a tutorial inluding a se-quene of simple examples. It then goes on to present the elements of the5

connectors

Model
Checker

Maude
PVS

Inductive

Verification

NRL

Analyzer
Protocol

Translator

CIL

CAPSL

Figure 1.3: Overview of the Environmentsyntax systematially. Chapter 3 desribes CIL and its relation to the un-derlying abstrat rewriting model. It also presents the algorithm for trans-lating CAPSL to CIL, and in partiular the way the rewrite rules are gener-ated. Chapter 4 explains the optimization step, whih redues the numberof rewrite rules almost in half. Then, Chapter 5 addresses the integrationof CAPSL and CIL with analysis tools, using onnetors. Analysis teh-niques for PVS and Maude are summarized, and the onnetor to Athenais desribed. There is a short onlusion, Chapter 6. The report has severalappendies ontaining examples and referene information.
6

Chapter 2CAPSL
A CAPSL spei�ation is made up of three kinds of modules: typespe,protool, and environment spei�ations, usually in that order. Typespesdelare ryptographi operators and other funtions axiomatially. Environ-ment spei�ations are optional; they are used to set up partiular networksenarios for the bene�t of searh tools. Some standard typespes in aprelude �le are automatially utilized by the CAPSL translator, so manyprotools an be spei�ed with only a protool module.This introdution to the CAPSL language begins with a tutorial sequeneof protools designed to illustrate the basi features of CAPSL.2.1 CAPSL TutorialHere is the simplest example of a protool spei�ation.PROTOCOL Simple1;VARIABLESA: Prinipal;MESSAGESA -> A: A;END;Protool Simple1 has only one message, in whih prinipal A sends its nameto itself. As in a strongly typed programming language, variables must be7

delared and typed. Prinipals are objets that an our as the soure ordestination of a message.Here is a slightly more omplex example.PROTOCOL Simple2;VARIABLESA, B: Prinipal;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: A;END;The HOLDS delaration states that the proess exeuting on behalf of A hasbeen initialized with the prinipal B hosen as the responder. Read it as\A holds B." If the HOLDS assumption is omitted, the CAPSL translatorwill omplain that sender of the �rst message does not know the reeiveraddress. It is unneessary to say HOLDS A: A beause, by onvention, prin-ipals always hold themselves.2.1.1 EnryptionCertain types of prinipals possess long-term keys. PKUser is a subtype ofPrinipal possessing a publi key pair. If A is of type PKUser, pk(A) is itspubli key and sk(A) the orresponding private (seret) key. Thus, A ouldenrypt its message to B as follows:PROTOCOL Simple3;VARIABLESA, B: PKUser;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A}pk(B);END;The notation f�eldgkey is syntati sugar for the funtion all ped(key,�eld).The funtion ped is the standard abstrat publi key enryption and deryp-tion funtion. (If the key is a symmetri key, the syntati sugar expands8

internally into a all on se, the standard abstrat symmetri key enryptionfuntion, instead.)2.1.2 Fresh KeysSession keys are usually assumed to be fresh, generated in some way thatensures (up to a ryptographially unlikely oinidene) that eah new onehas not been used before. To be useful as a key, the new value should beunguessable. Sequene numbers, for example, are fresh but not unguessable.Here is an example of session key generation:PROTOCOL Simple4;VARIABLESA, B: Prinipal;K: Skey, FRESH, CRYPTO;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A}K;END;In this example, Skey is a symmetri key type, and the delaration of K hastwo keywords FRESH and CRYPTO alled properties. The CRYPTO propertyindiates unguessability.Simple4 is not useful beause B does not hold K and annot derypt themessage to obtain A. In CAPSL, this protool spei�ation is semantiallyillegal beause it implies that B derypts the message, and the translatorwill omplain that the message is not \reeivable" by B. Delaring that Bholds K does not work, beause, in the �rst message, A annot generateK as a fresh value if it is already held by B, and the translator omplainsaordingly. But there is a way to speify that B does not try to deryptthe message.2.1.3 The Lowe %-OperatorThe author of the protool an speify that B aepts the enrypted termwithout attempting to derypt it, by delaring a variable in whih B storesthe reeived value. The di�erent views of the message { the enrypted form9

seen by A and the atomi form seen by B { are separated by the % operator,whih was introdued by Lowe in Casper [Low98℄. We an see how the %operator is used in this version of the protool:PROTOCOL Simple5;VARIABLESA, B: Prinipal;K: Skey, FRESH, CRYPTO;F: Field;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: ({A}K)%F;END;The type Field is the supertype of all types that an be used as message�elds, inluding prinipals, keys, and terms onstruted by enryption andonatenation.The %-operator has a weaker binding preedene than enryption, so, forexample, (fAgK)%F an safely be written as fAgK%F.2.1.4 Address ConventionSuppose we wish to extend Simple5 to a longer protool in whih B repliesto A with F .PROTOCOL Simple6;VARIABLESA, B: Prinipal;K: Skey, FRESH, CRYPTO;F: Field;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A}K%F;B -> A: F;END; 10

The reply message is unaeptable to the CAPSL translator beause \senderdoes not know reeiver address." The problem here is that sine B an'tderypt the message, B has not learned the value of A. By onvention, thesoure address of the message is not onsidered part of the ontent, and isnot readable by the reeiver of the message. Realistially, this seems reason-able beause, although the same \Prinipal" type is used in the abstrationin both the address and ontent portions of the message, implementationsdistinguish an address spei�ation { suh as an IP address { from a sub-jet name, whih is a text string hosen to be meaningful in the appliationontext. Protools presented in the literature are inonsistent with regardto this onvention.2.1.5 GoalsIn order to analyze the seurity of a protool, there must be a statement ofits objetives. In CAPSL, there is a GOALS setion to express serey andauthentiation laims. In the following simple example protool, we mightimagine that the designer intended for K to be a seret shared only by Aand B, and that when B reeives it, B an be assured that it was sent byA.These two goals are stated as SECRET and PRECEDES assertions. A SECRETassertion says that the value of a variable generated by its nominal originatorannot be obtained by the intruder (unless the intruder is ating in one ofthe legitimate roles of the protool). A PRECEDESA;BjV1; V2; ::: assertionsays that if B reahes its �nal state, then A must have reahed a state thatagrees with B on V1; V2; :::.PROTOCOL Simple7;VARIABLESA, B: Prinipal;K: Skey, FRESH, CRYPTO;F: Field;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A,K}pk(B);GOALSSECRET K; 11

PRECEDES A: B | K;END;In this protool, K as generated by A is kept seret, but it might not reahB. The message reeived by B ould have been forged by the intruder. Thus,the value of K reeived by B is not neessarily from A, so the PRECEDESgoal would fail.2.1.6 The Needham-Shroeder Publi Key HandshakeThis tutorial onludes with the CAPSL spei�ation of the Needham-Shroeder publi key handshake mentioned in the Introdution. There isa type None used in this protool whih is assumed impliitly, by onven-tion, to have the property FRESH (but not neessarily CRYPTO).PROTOCOL NSPK;VARIABLESA, B: PKUser;Na, Nb: None, CRYPTO;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A,Na}pk(B);B -> A: {Na,Nb}pk(A);A -> B: {Nb}pk(B);GOALSSECRET Na;SECRET Nb;PRECEDES A: B | Na;PRECEDES B: A | Nb;END;2.2 Types and DelarationsTypespes de�ne the types and operators used in protool spei�ations.There is a subtype relation that plaes types in a hierarhy. Both typespesand protool spei�ations an delare types, onstants, funtions, and vari-12

ables. The di�erene is that delarations appearing in typespes are uni-versal and re-usable, while those in protool spei�ations are spei� to aprotool. Before desribing typespes protool spei�ations, we present thetype hierarhy and show the kinds of delarations that may appear in eithertypespes or protool spei�ations.2.2.1 The Type HierarhyMessages in ryptographi authentiation protools are onstruted usingryptographi operators and other funtions, suh as onatenation and hashfuntions. Every message �eld is of type Field, but ertain operators requireor produe �elds of partiular subtypes, suh as key types. Field is a subtypeof the universal type Objet, and there are other types of objets that arenot used as message �elds, suh as Role, Spe and Boolean. A portion ofthe type hierarhy is shown in Figure 2.1.
NoncePkeySkey

PKUser

...

Principal

Object

Role BooleanField Spec

Atom Pspec Tspec EspecListTape

Figure 2.1: The Type HierarhyIn priniple, all funtions used in CAPSL and the data types they oper-ate on must be spei�ed axiomatially in typespes. The types that areshown in the hierarhy and the most ommonly used enryption operatorsare inluded in the prelude. The urrent prelude is given in Appendix B.
13

2.2.2 DelarationsDelarations inlude IMPORTS, TYPES, VARIABLES, FUNCTIONS, andCONSTANTS, in no partiular order exept that identi�ers must be delaredbefore they are used.IMPORTS. An IMPORTS delaration names one or more spei�ations(this is one reason why spei�ations are named) and indiates that thedelarations ontained in them or imported by them are to be used as thoughthey were inluded in the present spei�ation. An IMPORTS delarationpermits the CAPSL translator to proess a sequene of spei�ations andhek that imported spei�ations have ourred earlier in the sequene.The CAPSL translator assumes that user spei�ations impliitly importthe whole prelude, so that it is not neessary to import any spei�ation inthe prelude expliitly.Importation of delarations brings all symbols into the same ontext. Onemay not, for example, delare the same funtion or variable twie; a \du-pliate delaration" error message will result. There are three exeptionsto this, as noted below, for funtion overloading, funtion re�nement, anddummy variables.TYPES. A type delaration TYPES T1; ::: : T ; ::: introdues new types T1; :::and indiates that they are subtypes of T . The supertype is optional, and ifit is left out, the new types are assumed to be subtypes of Atom (a generi�xed-length �eld type).VARIABLES. A variable delaration VARIABLES V1; ::: : T; P1; :::; ::: intro-dues protool variables of type T, optionally with properties P1; :::: TheFRESH and CRYPTO properties were mentioned above; others will be intro-dued where they are relevant.A variable delared in a typespe is a dummy variable, and the same variablemay be redelared as the same type in another typespe. A variable delaredin a protool spei�ation is a protool variable and it may not also bedelared elsewhere. (A future version of the CAPSL translator may treatdummy variable delarations as loal to permit redelaration in anotherontext.)FUNCTIONS. A funtion delaration FUNCTIONS F1(T1; :::) : T2; P1; :::; :::delares the type signature of one or more funtions. Funtion values mayhave the properties PRIVATE, ASSOC, and COMM. Private funtions are dis-14

ussed below in the typespe setion. The ASSOC and COMM properties des-ignate assoiative and ommutative binary funtions, to obviate axioms forthat purpose.The same funtion name may be re-used for another funtion for the sakeof either overloading or re�nement. Overloading means that the funtionname is used with a di�erent signature that does not overlap with an ear-lier delaration, suh as di�erent forms of addition for Skeys and Booleans.Re�nement means that domain restrition implies a range restrition, suhas the re�nement of enryption from �elds to atoms, shown in the nextsubsetion.CONSTANTS. A onstant is essentially a funtion with no arguments. Aonstant delaration has the form CONSTANTS C1; ::: : T1; :::.2.2.3 TypespesA typespe onsists of some delarations, followed optionally by some ax-ioms. Typespes usually introdue a new type and some funtions de�nedon it, but in some ases they merely extend an existing typespe by de�ningnew funtions on existing types.Here is an example of some related typespes found in the prelude.TYPESPEC PKEY;TYPES Pkey;END;TYPESPEC SPKE;IMPORTS PKEY;FUNCTIONSped(Pkey, Field): Field;ped(Pkey, Atom): Atom;END;TYPESPEC PPK;IMPORTS SPKE;TYPES PKUser: Prinipal;FUNCTIONSpk(PKUser): Pkey; 15

sk(PKUser): Pkey, PRIVATE;VARIABLESA: PKUser;X: Field;AXIOMSped(sk(A),ped(pk(A),X)) = X;ped(pk(A),ped(sk(A),X)) = X;INVERT ped(pk(A),X): X | sk(A);INVERT ped(sk(A),X): X | pk(A);END;The �rst typespe delares a data type Pkey (publi key). New types aresubtypes of Atom unless otherwise indiated. The seond typespe de�nespubli-key enryption using a single enryption/deryption funtion ped.This funtion has two type signatures, a more general one for enrypting�elds, and a more spei� one that says that atomi �elds are enrypted toatomi �elds. This is an example of funtion re�nement.The enryption/deryption anellation property for publi-key enryptionis not stated in this typespe, beause key pairs will be generated by fun-tions assoiated with Prinipal subtypes.Typespe PPK de�nes a subtype PKUser of Prinipal. PKUsers have twofuntions de�ned for them giving their permanent publi and seret keys.Funtions are normally publi or universal, in the sense that anyone anompute them, given the argument values. This is not what we want for theseret-key funtion, for if anyone ould ompute the seret key sk(A) justby knowing A, the seret key would hardly be seret. Hene the PRIVATEproperty.If the �rst argument of a funtion is of type Prinipal, it an be delaredwith the PRIVATE property to indiate that the value is available only to theprinipal named in the �rst argument. Thus, only Alie an �nd sk(Alie).There are four axioms in PPK. The �rst two say that sk(A) and pk(A) areinverse keys with respet to ped, in either order. The CAPSL translator doesnot \understand" these axioms; it simply passes them on through CIL to theanalysis tools. However, the invertibility properties of ped are also expressedin the orresponding INVERT statements. These are used by the CAPSLtranslator to hek implementability of spei�ations. INVERT t : xjy meansthat any party (either legitimate or the intruder) holding term t ontaining16

a variable x an ompute x provided that it holds y. y ould be a list ofterms. The use of INVERT statements is overed in more detail in Chapter 3.The use of typespes to de�ne subtypes of Prinipal with funtions to lookup their long-term keys is an important, original stylisti aspet of CAPSL.2.3 Protool Spei�ationsA protool spei�ation has the form:PROTOCOL name;delarationsASSUMPTIONSassumptionsMESSAGESmessages and ationsGOALSgoalsEND;There is one speial kind of delaration that ours only in protool spei-�ations: DENOTES delarations.2.3.1 DENOTES DelarationsDENOTES delarations allow a variable to be de�ned as the value of an ex-pression. This is helpful in protools where there are erti�ates or tikets orpubli values with a omplex struture, and we want to de�ne them initiallyand use a variable for them in the body of the protool. A DENOTES dela-ration setion an delare more than one variable. It has the form DENOTESV = e : A; :::; ::: where e is a term and A is a prinipal. More than oneprinipal, or none, may be listed.A delaration V = e : A is treated as an assignment ation that is exeutedby A when V is �rst used by A. This might happen when A is putting Vinto a message, or when A reeives a message purportedly ontaining V sothat it an make a omparison. A DENOTES ation is used only one by eahagent, sine V is held thereafter. 17

It is possible to omit the prinipal from the DENOTES delaration, as inDENOTES V = e. In this ase, all prinipals will use this ation.DENOTES equations must be plaed in logial order. That is, if there isa DENOTES equation V = f(X) and also a DENOTES equation for X, theequation for X must appear earlier.The variable on the left in a DENOTES delaration must be delared sepa-rately. It is a real protool variable, not merely a plaeholder for marosubstitution.DENOTES delarations are helpful when the same value is omputed in dif-ferent ways by di�erent prinipals. One example of this is in generatinga ommon key via DiÆe-Hellman agreement. Another example is when along-term key must be looked up using a di�erent private funtion by eahprinipal.2.3.2 AssumptionsSyntatially, assumptions inlude statements and ertain speial forms. As-sumption statements are boolean-valued terms or equalities. The speialform most ommonly used as an assumption is the HOLDS form.CAPSL also allows statements and other assumptions to be quali�ed withthe belief operator, e.g., BELIEVES A : BELIEVES B : HOLDS A : K, read: \Abelieves that B believes that A holds K." This syntax is inluded to helpsupport belief logi appliations of CAPSL. Belief assumptions are usefulonly in onjuntion with a suitable modal logi to infer belief goals.There is also a KNOWS operator. This does not refer to values, as HOLDS does.Instead, it is Hintikka's epistemi logi operator, related to BELIEVES. Therelationship is that KNOWS A : � is equivalent to � ^ BELIEVES A : �, i.e.,belief plus truth.2.3.3 MessagesThe MESSAGES setion of a protool spei�ation is a sequene of messages,among whih ations may be interleaved. The MESSAGES setion may endwith a subprotool invoation. These are omplex enough subjets so thata separate setion is alloated to disuss them.18

2.3.4 GoalsThe GOALS setion states the seurity objetives for the protool. Syntati-ally, the same assertions that are legal as assumptions are legal as goals.However, in the GOALS setion one expets to see serey and authentiationassertions.Serey. A SECRET assertion has the form SECRET V : P1; :::. It says that theprotool variable V is serets shared only by the prinipals P1; :::. The listof prinipals may be omitted, in whih ase it is understood that the seretsare shared by all of the prinipals playing legitimate roles in the protoolsession. The semantis of serey assertions is disussed in depth in [MR00℄.The CAPSL translator does not yet (at this writing) introdue \spell" eventsas desribed in that paper; it merely parses the SECRET assertion and passesit on in abstrat syntax.Preedene and Agreement. A PRECEDES goal has the form PRECEDESA;BjV1; V2; :::. Intuitively, this says that if some instane of the B rolereahes its �nal state, it agrees with some instane of the A role on A;B; V1;and V2.Agreement is like preedene exept that there is no existene laim. Forexample, the goal AGREEA;B : V1; :::jW1; :::; says that if there is any instaneof A that agrees with B on A;B;W1; :::, then it must agree on V1; ::: also.2.4 The MESSAGES SetionThe message format is straightforward, but there are some interesting fea-tures in the presentation of message �elds. We disuss those below. Besidesmessages, the MESSAGES setion may ontain ations and subprotool invo-ations.2.4.1 Message FormatA message has the formid. sender -> reeiver: �eld, ...;19

The sender and reeiver must be protool variables of type Prinipal, andthe ontent �elds are terms of type Field. The message id (and its assoiatedperiod) are merely deorative and optional. Some in�x operators and othernotational onvenienes have been introdued to permit CAPSL messagesto look like those in the literature. The existing in�x operators fall into fourategories: onatenation, enryption, arithmeti, and the %-operator.Conatenation. A sequene of �elds may be onatenated into a singlelonger �eld, usually for the purpose of having them enrypted together.Curly brakets f , g and square brakets [, ℄ denote di�erent kinds ofonatenation, whih are translated into di�erent funtions, at and onrespetively. at is assoiative and on is not.Both at and on are binary. Longer onatenations are parsed under theassumption that right assoiation is intended. Thus, [a; b; ℄ is parsed as[a; [b; ℄℄.Assoiativity of onatenation matters when we try to deompose a onate-nation. With non-assoiative on, the �rst omponent of a onatenation[[A,B℄,C℄ is [A,B℄. With assoiative at, the �rst omponent of {{A,B},C}would be A, unless A is itself a onatenation.To deal with this question we di�erentiate between atomi �elds, whihform the subtype Atom of Field, and those �elds that are expressible as aonatenation of smaller �elds. The �rst omponent of a at onatenationis the �rst atomi omponent. Most types { all types in the prelude exeptField and List { are subtypes of Atom.Note. A message A -> B: {C,D} an be reeived by B only if C is atomi.If C is not atomi, B annot parse the onatenation from left to right - itwon't know where C stops and D begins. The translator generates an errormessage if this ondition is not met.Enryption. Putting a key after a braketed expression denotes enryption,using ped if the key is of type Pkey or se if the key is of type Skey. Thus,the expression fA, Kgpk(B) is interpreted as ped(pk(B), at(A, K)).A key after brakets also indiates enryption even without a onatenation,so that fXgK is interpreted as se(K, X).Deryption with sd is indiated with a prime, for example, fXg0K.The same enryption funtions are invoked with square brakets; the onlydi�erene is that the on operator is used for the onatenation. There is20

no di�erene between fXg0K and [X℄0K.Arithmeti. CAPSL permits in�x arithmeti operators +, -, *, /, and ^with type Skey. These are automatially translated to funtions pls, mns,tms, div, and exp, whih appear in the prelude. The prelude does notattempt to axiomatize these funtions. It is assumed that any veri�ationtool that an deal with these funtions has its own understanding of them,and the onnetor for that tool will rename them appropriately.In protools, arithmeti is usually �nite-�eld arithmeti with respet to somemodulus. The value of the modulus may be important for ryptanalysis butit often does not matter for protool analysis. An example of the use ofthese operators, the SRP protool, appears in Appendix C.Arithmeti is used most often to ompute symmetri keys, and that is whythese operators are de�ned on type Skey. It may be desirable to broadenthe domain of arithmeti to all atomi types, with some protetion againstmixing di�erent types.Some protools add or subtrat one from a none in a handshake responseto protet against replay. They don't really need arithmeti. They an useany value-hanging funtion. A protool an have a delaration FUNCTIONSin(None): None if it needs to inrement a none for this purpose. Noaxioms are needed.Lowe's %-Notation. Sometimes it is neessary to distinguish between thesender's view of a message and the reeiver's view, beause the reeiver mayhave more or less knowledge about the struture of a message �eld than thesender. For this purpose, we exploit the %-notation introdued in Casper[Low98℄.A %-term is a term of the form u%v, or a term ontaining some subtermof that form. In the %-term u%v, u is the sender's version of the termand v is the reeiver's version. A term like fA%B, C%Dg makes sense, sinethe sender onstruts fA, Cg and the reeiver sees fB, Dg, while a term likeA%fC%DgK does not make sense. No % should be within the sope of another.Any %-term ould be written equivalently with only a single top-level useof %. The preedene of % is lower than that of any other operator exepta omma separating �elds.
21

2.4.2 AtionsAn ation is an statement that ours in a message list. An equational ationlike X = e may be either an assignment that sets X or a omparison test,depending on whether or not the agent already holds X in that state. If Xis held, the equation an only be a omparison test, beause variables donot hange value. But if X is not held, the equation must be an assignment,sine it would be unde�ned as a test. If there is a term other than a variableon the left, the ation must be a omparison test. (However, in the futureCAPSL may support assignment into an element of an array, and then theexpression on the left will be an indexed variable.)CAPSL an handle an equation with a onatenation of variables on theleft, suh as fA;Bg = e. This is expanded into two equations, in this aseA = first(e);B = rest(e).The result of a failed omparison test, inidentally, or the evaluation of anyother kind of statement to false, is that the ating agent does not make anyfurther state transitions. That is, it rashes silently. If the failure of the testis supposed to generate an error reply, that must be indiated expliitly inthe protool spei�ation, using the onditional seletion syntax disussedbelow.Ations may also be of the form ASSUME statement or PROVE statement.These are essentially assumptions and goals, respetively, exept that theyare assoiated with intermediate states rather than with initial and �nalstates.2.4.3 PhrasesWhen proessing an ation, the CAPSL translator must determine whihagent (atually, whih role) is taking the ation, so that it an determinewhih variables are held. The ating agent is usually apparent from theposition of the ation in the message list. For example, in the message-listfragmentA -> B: X;X = Y;B -> C: Z; 22

it is obviously B who exeutes the ation X = Y . But, what if two messagesin a row are sent by the same agent? For example,A -> B: X;X = Y;A -> C: Z;Now it is not lear whether the ation is taken by B after reeiving the�rst message, or by A before sending the next. The ambiguity is resolvedin CAPSL by inserting a slash \/" as a phrase divider to separate reeiverations from sender ations. In this ase, if we intended that the ation beperformed by B, we would write:A -> B: X;X = Y;/A -> C: Z;The term \phrase" refers to a message and the ations before and after itby its sender and reeiver. Invoations and seletions, explained in the nextsubsetion, are also phrases.2.4.4 Subprotools and SeletionSome omplex protools are atually frameworks that guide a ommunia-tion session through a sequene of \exhanges" or subprotools. A subpro-tool is a way to enapsulate a logially ohesive sequene of messages. InCAPSL, a subprotool is just a separate protool module.A protool P1 may invoke another one, say P2, by using an INCLUDE P2phrase (alled an invoation) in plae of a message. The two protool spe-i�ations would our in the order P1; P2, so that variables de�ned in P1may be imported and used in P2. The name P2 should be delared in P1as a onstant of type Pspe. The outline of invoation use is something likethis:PROTOCOL P1;CONSTANTS P2: Pspe;...MESSAGES 23

...INCLUDE P2;END;PROTOCOL P2;IMPORTS P1;...END;Conditional Seletion. The seletion of later subprotools may be on-ditional on data values or agreements reahed in earlier message exhanges.Another reason for onditional branhing in a protool might be to providean error reply as an alternative to a normal ontinuation after some testfails. In CAPSL, a onditional expression seleting alternative invoationsis alled a seletion. An alternative in a seletion ould be any kind ofphrase, so it ould be a message, an invoation, or a nested seletion. TheSSL example in Appendix C illustrates how this is done. Here is an outlineof how a seletion is used:PROTOCOL P1;CONSTANTS P2: Pspe;...MESSAGES...IF A = B THEN INCLUDE P2;ELSE INCLUDE P3; ENDIF;END;PROTOCOL P2;IMPORTS P1;...END;PROTOCOL P3;IMPORTS P1;...END;There is a problem, in priniple, with ontinuing a protool with more mes-sages after a seletion with alternative subprotools. Di�erent subprotools24

may ause di�erent sets of program variables to beome held. The legalityand meaning of subsequent messages is then ambiguous.Presently, CAPSL deals with this problem in a rather draonian way byrequiring that no statement may follow an INCLUDE, even when there is noseletion. Invoations an be hained, however, to ahieve sequening. Forexample, protool P2 in the outlines above ould ontain another invoationat the end of its MESSAGES setion.A more advaned treatment of subprotool invoation would be to give themarguments so that they ould have their own protool variable ontexts, justas program subroutines do. At the moment, this feature would probablyoutstrip the apabilities of protool analysis tools. Analysis is simpler ifwe assume that subprotools do not \return," they just take over from theparent session.2.5 Environment Spei�ationsWhen a protool is being analyzed or simulated, the analyst may have tospeify whih agents are to be run. The analyst may also have to sup-ply other run-spei� information suh as the initial knowledge of the at-taker. CAPSL spei�ations an inlude ENVIRONMENT spei�ations on-taining this kind of information. Eah environment spei�ation sets up adi�erent senario for analysis. An environment spei�ation ontains de-larations, one or more AGENT setions, and, optionally, any of an EXPOSEDsetion, an AXIOMS setion, and an ORDER setion.An environment spei�ation de�nes onstants for prinipals and perhapsother values like ompromised keys. The spei�ation onstruts agents bynaming the prinipal, role, and initial values for eah agent.Delarations to name prinipals and other onstants ould be plaed in thissetion. For example, suppose we want two prinipals, Alie and Bob, takingthe usual `A' and `B' roles, and Mallory as a dishonest prinipal. We mightset that up like this:ENVIRONMENT Test1;IMPORTS NSPK;CONSTANTSAlie, Bob: PKUser; 25

Mallory: PKUser, EXPOSED;AGENT A1 HOLDSA = Alie;B = Bob;AGENT B1 HOLDSB = Bob;EXPOSED{Bob}sk(Alie);END;An environment spei�ation imports the protool spei�ation it appliesto, in order to refer to its protool variables (A, et.). Agents are named(this is an impliit delaration of a onstant of type Agent) and onstantsmust be given as values for the protool variables initially held by the agent,as required in the protool assumptions. The �rst equation, by onvention,names the prinipal that owns the agent, so that the role of the agent anbe determined. Nones ould be assigned values here or not, depending onthe needs of the analysis tool.When several environment spei�ations are inluded to analyze di�erentsenarios, eah one an import previous spei�ations to take advantage ofthe onstant delarations in them. Agent delarations are not imported.The initial knowledge of the attaker is in the EXPOSED setion. This wouldnormally be a list of terms that the attaker is assumed to hold initially,possibly inluding some items that are delared in the protool as seret.The attaker may be impliitly assumed to hold agent names.A prinipal with an EXPOSED property is one whose private data is all heldinitially by the attaker. In this example, if Mallory is EXPOSED, the valuesof private funtions with Mallory as the �rst argument (suh as, for example,sk(Mallory)) would not have to be added to the EXPOSED list, beause theyare impliitly assumed to be exposed.Agents are, by default, assumed to run onurrently. CAPSL permits anORDER setion to speify some series-parallel sequening of agents, for thebene�t of searh tools that ould save time when suh a restrition is as-sumed. For example, we might say: ORDER (A1; A2)||B1 to mean thatagent A2 does not start until A1 ends, but that sequene runs onurrentlywith B1.An environment spei�ation may have an AXIOMS setion for assumptions26

about its onstants, e.g., AXIOMS sk(Alie) = SKa.

27

Chapter 3CIL
3.1 Multiset Rewrite RulesSupport for multiple analysis tools is aomplished through the CAPSLIntermediate Language (CIL) [DM99b℄. The purpose of CIL is to unam-biguously de�ne the meaning of a protool spei�ation. CIL also ats asan interfae through whih protools spei�ed in CAPSL an be analyzedusing a variety of tools.The hallenge for the design of CIL was to make it general enough andexpressive enough to represent a wide range of protools, and yet at a lowenough level to be lose to the representation used by most veri�ationor model-heking tools. Many suh tools share a spei�ation style thatinorporates state-transition rules spei�ed in a pattern-mathing style, withsymboli terms to represent enryption and other omputations. There isusually a separate and fairly standard intruder model.As an example of the use of pattern mathing, if there is a message B -> A:B, fNa, NbgPK(A), we infer that A will aept only messages whose seond�eld is of the form fNa, NbgPK(A). This implies that A must derypt themessage ontent and on�rm that the result is a onatenation of two �eldsof type None. Furthermore, if A already holds a value for Na or Nb, it willompare that with the one in the message. \Aepting" a message meansthat A will undergo a state transition as a result of reeiving it.The ommonality in the abstrat symboli treatment of protools was re-ognized and odi�ed in the Cervesato, et al meta-notation, in whih state28

transitions are expressed with multiset rewriting (MSR) rules [CDL+99℄.The MSR notation was adapted for CIL. Their notation, aording to theauthors, ould be regarded as either an extension of multiset rewriting witha kind of existential quanti�ation, or a Horn fragment of linear logi. Thesimpliity and generality of this formalism made it suitable to serve as thelanguage in whih to express the semantis of CAPSL. Furthermore, theterm-rewriting aspet orresponded well with the analysis approah takenby Denker, Meseguer, and Talott with Maude [DMT98b℄. CIL may beregarded as a notational variant of the MSR formalism in whih ertainspei� onventions have been used to set up protool models derived fromCAPSL spei�ations.3.1.1 The MSR Protool ModelThe MSR formalism uses transition rules of the formF1; :::; Fk �! (9X1; :::;Xm)G1; :::; Gn;where eah Fi and Gj is a \fat." Fats are atomi formulas of the formP (t1; :::; tr) where P is a prediate symbol and the arguments ti are terms. Aterm is onstruted from typed onstants, variables, and funtion symbols.Free variables are impliitly universally quanti�ed.The state of a system an be represented by a multiset of fats. A rule iseligible to �re when the fats on the left side of the rule an be mathedwith fats in the multiset. When a rule �res, the mathing fats in themultiset are removed from it and replaed by the fats on the right side ofthe rule, instantiated aording to the substitution required by the patternmath. Removing a fat from the multiset redues its multipliity by one, ifit was more than one. Fats in the multiset are typially ground terms (novariables) when �nite-state searh tools are used.The existential quanti�er in linear logi has a speial meaning. Quanti�edvariables are instantiated with fresh (unused) onstants. This behavior isused to model generation of nones.In protool modeling, fats are used to express the entrane of a proess intoa state, or the transmission of a message. In MSR, a state is represented bya fat Ai(:::) where A is the name of a protool variable of type Prinipal,i is a state label, usually an integer, and the arguments are the \memory"of the agent in that role and state. A message (in our dialet) is a fat29

M(a; b; t) where a and b are prinipals and t is a term representing themessage ontent. Another kind of fat an represent attaker knowledge.Rules with an empty left side are interpreted as initialization or fat-gener-ating rules. For eah role in the protool, an initial state fat is generatedwith initially held variables. The rule�! A0(A;B); B0(B)reates two fats representing the initial state of two new agents. Sine Aand B are variables of type Prinipal, this rule an initiate sessions betweenany pair of prinipals. Thus, A0(A;B) says that an agent playing the `A'role of the protool is in a state labeled 0 and is ready to begin a sessionbetween prinipal A, whih owns the agent, and prinipal B.The message A -> B: A, {N}SK(A) would result in at least two transitions,one for the sender A and one for the reeiver B. The A transition would be:A0(A;B) �! (9N)A1(A;B;N);M(A;B; fA; fNgsk(A)g):The B transition would be:B0(B);M(X;B; fA; fNgsk(A)g) �! B1(B;A;N):The X in the sender position of the reeived message is a new variable.We assume here (like Paulson [Pau98℄) that message fats indiate the truesender of the message, but that reeiver transitions an depend only on theontent of the message, and therefore the sender �eld is not mathed withany other variable.3.1.2 CIL Rule SyntaxMSR rules appearing in the output of the CAPSL translator are expressedin CIL syntax, in a uniform funtional notation. All state fats are of theform state(role, num, terms(...)), where role is a role onstant onstrutedfrom a prinipal variable name, suh as roleA, and num is a state label,usually a natural number. The memory items are arguments of the termslist. Enryption and onatenation are expressed using the funtional formsdelared in the prelude or other typespes. Messages are msg fats.So, for example, the transitionA0(A;B) �! (9K)A1(A;B;K);M(A;B; fAgK)30

would appear in CIL asrule(fats(state(roleA,0,terms(A,B))),ids(K),fats(state(roleA,1,terms(A,B,K)),msg(A,B,terms(se(K,A)))))The syntax of CIL, whih inludes other items besides rules, is given inAppendix A.2.3.2 Translator Overview3.2.1 CIL OutputThe translator from CAPSL to CIL has some ommonplae tasks to per-form, like parsing and typeheking, and it also performs the oneptuallyhallenging task of unraveling a message-list protool desription into a setof rewrite rules. Besides the rules, the output of the translator inludes sym-bol table information and other information that will be used by onnetorsand analysis tools.The output of the CIL translation has several parts:1. slot table2. symbol table3. axioms4. loalized assumptions5. protool rewrite rules6. loalized goals7. environment informationThe atual output of the CAPSL translator is a text �le expressing thisinformation in the abstrat syntax of CIL, using a funtional notation. ACIL spei�ation has the form:CILspe(symbols(symbol(...),...), 31

slots(slot(A,roleA,1),...),axioms(...),assums(...),rules(rule(fats(...),ids(...),fats(...)),...),goals(...),envs(...),)The CIL spei�ation of NSPK an be found in Appendix D.A symbol table entry has the formsymbol(ident,status,arg-types,value-type,properties)where ident is the symbol name, status is the kind of symbol, one of opfor a funtion or onstant, pvar for a protool variable, var for a dummyvariable, or type for a type name. The argument types are in a list ofthe form ids(...) and the properties are in a list of the form props(...).The symbol table ontains all identi�ers delared in all of the spei�ationmodules.The slot table maps eah protool variable in the original spei�ation toan argument position in the state prediate of eah role. This is neessaryfor interpreting goals, agent initialization, and other statements that referto protool variables.For example, if we assume that B has the value Bob in the initial state of anagent in role `A', namely state(roleA,0,terms(Alie,Bob)), we need toknow that B is the seond argument in the terms list of the roleA state fat.This is expressed by the slot table entry slot(B,roleA,2). The slot numberfor a program variable does not hange one it is reated; this onvention isenfored by the way the translator generates state fats.Axioms from typespes and environment spei�ations are onsolidated intoa single list.The di�erene between axioms and assumptions is that axioms are universaland only refer to dummy variables, while assumptions, like goals, refer toprogram variables and are loalized to partiular states. Thus, axioms are32

simply passed on as the abstrat-syntax form of axioms that our in theCAPSL spei�ation. Assumptions and goals are expressed in the formlo(nodes(node(role, state), ...), assertion).A CAPSL assumption is loalized to the initial state, and a typial nodewould be node(roleA,0). Delarations of suh role onstants are addedautomatially to the symbol table. CAPSL goals are loalized to the �nalstate, as determined by the translator. The assertion is the abstrat-syntaxform of the CAPSL assertion.The CIL format for rules was summarized above, and the proess for gen-erating them is disussed in detail below in this hapter.An environment entry has the formenvironment(ident, agents(...), exposed(...), order(...))where the exposed and order omponents may be empty, and an agent isspei�ed as agent(ident, eqns(eqn(pvar, term), ...)). The identi�er is justa referene onstant, and the equations assign values to protool variables.The �rst protool variable listed is the prinipal whose variable name de�nesthe role being played by the agent. Other protool variables are set asrequired to provide initial values. The values are usually given as onstantsdelared in the environment. The CIL symbol table inludes those onstants.3.2.2 Translation StagesThe major stages in translation are the following:1. Parsing and type heking2. Syntax transformations3. Rule generation4. Loal Assertions5. OptimizationParsing heks CAPSL syntax and produes a parse tree. Type hekingon�rms the onsisteny of type and signature delarations with eah other33

and with terms ourring in axioms, messages and elsewhere. In the proess,it replaes generi enryption expressed with braketed terms by a hoie ofped or se by heking the type of the key. It also generates a symbol table.There are several syntax transformations:1. INCLUDE phrases are expanded by replaing them by the message listof the named protool.2. In�x arithmeti operators are onverted to funtional form.3. at and on appliations are made binary by assuming right assoia-tivity.4. Uses of % are heked and lifted to the top level of eah term. Thefuntion symbol for % is lowe.5. Role onstants are reated for partiipating prinipals.6. DENOTES equations are inserted where neessary. This is overed inmore detail in the next subsetion.3.2.3 DENOTES ProessingThe idea behind DENOTES proessing is to insert an equational ation intothe message list when a variable with a DENOTES equation is seen for the �rsttime by eah prinipal. These modi�ations are made in abstrat syntax tothe parse tree, rather than to the original CAPSL text.Suppose that the spei�ation ontains DENOTES X = f(Y) : A, and thatthe �rst referene to X by A is in an ation, say Z = g(X). This is thesimplest ase, and the equation for X is plaed just before the ation.Even in this simplest ase, we must onsider that Y might have a DENOTESde�nition, and its use will reursively require the insertion of its equation,and so on. This onern is handled by (1) requiring that DENOTES equationsbe plaed in logial order, so that, in this ase, the equation for Y omesbefore the equation for X; and (2) proessing the DENOTES equations in re-verse order, so that the equation for Y will be inserted before the previouslyinserted equation for X. 34

Suppose the �rst referene to X by A is in a transmitted message, say A ->B: Y, X. As in the ase of of an ation, we plae the equation for X justbefore the message.Suppose the �rst referene to X by A is in a reeived message, say B ->A: Y, X. Then we annot plae the equation before the message, beause itwould be exeuted by B rather than A.What we do, instead, is (1) replae X in the message by the right side of theequation, f(Y); and then (2) insert the equation for X after the message.This is equivalent to having writtenB -> A: Y, f(Y);X = f(Y);3.3 Abstrat Rule GenerationThe ore of translating CAPSL to CIL is the reation of rewrite rules frommessages and ations. To reate rules suessfully for a message, the messagemust be implementable. Two issues for implementability are invertibility andomputablitity of message �elds.Eah message gives rise to at least two transitions, one for the sender andone for the reeiver. With respet to the sender, the translator must hekwhether the sender is apable of omputing all the message �elds{that is,whether the message is omputable. For a message to be omputable, thesender must hold the variables mentioned in it and be able to aess anyprivate funtions used.With respet to the reeiver, the translator has to test the message for"reeivability." A variable is reeivable, whether it is already held or not. Ifit is held, the reeiver performs a omparison with the prior value. If it isnot held, it is learned, and a slot in the state is reated for it. In the ase ofa funtional term, reeivability means that the term is either omputable,so that the reeiver an ompare the reeived value to its own loally storedor reomputed value, or it is invertible, so that the reeiver an deomposeit, and then test or store or further deompose eah extrated subterm.The algorithm for generating rules, with de�nitions for omputability andinvertibility, is given in this setion. For purposes of presenting the algo-rithm, we regard the translator as a �nite-state mahine. Its state is a set35

of role states, its inputs are the messages in the message list, presented inorder, and its outputs are the generated rules.3.3.1 Translator StateThe state of a role is represented by a term S(p; n;x) where p is a protoolvariable of type Prinipal, n is a state number, and x is a sequene of termsheld by p. Most of the terms in x are protool variables, but ompoundterms may be present as well.Before any message is proessed, the initialization rules are generated, onefor eah role in the protool. The initial role state for p has n = 0 and asequene x that begins with p and also inludes any variables delared asheld by that prinipal in the ASSUMPTIONS delaration.For our purposes in desribing the translation, we represent a message as aterm M(p; q; t%r) where p and q are the variables representing the senderand reeiver of the message, and t%r shows the sender's version t of themessage ontent and the reeiver's version r. In CAPSL, a message an haveseveral �elds, but for simpliity we assume here that t and r are single terms.If the message has more than one �eld, its ontent ould be represented asa onatenation of these �elds.3.3.2 Computability and ReeivabilityWe begin with some neessary terminology. In general, a boldfae symbolis a sequene, so x = x1; :::; xn for some n. In some ontexts we will alsouse x to refer to the set of its omponents. R(p) denotes the symbol of typeRole whih orresponds to a symbol p of type Prinipal.Aessibility. A funtion f(y) is p-aessible if f is not private (does nothave the PRIVATE property) or f is private and y1 = p.Computability. In de�ning omputability of a term, we assume that someterms are held{this is the set G{and we derive the set of additional variablesX that are needed to ompute the term. The prinipal p is mentioned onlybeause of the need to test aessibility.t is p-omputable given G with X if1. t 2 G and X = ; or 36

2. t is a protool variable and t =2 G and X = ftg or3. t = f(y), f(y) is p-aessible, eah yi is p-omputable given G withXi, and X = SiXi.We say that t is p-omputable given G if t is p-omputable given G with ;.If Z is a set of terms, we say that Z is p-omputable given G with St2Z Atif eah t 2 Z is p-omputable given G with At.As an example, onsider t := ped(SK(A); N). t is A-omputable given fAgwith fNg beause ped is not private, and, although SK is private, SK(A) isA-aessible.Invertibility. To de�ne p-invertibility, we assume that there are axiomsof the form inv(f(y); yi; Z) for some operators f , where y is a sequene ofdi�erent variables and Z is a list of terms not inluding yi. An invertibilityaxiom states that f(y) an be inverted to ompute a value for yi providedthat the values of all terms in Z are omputable. For example, fXgpk(A) anbe inverted to ompute the value for X given sk(A). The CAPSL onretesyntax for an invertibility axiom uses the keyword INVERT, and in the CILsyntax this beomes an invertible statement. Enyrption funtions aregenerally invertible; look at the prelude for examples of invertibility axiomsfor them.t is p-invertible at i given G if t = f(y) and invertible(f(y); yi; Z) and Zis p-omputable given G.Reeivability. If a term t is a variable or onstant (a funtion with noarguments), reeiving it means to ompare it with the terms in the held setG and add it to G if it is not there. If t is ompound, it must be eitheromputable or invertible, and in the latter ase the omponents extratedfrom it are reeived reursively. This proess enlarges G to H.t is p-reeivable given G to H if1. t is p-omputable given G and H = G, or2. t is p-omputable given G with ftg and H = G [ftg, or3. We have:(a) t = f(y) is p-invertible at some j given G and37

(b) y0 is sequentially p-reeivable given G to H 0, where y0 is themaximum subsequene yi1 ; :::; yik suh that t is p-invertible at ijgiven G, and() if t is p-omputable given H 0 then H = H 0 else H = H 0 [ftg.Sequential reeivability expresses the notion that variables learned whilereeiving a message an be used to ompute terms reeived later in thesame message.y = y1; :::; yn is sequentially p-reeivable given G to H if, for j = 1; :::; n, yjis p-reeivable given Gj to Hj, where Gj = Hj�1 and H0 = G and Hn = H.The suess or failure of the sequential reeivability test depends on theorder of the sequene of terms, sine the held set G is augmented as partof the proess. A more forgiving de�nition would be able to rearrange theorder to �nd one that works, and it ould be implemented by making severalpasses over the sequene.As an example, onsider t := ped(sk(A); N). t is B-reeivable given fAg tofA;N; tg. Upon reeiving t the agent in role B not only learns the none Nbut also the whole term t sine t is not B-omputable given fA;Ng.3.3.3 Message RulesA message M(p; q; t%r) gives rise to two protool rewrite rules, one for pto send the message t, and one for q to reeive r. Eah protool rewriterule is generated by a translator state transition. A transition assoiatedwith sending the message a�ets only the sender-role state, and the oneassoiated with reeiving the message a�ets only the reeiver-role state.A shema is a way of presenting a set of translator transitions in a parame-terized form, independent of the partiular state number and term sequene.There is a Send shema for the sender-role transition and a Reeive shemafor the reeiver-role transition. A shema may speify onditions on thestate transition; if they are not satis�ed, the transition fails, and so does thetranslation. A shema ends with a protool rewrite rule.The Send shema says that if the message is omputable, possibly with aset of new variables, the sender an transmit the message. The sender mustalso hold the identity of the reeiver.38

Notation. If A is a set of variables, A onsists of the elements of A writtenas a sequene, in some arbitrary but onsistently hosen order.In the shemas below, a variable t is alled new in the urrent translatorstate if t is a protool variable, t is of type None or has the FRESH property,and no other prinipal q has t in its urrent state. A set of new variables isalso alled new.Send shema:Current state: S(p; n;x)Message: M(p; q; t%r)Condition: q 2 x and t is p-omputable given x with A and A isnewNext state: S(p; n+ 1;xA)Rule: S(R(p); n;x) �! (9A); S(R(p); n + 1;xA);M(p; q; t)The Reeive shema says that if the message ontent is reeivable withlearned terms A, the reeiver aepts the message and adds the terms inA to its state.Reeive shema:Current state: S(q; n;x)Message: M(p; q; t%r)Condition: r is q-reeivable given x to H and A = H � xNext state: S(q; n+ 1;xA)Rule: S(R(q); n;x);M(U; q; r) �! S(R(q); n+ 1;xA)The reeiver of a message annot see the sender's address. Thus, we assumean arbitrary sender variable U of type Prinipal.Example. Given the translator state S(B; 2; [B;A℄) and the messageM(A;B;fNgsk(A)), the new translator state is S(B; 3; [B;A;N; fNgsk(A)℄) and thefollowing CIL rule is generated to reeive the message:rule(fats(state(roleB,2,terms(B,A)),msg(Z,B,terms(ped(sk(A),N)))),ids(),fats(state(roleB,3,terms(B,A,N,ped(sk(A),N))))).39

3.3.4 Equational AtionsThe right side of an equational ation is always tested for omputability.Depending on the omputability of the left side, the ation is understood tobe an assignment or a test for equality. If the left side terms are on or at,we handle them in a partiular way.The Test shema says that if both sides of the ation are omputable, thenthe reeiver performs a test. Two rules are reated for this purpose. Inthe �rst transition the equation is added to the list of terms. If the test isevaluated to true, then the seond transition advanes the state number anddeletes the equation.Ation shema (test):Current state: S(p; n;x)Ation: t = t0Condition: t and t0 are p-omputable given xNext state: S(p; n+ 2;x)Rules: S(R(p); n;x) �! S(R(p); n+ 1;x(t = t0))S(R(p); n+ 1; true) �! S(R(p); n+ 2;x)The Assignment shema requires that the right side is omputable and thatthe left side is a protool variable that is not held by the agent. Then theagent an perform an assignment transition.Ation shema (assignment):Current state: S(p; n;x)Ation: y = t0Condition: t0 is p-omputable given x and y is a protool vari-able, y =2 xNext state: S(p; n+ 1;xy)Rule: S(R(p); n;x) �! S(R(p); n+ 1;xt0)If the left hand of the ation is a variable that is not held by the atingagent, then the ation is an assignment. The newly assigned term is addedto the termlist and there is an assoiated slot table entry that relates the40

term to the variable y. Consequently, the next rule, if any, refers to the termas variable y.There are two speial ation shemas in ase the outmost funtion on the leftside is one of the two onatenation funtions. If the left side of the equalityis a term using at or on, then the ation is split into two equalities, onefor eah omponent of the onatenation.Ation shema (on):Current state: S(p; n;x)Ation: on(y; z) = t0Condition: t0 is p-omputable given xRules: < rules for y = head(t0) >< rules for z = tail(t0) >Ation shema (at):Current state: S(p; n;x)Ation: at(y; z) = t0Condition: t0 is p-omputable given x and y is atomiRules: < rules for y = first(t0) >< rules for z = rest(t0) >The shema for at is more restritive sine the first operator on at isonly de�ned if the �rst argument is an atom.3.3.5 SubprotoolsThe shema for seletion says that the agent �rst has to evaluate the on-dition. If the ondition is true, it transitions into a new state that is thestarting state for all rules generated for the subprotool P1. If there are ktransitions for p in subprotool P1, then the p starts from state n+ k+3 inthe branh in whih the ondition did not hold true.Seletion shema:Current state: S(p; n;x)Phrase: if t then P1 else P2 41

Rules: S(R(p); n;x) �! S(R(p); n+ 1;x(t = true))S(R(p); n+ 1;xtrue) �! S(R(p); n+ 2;x)S(R(p); n+ 1;xfalse) �! S(R(p); n+ 3 + k;x)< rules from P1; p starts from n+ 2; p has k transitions >< rules from P2; p starts from n+ 3 + k >States of other agents in the protool may be hanged in the invoked sub-protools. Thus, the next states of other agents have to be also reetedaordingly in the branhes of the seletion.3.4 Loal AssertionsWhen initial onditions, messages and ations are onverted to state transi-tion rules and assertions are moved into a separate list, the temporal inter-leaving of intermediate goals or idealization assumptions with the messagelist must be replaed by a di�erent kind of interleaving, whih assoiatesthem with network states. A network state is represented with a list of rolesand state labels.For the sake of uniformity, initial assumptions are loalized to the networkstate in whih all roles are at state zero. Assertions in the GOALS setion areloalized to the network state in whih all roles are in the last states produedby the rule generation proess. (Or all suh last states, if branhing ours.)A loal assertion is of the (abstrat) formlo(node sequene, assertion)where nodes have the following (abstrat) syntax:node(role, state-label)3.5 An Attaker ModelThe CAPSL translator does not generate attaker rules, beause most at-taker rules would be standard and built into any analysis tool that needs42

them. A standard attaker model would inlude an attaker memory fatsuh as N(u), meaning that the attaker holds the term u. Beause theattaker an interept any message, there ould be a rule M(A;B; T) �!N(T) and a similar rule for forging messages, N(T) �! N(T);M(A;B; T).There would be rules for deomposing and synthesizing messages using theavailable onatenation and enryption funtions. A general attaker modelof this kind is desribed in [CDL+99℄.The attaker should be able to ompute the value of any funtion delaredin a typespe, given its arguments, exept private funtions. If there is astandard (\Spy") or delared dishonest prinipal, the attaker an omputethat prinipal's private values, e.g., sk(Spy). The attaker an omputeonstants, sine they are simply funtions with no arguments.Connetors should generate ertain protool-spei� or senario-spei� rulesfor initializing the attaker, using information from the environment spei-�ation.Initially the attaker holds all exposed terms as delared in the environmentsetion. For instane, in the environment used as an example in Setion 2.5,the exposed term fBobgsk(Alie) results in a fat-generating rule for theattaker, in CIL syntax:rule(fats(),ids(),fats(net(ped(sk(Alie),Bob)))),where net(...) is the CIL version N(:::) above.If a prinipal is exposed, then all private funtions de�ned for this prinipalare also exposed. If Mallory is a PKUser, there would be a rulerule(fats(),ids(),fats(net(sk(Mallory)))),for example.Sine all onstants are omputable by the attaker, there would be rules likerule(fats(),ids(),fats(net(Alie)))for all prinipal onstants named in the environment.For purposes of indutive proof, it is simpler to assume that all prinipalsare held by the attaker, with a rule43

rule(fats(),ids(),fats(net(A)))where A is a variable of type Prinipal. On the other hand, indutive proofsmight model the attaker in a way that is equivalent to a rule model butexpressed quite di�erently, using Paulson's Analz and other set losure fun-tions [Pau98, MR00℄.An environment might delare onstants that are supposed to be seret,suh as nones, session keys, and perhaps symbols de�ned to name long-term seret keys using axioms. These onstants an be delared with theCRYPTO property to prevent them from being given to the attaker initially.A protool might inlude variables representing nones that are not seret,suh as sequene numbers, or weak passwords. If these values are not pro-teted in messages, the attaker will obtain them by eavesdropping, but ifthey are proteted by enryption, there will need to be further attaker rulesstating that they an be produed by the attaker, to represent guessing orroutine omputations.

44

Chapter 4Optimization of CIL RewriteRules
4.1 MotivationThe basi, natural translation from CAPSL to CIL, as desribed Chapter 3and [DM99a℄, generates two rewrite rules per message, one for the messagesender and one for the message reeiver. Often, however, the transitionthat reeives a message and the one from the same agent that sends a replyan be ollapsed into a single transition that does both, and MSR protoolenodings produed by hand usually have this harateristi. Suessiveomputations by the same agent to update or enlarge its state memory analso be ombined.The optimization algorithm desribed in this hapter automatially imple-ments the kind of rule ombinations that would typially be done by hand.Relative to the simple message-by-message translation, this redues thenumber of rules, as well as the number of states per role, by about 50%. Weshow that this redution is sound in the sense that it is attak-preserving,by essentially the same de�nition used in [SS98℄. The optimizing trans-formation has been implemented as a post-proessing step in the CAPSLtranslator.The number of rules has diret impat on the performane of state evalua-tion tools suh as model hekers. In the model-heking approah, a �niteinstantiation of the protool is tested for seurity breahes. For this purpose,45

an exhaustive searh strategy enumerates all reahable states for a given ini-tial state and tests whether they invalidate a given seurity property. Evenfor small protools and very restrited numbers of sessions the number ofstates explodes. This is due partly to the fat that the intruder behavioris highly non-deterministi, and partly due to the fat that new sessionsinvolving legitimate prinipals may be reated and exeute asynhronously.Thus, a linear redution in the number of rules an redue the number ofstates to be explored by an exponential fator.Beause optimizations are performed as a series of suessive rule-ombina-tion steps, there is a question as to whether the order of ombination stepsa�ets the size of the �nal set of rules. We show that the optimization,onsidered as a redution system, is terminating and onuent, and heneanonial, so that the �nal set of rules is unique.4.2 Optimization ExamplesWe illustrate the optimization steps with the help of the NSPK protoolgiven in Setion 2.1.6. The following two rewrite rules represent B's reeiptof the �rst message and B's sending of the seond message of NSPK.rule1 : B0(B) M(X;B; fNa; Agpk(B))! B1(B;Na; A)rule2 : B1(B;Na; A)!(9Nb) B2(B;Na; A;Nb) M(B;A; fNa; Nbgpk(A))Under the assumption that agents have a deterministi behavior, i.e., atmost one rule is appliable in eah agent state, we know that after thereeiving the message from A, the only thing B an do is to reply with theseond message to A. The following optimized rule ombines B's behaviorinto a one-step transition in whih B reeives A's message and immediatelyreplies to it:rule1; 2 : B0(B) M(X;B; fNa; Agpk(B))!(9Nb) B2(B;Na; A;Nb) M(B;A; fNa; Nbgpk(A))When the two rules are ombined, the original pair of rules is deleted. Op-timization ours only when there is no other way to enter state B1, so ine�et state B1 is also eliminated. 46

Combining the rules in this example is straightforward sine the right-handside of the �rst rule and the left-hand side of the seond rule are idential.More generally, for two rules R and R0 to be optimizable it is neessary(though not suÆient) that the state fat on the right-hand side of R is aninstantiation of the state fat on the left-hand side of R0. The next exampleillustrates this.For the sake of this example, replae the message B -> A: {Na,Nb}pk(A)message in NSPK by a sequene of two ations, an assignment and a messagetransmission, so that the message list is:MESSAGESA -> B: {A,Na}pk(B);T = {Na, Nb};B -> A: {T%{Na,Nb}}pk(A);A -> B: {Nb}pk(B);This message list yields the following CIL rules for B transitions.rule1 : B0(B) M(X;B; fNa; Agpk(B))! B1(B;Na; A)rule2 : B1(B;Na; A)!(9Nb) B2(B;Na; A;Nb; fNa; Nbg)rule3 : B2(B;Na; A;Nb; T)!B3(B;Na; A;Nb; T) M(B;A; fTgpk(A))In this ase, besides ombining rule1 and rule2, we an also ombine rule2and rule3, sineB2(B;Na; A;Nb; T) an be instantiatiated to B2(B;Na; A;Nb;fNa; Nbg) with the substitution T 7! fNa; Nbg. Thus, we an optimize theserules torule2; 3 : B1(B;Na; A)!(9Nb) B3(B;Na; A;Nb; fNa; Nbg)M(B;A; fNa; Nbgpk(A)).Attak Preservation. In order to assure that our optimization tehniqueis attak-preserving, we need to make further restritions on the form ofoptimizable rules. For a pair (R;R0) of rewrite rules to be ombined, werequire that the seond rule has no messages on the left-hand side. Weshow with the help of a simpli�ed example that allowing a message on theleft-hand side of the seond rule is unsafe.47

Assume the following two rewrite rules for an agent in role B.rule1 : B0(B) ! B1(B;B)rule2 : B1(B;B) M(A;B; sk(B))! B2(B;B)Sine the state prediate B1(B;B) ours in both rule1 and rule2 one mightbe tempted to optimize these rules torule1; 2 : B0(B) M(A;B; sk(B))! B2(B;B).Assume furthermore that M(A;B; sk(B)) is an impossible message, beauseB never transmits sk(B), and that B1 is a state in whih a protool invariantfails, perhaps beause it requires that the �rst two omponents of B's statemust be di�erent. Thus, the failure state is reahable in the original protoolspei�ation, but sine B1 has been deleted by optimization and B2 annotbe reahed sine M is impossible, the attak state is no longer present inthe optimized protool. This is why the left-hand side of the seond rule isnot allowed to have messages.Name lashes. Before we an formally de�ne the optimization of tworewrite rules, we have to deal with variable name lashes. In order toavoid aidentally introduing bindings between variables, we apply renam-ing funtions. The following example illustrates the need for renaming.Assume the following two rules whih aidentally use the same variable X:rule1 : B0(B) M(X;B;A) ! B1(B;A)rule2 : B1(B;A) ! (9X) B2(B;A;X).These rules are optimizable. The variable X is used in both rules, thoughthere is no relation between the variable X of rule1 and the variable Xof rule2. To avoid introduing a binding between these two independentvariables, we rename X of rule2 to X 0 in the optimized rule. Thus, theoptimized rule for rule1 and rule2 isrule1; 2 : B0(B)M(X;B;A) ! (9X 0) B2(B;A;X 0):The oinidene of variables B and A in the two rules is not a problembeause the need to unify the B1 fats in the two rules determines theappropriate substitution for them. 48

4.3 Optimization StepsAs intuitively illustrated in the previous setion some restritions on rulesare neessary to guarantee an attak-preserving optimization. In summary,we only onsider rules that desribe asynhronously ommuniating, deter-ministially behaving agents, where eah agent state is generated by at mostone rule.Loal rule. For optimizations we deal only with loal rules, in whih onlyone state fat appears on the left and one on the right of the rule. Therules that arise from protool transitions in an asynhronous environmentare normally loal, sine only one agent hanges state at a time.A rule is loal if it is of the formR : F M! (9V) F 0 M0where F; F 0 are state fats for the same role, and M and M0 ontain nostate fats. Sets of variables and multisets of fats are denoted in bold-faeletters.Deterministi rule. States that are optimized away have to be determin-isti in both diretions. The �rst rule of an optimized pair needs a bakwarddeterministi state on the right, while the seond rule needs a forward de-terministi state (the same state) on the left.A state Ai is forward deterministi in R if there exists at most one rule inR with a fat of that state on its left-hand side. A loal rule is forwarddeterministi if its state is forward deterministi.A state Ai is bakward deterministi in R if there exists at most one rule inR with a fat of that state on its right-hand side. A loal rule is bakwarddeterministi if its state is bakward deterministi.A state Ai is deterministi in R if it is both forward and bakward deter-ministi.Optimizable pair of rules. In the following de�nition of optimizable pairsof rules, Vars(G) is the set of variables ouring in G.Given a pair of loal rules (R;R0) in R of the form:R : F M1 ! (9V1) G M2R0 : G0 ! (9V2) H M3 49

Then the pair (R;R0) is �-optimizable if1. R and R0 are loal on the same role2. There are no variable name lashes between R and R03. There exists a substitution � on Vars(G0) suh that G0=� = G4. The state of whih G is a fat is deterministi.As mentioned before, name lashes have to be resolved before our optimiza-tion tehnique is applied. Name lashes an always easily be resolved byrenaming variables. In setion 4.5 we desribe how variable renaming anbe eÆiently realized for CIL.Optimization step and optimized rule. We now an present the de�-nition of the optimized rule for an optimizable pair of rules.Given a pair (R;R0) of �-optimizable protool rewrite rules of the form:R : F M1 ! (9V1) G M2R0 : G0 ! (9V2) H M3then an optimization step removes R;R0 from R and replaes them withRo = opt(R;R0), de�ned asRo : F M1 ! (9V1 V2) M2 (H M3)=�:4.4 Properties of OptimizationWe show that optimization is sound in the sense that it is attak-preserving.We also show that, under additional assumptions, it delivers a unique set ofoptimized rewrite rules regardless of the order in whih optimization stepsare applied. Detailed proofs an be found in [DMKFG00℄.Protool Seurity InvariantsBefore we go into the details of the proof, we make some observations aboutprotool properties. Like Shmatikov and Stern [SS98℄, we only deal withprotool seurity properties that are invariants; that is, they are propertiesof the global state that are supposed to hold for all reahable states.50

Furthermore, the invariants depend only on state fats and intruder memory,not on message fats. Serey invariants state that the intruder memory doesnot ontain ertain terms (whih appear in the state memory of some honestprinipal), and other seurity properties suh as agreements and preedenerefer only to state fats. As pointed out in [SS98℄, if a seurity invariant isfalse, it remains false if the intruder's knowledge inreases. They alled thisproperty monotoniity of invariane.We make use of a more general haraterization of seurity invariants. Inprotools that an be expressed in CAPSL and translated to CIL, statememory is monotoni for honest prinipals as well. One an honest agentholds a value for a protool variable (assoiated with an argument positionin its state memory), that value never hanges. It follows that invariantsthat depend only on the global state annot hange their truth value onethe relevant variables have beome de�ned for a given agent. In partiular,if a state invalidates a protool invariant, every suessor state will violatethis invariant as well. We refer to this property as persistene of violations.4.4.1 SoundnessOur soundness argument reasons about the state graph (S; T) of a rule set.The nodes of this state graph are the possible global states (multisets ofground fats) S of the protool. The graph has direted, labelled transitions(edges) T onsisting of pairs of states related by the instantiation of a rule,whih labels the transition. A state is reahable if there is a sequene oftransitions to it from the empty multiset, whih is the initial state. We willrefer to a state graph simply by its transition set T , sine one an �nd allreahable states in it.For example, the transition s R=�! s0 means that there exists a rule R : F!(9V) G and a substitution � suh that F=� is a subset of s and the resultingsystem state s0 is derived from s by replaing the multiset of ground termsF=� with the multiset of ground terms G=�. (The substitution � assignsunused values to the variables in V.)Optimization steps eliminate two rules and replae them with a new om-bined rule. This hanges the state graph by eliminating those transitionslabelled with instantiations of the eliminated rules, and adding new transi-tions made possible by the new ombined rule. The new state graph has thesame set of states, but some of the states have beome unreahable beause51

some loal states have been optimized away.Attak preservation. An optimization step taking T to T 0 is attak-preserving if, for any seurity invariant ', and any state s reahable in Tthat violates ', there is a state s0 reahable in T 0 that also violates '.Theorem 1 Optimization steps are attak-preserving.In the proof of the above Theorem we make use of a lemma that showsthat a transition instantiating the seond rule R0 of an optimizable pair(R;R0) ommutes with any other transition in T . The basi idea is toshow that if a state violating a seurity invariant is reahable with a paththat inludes transitions due to one or both of the rules that have beeneliminated by the optimization step, then that state is reahable using analternate path that uses the new rule resulting from the optimization. Thealternate path is onstruted using ommutativity properties implied by thelemma. Sometimes, one annot reah the original violation state, but thenone an reah another state reahable from the violation state, whih mustbe a violation state by the persistene-of-violations assumption.4.4.2 Termination and UniquenessThe motivation for optimization is to redue the number of states in orderto speed up state evaluation tools suh as model hekers. Our proposedoptimization tehnique onsists of single optimization steps performed insequene. For analysis tools it is of importane whether the order in whihoptimization steps are performed has an impat on the �nal set of rules oron the �nal number of rules. We will show that optimization is terminatingand delivers a unique result.Optimization an be understood as a rewrite system in whih a set of rules (aterm) is rewritten to an optimized set of rules (another term). A well knownresult in the theory of rewrite systems says that a term has a unique normalform (i.e., it annot be further rewritten into another term) if the rewritesystem is anonial (for details see for instane [Sny91℄). For a rewritesystem to be anonial it has to be noetherian and onuent. Noetheriansystems have no in�nite sequenes of rewrites. A rewrite system is termedonuent when for any term whih an be rewritten into two di�erent termsvia several rewrite steps, there exists a ommon redution term.52

We show that our optimization proess, understood as a rewrite systemtranforming between sets of rules, is anonial. That means that optimiza-tion is a terminating proess whih delivers a unique set of rules as result.Therefore, speaking in terms of the assoiated state graphs, the originalstate graph T and the fully optimized state graph T 0, we an infer that T 0 isuniquely determined. For pratial purposes that means that applying theoptimization steps proposed in this paper in any order always leads to thesame optimized state graph whih an be used for seurity analysis.Theorem 2 Given a state graph T , then there exists a uniquely determinedfully optimized state graph T 0.In order to prove termination and uniqueness of optimization we make useof two lemmas. The �rst one states that a rule is optimizable with at mostone rule to the right (in an optimizable pair) and at most one rule to theleft.Using this lemma, we an argue that a given set of rules an be arrangedinto a totally ordered list of rules suh that two rules are optimizable only ifthey are adjaent (but adjaent rules do not neessarily form an optimizablepair). In the following we refer to suh a list as list of optimizable rules.We show that optimization steps are loally onuent. That means one analways reah a ommon list of rules after two optimization steps (generally,loal onuene allows for more than two rewrite steps).The seond lemma is onerned with loal onuene. It states that if twooptimization steps involve di�erent optimizable pairs of rules, then they areommutative. That is, they might be exeuted in either order and the orderhas no e�et on the resulting list of rules. If two optimization steps havea ommon rule, then after one optimization step the other optimizationstep is no longer appliable sine the rule whih both steps had in ommonhas been deleted. But the new optimized rule an be taken for anotheroptimization step to yield a ommon list of rules. Moreover, the optimizationrelation between rules is preserved. In summary, we show that performingoptimization steps on a list of optimizable rules satis�es the following twoonditions.1. Performing an optimization step rewrites a list of optimizable rulesinto another list of optimizable rules. Assume in the original list thepair (R1; R2) has been optimized to Ro, then Ro is optimizable to53

the left with whatever rule R1 was optimizable to the left, and Ro isoptimizable to the right with whatever rule R2 was optimizable to theright.2. Moreover, we show that optimization steps are loally onuent. Thatis, given a list of optimizable rules that an be rewritten into twodi�erent list of optimizable rules, we an always perform one moreoptimization step in order to reah a ommon list of optimizable rules.Sine the set of rules is �nite and eah optimization step redues the numberof rules by one, the optimization proess is terminating. Therefore, theoptimization proess desribes a rewrite system that is noetherian. A wellknown result in the theory of term rewrite system says that a system isanonial if it is noetherian and onuent. A noetherian system is onuentif and only if it is loally onuent. Thus, using the loal onuene Lemmaonludes the proof of Theorem 2.4.5 ImplementationA CIL rewrite-rule optimizer has been implemented in Java and is applied asa post-proessing step in the CAPSL-CIL translator. It is publily availabletogether with the CAPSL parser, type-heker and CAPSL-CIL translatorat the CAPSL web site [Mil00b℄.The optimizer starts reading a CIL spei�ation and heks pairs of rewriterules for optimizability. In order to deide whether two rules are optimiz-able, the optimizer needs to aess information from the CIL spei�ation.In partiular, in order to deide whether two state fats are optimizationompatible, the types of symbols are heked. This way we an guaranteethat a proper substitution mapping between state prediates exists. More-over, the optimizer needs to aess assumptions and goals in order to hekthat the states to be eliminated are not named in goals and assumptions.As long as two optimizable rules are found, the optimizer omputes the op-timized rule, deletes the original rules and adds the new optimized one tothe rule set.Variable Renaming. In previous setions we mentioned the problem ofname lashes. The simple-minded solution is to rename all variables in oneof the rules in an optimizable pair to new variables. For instane, given theoptimizable rules 54

rule1 : B0(B;A) M(X;B;A) ! (9X)B1(B;A)rule2 : B1(B;A)! (9X) B2(B;A;X)we ould rename the variables B;A; and X of rule2 using the renaming mapB 7! B0; A 7! A0;X 7! X 0:rule2 : B1(B0; A0)! (9X 0) B2(B0; A0;X 0)Now, the rules do not have any variable names in ommon and we mayoptimize them obtainingrule1; 2 : B0(B) M(X;B;A) ! (9X 0) B2(B;A;X 0):As one an observe, some of the renamed variables are mapped bak totheir original name due to the given substitution map �. For instane,in the example above B0 has been mapped bak to B using �. Thus, amore eÆient solution for eliminating name lashes is to only rename thosevariables whih are not mapped by the substitution mapping �.Let (R;R0) be an optimizable pair of protool rewrite rulesR : F M1 ! (9V1) Pn(�x) M2and R0 : Pn(�y)! (9V2) G M3where F;G; Pn(�x); Pn(�y) are state fats, �x = x1 : : : xr, �y = y1 : : : yr, andM1;M2;M3 are multisets of message fats. Let W and W0 be the set ofvariables ourring in R and R0 respetively.The optimum of R and R0, Ro, is omputed by the following algorithm:1. E = fxi j xi = yi ^ i = 1; : : : ; rg2. C = fu j u 2W ^ u 2W0 ^ u 62 Eg3. Mren = fu 7! u0 j u 2 C ^ u0 62 (W [W0)g4. Rren = R0=MrenLet Rren = Pn(�y0) ! (9V02) G0 M035. Msubst = fy0i 7! xi j y0i 6= xi ^ i = 1; : : : ; rg55

6. Ro : F M1 ! (9V1 V02) M2 (G0 M03)=Msubst)7. The symbol table of the CIL spei�ation is updated with all newlyintrodued variables.C represents the set of variables whih may ause a lash. The variables inC are renamed in R0 with new variables using the renaming map Mren. Theoptimum is now omputed using the new rule Rren. At last, new variablesare introdued in the symbol table.We have applied the optimizer to several protool spei�ations. The CAPSLspei�ations of the protools may be found at our web site [Mil00b℄. TheCIL spei�ations were generated using the publily available CAPSL-CILtranslator. Table 4.1 shows the results. The redution ratios learly showProtool # Input Rules # Output Rules Redution RatioNSPK 7 5 28.57%EKE 14 6 57.14%Otway 9 6 33.33%WMF 5 4 20%SRP 19 8 57.89%SSL 29 11 62.07%Vouher 10 5 50%Table 4.1: Redution ratio of CIL rulesthat the optimizer may redue the number of rules signi�antly. This way,the performane of veri�ation tools, suh as �nite-state exploration tools,an be drastially inreased.

56

Chapter 5Analysis Tools
Integration of CAPSL with protool analysis tools inludes two prinipalativities: development of onnetors for interfaes from CIL to existingtools, and development of analysis tehniques using general-purpose toolsthat an be adapted for this purpose. In partiular, PVS an be applied toonstrut indutive proofs of protools, and Maude an be used as a modelheker with a suitable meta-level searh strategy.Connetors are being written to integrate CIL with a variety of formal se-urity analysis tools, not only PVS and Maude, but also Athena [Son99,Mil00a℄. In this setion we desribe the analysis tehniques developed forthe appliation of PVS and Maude. Before doing so, we summarize theommon features of the onnetors developed for PVS, Maude, and Athena.5.1 Connetor DesignEah onnetor has to ful�ll the following two harateristis:Syntatial and semantial orretness. One has to deide whih CILpiees are neessary for the translation into the targeted tool, andhow they are translated. The resulting spei�ation needs to meetall syntatial requirements of the target language and the translationhas to express CIL onstruts in a way that �ts with the semantisof the analysis tool. In some ases CIL onstruts an be translatedin a straightforward fashion into onepts of the target language, in57

other ases the onnetor translation re-interprets CIL onstruts andexpresses them via appropriate (ombinations of) language onstrutsof the target language.Pratiability. Though there might exists an obvious translation into thelanguage of the analysis tool, the resulting spei�ation might not bein a format that supports eÆient and pratial analysis. For instane,exeutability, non-determinism, and performane aspets of the trans-formed spei�ation have to be taken into onsideration. The onne-tor algorithm might need to perform alterations or optimizations inorder to meet these riteria.In order to aomplish these objetive, ertain issues must be addressed:- The translation strategy for transition rules- Initialization- Type and funtion limitations- Goal generation- Software engineering onsiderations for expediting onnetor writing.The translation strategy is di�erent for eah tool, and generally it is not toodiÆult, due to the funtional ongruene between CIL rules and most tooltransition rules.Intialization refers to the transfer of protool-spei� delarations into thelanguage of the analysis tool, as well as the generation of any protool-spei� attaker rules.Tools are sometimes limited with regard to the set of datatypes and funtionswith whih they an deal e�etively. The onnetor must resolve inompati-bilities between the tool's voabulary and the typespes provided in CAPSLby the prelude and the user.The CAPSL translator passes goal statements on almost unhanged to theonnetor, whih must do the best it an to generate tool-spei� versionsof those goals.Given that we have written three onnetors and expet that others will bewritten, we have attempted to make the ommon features as transferable58

as possible. There is fairly good support for writing onnetors in Java.There is a Java lass to parse the CIL output into a labelled tree struture,using another Java lass de�ning the labelled tree type. The user-invokedonnetor lass is typially a short standard program that invokes the parserand passes the parse tree to a workhorse translator lass.The parser and tree lass an be re-used as is, and the user-invoked onnetorlass of one onnetor is only a few lines di�erent from that of another. Theworkhorse translator lass is, of ourse, tool-dependent, but it an make gooduse of the tree-manipulating funtions provided. Programming a onnetorin this environment is muh like LISP programming.5.2 PVSThe PVS spei�ation and veri�ation environment was developed at SRIand has been applied to many di�erent design problems for high-assuranehardware and software [ORS92℄. Our approah to using PVS for rypto-graphi protool veri�ation began with Paulson's trae model [Pau98℄.We then modi�ed and further developed the approah to work with a state-based model whih is more ompatible with the one built into CIL.While the summary of our PVS approah in this setion is intended tobe readable without a prior bakground in the appliation of PVS, someexperiene with PVS would be neessary to put it into pratie.While the protool modeling approah and the indutive proof tehniqueapply to both serey and authentiation goals, the main emphasis of thissetion lies in the desription of our formalization of the serey theorempublished in [MR00℄. This theorem redues serey proofs for protools to�rst-order reasoning; in partiular, disharging these proof obligations doesnot require any indutions. The trik is to on�ne the indutions to general,protool-independent lemmas, so that the protool-spei� part of the proofis minimized. Moreover, serey protools are modularized in the sense thatthere are separate veri�ation onditions for eah protool rule.We illustrate the enoding of spei� protools in our model using theOtway-Rees protool [OR87℄. We do not, however, go into details of proofs,sine they are mostly straightforward adaptations of the ones stated in [MR00℄.In order to formulate our results, we borrow the notion of ideals on strandspaes [THG98℄, and we show how this onept is useful in a state model59

ontext for stating and proving serey invariants. We show how the om-plement of an ideal, whih we all a oideal, serves as a atalyst to applyPaulson's alulus-like set operators. Our protool model is also unusual inthat message events are interspersed with \spell" events that generate theshort-term serets in a session and speify whih prinipals are supposed toshare them.Besides proving serey results of standard benhmark protools like theOtway-Rees and the Needham-Shroeder (publi key) protools, our meth-ods have been applied suessfully (by B. Dutertre of SRI International) inthe proess of verifying the group management servies of Enlaves [Gon97℄.5.2.1 ModelingThe modeling task begins by de�ning the primitive data types that mayour as message �elds: agents, keys, and nones. This hoie of primitivetypes is derived from Paulson's approah, and the PVS onnetor has toonvert CAPSL types into these, suh as from Prinipal (and all subtypes)to agent.These sets of objets belonging to these primitive data types are assumedto be disjoint, and they are all subtypes (subsets) of the �eld type field.They are modeled as abstrat datatypes in PVS.An agent is either an `ordinary' user, a dediated server Srv, or the sup-posedly maliious Spy. Eah agent A has some long-term keys: a publi keyPub(A), a orresponding private key Prv(A), and a symmetri key Shr(A).Message �elds are divided into primitive and ompound �elds. The primi-tive �elds ontaining agents, nones, and keys are onstruted as Agent(A),None(N), and Key(K). (The PVS onversion mehanism is used to suppressthese injetions in the sequel.) Compound �elds are onstruted by onate-nation or enryption. The onatenation of X and Y is the term X ++ Y. Theenryption of X using the key K is Enr(K,X), regardless of the type of key.The possible message �elds are elements of the datatype field.Agents and ompound �elds are never designated as seret by poliy, thoughsome ompound �elds may have to be proteted to maintain the serey ofsome of their omponents. Thus, we de�ne basi �elds as nones and keys,whih are the kinds of primitive �elds that may be designated as seretaording to poliy. The PVS de�nition of the membership prediate basi?60

is shown below.basi?: set[field℄ = union(None?, Key?)As a notational onvention, variables A, B and variants always stand foragents; K and variants always stand for keys; and N and variants are alwaysnones. X, Y and Z are arbitrary �elds.Eah key K has an inverse.inv(K): key =CASES K OFPub(A): Prv(A), Prv(A): Pub(A),Shr(A): Shr(A), Ssk(A): Ssk(A)ENDCASESThus, both Shr(A) and Ssk(A) are symmetri. The speial agent Server isassumed to hold the symmetri (and thus, shared) key Shr(A) of any agentA.There are three kinds of events: messages, spells, and state events.event: DATATYPEBEGINMsg(Cont: field): Msg?Cast(Serets: set[(basi?)℄, Cabal: set[agent℄): Spell?State(Role: nat, Label: nat, Memory: field): State?END eventMessages are essentially Paulson's Says events, and the ontent of a messageevent is a �eld. We do not need to refer to the sender and reeiver ofa message. A spell generates ertain session-spei� primitive �elds anddesignates them as seret. A spell is an event Cast(S, C), where S is a setof short-term basi �elds alled the book, and C, the so-alled abal, is a setof agents who are permitted to share the serets in S.As a notational onvention, we use E (and variants) to denote events, whileM is a message and C is a spell. 61

A global state is simply a olletion of events. Notationally, variants of H areglobal states. We shall see later that states reahable by a protool ontainmessages in transit and loal states of agents partiipating in the protool.global: TYPE = set[event℄We extend the notion of a ontent to global states in the natural way. Spellsand state events do not ontribute to the ontent. Similarly, the serets ofa state are obtained as the basi �elds of the serets of its ast events.sees(H)(X): boolean =EXISTS (M: (Msg?)): member(M,H) & Cont(M) = Xserets(H)(X): boolean =EXISTS (C: (Spell?)):member(C,H) & basi?(X) & member(X,Serets(C))5.2.2 Indutive RelationsThe fundamental operations on sets S of message �elds, as introdued byPaulson, are Parts(S), Analz(S), and Synth(S).Briey, Parts(S) is the set of all sub�elds of �elds in the set S, inludingomponents of onatenations and the plaintext of enryptions (but not thekeys). Note that if member(X, Parts(fYg)), then X is a subterm of Y, in thesense of [THG98℄, written X <= Y. The subterm relation is a partial order.Analz(S) is the subset of Parts(S) onsisting of only those sub�elds thatare aessible to an attaker. These inlude omponents of onatenations,and the plaintext of those enryptions where the inverse key is in Analz(S).Analz(S)(X): INDUCTIVE bool =S(X)OR (EXISTS Y: Analz(S)(X ++ Y))OR (EXISTS Y: Analz(S)(Y ++ X))OR (EXISTS K: Analz(S)(Enr(K, X)) AND Analz(S)(inv(K)))The intruder in our model synthesizes faked messages from analyzable partsof a set of available �elds. This motivates the de�nition of fake(S).62

Fake(S): set[field℄ = Synth(Analz(S))Fake_Parts: LEMMA Parts(Fake(S)) = union(Parts(S), Fake(S))5.2.3 Ideals and CoidealsIf the spy ever obtains some seret �eld X, it an transmit X as the ontentof a message. Thus, our serey poliy is that if the message with ontentX ours in some trae, then NOT member(X,S), where S is a set of basiserets.The invariant that we will atually prove is that NOT member(X, Ideal(S)),where Ideal(S) is the ideal generated by S: the smallest set of �elds thatinludes S and whih is losed under onatenation with any �elds and underenryption with keys whose inverses are not in S. Here, Ideal(S) is the k-ideal Ik[S℄ from [THG98℄ where k is the set of keys whose inverses are notin S.With our hoie of k, the ideal is de�ned as follows:Ideal(S)(X): INDUCTIVE boolean =S(X)OR (EXISTS Y, Z: X = Y ++ Z & (Ideal(S)(Y) OR Ideal(S)(Z)))OR (EXISTS Y, K: X = Enr(K, Y) & Ideal(S)(Y) & NOT S(inv(K)))Under the assumption that any term not in the ideal may be already om-promised, it is neessary to protet this whole ideal, beause ompromisingany element of the ideal e�etively ompromises some element of S. It turnsout that proteting this ideal is also suÆient.The omplement of and ideal, whih we all a oideal, is denoted by Coideal(S).This de�nes the set of �elds that are publi with respet to the basi seretsS, i.e., �elds whose release would not ompromise any serets in S.The property that makes the notion of \oideal" worth de�ning is thatoideals are losed under attaker analysis, thereby implying that protetionof the ideal is suÆient.Analz_Closure: LEMMA Analz(Coideal(S)) = Coideal(S)63

Synth_Closure: LEMMA subset?(S,(basi?)) =>Synth(Coideal(S)) = Coideal(S)5.2.4 Protools and SereyA protool spei�es whih messages or spells an be added to a global state.A seret in a spell book must be unused in the prior state, in the sense thatit is not a part of any message ontent and it has not ourred as a seretin a prior spell.unused(H: global)(X: field): boolean =basi?(X) & NOT(Parts(sees(H))(X)) & NOT(serets(H)(X))A protool rule is a triple onsisting of a pre- and a post set of events anda set of nones. Intuitively, suh a rule is appliable in some global state Hif the pre events are a subset of H and if the nones in the rule are unusedin H. A rule �res by deleting the pre events from the state and adding thepost events.rule: TYPE =[# Pre: set[event℄,Nones: set[(basi?)℄,Post: set[event℄ #℄There are several loal onditions on protool rules. First, there is at mostone spell in the post, and a ast and a message event may not our simul-taneously in the post. Seond, all serets of asts in the post must be subsetof the rule nones. Third, regularity states that whenever a longterm keyK is neither in the parts of the ontent or the memory of the pre then it isalso not in the parts of the ontent or the memory of the post.single_spell(post: set[event℄): boolean =FORALL (C, C1: (Cast?), E: (Event?)):(member(C, post) & member(C1, post) => C = C1)& (member(C, post) & member(E, post) => NOT Msg?(E))64

fresh(Ns: set[(basi?)℄, post: set[event℄): boolean =FORALL (C: (Cast?)): member(C,post) => subset?(Serets(C),Ns)regular(pre, tau1): boolean =FORALL(K: longterm):(NOT(Parts(sees(pre))(K)) & NOT(Parts(memory(pre))(K)))=> (NOT(Parts(sees(post))(K))& NOT(Parts(memory(post))(K)))It is usually straightforward to hek that rules of a spei� protool obeythese onditions. Usually, we (mis)use the PVS prover to automatiallyhek these stati onditions.Rules that satis�es the onditions above are olleted in the type protool.protrule(rl: rule): boolean =single_spell(Post(rl))& fresh(Nones(rl),Post(rl))& regular(Pre(rl),Post(rl))protool: TYPE = set[(protrule)℄A protool P and a given set of initial knowledge I (of the spy), a global I-extension is a binary relation of states. This relation determines a transitionsystem. An extension is either honest, i.e. it orresponds to a move by aplayer following the rules, or it is faked by the spy. As usually, the spy isredued to add only messages with a ontent that an be inferred from theontent of the urrent state and the initial knowledge.honest(P: protool)(H, H1): boolean =EXISTS(rl: (P)):subset?(Nones(rl), unused(H))& subset?(Pre(rl), H)& H1 = union(Post(rl), differene(H, Prestates(rl)))fake(I: set[field℄)(H, H1): boolean =EXISTS(X: (Fake(union(sees(H), I)))): H1 = add(Msg(X), H)65

global_extension(P: protool, I: set[field℄)(H, H1): boolean= honest(P)(H, H1) OR fake(I)(H, H1)We need some further onepts before stating our serey theorem. Thebasi serets assoiated with a spell inlude not only the elements of thespell book but also the long-term serets of the agents in the abal.ltk(C: (Cast?))(X: field): boolean =Key?(X)& longterm(Val(X))& EXISTS(A: agent): Q(A)(Val(X)) & Cabal(C)(A)basi_serets(C)(X: field): boolean =basi?(X) AND (Serets(C)(X) OR ltk(C)(X))A spell is ompatible with an initial knowledge set that does not ompromiseits assoiated basi serets, or mention the short-term serets in its book.ompatible(I: set[field℄)(C: (Cast?)): boolean =disjoint?(basi_serets(C), Parts(I))The set of reahable states H is de�ned in the usual way using a least �xed-point de�nition.reahable(P, I)(H): INDUCTIVE boolean =empty?(H) OR (EXISTS (G: global):reahable(P, I)(G)& global_extension(P, I)(G, H))A protool is seure with respet to its serey poliy and the spy's ini-tial knowledge I if every reahable state it generates is seret-seure. Thisproperty, for traes, was alled \disreet" in [MR00℄.seret_seure(I: set[field℄)(H: global): boolean =FORALL C: ompatible(I)(C) & H(C)=> subset?(sees(H), Coideal(basi_serets(C)))66

The serey proof for a protool has a protool-independent part and aprotool-dependent part. The protool-dependent part is expressed by theoultness property de�ned below. It says that if the prior state is seret-seure, the next message event generated by the protool does not ompro-mise a seret. This has to be proved individually for eah protool. Thisprotool property was alled \disreet" in [MR00℄.oult(P: protool): boolean =FORALL (I: set[field℄, H: global,C: (Cast?), rp: (protrule)):reahable(P, I)(H)& seret_seure(I)(H)& ompatible(I)(C)& H(C)& subset?(Pre(rp), H)& P(rp)=> subset?(sees(Post(rp)),Coideal(basi_serets(C)))The protool-independent part of a serey proof is the Serey theorem. Itonly has to be proved one.serey: THEOREMoult(P) => subset?(reahable(P, I), seret_seure(I))The proof of this theorem is along the lines of the proof in [MR00℄ for provinga serey theorem for trae models, but now the indution is on the lengthof protool extensions.Notie that these are stritly serey results, and show only that the seretsgenerated in a partiular run of the protool are not ompromised. Mostauthors of protool proofs have noted that the seurity objetives of a proto-ol may be undermined in other ways than by ompromising serets, usuallydue to some failure of authentiation. Possible ombinations of serey andauthentiation are disussed in [MR00℄.5.2.5 Example: The Otway-Rees ProtoolThe goal of the Otway-Rees protool is to mutually authentiate an initiatorand responder and to distribute a session key generated by the server. The67

protool onsists of four messages, presented below as they appear in aCAPSL MESSAGES setion.The seurity objetive is to prove that none of the serets Na, Nb, or K aredislosed.or1. A -> B: M,A,B,{Na,M,A,B}Kas%F1 ;or2. B -> Srv: M,A,B,F1%{Na,M,A,B}Kas,{Nb,M,A,B}Kbs;or3. Srv -> B: M,{Na,Kab}Kas%F2,{Nb,Kab}Kbs;or4. B -> A: M,F2%{Na,Kab}Kas;The full protool spei�ation inludes DENOTES delarations indiating thatKas and Kbs are the keys shared by A and B, respetively, with the serverSrv.The PVS enoding of this protool shown below was produed by hand. ThePVS onnetor produes a muh less readable version. The PVS onnetoris also, as of this writing, not yet apable of produing the spells and proofobligations automatially. Here we only state a seletion of the formalizationof the Otway-Rees protool rules.The spell rule spl1 generates the none Na as needed for the �rst protoolstep. Note that the server need not be mentioned in the abal.spl1(A, B: agent, Na: none): (protrule) =(# Pre := emptyset,Nones := singleton(Na),Post := singleton(Cast(add(Na,emptyset),add(A, add(B, emptyset))))#)The type onstraint (protrule) auses the PVS type heker to generateveri�ation onditions orresponding to the onditions on protool rules.These and all the other veri�ation onditions are easily disharged usingthe PVS prover.Sending and reeiving is split into two parts. The �rst step in the Otway-Rees protool, for example, is transribed as follows.snd1(A, B: agent, N, Na: none): (protrule) =68

(# Pre := add(State(roleA, 0, A ++ B ++ Srv),add(Cast(add(Na, emptyset),add(A, add(B, emptyset))), emptyset)),Nones := add(N, emptyset),Post := add(State(roleA, 1, A ++ B ++ Srv ++ Na),add(Msg(N ++ A ++ B ++Enr(Shr(A), Na ++ N ++ A ++ B)), emptyset))#)rv1(A, B: agent, N, Na: none): (protrule) =(# Pre := add(State(roleB, 0, B ++ Srv),singleton(Msg(N ++ A ++ B++ Enr(Shr(A), Na ++ N ++ A ++ B)))),Nones := emptyset,Post := singleton(State(roleB, 1, B ++ Srv ++ N ++ A))#)Rules that introdue nones (to be kept seret) take them from a prior spellwith the expeted abal. When an agent uses a seret from a spell book, theagent does not see any of the other serets in the same spellbook, though itmight know about them from prior messages.In general, a sequene of states generated by these rules interleaves thebehavior of as many agents as we wish, and any number of onurrent orsequential sessions of the same agents. Altogether, the Otway-Rees protoolis formalized as follows.otway_rees: protool ={ r: (protrule) |EXISTS A, B, N, Na, Nb, K:r = init(A, B)OR r = spl1(A, B, Na)OR r = snd1(A, B, N, Na)OR r = rv1(A, B, N, Na)OR ...}The serey theorem states that it suÆes to show oult(otway rees). Ina �rst step, using skolemization and split rules in order to show oultnessfor reah rule separately. For the lemma below oultness follows triviallyfor most protool rules. 69

suffiient_for_oultness: LEMMAdisjoint?(Msg?, Post(rp)) => oult(singleton(rp))It remains to prove oultness for four rules in the Otway-Rees protool. Inthe ase of the snd1 rule, for example, one has to prove:{-1} subset?(sees(H), Coideal(basi_serets(C))){-2} reahable(OR, I)(H){-3} H(C){-4} H(State(roleA, 0, A ++ B ++ Srv)){-5} H(Cast(add(None(Na), emptyset),add(A, add(B, emptyset))))|----------{1} Coideal(basi_serets(C))(N ++ A ++ B ++ Enr(Shr(A), Na ++ N ++ A ++ B))Currently, we still prove these kinds of veri�ation onditions in an inter-ative way (typially around 20-40 interations per rule), but the repetitivepatterns in these proofs suggest higher-level proof strategies.5.2.6 ConlusionsOur serey theorem separates protool-dependent and protool-independentaspets of serey proofs. The protool-dependent part is to show the o-ultness property, whih only asks whether honest messages ompromiseserets, given strong assumptions about the preservation of serey in theprior message history.The serets to be proteted are de�ned in an expliit, uniform way by intro-duing \spell" events into the protool. Spell events generate the short-termserets for a partiular \abal", the set of agents sharing the new serets.Serets are shown to be proteted even when the long-term serets of otheragents, or the short-term serets in other protool runs (with other spells)are ompromised.The losure results on the oideal have turned out to be a useful addition tothe arsenal of proof tehniques, enabling interesting examples to be shownseure. Protool proofs are still omplex enough so that we feel proof-heking and automation to be valuable for the sake of assurane, and we70

believe that the same tehniques that simplify manual proofs will also behelpful in organizing mahine-assisted proofs.Currently, we are developing high-level PVS strategies for automatiallydisharging most veri�ation onditions for typial protool rules. In thesestrategies we try to apture the repetitive patterns that have been showingup in hand and mehanized interative proofs. It is our hope that, usingthese strategies, we an prove serey results about realisti protools ina fairly automati way. We have developed an initial version of the PVSonnetor, but it needs to be improved to reate more readable protooltheories and to inorporate goal information.5.3 MaudeIn this setion we desribe the design deisions and optimization solutionsfor a CIL onnetor to Maude. Maude is a novel, wide-spetrum exeutableformal spei�ation language that has been suessfully applied to ommu-niation and seurity protools (see ase studies on the Maude web page[Mau00℄). In partiular, Maude an be eÆiently used as a model hekerfor seurity protools as shown in [BD00, DMT00, DMT98b℄. In order tominimize translation e�orts into Maude and ahieve maximal reusability ofsearh strategies, attaker model and other prede�ned data strutures, wedesigned a CIL-to-Maude onnetor that has been implemented in Java.Suh a onnetor automatially translates CIL spei�ations into Maude,and, thus, enables a protool designer to make use of the Maude modelheking failities without knowing Maude spei�s. The following is a listof \ingredients" for the CIL onnetor to Maude:- Spei�ation of pre-de�ned CAPSL data types in Maude;- Representation of the CIL model in Maude;- De�nition of an attaker model;- Algorithm for translating protool spei� CIL onstruts (suh mes-sage lists and environments) into Maude;- De�nition of a general searh strategy for model heking;- Protool-dependent and protool-independent optimization tehniquesthat improve the performane of the Maude model heker;71

We illustrate the design of the CIL-to-Maude onnetor by means of anexample. A prototypial implementation of the Maude onnetor in Java is�nished. In the appendix we present the Maude spei�ation that has beenprodued using the onnetor.5.3.1 The Maude LanguageMaude [CDE+99, CELM96, Mau00℄ is a multi-paradigm spei�ation lan-guage based on rewriting logi [Mes92℄. Maude spei�ations an be eÆ-iently exeuted using the Maude rewrite engine, thus allowing their use forsystem prototyping and the debugging of spei�ations.Part of what makes Maude very well suited for the purpose of protoolanalysis is its exible wide-spetrum harater: it an deal with very earlydesign phases suh as arhitetures and high-level designs, an be used toquikly develop exeutable prototypes, and an also be used to generateode. There is also a wide range of options on the kind of analyses thatan be performed. One an develop formal models of a system very early,an debug formal spei�ations|whih an be partial and inomplete|by exeuting them, an do more exhaustive model-heking and symbolisimulation analyses, or, for highly ritial subsystems, an in fat do fullformal veri�ation using Maude's theorem proving tools.The Maude model heker makes use of the reetive apabilities of rewritinglogi and Maude [CM96℄. Reetion allows user-de�ned exeution strategiesthat an be formally spei�ed by rewrite rules at the metalevel, inludingstrategies suh as breadth-�rst-searh that an exhaustively explore all theexeutions of a system from a given initial state.We briey summarize the syntax of Maude. In the CIL-to-Maude onnetorwe mainly make use of the following two types of modules:- funtional modules, that are equational theories used to speify alge-brai data types; they are delared with the syntax fmod ... endfm,and- system modules, that are rewrite theories speifying onurrent sys-tems; they are delared with the syntax mod ... endm, andImmediately after the module's keyword, the name of the module is given.After this, a list of imported submodules an be added. One an also de-72

lare sorts and subsorts (speifying sort inlusion) and operators. Operatorsare introdued with the op keyword. They are delared with the sorts oftheir arguments and result, and syntax is user de�nable using undersores` ' to mark the argument positions. Some operators an have equational at-tributes, suh as asso and omm, stating, for example, that the operator isassoiative and ommutative. Suh attributes are then used by the Maudeengine to math terms modulo the delared axioms.We make use of two kinds of logial axioms, namely, equations|introduedwith the keywords eq, or, for onditional equations, eq|and rewrite rules|introdued with the keywords rl, or for onditional rules rl. Funtionalmodules an only have equations, whereas system modules an have anykind of axioms. The mathematial variables in suh axioms are delaredwith the keywords var and vars.5.3.2 Translation of the CAPSL PreludeOur urrent onnetor is restrited to the operators provided in the CAPSLprelude (i.e., list onatenation, ryptographi operators for symmetri andpubli key enryption, et.) whih have been eÆiently translated intoMaude. The Maude module with the CAPSL prelude is automatiallyloaded with any CAPSL protool spei�ation.In general any CAPSL type delaration an be translated into Maude. Thereason for this restrition lies in the attaker model. The omplexity of theattaker model is proportional to the number of funtion delarations andaxioms. The more operators are de�ned, the more possible omputationsan attaker an perform. We restrited our attaker model to the usualfuntionality of omposing and deomposing as well as enrypting and de-rypting messages using the standard operators de�ned in the prelude (e.g.,at,on,ped,se). As a onsequene, we only deal with type spei�ationsfrom the CAPSL prelude.Type, funtion, and onstant delarations. Type and subtype dela-rations orrespond to sort and subsort delarations in Maude. Forinstane, the delaration TYPES Role, Spe, Agent: Objet trans-lates into the Maude sort delarationssorts Objet Role Spe Agent .and additional subsort delarations73

subsorts Role Spe Agent < Objet .Sine there exists no default supersort in Maude we have to expliitlyde�ne subsort relationship for all subtypes of Atom. Funtions and on-stants are both translated into Maude operator delarations. In Maudean operator is de�ned by a name, a list of argument sorts and its targetsort. Constants are operators with empty argument parameter. Forinstane, the CAPSL funtion at(Field, Field): Tape, ASSOCis translated into op at : Field Field -> Tape [asso℄. Weintrodued two additional boolean operators to deal with invertibil-ity statements: op INVERT : | : Field Field List[Field℄ ->Boolean to apture invertibility axioms that have a list of �elds asthird parameter and op INVERT_:_ : Field Field -> Boolean torepresent invertibility axioms with only two parameters.Variables and axioms. Variable delarations suh as VARIABLES Al:Atomare expressed in Maude as var Al : Atom. CAPSL axioms are rep-resented by Maude (onditional) equations. For instane, the axiomfirst(at(Al, Xl)) = Al looks like this eq first(at(Al,Xl)) =Al in Maude. IF-THEN-ELSE axioms suh asIF keypair(PKl,PKIl) THEN ped(PKIl, ped(PKl, Xl)) = XlENDIFan be represented by a onditional equationeq ped(PKIl, ped(PKl, Xl)) = Xlif (keypair(PKl, PKIl) == true).Properties. As for properties, assoiativity (ASSOC) and ommutativity(COMM) are supported by Maude. The privay property PRIVATE istreated indiretly. A private funtion symbol is one whih annot beaessed by the attaker (unless the symbol is private to the attaker).We provide a tailored solution to assure that the attaker only usesappropriate funtions in rewrite rules. CRYPTO is treated similarly. Sofar we only handle the FRESH property of Nones by introduing aounter that guarantees freshness of none values (see Setion 5.3.4and Setion 5.3.5).Using these general guidelines we translated the CAPSL prelude into aMaude module. 74

5.3.3 De�nition of the CIL modelThe exibility of Maude allows us to simulate CIL rewrite rules using asyntatial representation that mathes a mix�x1 version of the CIL notationof Setion 3.1.2. In order to ahieve this goal, we provide a standard Maudespei�ation that de�nes all sorts, operations and equations neessary todesribe the spei�s of a CIL model suh as state, msg and intruder fats.The following funtional theory (i.e., a funtional module without equations)de�nes CIL fats.fth FACT isproteting FIELDS .proteting CAPSLPRELUDE .sort Fat .op Msg : Prinipal Prinipal Fields -> Fat . *** msg fatop State : Role MahineInt Fields -> Fat . *** state fatop Net : Fields -> Fat . *** intruder fatendfthThe imported module FIELDS de�nes an operator op [_℄ : List[Field℄-> Fields . to represent �eld lists enlosed in square brakets suh as[A,B,Na℄. LIST is another parameterized module that de�nes list opera-tions. The CAPSL prelude is also imported in order to refer to the sortsPrinipal and Role. Multiset of fats are then de�ned by the followingtheory.fth FACTS isproteting MSET[Fat℄ .sort Fats .op [_℄ : MSet[Fat℄ -> Fats .op attak : -> Fats .endfth1We prefer to use the mix�x notation over pre�x notation sine it is more readableand shortens the protool spei�ations. Thus, instead of using the pre�x operator fatsfor multisets of fats, we used square brakets around multisets of fats. We also enloseterm lists in square brakets. 75

The imported module MSET[Fat℄ de�nes multisets of fats using \," forseparating fats. The term [State(roleA, 1, [A,B,Na℄), Msg(UNK, A,[ped(pk(A), at(Na,Nb))℄)℄ is of sort Fats due to the above theory(assuming appropriate variable delarations). This representation is verylose to the CIL notation introdued in Setion 3.1.2. The onstant attakof sort Fats is used in the searh. For a given protool spei�ation, wenegate the goals and de�ne systems states as patterns that invalidate thegoals. We then de�ne equations that rewrite a system state that invalidatesa goal into attak. The searh strategy terminates when an attak state isfound. Further down we give details for the searh strategy.With the help of the above module we an mirror the CIL rules in Maude ina very straightforward way with only few alterations. One alteration is thatMaude rewrite rules need a label. The urrent automated CIL-to-Maudetranslator numbers the rules onseutively.5.3.4 Maude Attaker ModelThe omputational apabilities of an intruder are modelled by rewrite rules.Information that an be extrated from messages sent to, or intereptedby, the attaker are stored in the global state as data of the form Net(l)where l is a variable of sort Fields. We model possible attaker ationsusing additional rules that intereptmessages (and plae them on the net),fake new messages, deompose messages on the net and plae their partson the net, ompose messages from parts, and enrypt messages. We givea few examples here.rl [interept℄ :[Msg(a,b,l), fs℄ => [Net(l), fs℄if (not(Net(l) in fs) and not(spyOf(a) == true)) .rl [fake℄ :[Net([a℄), Net(l), fs℄=> [Net([a℄), Net(l), Msg(Spy,a,l), fs℄if (not(spyOf(a) == true) and not(Msg(Spy,a,l) in fs)) .rl [fake2℄ :[Net([a℄), fs℄ => [Net([a℄), Msg(Spy,a,[a℄), fs℄if (not(spyOf(a) == true) and not(Msg(Spy,a,[a℄) in fs)) .rl [deompose℄ :[fs℄ => [analyze(nets(partition(fs))),76

nonNets(partition(fs))℄if (ard(analyze(nets(partition(fs))),nonNets(partition(fs))) > ard(fs)) .The interept rule says that the ontent of any message that is not ad-dressed to a spy an be interepted by it (there may be more than one spyin the system) if the spy an learn some new data. The latter ondition,formalized as not(Net(l), assures that the intruder only interepts whenshe gains some value by interepting the message. If the intruder alreadyknows the ontent of the message, that is Net(l) in fs (fs is a variableof sort fat set), than interepting the message is useless. This onditionspeeds up the searh proess by avoiding exploring unneessary states. fakestates that for an agent a on the network and for a message l, the messageMsg(Spy,a,l) is inserted into the global state. The ondition assures thatthe spy does not send a faked messages to himself and that the messageis new. Note that we have adopted the onvention of [Pau98℄ where themessage soure and destination arguments are the true soure and intendeddestination of the message, and they are not aessible to the reeiver ofthe message. Hene, Spy is the sender here (and in rvMsg1 the sender isunknown). The rule fake2 is similar but allows mathing with only one statefat. The deompose rule is implemented in suh a way that in one step theattaker retrieves the maximum amount of information from the urrentlyheld �elds by applying deomposition and deryption funtions de�ned inthe prelude. The deompose rule partitions the fat set into attaker fatsand non-attaker fats. The funtion analyzed reursively applies deom-position and deryption operators on the attaker fats until no more addi-tional knowledge is extrated. For performane reasond, this rule only �resif the attaker knowledge an be inreased. In order to ahieve determinismfor eah omposing step, the orresponding rules only reate one new termusing one of the omposition or enryption funtions de�ned in the prelude.Thus, for eah of the onstrutional operators suh as ped, se, on, atthere are rules in the Maude attaker module that desribe state transitionsthat reate new attaker fats. The attaker might need to apply these rulesseveral times suessively in order to build a omposed message whih hewants to fake.
77

5.3.5 Translating CIL Protools and EnvironmentsThe parts of a CIL spei�ation that are relevant for produing the orre-sponding Maude spei�ation are Symbols, Axioms, Rules, Environment,and Goals.SymbolsSymbol delarations are translated in very straightforward manner to Maude.Depending on the kind of symbol delaration, they result in Maude sort andsubsort delarations or operator delarations.Type delarations. A type delaration symbol(ident1,type,ids(),ident2,props()) turns into sort delarations with assoiated subsort dela-rations: sort ident1 and subsort ident1 < ident2.Constant or funtion delarations. The delaration symbol(ident, op,args, val, props) is translated into op ident : args -> val [props ℄ .Variable delarations. A variable delaration symbol(ident, var/pvar,ids(), val, props) orresponds to the following Maude variable dela-ration var ident : val .Properties of variables annot be expressed diretly in Maude. So farwe treat FRESH, CRYPTO, and EXPOSED properties in the onnetor toMaude. They are not expressed by similar Maude onepts, rather weprovide tailor-made solutions.For the sort of a fresh variable we de�ne onstrutors that ful�ll thefreshness requirement. For example in the ase of nones, our ur-rent implementation uses integers to enumerate instanes of a sort.op None : MahineInt -> None de�nes a none generator thatprodues None 1, None 2, MahineInt is a Maude spei�data type for integers. There are several ways to assure freshness ofnones. We hose to maintain a system ounter as part of the protoolthat is inreased eah time a fresh variable of some sort is generated.Analogous to the PRIVATE property of funtions, a CRYPTO property ofa variable is expressed impliitly. That means that no attaker rule anmake use of a rypto variable, unless it is held by the attaker or anbe generated by the attaker using publi funtions. The semantis of78

the RANDOM property is still to be de�ned in CIL. EXPOSED terms willbe handled in the initial state of an attaker. EXPOSED(sk(Alie))is translated into Net([sk(Alie)℄) expressing that the seret key ofAlie is on the network (and thus, known to the attaker).AxiomsIt is relatively easy to translate CIL Axioms into Maude. CIL only usesequations, boolean prediates, if-then-else expressions and the invertibilityprediate. Eah of these onepts an the represented via onditional equa-tions in Maude. For instane, the following set of CIL axiomsaxioms(if(keypair(K1,K2),eqn(ped(K1,ped(K2,F)),F),true),keypair(sk(U),pk(U)),invertible(ped(pk(U),F), F, terms(sk(U)))translates into the Maude (onditional) equationseq ped(K1,ped(K2,F)) = F if keypair(K1,K2) .eq keypair(sk(U),pk(U)) = true .eq INVERT ped(pk(U),F) : F | sk(U) = true .RulesUsing the Maude module for the CIL model, we an mirror CIL rewriterules almost identially in Maude. There are two main di�erenes. Forone, rules in Maude have to be labelled. We urrently number rules rulesonseutively. The seond di�erene is that, depending on the solution wehose for generating fresh values, additional prediates might show up in therules. This annot be avoided, sine the abstrat onept of fresh values hasto be implemented in an exeutable formalism like Maude. In the followingwe hose to use a ounter fat Cnt(n), whih determines the next available,fresh integer in order to reate nones. The ounter is updated any time anone is reated. Though the ounter is not by itself seret, and thus, itlooks as if the attaker an generate any none (inluding those generatedby honest agents), we assure in the attaker model, that the attaker doesnot aess the ounter, unless to reate its own nones.79

The following rules orrespond to the CIL rules for NSPK for sending andreeiving the �rst message.rl [1℄ :[State(roleA,0,[A,B℄),Cnt(n),fs℄=> [State(roleA,1,[A,B,None (n+1)℄),Msg(A,B,[ped(pk(B),at(None (n+1),A))℄),Cnt(n+1),fs℄ .rl [2℄ :[State(roleB,0,[B℄),Msg(UNK,B,[ped(pk(B),at(Na,A))℄),Cnt(n),fs℄=> [State(roleB,1,[B,Na,A℄),Cnt(n),fs℄ .fs is a free variable that mathes the remaining fats in the multiset.Coneptually, initialization rules ould be translated one-to-one into Mauderules:rl [initA℄ :[mt℄ => [State(roleA,0,[A,B℄)℄ .The problem with suh an initialization rule is that it is always enabled sinemt is the identity element of the multiset operator [℄ for fats, and thus,any system on�guration has mt as a sub-on�guration. This would unne-essarily ause the Maude model heker to loop in�nitely. Moreover, thevariables on the righthand side are free. The Maude model heker needs tobind variables to values in order to exeute the protool for spei� agent in-stantiations. To resolve both problems, we deided to skip the initializationrules and instead provide a means of setting up agents for model hekingsessions by using the environment information.EnvironmentEah test environment results in an initial on�guration that is modelledas a fat set. Currently, we only handle environment in whih all agentsexists onurrently. Here is the initial state for the test environment Test1of NSPK given in Setion 2.5.op Test1 : -> Fats . 80

eq Test1 = [State(roleA,0,[Alie,Bob℄),State(roleB,0,[Bob℄),Net([Mallory℄),Net([Alie℄), Net([Bob℄),Net([ped(sk(Alie),Bob)℄) ℄ .The attaker knows the names of all prinipals that are part of the sessionand the exposed term.GoalsThe serey goal for Na in NSPK is loalized into the CIL goal lo(nodes(node(roleA,3), node(roleB,3)), seret(Na,ids(A,B))). This goal isviolated for an agent A, if the A-agent is in a session with another honestagent, has the none Na in its memory, and the spy also knows this none(i.e., Net([Na℄) is in the multiset of fats). Therefore, we an haraterizewhat states represent attaks. For the given NSPK serey goal, a state rep-resents an attak when an agent has sent his none, enrypted, to anotheragent (di�erent from the spy) but the none has been ompromised by thespy, i.e., is on the net. For eÆieny reasons, we implement this harateriza-tion in the following way. We searh for the smallest A-state that ontains theseret Na. For NSPK this is State(roleA,1,[A,B,Na℄). Sine the A-agentan grow over time, the state number an hange and there might be addi-tional slots after Na. Thus, we use the pattern State(roleA,n,[A,B,Na,fl℄)where the free variable fl mathes the rest of the �elds.A violation of the serey goal for Na is de�ned by the following axiom.eq [Net([Na℄),State(roleA,n,[A,B,Na,fl℄), fs℄ = attakif not(spyOf(A) == true) and not(spyOf(B) == true) .The prediate spyOf determines that the none was not deliberately sent byan agent to an intruder.PRECEDES goals an also be interpreted in Maude with the help of additionalequations. The PRECEDES goal lo(nodes(node(roleA,3),node(roleB,3)),preedes(B,A,ids(Na))) is ful�lled whenever B is in its �nal (third) statein whih it holds a value for A, B, and Na, then there exists an agent inrole A that agrees with B on these values. Here is the appropriate Maudeformalization 81

eq [State(roleB,3,[B,Na,A,Nb℄),fs) = attakif not(State(roleA,n,[A,B,Na,fl℄) in fs)and not(spyOf(A) == true) and not(spyOf(B) == true) .5.3.6 Searh Strategy and OptimizationThe aim of model heking is to explore the state spae for possible attaks.In problems like ours where the state spae is in�nite, model heking basedon enumerative searh onstitutes a semi-deision proedure.By applying rewrite rules, Maude an be used to build parts of the ompu-tation tree rooted at the initial state. In partiular, the Maude interpreterdelivers one partiular branh of the omputation tree determined by in-terpreter's default evaluation strategy for applying rules. However, to �ndpossible attaks we need to explore all possible branhes.We proeed by employing Maude's metalevel reasoning apabilities and de-�ne, at the metalevel (in Maude), a strategy that spei�es how the rulesshould be applied. To do this we de�ne, within a Maude module, a funtionthat implements an iterative deepening searh on a tree spei�ed, impliitly,by an initial state and rewrite rules of another module. Writing the searhstrategy for model-heking on the meta-level allows to import any protooldesription and run the searh strategy with that protool. Thus, we spe-ialize the searh strategy to the given initial protool state and the modulede�ning the protool rules. In doing so, the protool spei�ation beomesa term on the metalevel that is passed to, and manipulated by, the searhstrategy.(fmod SEARCH isproteting META-LEVEL[NSPK℄endfm)For pratiality reasons we de�ned a bounded depth-�rst searh strategyinstead of a breadth-�rst searh strategy. A breadth-�rst searh strategyan be obtained by iteratively alling the depth-�rst strategy with inreas-ing depths. To speify a depth-�rst searh strategy, we formalize a fun-tion whose arguments are the protool module in whih the redution takesplae, the urrent searh path (i.e., a sequene of steps, where eah step is a82

triple onsisting of a rule label, a Maude-internal substitution number, andthe new term), the urrent depth of the searh tree, the maximum depths,and a list of protool rule names (quoted identi�er list QIDL). Initially, thepath is the initial test term as de�ned by the environment spei�ationop bdfs : Module Path MahineInt QidList -> Strategy . Qid is aMaude spei� data type for strings.Below we show part of our bounded depth �rst seah strategy.eq bdfs(M,path(APATH,step(L,N,T)),DEPTH,MAX,QIDL)= if DEPTH < MAXthen (if nextRewrite(M, T, L, QIDL) == nonethen baktrak(M,path(APATH,step(L,N,T)),DEPTH,MAX,QIDL)else ids(M,path(path(APATH,step(L,N,T)),nextRewrite(M,T,L,QIDL)),DEPTH + 1,MAX,QIDL)fi)else baktrak(M,path(APATH,step(L,N,T)),DEPTH,MAX,QIDL)fiif T =/= f'attakg'Fats .eq bdfs(M, path(APATH, step(L, N, T)), DEPTH, MAX, QIDL)= stop(DEPTH, path(APATH, step(L, N, T)))if T == f'attakg'Fats .The strategy oneptually builds a searh tree, where eah node orre-sponds to a state of the protool, and eah suessor node is reahed byapplying a rewrite rule, mathing the variables of the rule with valuesfrom the urrent multiset of fats. The searh strategy remembers theurrent path of the searh tree as a sequene of steps. A step reordsthe latest rule that has been applied, the substitution number (that isa Maude spei� number from whih one an derive the substitution be-tween the protool state and the rule variables) and the new protool state(op step : Qid MahineInt Term -> Step).For a given state, this strategy performs a rewrite step that generates asuessor state. At eah step, we test for an attak or baktrak in ase thebranh terminates or the maximum depth is reahed.f'attakg'Fats is the representation of the NSPK term attak at the83

searh meta-level.In theory, iterative deepening an �nd any attak, but in pratie heuristisare needed to do so using manageable resoures. The performane of asearh strategy like the one above an be enhaned signi�antly if one addsheuristis that tune the model heking proess to the appliation at hand.In the ase of seurity protools analysis we have gained lots of experieneby model heking several protools. In the following we summarize ourmain ideas to speed up the model heking proess.Protool-independent OptimizationWhih rules and in what order those rules are applied has an impat onthe performane of the model heker. Our optimization tehniques andheuristis for the Maude model heker either e�etively prune the searhtree or reorder it.Disarding rules. Some rules might be redundant in the sense that theyare not neessary to �nd attaks. For instane, the overhear rule of anthe attaker is an example of suh a rule. As long as there are rulesfor interepting and faking a message, the e�et of overhearing a rulean always be simulated by replaying it. Therefore, we hose not toimplement suh a rule in our attaker model.Prioritizing rules. During the proess of building the searh tree one anapply re-ordering funtions that give priorities to rules whih are ex-peted to lead faster to attaks. This is a heuristi in the sense that fordi�erent protools and attaks di�erent heuristis might turn out to bebetter. In the protools we investigated we were suessful with order-ing the Maude rewrite rules, suh that the attaker interept rule getshigh priority, next followed by the rules whih desribe the protool,and lower priorities for the other attaker rules, with the ompositionrules having the lowest priority. Essentially we followed the intuitionthat, the more restrited the enabling ondition for a rule is, the lesslikely it is that it will our. Thus, giving it a high priority does notresult in searh trees, in whih those rules are always applied �rst.This is similar to optimization tehniques suggested by Shmatikov etal [SS98℄. In their approah an intruder always interepts (our weakerversion: interept has high priority), and an intruder does not send84

if an honest agent an send (our version: protool rules have higherpriority then fake rules).Restriting rules sequenes. Another optimization tehnique we usedwas to prune the searh tree suh that eah sequene of applied rulessatis�es speial suessor-rule onditions. For example, one an at-taker fakes a message, he does that with the intent of some agentreeiving that message. Thus, during the searh we assure that a fakerule is always followed by a rule whih denotes the reeipt of the mes-sage. Moreover, optimization steps as disussed in Chapter 4 an alsobe implemented on the meta-level of searh. In [BD00℄ we formalizethat ertain ation sequenes must our as a blok (without otherinterleaved ations). For example, loal omputations of agents, suhas reeiving a message, followed by internal omputations, followed bysending a new message, an be summarized to one step. Similarly, amessage whih was interepted by an attaker should be deomposedin the subsequent step. One an de�ne arbitrary dependenies betweenrules and enfore their order in the searh strategy.As long as those dependenies are only used to reorder the searh tree,there is no danger of missing out on an attak. In those ases whereone an show that the optimization preserves all attaks, one an evenprune the searh tree.The above listed optimization ideas have been implemented in Maude onthe meta-level,and,thus, they are independent of the protool to whih thesearh is applied. Further details an be found in [BD00℄.Protool-dependent OptimizationOther optimization tehniques depend heavily on the protool whih is tobe analyzed. We made use of two tehniques.Message format This tehnique tests the message format of omposedand faked messages. For this purpose we added onditions to the fake-rule and the rules for omposing (i.e., onatenation or enryption)suh that they are only enabled if the resulting �eld ful�lls the for-mat of the message ontents of the protool. We de�ned a prediateisInMsgContentFormat that is de�ned to be true for any �eld that85

has (partially) the format of a valid protool message. The followingdesribes part of the de�nition for NSPK.eq Net([A,Na℄) isInMsgContentFormat = true .eq Net([ped(K,at(Na,A))℄) isInMsgContentFormat = true .Reeivability of faked messages. Moreover, we test whether a faked mes-sage is reeivable in a given state of the protool. For instane, the�rst message of NSPK is reeivable whenever an agent in role B instate zero exists in the multiset of fats.eq Msg(UNK,b,[ped(pk(B),at(Na,A))℄) isReeivableIn[State(roleB,0,[B℄), fs℄ = true .5.3.7 ConlusionIn the proess of designing a CIL onnetor to Maude, we takled someessential issues about the pratiability of a onnetor. Our aim is not justto translate the CIL spei�ation into an exeutable Maude spei�ation,but to yield an eÆiently exeutable and pratially analyzable protoolspei�ation. In order to meet this goal, we solved the issues involved intranslating CIL into an equivalent Maude spei�ation and we proposed and�ne-tuned several optimization tehniques that will improve the performaneof the Maude model heking tool.A prototype of the CIL-to-Maude onnetor has been implemented in Javausing the existing support lasses. The implementation of the CIL-to-Maudeonnetor took one-person week.As mentioned before the urrent onnetor is restrited on the prede�neddata types of the CAPSL prelude and supports the optimization strategiesdisussed in the previous session. Order spei�ation in environment dela-rations are not yet handled. In environment spei�ations one an de�ne aprinipal as exposed, meaning that all the serets of that prinipal are knownto the attaker. This issues needs to be addressed in future extensions ofthe onnetor. Further investigation is also neessary in order to de�ne thesemantis of protool goals other than serey or agreement goals.
86

5.4 AthenaAthena is a model heker for seurity protools [Son99℄, based on the strandspae representation [THG98℄. The required input format for Athena wasobtained from draft material supplied by its author, Song.An Athena spei�ation has two parts: a sequene of strands and a sequeneof veri�ation onditions. A strand is a sequene of nodes. A node onsistsof a \sign" or diretion (send or reeive, represented by \->" and \<-") anda term representing the ontent of a message. Nones introdued or \origi-nated" in a sent message are also listed. A strand spei�ation of a protoolis a parametri strand in the sense of [CDL+00℄, whih addresses transla-tions between MSR and strand spae protool models in a general setting.A strand spei�ation is parameterized by the list of protool variables thatmust be instantiated to reate a partiular strand.Here is the \A" strand from the NSPK example in Athena:P_A(0,3) {VAR: P_A, P_B, NONCE_Na, NONCE_Nb;-> : E{C[NONCE_Na,P_A℄,PUBKEY_P_B}| New(NONCE_Na);<- : E{C[NONCE_Na,NONCE_Nb℄,PUBKEY_P_A};-> : E{NONCE_Nb,PUBKEY_P_B};}Issues in writing a onnetor to Athena ome up in �ve areas:1. The basi translation strategy to produe strands2. Normalization: non-message rules3. Type and funtion limitations4. Goal generation5.4.1 The Translation StrategyCIL rewrite rules update the state of exatly one role at a time. A rule mayhave a reeived message on the left or a sent message on the right, or both.87

A message on the left generates a \reeive" node in the strand assoiatedwith the rule's role, and a message on the right generates a \send" nodefor the same role. Any variables listed as nones of the rule beome nonesof the send node. In [CDL+00℄, MSR spei�ations were \normalized" togenerate all nones in the initialization rule of eah role, but we do not dothat, beause we would lose the information as to whih node originated thenone, whih is required for Athena.Rewrite rules are not required to be in the expeted order assoiated withmessage events or state hanges, and the onnetor was written so that nodeswill be added in the orret sequene regardless of the rule order. However,the CAPSL translator now generates rules in the expeted order, primarilyto make the rule output as readable as possible, and future onnetors shouldbe able to take advantage of that.There must be a strand for eah role in the protool. To �nd the roles, wean get a list of symbols of type Role from the CIL symbol table; but thisnot quite right beause the translator generates a role onstant for everyvariable of type Prinipal. Suh a variable is usually a role, but it ould bejust a message �eld, and the translator does not hek whether a message isatually sent to or from that prinipal. The onnetor generates an emptystrand for a non-role prinipal, whih is a nuisane but not a serious problem.The CAPSL translator should probably refrain from generating roles for suhvariables.The strand parameters are the protool variables that must be instantiatedto produe a partiular strand. These variables our as slots in states ofthe strand's role, and they are found in the slot table.One the protool variable parameters used by the strand are found, wehave to ensure that these same variables are used in the strand node spei�-ations. Strands are generated from rewrite rules, but, as remarked earlier,the variables in rewrite rules are, in priniple, dummy variables that aresubjet to renaming, and the renaming an be di�erent in eah rule. TheCAPSL translator ordinarily uses the original protool variables in the rules,for the sake of rule readability, but there is presently no guarantee of that.Hene the onnetor replaes the rule variables with protool variables. Thisis done using the slot table. The protool variable orresponding to a rulevariable is found by observing whih slot it oupies in the rule's right-handstate fat, whih should have them all.In an Athena spei�ation, variable names are pre�xed by the variable type88

name. The mapping of CAPSL type names to orresponding Athena typenames is built into the present onnetor. This topi is disussed furtherbelow under the limitations issue.5.4.2 Normalization: Non-Message RulesA normalized MSR rule in [CDL+00℄ either sends or reeives one message.CIL rules may have a message on both the reeive and the send side, and theyould also have no messages, as in the ase of state initialization rules, ationsthat assign a value to a new variable, and ations that test an equation orother boolean ondition.Initialization rules are not a problem; they just reate a strand to whihnodes will be added. Rules that both send and reeive messages are alsono problem, they just reate two nodes. Non-initialization rules with nomessages are a problem beause no node is reated for them; the informationthey arry is lost.An assignment ation in CAPSL, suh as C = A, generates a rule likeB1(B;A) ! B2(B;A;A) and reates a slot table entry for C as slot 3 ofB. Later rules will refer to slot 3 of B by the variable C without regard forits value. For example, the message B ! A : C beomes B2(B;A;C) !B3(B;A;C);M(B;A;C). The B strand will have A;B and C as parameters,and the onnetor will give it a node to send C. The orret strand shouldsend A instead.Fortunately, the assignment ation problem goes away beause the CAPSLoptimizer ombines assignment rules with other rules, so that the CIL out-put only has the single rule B1(B;A) ! B3(B;A;A);M(B;A;A), whihgenerates the orret node. This may be viewed as a kind of normalizationstep.We are less fortunate with test ations. A test C = A (in a state whereC and A are held) generates two rules, one to evaluate the equation andone to ontinue if it is true: B2(B;A;C) ! B3(B;A;C;C = A) andB3(B;A;C; true) ! B3(B;A;C). Neither of these generates a node, andthe information that C = A is lost. Both C and A are strand parameters,and they ould be instantiated to be unequal to produe a strand that isinonsistent with the protool. Furthermore, the optimizer does not helphere; it an only ombine the seond rule with a later one.89

The way to handle this, at the moment, is just to write the protool withoutputting in test ations. Most protools don't need them; their main purposein CAPSL is to ontrol onditional branhing, an advaned feature.5.4.3 Type and Funtion LimitationsCAPSL permits new �eld types, as well as new enryption and other ompu-tational funtions, to be introdued using abstrat datatype spei�ations(alled typespes in CAPSL). Analysis tools are often limited in their adapt-ability to extensions. Like the PVS tools we are developing, Athena anpresently deal only with simple abstrat operators. The ones urrently sup-ported are publi-key and symmetri-key enryption, onatenation, hash-ing, MAC (keyed hash) and a few standard data types like P for prinipalsand NONCE for nones. The onnetor translates the equivalent CAPSL stan-dard types and funtions (in the prelude) into them { for example, Prinipalto P, ped(.,.) to Ef.,.g, et.For types and funtions without equivalents in Athena, the onnetor pre-serves their names, and they appear in the onnetor output. The Athenauser an then see the unreognized symbols and attempt to rewrite the pro-tool spei�ation without them. The onnetor an be modi�ed easily toadd more types and funtions. When future versions of Athena permit user-de�ned new �eld types and funtions, the onnetor will have to be extendedto make use of the symbol table and axiom entries in the CIL.5.4.4 Goal GenerationGoals in Athena are spei�ed with a list of partially instantiated strands,with onditions as to whih ombinations of these strands are permittedto appear in a bundle. A serey goal says that a strand with a givenvalue for a seret variable is not ompatible with a standard intruder (or\penetrator") \ush" strand with the same value. An agreement goal saysthat the existene of a strand with values for ertain variables implies theexistene (in the same bundle) of another strand with the same values forthe same variables. These goals an be generated in a straightforward wayfrom the SECRET and PRECEDES goals in CAPSL.In the urrent version of Athena, symboli onstants used to indiate valuesof variables are always formed simply by appending \0" to the name of the90

variable, and the onnetor does that. More general value assignments arepossible in CAPSL through the use of environment modules.As an example, the CAPSL goal appearing in CIL as preedes(B,A,ids(Na))says that if A reahes its �nal state, there is or was a state of B agreeingwith A on B, A, and Na. This goal is stated in Athena as:VC. {Strand(0,3)[(P_B,B0),(P_A,A0),(NONCE_Na,Na0)℄} =>{Strand(1,3)[(P_B,B0),(P_A,A0),(NONCE_Na,Na0)℄}where strand 0 is the A strand and strand 1 is the B strand.

91

Chapter 6Conluding Remarks
CAPSL, CIL and the translation between them are designed to addressimportant goals in ryptographi protool spei�ation for analysis pur-poses. With a ommon spei�ation language, it beomes possible to har-ness the ombined power of many tools for protool analysis in a pratialway. The omponents of the CAPSL environment inlude transportablesoftware for translation of CAPSL to CIL, and onnetors to adapt CIL tothe input languages of various analysis tools. This software is still underdevelopment, but a CAPSL-to-CIL translator is available on the Web sitehttp://www.sl.sri.om/~millen/apsl. The site also ontains more ex-amples of CAPSL spei�ations and other doumentation.With CAPSL, one an express protools in the simplest aepted message-list form. Type spei�ations in CAPSL and their use for introduing newoperators and subtypes bring an expanding lass of protools within reah.There are plans to broaden the appliability of CAPSL further with exten-sions for multiast protools.CAPSL simpli�es what used to be the most awkward aspet of abstratprotool spei�ation, the distintion between short-term session data andthe long-term data assoiated with persistent entities. This was done byapplying the general type spei�ation mehanism, together with the novelonepts of private funtions and invertibility axioms.The intermediate language CIL was hosen with an eye toward a learanalysis-level modeling semantis and a universal pattern-mathing tran-sition rule style that lends itself both to model heking and indutive proof92

tehniques.We have tehniques for indutive protool proof using PVS and model hek-ing using Maude. In the proess, we have on�rmed that CIL output is agood math for the spei�ation needs of these tools. With the Athena on-netor, we have made a start on linking CAPSL to independently developedanalysis tools as well.

93

Bibliography[BAN90℄ M. Burrows, M. Abadi, and R. Needham. A logi of authenti-ation. ACM Transations on Computer Systems, 8(1):18{36,1990.[BD00℄ D. Basin and G. Denker. Maude versus Haskell: an Experi-mental Comparison in Seurity Protool Analysis. In K. Fu-tatsugi, editor, Third Intern. Workshop on Rewriting Logiand Its Appliations, Kanazawa City Cultural Hall, Kanazawa,Japan, September 18-20, 2000, pages 235{256. To appear: El-sevier Siene B.V., Eletroni Notes in Theoretial ComputerSiene, http://www.elsevier.nl/loate/ents/, 2000.[BMM99℄ S Brakin, C. Meadows, and J. Millen. CAPSL interfae for theNRL protool analyzer. In IEEE Symposium on Appliation-Spei� Systems and Software Engineering Tehnology (AS-SET '99), 1999.[Bra97℄ S. Brakin. An interfae spei�ation language for automati-ally analyzing ryptographi protools. In Symposium on Net-work and Distributed System Seurity. Internet Soiety, Febru-ary 1997.[Car94℄ U. Carlsen. Generating formal ryptographi protool spe-i�ations. In IEEE Symposium on Researh in Seurity andPrivay, pages 137{146. IEEE Computer Soiety, 1994.[CDE+99℄ M. Clavel, F. Dur�an, S. Eker, P. Linoln, N. Mart��-Oliet,J. Meseguer, and J. Quesada. Maude: Spei�ation andProgramming in Rewriting Logi. SRI International, Com-puter Siene Laboratory, Menlo Park, CA, January 1999.http://maude.sl.sri.om/manual/.94

[CDL+99℄ I. Cervesato, N. Durgin, P. Linoln, J. Mithell, and A. Se-drov. A meta-notation for protool analysis. In 12th IEEEComputer Seurity Foundations Workshop, pages 55{69. IEEEComputer Soiety, 1999.[CDL+00℄ I. Cervesato, N. Durgin, P. Linoln, J. Mithell, and A. Se-drov. Relating strands and multiset rewriting for seurity pro-tool analysis. In 13th IEEE Computer Seurity FoundationsWorkshop. IEEE Computer Soiety, 2000.[CELM96℄ M. Clavel, S. Eker, P. Linoln, and J. Meseguer. Priniples ofMaude. In Meseguer [Mes96℄, pages 65{89.[CJM98℄ E. Clarke, S. Jha, and W. Marrero. Using state spae explo-ration and a natural dedution style message derivation engineto verify seurity protools. In Pro. IFIP Working Confer-ene on Programming Conepts and Methods (PROCOMET),1998.[CM96℄ M. Clavel and J. Meseguer. Reetion and Strategies inRewriting Logi. In Meseguer [Mes96℄, pages 125{147.[DM99a℄ G. Denker and J. Millen. CAPSL and CIL Language Design:A Common Authentiation Protool Spei�ation Languageand Its Intermediate Language. CSL Report SRI-CSL-99-02, Computer Siene Laboratory, SRI International, MenloPark, CA 94025, 1999. http://www.sl.sri.om/~denker/pub_99.html.[DM99b℄ G. Denker and J. Millen. CAPSL intermediate language. InFLoC Workshop on Formal Methods and Seurity Protools,1999.[DM00℄ G. Denker and J. Millen. CAPSL integrated protool environ-ment. In DARPA Information Survivability Conferene (DIS-CEX 2000), pages 207{221. IEEE Computer Soiety, 2000.[DMKFG00℄ G. Denker, J. Millen, J. Kuester-Filipe, and A. Grau. Optimiz-ing protool rewrite rules of CIL spei�ations. In 13th IEEEComputer Seurity Foundations Workshop, pages 52{62. IEEEComputer Soiety, 2000.95

[DMT98a℄ G. Denker, J. Meseguer, and C. Talott. Protool spei�a-tion and analysis in Maude. In Formal Methods and SeurityProtools, 1998. LICS '98 Workshop.[DMT98b℄ G. Denker, J. Meseguer, and C. Talott. Protool Spei�ationand Analysis in Maude. In N. Heintze and J. Wing, editors,Pro. of Workshop on Formal Methods and Seurity Protools,25 June 1998, Indianapolis, Indiana, 1998. http://www.s.bell-labs.om/who/nh/fmsp/index.html.[DMT00℄ G. Denker, J. Meseguer, and C. Talott. Formal Spei�ationand Analysis of Ative Networks and Communiation Pro-tools: The Maude Experiene. In D. Maughan, G. Koob,and S. Saydjari, editors, Pro. DARPA Information Surviv-ability Conferene and Exposition, DISCEX2000, January 25-27, Hilton Head Island, SC, USA, pages 251{266, 2000. http://shaferorp-ballston.om/disex/.[GNY90℄ L. Gong, R. Needham, and R. Yahalom. Reasoning aboutbelief in ryptographi protools. In IEEE Symposium on Re-searh in Seurity and Privay, pages 234{248. IEEE Com-puter Soiety, 1990.[Gon97℄ L. Gong. Enlaves: enabling seure ollaboration over theInternet. IEEE J. of Seleted Areas in Communiations,15(3):567{575, April 1997.[Kem89℄ R. Kemmerer. Analyzing enryption protools using formalveri�ation tehniques. IEEE Journal on Seleted Areas inCommuniation, 7(4), May 1989.[Low96℄ G. Lowe. Breaking and �xing the Needham-Shroeder publi-key protool using FDR. In Proeedings of TACAS, volume1055 of Leture Notes in Computer Siene, pages 147{166.Springer-Verlag, 1996.[Low98℄ G. Lowe. Casper: a ompiler for the analysis of seurity pro-tools. Journal of Computer Seurity, 6(1):53{84, 1998.[Mau00℄ Maude Web Site. http://maude.sl.sri.om/, 2000.[MCF87℄ J. Millen, S. Clark, and S. Freedman. The Interrogator: pro-tool seurity analysis. IEEE Transations on Software Engi-neering, SE-13(2):274{288, February 1987.96

[Mea91℄ C. Meadows. A system for the spei�ation and veri�ation ofkey management protools. In IEEE Symposium on Seurityand Privay, pages 182{195. IEEE Computer Soiety, 1991.[Mes92℄ J. Meseguer. Conditional Rewriting Logi as a Uni�ed Modelof Conurreny. Theoretial Computer Siene, 96(1):73{155,1992.[Mes96℄ J. Meseguer, editor. Rewriting Logi and Its Appliations,First International Workshop, Asilomar Conferene Center,Pai� Grove, CA, September 3-6, 1996. Elsevier Siene B.V.,Eletroni Notes in Theoretial Computer Siene, Volume4, http://www.elsevier.nl/loate/ents/volume4.html,1996.[Mil97℄ J. Millen. CAPSL: Common Authentiation Protool Spei�-ation Language. Tehnial Report MP 97B48, The MITRECorporation, 1997.[Mil00a℄ J. Millen. A CAPSL onnetor to Athena. In H. Veith,N. Heintze, and E. Clarke, editors, Workshop of Formal Meth-ods and Computer Seurity. CAV, 2000.[Mil00b℄ J. Millen. CAPSL web site.http://www.sl.sri.om/~millen/apsl, 2000.[MR00℄ J. Millen and H. Rue�. Protool-independent serey. In 2000IEEE Symposium on Seurity and Privay. IEEE ComputerSoiety, 2000.[NS78℄ R. Needham and M. Shroeder. Using enryption for authen-tiation in large networks of omputers. Communiations ofthe ACM, 21(12):993{998, Deember 1978.[OR87℄ D. Otway and O. Rees. EÆient and timely mutual authenti-ation. ACM Operating System Review, 21(1):8{10, 1987.[ORS92℄ S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototypeveri�ation system. In Deepak Kapur, editor, 11th Interna-tional Conferene on Automated Dedution (CADE), volume607 of Leture Notes in Arti�ial Intelligene, pages 748{752.Springer-Verlag, 1992. 97

[Pau98℄ L. Paulson. The indutive approah to verifying ryptographiprotools. Journal of Computer Seurity, 6(1):85{128, 1998.[Ros95℄ A. W. Rosoe. Modelling and verifying key-exhange protoolsusing CSP and FDR. In 8th IEEE Computer Seurity Founda-tions Workshop, pages 98{107. IEEE Computer Soiety, 1995.[Sny91℄ W. Snyder. A Proof Theory for General Uni�ation.Birkh�auser, 1991.[Son99℄ D. Song. Athena: a new eÆient automati heker for seu-rity protool analysis. In 12th IEEE Computer Seurity Foun-dations Workshop, pages 192{202. IEEE Computer Soiety,1999.[SS98℄ V. Shmatikov and U. Stern. EÆient Finite State Analysis forLarge Seurity Protools. In 11th IEEE Computer SeurityFoundations Workshop, Rokport, Massahusetts, June 1998,pages 106{115. IEEE Computer Soiety, 1998.[THG98℄ J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strandspaes. In 11th IEEE Computer Seurity Foundations Work-shop, pages 66{78. IEEE Computer Soiety, 1998.

98

Appendix ACAPSL and CIL Syntax
A.1 CAPSL SyntaxHere is an informal presentation of the CAPSL onrete syntax. In thisgrammar, urly brakets f g indiate a sequene of one or more of theenlosed item. A vertial bar | separates hoies. Optional items areenlosed in square brakets [℄. Literal tokens appear enlosed in singlequotes ', exept for keywords, whih are all aps.There is a general meta-rule for forming nonterminals representing lists. Ifx is a nonterminal symbol, then x list represents zero or more ourrenesof x separated by ommas.Comments in CAPSL are surrounded by /* */, e.g., /* this is a omment*/.The grammar permits onstruts that are illegal for semanti reasons, suhas improper ordering or type inonsisteny. The grammar also permits someillegal onstruts that ould have been eliminated with a more elaborategrammar, but an also be handled by later heks. An example is that the% operator should be used only in message �elds.Identi�ers are sequenes of alphabeti haraters and digits, and may alsoontain the underline harater. An identi�er that onsists solely of digitsis a number.speifiation: 99

{protool | typespe | environment}protool:PROTOCOL ident `;'{delaration}[ASSUMPTIONS{assertion `;'}℄MESSAGESphrase_seq[GOALS{assertion `;'}℄END;typespe:TYPESPEC ident `;'{delaration}AXIOMS {statement `;'}END;environment:ENVIRONMENT ident `;'{delaration}[AXIOMS{statement `;'}℄{agent}[EXPOSED term_list `;'℄[ORDER order `;'℄END;agent:AGENT ident HOLDS{equation `;'}order:ident /* of agent */|̀(' order `;' order `)'|̀(' order `||' order `)' 100

delaration:IMPORTS ident_list `;'|FUNCTIONS {fun_de}|VARIABLES {variable_de}|CONSTANTS {variable_de}|DENOTES {equation [`:' ident_list℄ `;'}|TYPES {type_de}assertion:HOLDS ident `:' ident_list|BELIEVES ident `:' assertion|KNOWS ident `:' assertion|ASSUME assertion /* as an ation */|PROVE assertion /* as an ation */|SECRET ident [`:' ident_list℄|AGREE ident_list `:' ident_list `|' ident_list|PRECEDES ident `:' ident `|' ident_list|statementstatement:logistmt|IF logistmt THEN simplestmt [ELSE simplestmt℄ ENDIF|INVERT term `:' ident | term_listlogistmt: 101

simplestmt|NOT `(' simplestmt `)'simplestmt:equation|termequation:term `=' termvariable_de:ident_list `:' ident [`,' property_list℄ `;'type_de:ident_list [`:' ident℄ `;'fun_de:ident `(' ident_list `)' `:' ident [`,' property_list℄ `;'phrase_seq:phrase|phrase [`/'℄ phrase_seqphrase:[{ation `;'}℄message[{ation `;'}℄|invoation|seletionation:equation | ASSUME assertion | PROVE assertioninvoation:INCLUDE ident `;' /* naming a protool */102

seletion:IF statement THEN phrase ELSE phrase ENDIF `;'message:[ident `.'℄ ident `->' ident `:' term_list `;'property:CRYPTO | FRESH | PRIVATE | EXPOSED | ASSOC | COMMterm:ident|funtionall|braket|lowe|parenfuntionall :ident `(' term_list `)'/* arithmeti expressions with +, -, *, /, and ^(for exponentiation) are supported, andtreated as funtion alls on pls, mns, et. */braket:`{' term_list `}' [`''℄ [term℄ /* single quote for derypt */|̀[' term_list `℄' [`''℄ [term℄lowe:term `%' termparen:`(' term `)' 103

A.2 CIL SyntaxThis is the syntax of CIL output in funtional notation. Identi�ers in quotesare literal tokens, as are parentheses and ommas. Other identi�ers arenonterminals. We use the ` list' meta-rule here too.speifiation: `CILspe'(symbols, slots, axioms, assums,rules, goals, envs)symbols: `symbols'(symbol_list)symbol: `symbol'(ident, status, ids, ident, props)status: `type' | `op' | `var' | `pvar'ids: `ids'(ident_list)props: `props'(property_list)slots: `slots'(slot_list)slot: `slot'(term, ident, number)axioms: `axioms'(stmt_list)stmt: equation | termequation: `eqn'(term, term)term: ident | fnallfnall: ident(term_list)assums: `assums'(lo_list)lo: `lo'(nodes, statement)nodes: `nodes'(node_list) 104

node: `node'(ident, number)rules: `rules'(rule_list)rule: `rule'(fats, ids, fats)fats: `fats'(term_list)goals: `goals'(lo_list)envs: `envs'(env_list)env: `environment'(ident, agents, exposed, order)agents: `agent'(ident, eqns)eqns: `eqns'(equation_list)exposed: `exposed'(terms(term_list))order: `order'(orderspe)orderspe:ident| `allpar'| `seq'(orderspe, orderspe)| `par'(orderspe, orderspe)

105

Appendix BThe Prelude
This appendix spei�es the prede�ned types. The typespes given here areombined into a �le prelude.ap that is automatially read and importedby the CAPSL translator prior to user-supplied spei�ations.B.1 Basi and BooleanThese types are for basi objets that are not message �elds. Note that thereis an undelared "Objet" type. No axioms are given for booleans beauseit is assumed that any protool analysis tool will have these built in.TYPESPEC BASIC;TYPESRole, Spe, Agent: Objet;Tspe, Pspe, Espe: Spe;END;TYPESPEC BOOLEAN;IMPORTS BASIC;TYPESBoolean: Objet;CONSTANTStrue, false: Boolean;FUNCTIONSand(Boolean, Boolean): Boolean, ASSOC, COMM;106

or(Boolean, Boolean): Boolean, ASSOC, COMM;not(Boolean): Boolean;if(Boolean, Boolean, Boolean): Boolean;END;B.2 FieldThe Field type is the universal supertype for all message �elds. There isa subtype Atom of Field for �elds that an be detahed from the left of aonatenation. A type delaration with no expliit supertype implies a su-pertype of Atom. A Tape is a nonatomi �eld; it is a onatenated sequeneof atoms. The ASSOC property of at delares that it is assoiative withoutthe need for expliit axioms.TYPESPEC FIELD;IMPORTS BOOLEAN;TYPESField: Objet;Tape, Atom: Field;Prinipal, None, Number: Atom;FUNCTIONSat(Field, Field): Tape, ASSOC;first(Tape): Atom;rest(Tape): Field;VARIABLESX: Atom;Y: Field;AXIOMSfirst(at(X, Y)) = X;rest(at(X, Y)) = Y;INVERT at(X, Y): X;INVERT at(X, Y): Y | X;END;
107

B.3 Symmetri-Key EnryptionThe basi Skey type is used by several sets of enryption operators. Theonly operators given in this root typespe are a hash funtion and a keyedhash (message authentiation ode). The DES system ould be modeledwith the se, sd pair. The only form of single-operator symmetri systemthat is ommonly seen in pratie is xor, given below.TYPESPEC SKEY;IMPORTS FIELD;TYPES Skey;FUNCTIONSsha(Field): Skey;ma(Skey,Field): Skey;END;TYPESPEC DSKE;IMPORTS SKEY;FUNCTIONSse(Skey, Field): Field;sd(Skey, Field): Field;AXIOMSse(Skey, Atom): Atom;sd(Skey, Atom): Atom;sd(K, se(K, D)) = D;se(K, sd(K, D)) = D;INVERT se(K, D): D | K;INVERT sd(K, D): D | K;END;TYPESPEC XOR;IMPORTS SKEY;FUNCTIONSxor(Skey, Skey): Skey, ASSOC, COMM;AXIOMSxor(xor(K,K),K1) = K1;INVERT xor(K,K1): K | K1;INVERT xor(K,K1): K1 | K;END; 108

/* Symmetri Key Client, Server */TYPESPEC SKCS;IMPORTS SKEY;TYPES Client, Server: Prinipal;VARIABLESS : Server;C : Client;FUNCTIONSsk(Client): Skey, PRIVATE;ssk(Server,Client): Skey, PRIVATE;AXIOMS ssk(S, C) = sk(C);END;/* Mutual Symmetri Key Node */TYPESPEC MSKN;IMPORTS SKEY;TYPES Node: Prinipal;FUNCTIONSmsk(Node, Node): Skey, COMM, PRIVATE;END;/* Arithmeti operations may be used in CAPSL with theinfix syntax +, -, *, /, ^.*/TYPESPEC ARITH;IMPORTS SKEY;CONSTANTS 1: Skey;FUNCTIONSpls(Skey, Skey): Skey, ASSOC, COMM;mns(Skey): Skey;tms(Skey, Skey): Skey, ASSOC, COMM;div(Skey, Skey): Skey;exp(Skey, Skey): Skey;/*AXIOMS 109

/END;B.4 Publi-Key EnryptionAs in symmetri-key enryption, there is a basi publi-key type, used forboth publi and private keys. The single-operator version ped models RSAat a very abstrat level.TYPESPEC PKEY;IMPORTS FIELD;TYPES Pkey;FUNCTIONSkeypair(Pkey, Pkey): Boolean, COMM;END;TYPESPEC SPKE;IMPORTS PKEY;FUNCTIONSped(Pkey, Atom): Atom;ped(Pkey, Field): Field;AXIOMSif keypair(K, K1) THEN ped(K1, ped(K, X)) = X ENDIF;if keypair(K, K1) THEN INVERT ped(K, X): X | K1 ENDIF;END;/ PPK provides simple standard publi/private key lookup. */TYPESPEC PPK;IMPORTS PKEY;TYPES PKUser: Prinipal;FUNCTIONSsk(PKUser): Pkey, PRIVATE;pk(PKUser): Pkey;AXIOMSkeypair(sk(P),pk(P));INVERT ped(sk(P),X): X | pk(P);INVERT ped(pk(P),X): X | sk(P);110

END;B.5 Key AgreementThis key agreement type is meant to express the basi properties of DiÆe-Hellman key agreement. The kap operation reates a publi value that anbe ombined with an Skey to produe another Skey using kas. This typespei�ation omits signi�ant relations that emerge when kap is implementedby raising a known base value to the Skey power modulo a prime.TYPESPEC KeyAgreement;IMPORTS SKEY;TYPES Pval;FUNCTIONSkap(Skey): Pval;kas(Pval, Skey): Skey;AXIOMSkas(kap(Ka),Kb) = kas(kap(Kb),Ka);END;B.6 Publi-Key SealingThe following publi-key seal operation ould be implemented with a keyedhash, but it may also be viewed as a primitive operation. It ould be thebasis for a signature if one assumes that the sealing key is private to thesigner.TYPESPEC PKSeal;IMPORTS PKEY;TYPES Pseal;FUNCTIONSseal(Pkey, Field): Pseal;verify(Pkey, Pseal, Field): Boolean;AXIOMSIF keypair(K, K1) THEN verify(K1,seal(K, X), X) ENDIF;END; 111

B.7 TimestampsTimestamps are used simply by assuming that eah agent that generates orheks a timestamp holds it initially. Equality omparisons an be used tosimulate \nearness." A more advaned version might hek ordering.TYPESPEC TIMESTAMP;TYPES Timestamp;END;B.8 ListThe List type support the non-assoiative onatenation operator.TYPESPEC LIST;IMPORTS FIELD;TYPES List;FUNCTIONSon(Field, Field): List;head(List): Field;tail(List): Field;AXIOMShead(on(X, Y)) = X;tail(on(X, Y)) = Y;INVERT on(X, Y): X;INVERT on(X, Y): Y;END;B.9 End Prelude MarkerThis type is plaed at the end of the prelude to mark the separation ofsymbols and axioms in the prelude from those in user-supplied typespes.This separation is helpful for onnetors that provide built-in support forthe prelude types.TYPESPEC ENDPRELUDE; 112

CONSTANTS endprelude: Boolean;AXIOMSendprelude = true;END;

113

Appendix CCAPSL Examples
This appendix ontains two relatively omplex examples of CAPSL. The SSLexample illustrates onditional seletion of subprotools. The SRP exampleillustrates use of arithmeti. Both utilize ustomized subtypes of Prinipal.C.1 SSL HandshakeThe Seure Soket Layer (SSL) Handshake Protool, version 3, is an InternetDraft that an be found on the Netsape site, http://home.netsape.om/eng/ssl3. This CAPSL example is a partial version that expands only oneof the ipher spe options, DiÆe-Hellman. RSA and Fortezza-DMS arethe others. This version also does not perform lient authentiation. Forsimpliity we omit the ipher suite and ompression method lists.The CAPSL text illustrates onditional seletion of subprotools and theDENOTES setion. The sha operator is used wherever hashes are alled for,and muh of the detailed onstrution of hashes and key material has beensimpli�ed. The method for simplifying hashes is to inlude the ontribut-ing data but ignore ordering, onstants, and other details that a�et theryptographi strength but not the logial struture of the protool. Thekey agreeement operators are used instead of expliit exponentiation in theDiÆe-Hellman exhange, so the base and modulus are not mentioned.TYPESPEC SSLS;TYPES CertServer: PKUser; 114

FUNCTIONST(CertServer): Field; /* PK ertifiate */VARIABLESSv: CertServer;CONSTANTSCA: PKUser; /* Certifiate Authority */AXIOMST(Sv) = {Sv,pk(Sv)}sk(CA);END;PROTOCOL SSLHandshake;IMPORTS SSLS;TYPES CipherSpe;VARIABLESC: PKUser;S: CertServer;R,Rs: None, CRYPTO; /* Client/ServerHello.random */CS: CipherSpe;SID: None; /* session id */PMS: Skey; /* pre-master-seret */MS: Skey; /* master seret */PKs: Pkey; /* Server publi key pk(S) */CONSTANTSDH, RSA, DMS: CipherSpe;SSLDH, SSLRSA, SSLDMS: Pspe;DENOTESMS = sha({PMS,R,Rs});ASSUMPTIONSHOLDS C: S, CS;MESSAGESClientHello. C -> S: C,R,CS;ServerHello. S -> C: S,Rs,CS;ServerCertifiate. S -> C: T(S)%{S,PKs}sk(CA);IF CS = DH THEN INCLUDE SSLDH;ELSE IF CS = RSA THEN INCLUDE SSLRSA;ELSE IF CS = DMS THEN INCLUDE SSLDMS;/* ELSE INCLUDE SSLERR; */ ENDIF;ENDIF; ENDIF;GOALSSECRET MS; 115

PRECEDES C: S | MS,Rs,R;END;PROTOCOL SSLDH;IMPORTS SSLHandshake;VARIABLESY,Ys: Pval; /* key agreement publi values */X,Xs: Skey, FRESH,CRYPTO; /* key agreement seret values */D: Field;MESSAGESServerKeyExhange. S -> C: kap(Xs)%Ys,({sha(kap(Xs))}sk(S))%D;{D}PKs = sha(Ys);/* SeverHelloDone. S -> C: { } */ClientKeyExhange. C -> S: kap(X)%Y;PMS = kas(Y,Xs);/PMS = kas(Ys,X);ClientFinished. C -> S: sha({MS,C});ServerFinished. S -> C: sha({MS,S});END;/* protools SSLRSA, SSLDMS, and SSLERR would be needed */C.2 Seure Remote Password (SRP) ProtoolSRP is a protool in the EKE family designed to defeat password guessing,developed at Stanford. There is a web site for it, http://srp.stanford.edu/srp/. This CAPSL spei�ation inorporates a few modi�ations forsimpliity:1. There is no mention of the modulusN for �nite �eld arithmeti. Arith-meti is done on Skeys.2. The heks that B; u, and A are not zero are omitted.3. Messages 3 and 4 to on�rm reeption of the key K are simpler thanthe suggested ones.TYPESPEC User;TYPES User, Host: Prinipal; 116

FUNCTIONSg: Skey; /* generator */p(User): Field, PRIVATE, CRYPTO; /* password */s(Host,User): Field, PRIVATE; /* salt */v(Host,User): Skey, PRIVATE; /* password verifier */AXIOMSv(H1,U1) = g^sha({s(H1,U1),p(U1)});END;PROTOCOL SRP;IMPORTS User;VARIABLESU: User;H: Host;A, B: Skey;a, b, u: Skey, FRESH, CRYPTO;K,S,s,x: Skey;DENOTESA = g^a;B = v(H,U) + g^b;x = sha({s,p(U)});v = g^x;ASSUMPTIONSHOLDS U: H;MESSAGES1. U -> H: U, A; /* U generates a */S = (A*v(H,U)^u)^b; /* H generates b */K = sha(S);2. H -> U: s(H,U)%s, B, u;S = (B - v)^(a + u*x);K = sha(S);3. U -> H: {A}K; /* proves U holds K */4. H -> U: {B}K; /* proves H holds K */GOALSSECRET K;END;
117

Appendix DCIL Output Example
This appendix shows the atual CIL output for the NSPK protool with asample environment.D.1 CAPSL Spei�ation for NSPKPROTOCOL NSPK;VARIABLESA, B: PKUser;Na, Nb: None, CRYPTO;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A,Na}pk(B);B -> A: {Na,Nb}pk(A);A -> B: {Nb}pk(B);GOALSSECRET Na;SECRET Nb;PRECEDES A: B | Na;PRECEDES B: A | Nb;END;ENVIRONMENT Test1; 118

IMPORTS NSPK;CONSTANTSAlie, Bob: PKUser;Mallory: PKUser, EXPOSED;AGENT A1 HOLDSA = Alie;B = Bob;AGENT B1 HOLDSB = Bob;EXPOSED{Bob}sk(Alie);END;D.2 CIL Output for NSPKThis is the CIL output from the CAPSL spei�ation above. Note thatthe prelude was inorporated, resulting in many symbol table entries andaxioms.CILspe(symbols(symbol(Objet,type,ids(),Objet,props()),symbol(BASIC,op,ids(),Tspe,props()),symbol(Role,type,ids(),Objet,props()),symbol(Spe,type,ids(),Objet,props()),symbol(Agent,type,ids(),Objet,props()),symbol(Tspe,type,ids(),Spe,props()),symbol(Pspe,type,ids(),Spe,props()),symbol(Espe,type,ids(),Spe,props()),symbol(BOOLEAN,op,ids(),Tspe,props()),symbol(Boolean,type,ids(),Objet,props()),symbol(true,op,ids(),Boolean,props()),symbol(false,op,ids(),Boolean,props()),symbol(and,op,ids(Boolean,Boolean),Boolean,props()),symbol(or,op,ids(Boolean,Boolean),Boolean,props()),symbol(not,op,ids(Boolean),Boolean,props()),symbol(if,op,ids(Boolean,Boolean,Boolean),Boolean,props()),symbol(FIELD,op,ids(),Tspe,props()),119

symbol(Field,type,ids(),Objet,props()),symbol(Tape,type,ids(),Field,props()),symbol(Atom,type,ids(),Field,props()),symbol(Prinipal,type,ids(),Atom,props()),symbol(None,type,ids(),Atom,props()),symbol(Number,type,ids(),Atom,props()),symbol(at,op,ids(Field,Field),Tape,props(ASSOC)),symbol(first,op,ids(Tape),Atom,props()),symbol(rest,op,ids(Tape),Field,props()),symbol(Al,var,ids(),Atom,props()),symbol(Xl,var,ids(),Field,props()),symbol(SKEY,op,ids(),Tspe,props()),symbol(Skey,type,ids(),Atom,props()),symbol(sha,op,ids(Field),Skey,props()),symbol(ma,op,ids(Skey,Field),Skey,props()),symbol(DSKE,op,ids(),Tspe,props()),symbol(se,op,ids(Skey,Atom),Atom,props()),symbol(sd,op,ids(Skey,Atom),Atom,props()),symbol(se,op,ids(Skey,Field),Field,props()),symbol(sd,op,ids(Skey,Field),Field,props()),symbol(Kl,var,ids(),Skey,props()),symbol(K1l,var,ids(),Skey,props()),symbol(XOR,op,ids(),Tspe,props()),symbol(xor,op,ids(Skey,Skey),Skey,props(ASSOC,COMM)),symbol(SKCS,op,ids(),Tspe,props()),symbol(Client,type,ids(),Prinipal,props()),symbol(Server,type,ids(),Prinipal,props()),symbol(Sl,var,ids(),Server,props()),symbol(Cl,var,ids(),Client,props()),symbol(sk,op,ids(Client),Skey,props(PRIVATE)),symbol(ssk,op,ids(Server,Client),Skey,props(PRIVATE)),symbol(MSKN,op,ids(),Tspe,props()),symbol(Node,type,ids(),Prinipal,props()),symbol(msk,op,ids(Node,Node),Skey,props(COMM,PRIVATE)),symbol(ARITH,op,ids(),Tspe,props()),symbol(1,op,ids(),Skey,props()),symbol(pls,op,ids(Skey,Skey),Skey,props(ASSOC,COMM)),symbol(mns,op,ids(Skey),Skey,props()),symbol(tms,op,ids(Skey,Skey),Skey,props(ASSOC,COMM)),symbol(div,op,ids(Skey,Skey),Skey,props()),120

symbol(exp,op,ids(Skey,Skey),Skey,props()),symbol(PKEY,op,ids(),Tspe,props()),symbol(Pkey,type,ids(),Atom,props()),symbol(PKl,var,ids(),Pkey,props()),symbol(PKIl,var,ids(),Pkey,props()),symbol(keypair,op,ids(Pkey,Pkey),Boolean,props(COMM)),symbol(SPKE,op,ids(),Tspe,props()),symbol(ped,op,ids(Pkey,Atom),Atom,props()),symbol(ped,op,ids(Pkey,Field),Field,props()),symbol(PPK,op,ids(),Tspe,props()),symbol(PKUser,type,ids(),Prinipal,props()),symbol(sk,op,ids(PKUser),Pkey,props(PRIVATE)),symbol(pk,op,ids(PKUser),Pkey,props()),symbol(PKUl,var,ids(),PKUser,props()),symbol(KEYAGREEMENT,op,ids(),Tspe,props()),symbol(Pval,type,ids(),Atom,props()),symbol(kap,op,ids(Skey),Pval,props()),symbol(kas,op,ids(Pval,Skey),Skey,props()),symbol(PKSeal,op,ids(),Tspe,props()),symbol(Pseal,type,ids(),Atom,props()),symbol(seal,op,ids(Pkey,Field),Pseal,props()),symbol(verify,op,ids(Pkey,Pseal,Field),Boolean,props()),symbol(TIMESTAMP,op,ids(),Tspe,props()),symbol(Timestamp,type,ids(),Atom,props()),symbol(LIST,op,ids(),Tspe,props()),symbol(List,type,ids(),Atom,props()),symbol(on,op,ids(Field,Field),List,props()),symbol(head,op,ids(List),Field,props()),symbol(tail,op,ids(List),Field,props()),symbol(Xl,var,ids(),Field,props()),symbol(Yl,var,ids(),Field,props()),symbol(ENDPRELUDE,op,ids(),Tspe,props()),symbol(endprelude,op,ids(),Boolean,props()),symbol(NSPK,op,ids(),Pspe,props()),symbol(A,pvar,ids(),PKUser,props()),symbol(B,pvar,ids(),PKUser,props()),symbol(Na,pvar,ids(),None,props(CRYPTO,FRESH)),symbol(Nb,pvar,ids(),None,props(CRYPTO,FRESH)),symbol(Test1,op,ids(),Espe,props()),symbol(Alie,op,ids(),PKUser,props()),121

symbol(Bob,op,ids(),PKUser,props()),symbol(Mallory,op,ids(),PKUser,props(EXPOSED)),symbol(A1,op,ids(),Agent,props()),symbol(B1,op,ids(),Agent,props()),symbol(roleA,op,ids(),Role,props()),symbol(roleB,op,ids(),Role,props()),symbol(UNK,pvar,ids(),Prinipal,props())),slots(slot(A,roleA,1),slot(B,roleA,2),slot(B,roleB,1),slot(Na,roleA,3),slot(A,roleB,2),slot(Na,roleB,3),slot(Nb,roleB,4),slot(Nb,roleA,4)),axioms(eqn(first(at(Al,Xl)),Al),eqn(rest(at(Al,Xl)),Xl),invertible(at(Al,Xl),Al,terms()),invertible(at(Al,Xl),Xl,terms()),eqn(sd(Kl,se(Kl,Xl)),Xl),eqn(se(Kl,sd(Kl,Xl)),Xl),invertible(se(Kl,Xl),Xl,terms(Kl)),invertible(sd(Kl,Xl),Xl,terms(Kl)),eqn(xor(xor(Kl,Kl),K1l),K1l),invertible(xor(Kl,K1l),Kl,terms(K1l)),invertible(xor(Kl,K1l),K1l,terms(Kl)),eqn(ssk(Sl,Cl),sk(Cl)),if(keypair(PKl,PKIl),eqn(ped(PKIl,ped(PKl,Xl)),Xl),true),keypair(sk(PKUl),pk(PKUl)),invertible(ped(sk(PKUl),Xl),Xl,terms(pk(PKUl))),invertible(ped(pk(PKUl),Xl),Xl,terms(sk(PKUl))),eqn(kas(kap(Kl),K1l),kas(kap(K1l),Kl)),eqn(keypair(PKl,PKIl),verify(PKIl,seal(PKl,Xl),Xl)),eqn(head(on(Xl,Yl)),Xl),eqn(tail(on(Xl,Yl)),Yl),invertible(on(Xl,Yl),Xl,terms()),122

invertible(on(Xl,Yl),Yl,terms()),eqn(endprelude,true)),assums(lo(nodes(node(roleA,0),node(roleB,0)),holds(A,ids(B)))),rules(rule(fats(),ids(),fats(state(roleA,0,terms(A,B)))),rule(fats(),ids(),fats(state(roleB,0,terms(B)))),rule(fats(state(roleA,0,terms(A,B))),ids(Na),fats(state(roleA,1,terms(A,B,Na)),msg(A,B,terms(ped(pk(B),at(A,Na)))))),rule(fats(state(roleB,0,terms(B)),msg(UNK,B,terms(ped(pk(B),at(A,Na))))),ids(Nb),fats(state(roleB,2,terms(B,A,Na,Nb)),msg(B,A,terms(ped(pk(A),at(Na,Nb)))))),rule(fats(state(roleA,1,terms(A,B,Na)),msg(UNK,A,terms(ped(pk(A),at(Na,Nb))))),ids(),fats(state(roleA,3,terms(A,B,Na,Nb)),msg(A,B,terms(ped(pk(B),Nb))))),rule(fats(state(roleB,2,terms(B,A,Na,Nb)),msg(UNK,B,terms(ped(pk(B),Nb)))),ids(),fats(state(roleB,3,terms(B,A,Na,Nb))))),goals(lo(nodes(node(roleA,3),node(roleB,3)),seret(Na,ids())),lo(nodes(node(roleA,3),node(roleB,3)),seret(Nb,ids())),lo(nodes(node(roleA,3),node(roleB,3)),preedes(A,B,ids(Na))),lo(nodes(node(roleA,3),node(roleB,3)),preedes(B,A,ids(Nb)))), 123

envs(environment(Test1,agents(agent(A1,eqns(eqn(A,Alie),eqn(B,Bob))),agent(B1,eqns(eqn(B,Bob)))),exposed(terms(ped(sk(Alie),Bob))),order(allpar))))

124

