
SRI INTERNATIONAL SRI Te
hni
al Report
The CAPSL Integrated Proto
ol Environment
Grit Denker, Jonathan Millen and Harald Rue�Computer S
ien
e LaboratorySRI-CSL-2000-02, O
tober 2000
Supported by DARPA through the Air For
e Resear
h LaboratoryContra
t F30602-98-C-0258 from 14 August 1998 to 31 July 2000Prin
ipal Investigator Jonathan Millen (650) 859-2358DARPA Req. No. N-8-6136 Amount $972,087.00The views and 
on
lusions 
ontained in this do
ument are those of the au-thors and should not be interpreted as representing the oÆ
ial poli
ies, eitherexpressed or implied, of the Defense Advan
ed Resear
h Proje
ts Agen
y orthe U.S. Government.



333 Ravenswood Avenue � Menlo Park, CA 94025-3493 � (650) 859-2000

2





The CAPSL Integrated Proto
ol Environment1Grit Denker, Jonathan Millen, and Harald Rue�Computer S
ien
e Laboratory, SRI International, Menlo Park, CA 94025, USAfdenker,millen,ruessg�
sl.sri.
om
Abstra
tCAPSL is a Common Authenti
ation Proto
ol Spe
i�
ation Language in-tended to support analysis of 
ryptographi
 proto
ols using formal methods.CAPSL is adapted for use by various proto
ol analysis tools using an inter-mediate language, CIL. This report in
ludes a CAPSL tutorial, the syntaxof CAPSL and CIL, and the abstra
t rewriting model underlying CIL. Algo-rithms are given for translating CAPSL to CIL and for CIL rule optimization.Methods are given for integration of CAPSL and CIL with analysis tools,spe
i�
ally PVS, Maude, and Athena, and for proto
ol analysis using PVSand Maude.

1Supported by DARPA through Air For
e Resear
h Laboratory under Contra
tF30602-98-C-0258





Contents
1 Introdu
tion 11.1 Cryptographi
 Proto
ols . . . . . . . . . . . . . . . . . . . . . 11.2 Message Modi�
ation Atta
ks . . . . . . . . . . . . . . . . . . 21.3 Spe
i�
ation and Analysis Tools . . . . . . . . . . . . . . . . 31.4 CAPSL Features . . . . . . . . . . . . . . . . . . . . . . . . . 41.5 The Intermediate Language CIL . . . . . . . . . . . . . . . . 51.6 Summary of This Do
ument . . . . . . . . . . . . . . . . . . . 52 CAPSL 72.1 CAPSL Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . 72.1.1 En
ryption . . . . . . . . . . . . . . . . . . . . . . . . 82.1.2 Fresh Keys . . . . . . . . . . . . . . . . . . . . . . . . 92.1.3 The Lowe %-Operator . . . . . . . . . . . . . . . . . . 92.1.4 Address Convention . . . . . . . . . . . . . . . . . . . 102.1.5 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.1.6 The Needham-S
hroeder Publi
 Key Handshake . . . 122.2 Types and De
larations . . . . . . . . . . . . . . . . . . . . . 122.2.1 The Type Hierar
hy . . . . . . . . . . . . . . . . . . . 132.2.2 De
larations . . . . . . . . . . . . . . . . . . . . . . . . 14i



2.2.3 Typespe
s . . . . . . . . . . . . . . . . . . . . . . . . . 152.3 Proto
ol Spe
i�
ations . . . . . . . . . . . . . . . . . . . . . . 172.3.1 DENOTES De
larations . . . . . . . . . . . . . . . . . 172.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 182.3.3 Messages . . . . . . . . . . . . . . . . . . . . . . . . . 182.3.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.4 The MESSAGES Se
tion . . . . . . . . . . . . . . . . . . . . 192.4.1 Message Format . . . . . . . . . . . . . . . . . . . . . 192.4.2 A
tions . . . . . . . . . . . . . . . . . . . . . . . . . . 222.4.3 Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . 222.4.4 Subproto
ols and Sele
tion . . . . . . . . . . . . . . . 232.5 Environment Spe
i�
ations . . . . . . . . . . . . . . . . . . . 253 CIL 283.1 Multiset Rewrite Rules . . . . . . . . . . . . . . . . . . . . . . 283.1.1 The MSR Proto
ol Model . . . . . . . . . . . . . . . . 293.1.2 CIL Rule Syntax . . . . . . . . . . . . . . . . . . . . . 303.2 Translator Overview . . . . . . . . . . . . . . . . . . . . . . . 313.2.1 CIL Output . . . . . . . . . . . . . . . . . . . . . . . . 313.2.2 Translation Stages . . . . . . . . . . . . . . . . . . . . 333.2.3 DENOTES Pro
essing . . . . . . . . . . . . . . . . . . 343.3 Abstra
t Rule Generation . . . . . . . . . . . . . . . . . . . . 353.3.1 Translator State . . . . . . . . . . . . . . . . . . . . . 363.3.2 Computability and Re
eivability . . . . . . . . . . . . 363.3.3 Message Rules . . . . . . . . . . . . . . . . . . . . . . 383.3.4 Equational A
tions . . . . . . . . . . . . . . . . . . . . 40ii



3.3.5 Subproto
ols . . . . . . . . . . . . . . . . . . . . . . . 413.4 Lo
al Assertions . . . . . . . . . . . . . . . . . . . . . . . . . 423.5 An Atta
ker Model . . . . . . . . . . . . . . . . . . . . . . . . 424 Optimization of CIL Rewrite Rules 454.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454.2 Optimization Examples . . . . . . . . . . . . . . . . . . . . . 464.3 Optimization Steps . . . . . . . . . . . . . . . . . . . . . . . . 494.4 Properties of Optimization . . . . . . . . . . . . . . . . . . . . 504.4.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . 514.4.2 Termination and Uniqueness . . . . . . . . . . . . . . 524.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 545 Analysis Tools 575.1 Conne
tor Design . . . . . . . . . . . . . . . . . . . . . . . . . 575.2 PVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 605.2.2 Indu
tive Relations . . . . . . . . . . . . . . . . . . . . 625.2.3 Ideals and Coideals . . . . . . . . . . . . . . . . . . . . 635.2.4 Proto
ols and Se
re
y . . . . . . . . . . . . . . . . . . 645.2.5 Example: The Otway-Rees Proto
ol . . . . . . . . . . 675.2.6 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . 705.3 Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.3.1 The Maude Language . . . . . . . . . . . . . . . . . . 725.3.2 Translation of the CAPSL Prelude . . . . . . . . . . . 735.3.3 De�nition of the CIL model . . . . . . . . . . . . . . . 755.3.4 Maude Atta
ker Model . . . . . . . . . . . . . . . . . 76iii



5.3.5 Translating CIL Proto
ols and Environments . . . . . 785.3.6 Sear
h Strategy and Optimization . . . . . . . . . . . 825.3.7 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . 865.4 Athena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875.4.1 The Translation Strategy . . . . . . . . . . . . . . . . 875.4.2 Normalization: Non-Message Rules . . . . . . . . . . . 895.4.3 Type and Fun
tion Limitations . . . . . . . . . . . . . 905.4.4 Goal Generation . . . . . . . . . . . . . . . . . . . . . 906 Con
luding Remarks 92Bibliography 93A CAPSL and CIL Syntax 99A.1 CAPSL Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 99A.2 CIL Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104B The Prelude 106B.1 Basi
 and Boolean . . . . . . . . . . . . . . . . . . . . . . . . 106B.2 Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107B.3 Symmetri
-Key En
ryption . . . . . . . . . . . . . . . . . . . 108B.4 Publi
-Key En
ryption . . . . . . . . . . . . . . . . . . . . . . 110B.5 Key Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . 111B.6 Publi
-Key Sealing . . . . . . . . . . . . . . . . . . . . . . . . 111B.7 Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112B.8 List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112B.9 End Prelude Marker . . . . . . . . . . . . . . . . . . . . . . . 112iv



C CAPSL Examples 114C.1 SSL Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . 114C.2 Se
ure Remote Password (SRP) Proto
ol . . . . . . . . . . . 116D CIL Output Example 118D.1 CAPSL Spe
i�
ation for NSPK . . . . . . . . . . . . . . . . . 118D.2 CIL Output for NSPK . . . . . . . . . . . . . . . . . . . . . . 119

v





Chapter 1Introdu
tion
1.1 Cryptographi
 Proto
olsIn 
omputer networks, 
ryptography is used to prote
t private messages andto authenti
ate the sour
e and 
ontent of messages. Se
urity obje
tives maytake a sequen
e of several messages, that is, a proto
ol, to a
hieve. A pro-to
ol 
an be spe
i�ed diagrammati
ally as in Figure 1.1. This parti
ularproto
ol is supposed to establish a session between prin
ipals A and B insu
h a way that ea
h prin
ipal authenti
ates the identity of the other prin
i-pal, and they share two session-spe
i�
 se
rets Na and Nb. (This is a
tuallynot the whole proto
ol in [NS78℄, but just the handshake that 
omes afteran earlier part in whi
h the publi
 keys are obtained.)

{N  }
b PB

BA

{N  , N  }
a

{A, N   }
PB

b

a

PA

Figure 1.1: Needham-S
hroeder Publi
-Key Proto
olThe bra
keted term fA;NagPB represents the en
ryption of the 
on
atena-tion of A and Na using the publi
 key of B. It is assumed here that A haspreviously obtained B's publi
 key and that only B has the 
orresponding1



se
ret key, and vi
e versa for B. The message �elds Na and Nb are non
es,meaning that they are fresh, in the sense that they have not been used beforeby the prin
ipal that originates them. If they are large enough and randomlygenerated, they 
ould be used as keys to en
rypt subsequent messages.The se
re
y 
laim is based on the argument that A has given Na dire
tlyonly to B, be
ause only B 
ould have de
rypted the message in whi
h Nawas introdu
ed. Similarly for B and Nb. The proto
ol also provides entityauthenti
ation, i.e., eviden
e that the other prin
ipal is 
urrently a
tivelyparti
ipating in the proto
ol, be
ause it in
ludes a
knowledgments from Band A 
ontaining the non
es they re
eived.The same proto
ol is often represented in a more algebrai
 style, like this:A! B : fA;NagPBB ! A : fNa; NbgPAA! B : fNbgPBCAPSL is an outgrowth of this algebrai
 message-list style.1.2 Message Modi�
ation Atta
ksThere is a message modi�
ation atta
k on the Needham-S
hroeder proto
ol,found by Lowe [Low96℄. Message modi�
ation atta
ks assume that there isan intruder or atta
ker in the network who 
an inter
ept messages, re
ordthem, and repla
e them with modi�ed or di�erent messages, whi
h mayappear to have 
ome from di�erent sour
es. The intruder may also a
t asa legitimate prin
ipal, either be
ause he is one, or be
ause he has some-how obtained a long-term se
ret key of one. Lowe's atta
k is illustrated inFigure 1.2.In this �gure, the 
enter 
olumn represents the intruder playing two roles.One role is as himself, prin
ipal X, responding to A in the left-hand sessionof the proto
ol. The intruder is also masquerading as A in the right-handsession of the proto
ol, indi
ated with (A) in parentheses. There is a se
uritybrea
h in the right-hand session, be
ause B ends up believing he has beentalking to A, and that Nb is shared only with A.
2



{N  }
b PX

{N  }
b PB

BA

X

X

(A)

(A)

{N  , N  }
a b

{N  , N  }
a b

{A, N  }
a

{A, N  }
a PX

PA

PA

PB

Figure 1.2: Lowe's Atta
k1.3 Spe
i�
ation and Analysis ToolsThe existen
e of message modi�
ation atta
ks led to the development ofmethods to dete
t them. Several approa
hes have been developed, as rep-resented by papers su
h as [MCF87, Mea91℄ on goal-dire
ted state sear
htools implemented in Prolog, [Kem89, Pau98℄ on the appli
ation of general-purpose spe
i�
ation and veri�
ation tools, [BAN90, GNY90℄ on spe
iallydesigned logi
s of belief, and [Ros95, Low96, CJM98℄ on the appli
ationof model-
he
king tools. This is far from a 
omplete list of papers on thesubje
t.These tools and their su

essors have been e�e
tive, but it is diÆ
ult foranalysts other than their developers to apply them. One reason for thisdiÆ
ulty is that the proto
ols must be respe
i�ed for ea
h te
hnique, and itis not easy to transform the published des
ription of the proto
ol into therequired formal system.Some tool developers began work on translators or 
ompilers that wouldperform the transformation automati
ally. The input to any su
h transla-tor still requires a formally de�ned language, but it 
an be made similarto the message-oriented proto
ol des
riptions that are typi
ally published.This approa
h was taken with an earlier version of CAPSL [Mil97℄; ISL,supporting an appli
ation of HOL to an extension of the GNY logi
 [Bra97℄;Casper [Low98℄, for the appli
ation of FDR using a CSP model-
he
king ap-proa
h; and Carlsen's \Standard Notation" [Car94℄, whi
h was translated3



to per-pro
ess CKT5 spe
i�
ations.A proposal for CAPSL was �rst presented at the 1996 Isaa
 Newton Insti-tute Programme on Computer Se
urity, Cryptology, and Coding Theory atCambridge University. A version of CAPSL very 
lose to the 
urrent onewas subsequently implemented as an interfa
e to the NRL Proto
ol Analyzer[BMM99℄.The CAPSL language and supporting tools are still under development. Thisdo
ument o�ers a snapshot of the 
urrent design, not only for CAPSL itself,but also for the strategy by whi
h CAPSL 
an be adapted for use by variousproto
ol analysis tools. The 
ore of this strategy is the use of an intermediatelanguage, CIL, that is 
loser to the state-transition representation used byalmost all of these tools. An overview of the CAPSL and CIL environmentwas given in [DM00℄. Current do
umentation, the translator, and otherresour
es are available on the CAPSL Web site [Mil00b℄.1.4 CAPSL FeaturesThe a
ronym \CAPSL" stands for \Common Authenti
ation Proto
ol Spe
-i�
ation Language." The language is intended to support analysis of 
ryp-tographi
 proto
ols using formal methods.The 
ore of a CAPSL spe
i�
ation is a message se
tion showing the ab-stra
t format of a sequen
e of messages. Message �elds are named and theirtypes are indi
ated, but details su
h as �eld lengths and bit patterns arenot shown. Only that information essential for proto
ol failure analysis isretained, resulting in a 
lear, simple model of the proto
ol.En
ryption operators, hash fun
tions, and other 
omputations are treated asabstra
t operators whose properties are spe
i�ed axiomati
ally in auxiliaryabstra
t data type spe
i�
ations. Spe
i�
ations for some popular opera-tors, representing the abstra
t features of 
ryptosystems like DES, RSA,and DiÆe-Hellman, are in
luded in a prelude �le supplied with the CAPSLtranslator.Sometimes the proto
ol requires 
omputations and tests that are not 
on-veniently expressed using just the message sequen
e. In CAPSL, one 
aninsert assignment statements and equations representing 
omputations andtests. 4



An important part of the proto
ol spe
i�
ation is a statement of its se
urityobje
tives. There is a \GOALS" se
tion for this purpose, whi
h may in
ludese
re
y and belief statements. Initial assumptions are also spe
i�ed formallyand pla
ed in a se
tion prior to the message list. It is possible to pla
eassertions within the message list as well, to indi
ate intermediate goals ormessage idealizations, to help support belief logi
 analysis.Finally, there is also a way to spe
ify s
enario details to support sear
h toolsthat require setup of individual sessions.1.5 The Intermediate Language CILThe CAPSL Intermediate Language (CIL) serves two purposes: to helpde�ne the semanti
s of CAPSL, and to a
t as an interfa
e through whi
hproto
ols spe
i�ed in CAPSL 
an be analyzed using a variety of tools.The idea is illustrated in Figure 1.3. CAPSL is parsed and translated to CIL,and there are di�erent translators, 
alled 
onne
tors, from CIL to whateverform is required for ea
h tool. CIL is designed to make the translation totool-spe
i�
 representations as easy as possible. The translator from CAPSLto CIL 
an deal with the universal aspe
ts of input language pro
essing, su
has parsing, type 
he
king, and unraveling a message-list proto
ol des
riptioninto the underlying separate pro
esses.Fortunately, the proto
ol spe
i�
ations required for most proto
ol analysistools have 
onsiderable stru
tural similarity. They generally spe
ify a proto-
ol with state-transition rules for 
ommuni
ating pro
esses. CIL uses multi-set term rewriting rules that permit state 
hanges to be presented 
on
isely,and in a way that 
losely mat
hes the requirements of analysis tools. Thisapproa
h was in
uen
ed by an analysis example using Maude, by Denker,Meseguer, and Tal
ott, presented at a LICS '98 workshop [DMT98a℄, and byMit
hell's multiset rewriting formulation, presented at a Computer AidedVeri�
ation workshop in 1998, and also later, in more detail, in [CDL+99℄.1.6 Summary of This Do
umentChapter 2 introdu
es the CAPSL language with a tutorial in
luding a se-quen
e of simple examples. It then goes on to present the elements of the5



connectors

Model
Checker

Maude
PVS 

Inductive 

Verification

NRL

Analyzer
Protocol

Translator

CIL

CAPSL

Figure 1.3: Overview of the Environmentsyntax systemati
ally. Chapter 3 des
ribes CIL and its relation to the un-derlying abstra
t rewriting model. It also presents the algorithm for trans-lating CAPSL to CIL, and in parti
ular the way the rewrite rules are gener-ated. Chapter 4 explains the optimization step, whi
h redu
es the numberof rewrite rules almost in half. Then, Chapter 5 addresses the integrationof CAPSL and CIL with analysis tools, using 
onne
tors. Analysis te
h-niques for PVS and Maude are summarized, and the 
onne
tor to Athenais des
ribed. There is a short 
on
lusion, Chapter 6. The report has severalappendi
es 
ontaining examples and referen
e information.
6



Chapter 2CAPSL
A CAPSL spe
i�
ation is made up of three kinds of modules: typespe
,proto
ol, and environment spe
i�
ations, usually in that order. Typespe
sde
lare 
ryptographi
 operators and other fun
tions axiomati
ally. Environ-ment spe
i�
ations are optional; they are used to set up parti
ular networks
enarios for the bene�t of sear
h tools. Some standard typespe
s in aprelude �le are automati
ally utilized by the CAPSL translator, so manyproto
ols 
an be spe
i�ed with only a proto
ol module.This introdu
tion to the CAPSL language begins with a tutorial sequen
eof proto
ols designed to illustrate the basi
 features of CAPSL.2.1 CAPSL TutorialHere is the simplest example of a proto
ol spe
i�
ation.PROTOCOL Simple1;VARIABLESA: Prin
ipal;MESSAGESA -> A: A;END;Proto
ol Simple1 has only one message, in whi
h prin
ipal A sends its nameto itself. As in a strongly typed programming language, variables must be7



de
lared and typed. Prin
ipals are obje
ts that 
an o

ur as the sour
e ordestination of a message.Here is a slightly more 
omplex example.PROTOCOL Simple2;VARIABLESA, B: Prin
ipal;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: A;END;The HOLDS de
laration states that the pro
ess exe
uting on behalf of A hasbeen initialized with the prin
ipal B 
hosen as the responder. Read it as\A holds B." If the HOLDS assumption is omitted, the CAPSL translatorwill 
omplain that sender of the �rst message does not know the re
eiveraddress. It is unne
essary to say HOLDS A: A be
ause, by 
onvention, prin-
ipals always hold themselves.2.1.1 En
ryptionCertain types of prin
ipals possess long-term keys. PKUser is a subtype ofPrin
ipal possessing a publi
 key pair. If A is of type PKUser, pk(A) is itspubli
 key and sk(A) the 
orresponding private (se
ret) key. Thus, A 
oulden
rypt its message to B as follows:PROTOCOL Simple3;VARIABLESA, B: PKUser;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A}pk(B);END;The notation f�eldgkey is synta
ti
 sugar for the fun
tion 
all ped(key,�eld).The fun
tion ped is the standard abstra
t publi
 key en
ryption and de
ryp-tion fun
tion. (If the key is a symmetri
 key, the synta
ti
 sugar expands8



internally into a 
all on se, the standard abstra
t symmetri
 key en
ryptionfun
tion, instead.)2.1.2 Fresh KeysSession keys are usually assumed to be fresh, generated in some way thatensures (up to a 
ryptographi
ally unlikely 
oin
iden
e) that ea
h new onehas not been used before. To be useful as a key, the new value should beunguessable. Sequen
e numbers, for example, are fresh but not unguessable.Here is an example of session key generation:PROTOCOL Simple4;VARIABLESA, B: Prin
ipal;K: Skey, FRESH, CRYPTO;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A}K;END;In this example, Skey is a symmetri
 key type, and the de
laration of K hastwo keywords FRESH and CRYPTO 
alled properties. The CRYPTO propertyindi
ates unguessability.Simple4 is not useful be
ause B does not hold K and 
annot de
rypt themessage to obtain A. In CAPSL, this proto
ol spe
i�
ation is semanti
allyillegal be
ause it implies that B de
rypts the message, and the translatorwill 
omplain that the message is not \re
eivable" by B. De
laring that Bholds K does not work, be
ause, in the �rst message, A 
annot generateK as a fresh value if it is already held by B, and the translator 
omplainsa

ordingly. But there is a way to spe
ify that B does not try to de
ryptthe message.2.1.3 The Lowe %-OperatorThe author of the proto
ol 
an spe
ify that B a

epts the en
rypted termwithout attempting to de
rypt it, by de
laring a variable in whi
h B storesthe re
eived value. The di�erent views of the message { the en
rypted form9



seen by A and the atomi
 form seen by B { are separated by the % operator,whi
h was introdu
ed by Lowe in Casper [Low98℄. We 
an see how the %operator is used in this version of the proto
ol:PROTOCOL Simple5;VARIABLESA, B: Prin
ipal;K: Skey, FRESH, CRYPTO;F: Field;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: ({A}K)%F;END;The type Field is the supertype of all types that 
an be used as message�elds, in
luding prin
ipals, keys, and terms 
onstru
ted by en
ryption and
on
atenation.The %-operator has a weaker binding pre
eden
e than en
ryption, so, forexample, (fAgK)%F 
an safely be written as fAgK%F.2.1.4 Address ConventionSuppose we wish to extend Simple5 to a longer proto
ol in whi
h B repliesto A with F .PROTOCOL Simple6;VARIABLESA, B: Prin
ipal;K: Skey, FRESH, CRYPTO;F: Field;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A}K%F;B -> A: F;END; 10



The reply message is una

eptable to the CAPSL translator be
ause \senderdoes not know re
eiver address." The problem here is that sin
e B 
an'tde
rypt the message, B has not learned the value of A. By 
onvention, thesour
e address of the message is not 
onsidered part of the 
ontent, and isnot readable by the re
eiver of the message. Realisti
ally, this seems reason-able be
ause, although the same \Prin
ipal" type is used in the abstra
tionin both the address and 
ontent portions of the message, implementationsdistinguish an address spe
i�
ation { su
h as an IP address { from a sub-je
t name, whi
h is a text string 
hosen to be meaningful in the appli
ation
ontext. Proto
ols presented in the literature are in
onsistent with regardto this 
onvention.2.1.5 GoalsIn order to analyze the se
urity of a proto
ol, there must be a statement ofits obje
tives. In CAPSL, there is a GOALS se
tion to express se
re
y andauthenti
ation 
laims. In the following simple example proto
ol, we mightimagine that the designer intended for K to be a se
ret shared only by Aand B, and that when B re
eives it, B 
an be assured that it was sent byA.These two goals are stated as SECRET and PRECEDES assertions. A SECRETassertion says that the value of a variable generated by its nominal originator
annot be obtained by the intruder (unless the intruder is a
ting in one ofthe legitimate roles of the proto
ol). A PRECEDESA;BjV1; V2; ::: assertionsays that if B rea
hes its �nal state, then A must have rea
hed a state thatagrees with B on V1; V2; :::.PROTOCOL Simple7;VARIABLESA, B: Prin
ipal;K: Skey, FRESH, CRYPTO;F: Field;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A,K}pk(B);GOALSSECRET K; 11



PRECEDES A: B | K;END;In this proto
ol, K as generated by A is kept se
ret, but it might not rea
hB. The message re
eived by B 
ould have been forged by the intruder. Thus,the value of K re
eived by B is not ne
essarily from A, so the PRECEDESgoal would fail.2.1.6 The Needham-S
hroeder Publi
 Key HandshakeThis tutorial 
on
ludes with the CAPSL spe
i�
ation of the Needham-S
hroeder publi
 key handshake mentioned in the Introdu
tion. There isa type Non
e used in this proto
ol whi
h is assumed impli
itly, by 
onven-tion, to have the property FRESH (but not ne
essarily CRYPTO).PROTOCOL NSPK;VARIABLESA, B: PKUser;Na, Nb: Non
e, CRYPTO;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A,Na}pk(B);B -> A: {Na,Nb}pk(A);A -> B: {Nb}pk(B);GOALSSECRET Na;SECRET Nb;PRECEDES A: B | Na;PRECEDES B: A | Nb;END;2.2 Types and De
larationsTypespe
s de�ne the types and operators used in proto
ol spe
i�
ations.There is a subtype relation that pla
es types in a hierar
hy. Both typespe
sand proto
ol spe
i�
ations 
an de
lare types, 
onstants, fun
tions, and vari-12



ables. The di�eren
e is that de
larations appearing in typespe
s are uni-versal and re-usable, while those in proto
ol spe
i�
ations are spe
i�
 to aproto
ol. Before des
ribing typespe
s proto
ol spe
i�
ations, we present thetype hierar
hy and show the kinds of de
larations that may appear in eithertypespe
s or proto
ol spe
i�
ations.2.2.1 The Type Hierar
hyMessages in 
ryptographi
 authenti
ation proto
ols are 
onstru
ted using
ryptographi
 operators and other fun
tions, su
h as 
on
atenation and hashfun
tions. Every message �eld is of type Field, but 
ertain operators requireor produ
e �elds of parti
ular subtypes, su
h as key types. Field is a subtypeof the universal type Obje
t, and there are other types of obje
ts that arenot used as message �elds, su
h as Role, Spe
 and Boolean. A portion ofthe type hierar
hy is shown in Figure 2.1.
NoncePkeySkey

PKUser

...

Principal

Object

Role BooleanField Spec

Atom Pspec Tspec EspecListTape

Figure 2.1: The Type Hierar
hyIn prin
iple, all fun
tions used in CAPSL and the data types they oper-ate on must be spe
i�ed axiomati
ally in typespe
s. The types that areshown in the hierar
hy and the most 
ommonly used en
ryption operatorsare in
luded in the prelude. The 
urrent prelude is given in Appendix B.
13



2.2.2 De
larationsDe
larations in
lude IMPORTS, TYPES, VARIABLES, FUNCTIONS, andCONSTANTS, in no parti
ular order ex
ept that identi�ers must be de
laredbefore they are used.IMPORTS. An IMPORTS de
laration names one or more spe
i�
ations(this is one reason why spe
i�
ations are named) and indi
ates that thede
larations 
ontained in them or imported by them are to be used as thoughthey were in
luded in the present spe
i�
ation. An IMPORTS de
larationpermits the CAPSL translator to pro
ess a sequen
e of spe
i�
ations and
he
k that imported spe
i�
ations have o

urred earlier in the sequen
e.The CAPSL translator assumes that user spe
i�
ations impli
itly importthe whole prelude, so that it is not ne
essary to import any spe
i�
ation inthe prelude expli
itly.Importation of de
larations brings all symbols into the same 
ontext. Onemay not, for example, de
lare the same fun
tion or variable twi
e; a \du-pli
ate de
laration" error message will result. There are three ex
eptionsto this, as noted below, for fun
tion overloading, fun
tion re�nement, anddummy variables.TYPES. A type de
laration TYPES T1; ::: : T ; ::: introdu
es new types T1; :::and indi
ates that they are subtypes of T . The supertype is optional, and ifit is left out, the new types are assumed to be subtypes of Atom (a generi
�xed-length �eld type).VARIABLES. A variable de
laration VARIABLES V1; ::: : T; P1; :::; ::: intro-du
es proto
ol variables of type T, optionally with properties P1; :::: TheFRESH and CRYPTO properties were mentioned above; others will be intro-du
ed where they are relevant.A variable de
lared in a typespe
 is a dummy variable, and the same variablemay be rede
lared as the same type in another typespe
. A variable de
laredin a proto
ol spe
i�
ation is a proto
ol variable and it may not also bede
lared elsewhere. (A future version of the CAPSL translator may treatdummy variable de
larations as lo
al to permit rede
laration in another
ontext.)FUNCTIONS. A fun
tion de
laration FUNCTIONS F1(T1; :::) : T2; P1; :::; :::de
lares the type signature of one or more fun
tions. Fun
tion values mayhave the properties PRIVATE, ASSOC, and COMM. Private fun
tions are dis-14




ussed below in the typespe
 se
tion. The ASSOC and COMM properties des-ignate asso
iative and 
ommutative binary fun
tions, to obviate axioms forthat purpose.The same fun
tion name may be re-used for another fun
tion for the sakeof either overloading or re�nement. Overloading means that the fun
tionname is used with a di�erent signature that does not overlap with an ear-lier de
laration, su
h as di�erent forms of addition for Skeys and Booleans.Re�nement means that domain restri
tion implies a range restri
tion, su
has the re�nement of en
ryption from �elds to atoms, shown in the nextsubse
tion.CONSTANTS. A 
onstant is essentially a fun
tion with no arguments. A
onstant de
laration has the form CONSTANTS C1; ::: : T1; :::.2.2.3 Typespe
sA typespe
 
onsists of some de
larations, followed optionally by some ax-ioms. Typespe
s usually introdu
e a new type and some fun
tions de�nedon it, but in some 
ases they merely extend an existing typespe
 by de�ningnew fun
tions on existing types.Here is an example of some related typespe
s found in the prelude.TYPESPEC PKEY;TYPES Pkey;END;TYPESPEC SPKE;IMPORTS PKEY;FUNCTIONSped(Pkey, Field): Field;ped(Pkey, Atom): Atom;END;TYPESPEC PPK;IMPORTS SPKE;TYPES PKUser: Prin
ipal;FUNCTIONSpk(PKUser): Pkey; 15



sk(PKUser): Pkey, PRIVATE;VARIABLESA: PKUser;X: Field;AXIOMSped(sk(A),ped(pk(A),X)) = X;ped(pk(A),ped(sk(A),X)) = X;INVERT ped(pk(A),X): X | sk(A);INVERT ped(sk(A),X): X | pk(A);END;The �rst typespe
 de
lares a data type Pkey (publi
 key). New types aresubtypes of Atom unless otherwise indi
ated. The se
ond typespe
 de�nespubli
-key en
ryption using a single en
ryption/de
ryption fun
tion ped.This fun
tion has two type signatures, a more general one for en
rypting�elds, and a more spe
i�
 one that says that atomi
 �elds are en
rypted toatomi
 �elds. This is an example of fun
tion re�nement.The en
ryption/de
ryption 
an
ellation property for publi
-key en
ryptionis not stated in this typespe
, be
ause key pairs will be generated by fun
-tions asso
iated with Prin
ipal subtypes.Typespe
 PPK de�nes a subtype PKUser of Prin
ipal. PKUsers have twofun
tions de�ned for them giving their permanent publi
 and se
ret keys.Fun
tions are normally publi
 or universal, in the sense that anyone 
an
ompute them, given the argument values. This is not what we want for these
ret-key fun
tion, for if anyone 
ould 
ompute the se
ret key sk(A) justby knowing A, the se
ret key would hardly be se
ret. Hen
e the PRIVATEproperty.If the �rst argument of a fun
tion is of type Prin
ipal, it 
an be de
laredwith the PRIVATE property to indi
ate that the value is available only to theprin
ipal named in the �rst argument. Thus, only Ali
e 
an �nd sk(Ali
e).There are four axioms in PPK. The �rst two say that sk(A) and pk(A) areinverse keys with respe
t to ped, in either order. The CAPSL translator doesnot \understand" these axioms; it simply passes them on through CIL to theanalysis tools. However, the invertibility properties of ped are also expressedin the 
orresponding INVERT statements. These are used by the CAPSLtranslator to 
he
k implementability of spe
i�
ations. INVERT t : xjy meansthat any party (either legitimate or the intruder) holding term t 
ontaining16



a variable x 
an 
ompute x provided that it holds y. y 
ould be a list ofterms. The use of INVERT statements is 
overed in more detail in Chapter 3.The use of typespe
s to de�ne subtypes of Prin
ipal with fun
tions to lookup their long-term keys is an important, original stylisti
 aspe
t of CAPSL.2.3 Proto
ol Spe
i�
ationsA proto
ol spe
i�
ation has the form:PROTOCOL name;de
larationsASSUMPTIONSassumptionsMESSAGESmessages and a
tionsGOALSgoalsEND;There is one spe
ial kind of de
laration that o

urs only in proto
ol spe
i-�
ations: DENOTES de
larations.2.3.1 DENOTES De
larationsDENOTES de
larations allow a variable to be de�ned as the value of an ex-pression. This is helpful in proto
ols where there are 
erti�
ates or ti
kets orpubli
 values with a 
omplex stru
ture, and we want to de�ne them initiallyand use a variable for them in the body of the proto
ol. A DENOTES de
la-ration se
tion 
an de
lare more than one variable. It has the form DENOTESV = e : A; :::; ::: where e is a term and A is a prin
ipal. More than oneprin
ipal, or none, may be listed.A de
laration V = e : A is treated as an assignment a
tion that is exe
utedby A when V is �rst used by A. This might happen when A is putting Vinto a message, or when A re
eives a message purportedly 
ontaining V sothat it 
an make a 
omparison. A DENOTES a
tion is used only on
e by ea
hagent, sin
e V is held thereafter. 17



It is possible to omit the prin
ipal from the DENOTES de
laration, as inDENOTES V = e. In this 
ase, all prin
ipals will use this a
tion.DENOTES equations must be pla
ed in logi
al order. That is, if there isa DENOTES equation V = f(X) and also a DENOTES equation for X, theequation for X must appear earlier.The variable on the left in a DENOTES de
laration must be de
lared sepa-rately. It is a real proto
ol variable, not merely a pla
eholder for ma
rosubstitution.DENOTES de
larations are helpful when the same value is 
omputed in dif-ferent ways by di�erent prin
ipals. One example of this is in generatinga 
ommon key via DiÆe-Hellman agreement. Another example is when along-term key must be looked up using a di�erent private fun
tion by ea
hprin
ipal.2.3.2 AssumptionsSynta
ti
ally, assumptions in
lude statements and 
ertain spe
ial forms. As-sumption statements are boolean-valued terms or equalities. The spe
ialform most 
ommonly used as an assumption is the HOLDS form.CAPSL also allows statements and other assumptions to be quali�ed withthe belief operator, e.g., BELIEVES A : BELIEVES B : HOLDS A : K, read: \Abelieves that B believes that A holds K." This syntax is in
luded to helpsupport belief logi
 appli
ations of CAPSL. Belief assumptions are usefulonly in 
onjun
tion with a suitable modal logi
 to infer belief goals.There is also a KNOWS operator. This does not refer to values, as HOLDS does.Instead, it is Hintikka's epistemi
 logi
 operator, related to BELIEVES. Therelationship is that KNOWS A : � is equivalent to � ^ BELIEVES A : �, i.e.,belief plus truth.2.3.3 MessagesThe MESSAGES se
tion of a proto
ol spe
i�
ation is a sequen
e of messages,among whi
h a
tions may be interleaved. The MESSAGES se
tion may endwith a subproto
ol invo
ation. These are 
omplex enough subje
ts so thata separate se
tion is allo
ated to dis
uss them.18



2.3.4 GoalsThe GOALS se
tion states the se
urity obje
tives for the proto
ol. Synta
ti-
ally, the same assertions that are legal as assumptions are legal as goals.However, in the GOALS se
tion one expe
ts to see se
re
y and authenti
ationassertions.Se
re
y. A SECRET assertion has the form SECRET V : P1; :::. It says that theproto
ol variable V is se
rets shared only by the prin
ipals P1; :::. The listof prin
ipals may be omitted, in whi
h 
ase it is understood that the se
retsare shared by all of the prin
ipals playing legitimate roles in the proto
olsession. The semanti
s of se
re
y assertions is dis
ussed in depth in [MR00℄.The CAPSL translator does not yet (at this writing) introdu
e \spell" eventsas des
ribed in that paper; it merely parses the SECRET assertion and passesit on in abstra
t syntax.Pre
eden
e and Agreement. A PRECEDES goal has the form PRECEDESA;BjV1; V2; :::. Intuitively, this says that if some instan
e of the B rolerea
hes its �nal state, it agrees with some instan
e of the A role on A;B; V1;and V2.Agreement is like pre
eden
e ex
ept that there is no existen
e 
laim. Forexample, the goal AGREEA;B : V1; :::jW1; :::; says that if there is any instan
eof A that agrees with B on A;B;W1; :::, then it must agree on V1; ::: also.2.4 The MESSAGES Se
tionThe message format is straightforward, but there are some interesting fea-tures in the presentation of message �elds. We dis
uss those below. Besidesmessages, the MESSAGES se
tion may 
ontain a
tions and subproto
ol invo-
ations.2.4.1 Message FormatA message has the formid. sender -> re
eiver: �eld, ...;19



The sender and re
eiver must be proto
ol variables of type Prin
ipal, andthe 
ontent �elds are terms of type Field. The message id (and its asso
iatedperiod) are merely de
orative and optional. Some in�x operators and othernotational 
onvenien
es have been introdu
ed to permit CAPSL messagesto look like those in the literature. The existing in�x operators fall into four
ategories: 
on
atenation, en
ryption, arithmeti
, and the %-operator.Con
atenation. A sequen
e of �elds may be 
on
atenated into a singlelonger �eld, usually for the purpose of having them en
rypted together.Curly bra
kets f , g and square bra
kets [ , ℄ denote di�erent kinds of
on
atenation, whi
h are translated into di�erent fun
tions, 
at and 
onrespe
tively. 
at is asso
iative and 
on is not.Both 
at and 
on are binary. Longer 
on
atenations are parsed under theassumption that right asso
iation is intended. Thus, [a; b; 
℄ is parsed as[a; [b; 
℄℄.Asso
iativity of 
on
atenation matters when we try to de
ompose a 
on
ate-nation. With non-asso
iative 
on, the �rst 
omponent of a 
on
atenation[[A,B℄,C℄ is [A,B℄. With asso
iative 
at, the �rst 
omponent of {{A,B},C}would be A, unless A is itself a 
on
atenation.To deal with this question we di�erentiate between atomi
 �elds, whi
hform the subtype Atom of Field, and those �elds that are expressible as a
on
atenation of smaller �elds. The �rst 
omponent of a 
at 
on
atenationis the �rst atomi
 
omponent. Most types { all types in the prelude ex
eptField and List { are subtypes of Atom.Note. A message A -> B: {C,D} 
an be re
eived by B only if C is atomi
.If C is not atomi
, B 
annot parse the 
on
atenation from left to right - itwon't know where C stops and D begins. The translator generates an errormessage if this 
ondition is not met.En
ryption. Putting a key after a bra
keted expression denotes en
ryption,using ped if the key is of type Pkey or se if the key is of type Skey. Thus,the expression fA, Kgpk(B) is interpreted as ped(pk(B), 
at(A, K)).A key after bra
kets also indi
ates en
ryption even without a 
on
atenation,so that fXgK is interpreted as se(K, X).De
ryption with sd is indi
ated with a prime, for example, fXg0K.The same en
ryption fun
tions are invoked with square bra
kets; the onlydi�eren
e is that the 
on operator is used for the 
on
atenation. There is20



no di�eren
e between fXg0K and [X℄0K.Arithmeti
. CAPSL permits in�x arithmeti
 operators +, -, *, /, and ^with type Skey. These are automati
ally translated to fun
tions pls, mns,tms, div, and exp, whi
h appear in the prelude. The prelude does notattempt to axiomatize these fun
tions. It is assumed that any veri�
ationtool that 
an deal with these fun
tions has its own understanding of them,and the 
onne
tor for that tool will rename them appropriately.In proto
ols, arithmeti
 is usually �nite-�eld arithmeti
 with respe
t to somemodulus. The value of the modulus may be important for 
ryptanalysis butit often does not matter for proto
ol analysis. An example of the use ofthese operators, the SRP proto
ol, appears in Appendix C.Arithmeti
 is used most often to 
ompute symmetri
 keys, and that is whythese operators are de�ned on type Skey. It may be desirable to broadenthe domain of arithmeti
 to all atomi
 types, with some prote
tion againstmixing di�erent types.Some proto
ols add or subtra
t one from a non
e in a handshake responseto prote
t against replay. They don't really need arithmeti
. They 
an useany value-
hanging fun
tion. A proto
ol 
an have a de
laration FUNCTIONSin
(Non
e): Non
e if it needs to in
rement a non
e for this purpose. Noaxioms are needed.Lowe's %-Notation. Sometimes it is ne
essary to distinguish between thesender's view of a message and the re
eiver's view, be
ause the re
eiver mayhave more or less knowledge about the stru
ture of a message �eld than thesender. For this purpose, we exploit the %-notation introdu
ed in Casper[Low98℄.A %-term is a term of the form u%v, or a term 
ontaining some subtermof that form. In the %-term u%v, u is the sender's version of the termand v is the re
eiver's version. A term like fA%B, C%Dg makes sense, sin
ethe sender 
onstru
ts fA, Cg and the re
eiver sees fB, Dg, while a term likeA%fC%DgK does not make sense. No % should be within the s
ope of another.Any %-term 
ould be written equivalently with only a single top-level useof %. The pre
eden
e of % is lower than that of any other operator ex
epta 
omma separating �elds.
21



2.4.2 A
tionsAn a
tion is an statement that o

urs in a message list. An equational a
tionlike X = e may be either an assignment that sets X or a 
omparison test,depending on whether or not the agent already holds X in that state. If Xis held, the equation 
an only be a 
omparison test, be
ause variables donot 
hange value. But if X is not held, the equation must be an assignment,sin
e it would be unde�ned as a test. If there is a term other than a variableon the left, the a
tion must be a 
omparison test. (However, in the futureCAPSL may support assignment into an element of an array, and then theexpression on the left will be an indexed variable.)CAPSL 
an handle an equation with a 
on
atenation of variables on theleft, su
h as fA;Bg = e. This is expanded into two equations, in this 
aseA = first(e);B = rest(e).The result of a failed 
omparison test, in
identally, or the evaluation of anyother kind of statement to false, is that the a
ting agent does not make anyfurther state transitions. That is, it 
rashes silently. If the failure of the testis supposed to generate an error reply, that must be indi
ated expli
itly inthe proto
ol spe
i�
ation, using the 
onditional sele
tion syntax dis
ussedbelow.A
tions may also be of the form ASSUME statement or PROVE statement.These are essentially assumptions and goals, respe
tively, ex
ept that theyare asso
iated with intermediate states rather than with initial and �nalstates.2.4.3 PhrasesWhen pro
essing an a
tion, the CAPSL translator must determine whi
hagent (a
tually, whi
h role) is taking the a
tion, so that it 
an determinewhi
h variables are held. The a
ting agent is usually apparent from theposition of the a
tion in the message list. For example, in the message-listfragmentA -> B: X;X = Y;B -> C: Z; 22



it is obviously B who exe
utes the a
tion X = Y . But, what if two messagesin a row are sent by the same agent? For example,A -> B: X;X = Y;A -> C: Z;Now it is not 
lear whether the a
tion is taken by B after re
eiving the�rst message, or by A before sending the next. The ambiguity is resolvedin CAPSL by inserting a slash \/" as a phrase divider to separate re
eivera
tions from sender a
tions. In this 
ase, if we intended that the a
tion beperformed by B, we would write:A -> B: X;X = Y;/A -> C: Z;The term \phrase" refers to a message and the a
tions before and after itby its sender and re
eiver. Invo
ations and sele
tions, explained in the nextsubse
tion, are also phrases.2.4.4 Subproto
ols and Sele
tionSome 
omplex proto
ols are a
tually frameworks that guide a 
ommuni
a-tion session through a sequen
e of \ex
hanges" or subproto
ols. A subpro-to
ol is a way to en
apsulate a logi
ally 
ohesive sequen
e of messages. InCAPSL, a subproto
ol is just a separate proto
ol module.A proto
ol P1 may invoke another one, say P2, by using an INCLUDE P2phrase (
alled an invo
ation) in pla
e of a message. The two proto
ol spe
-i�
ations would o

ur in the order P1; P2, so that variables de�ned in P1may be imported and used in P2. The name P2 should be de
lared in P1as a 
onstant of type Pspe
. The outline of invo
ation use is something likethis:PROTOCOL P1;CONSTANTS P2: Pspe
;...MESSAGES 23



...INCLUDE P2;END;PROTOCOL P2;IMPORTS P1;...END;Conditional Sele
tion. The sele
tion of later subproto
ols may be 
on-ditional on data values or agreements rea
hed in earlier message ex
hanges.Another reason for 
onditional bran
hing in a proto
ol might be to providean error reply as an alternative to a normal 
ontinuation after some testfails. In CAPSL, a 
onditional expression sele
ting alternative invo
ationsis 
alled a sele
tion. An alternative in a sele
tion 
ould be any kind ofphrase, so it 
ould be a message, an invo
ation, or a nested sele
tion. TheSSL example in Appendix C illustrates how this is done. Here is an outlineof how a sele
tion is used:PROTOCOL P1;CONSTANTS P2: Pspe
;...MESSAGES...IF A = B THEN INCLUDE P2;ELSE INCLUDE P3; ENDIF;END;PROTOCOL P2;IMPORTS P1;...END;PROTOCOL P3;IMPORTS P1;...END;There is a problem, in prin
iple, with 
ontinuing a proto
ol with more mes-sages after a sele
tion with alternative subproto
ols. Di�erent subproto
ols24



may 
ause di�erent sets of program variables to be
ome held. The legalityand meaning of subsequent messages is then ambiguous.Presently, CAPSL deals with this problem in a rather dra
onian way byrequiring that no statement may follow an INCLUDE, even when there is nosele
tion. Invo
ations 
an be 
hained, however, to a
hieve sequen
ing. Forexample, proto
ol P2 in the outlines above 
ould 
ontain another invo
ationat the end of its MESSAGES se
tion.A more advan
ed treatment of subproto
ol invo
ation would be to give themarguments so that they 
ould have their own proto
ol variable 
ontexts, justas program subroutines do. At the moment, this feature would probablyoutstrip the 
apabilities of proto
ol analysis tools. Analysis is simpler ifwe assume that subproto
ols do not \return," they just take over from theparent session.2.5 Environment Spe
i�
ationsWhen a proto
ol is being analyzed or simulated, the analyst may have tospe
ify whi
h agents are to be run. The analyst may also have to sup-ply other run-spe
i�
 information su
h as the initial knowledge of the at-ta
ker. CAPSL spe
i�
ations 
an in
lude ENVIRONMENT spe
i�
ations 
on-taining this kind of information. Ea
h environment spe
i�
ation sets up adi�erent s
enario for analysis. An environment spe
i�
ation 
ontains de
-larations, one or more AGENT se
tions, and, optionally, any of an EXPOSEDse
tion, an AXIOMS se
tion, and an ORDER se
tion.An environment spe
i�
ation de�nes 
onstants for prin
ipals and perhapsother values like 
ompromised keys. The spe
i�
ation 
onstru
ts agents bynaming the prin
ipal, role, and initial values for ea
h agent.De
larations to name prin
ipals and other 
onstants 
ould be pla
ed in thisse
tion. For example, suppose we want two prin
ipals, Ali
e and Bob, takingthe usual `A' and `B' roles, and Mallory as a dishonest prin
ipal. We mightset that up like this:ENVIRONMENT Test1;IMPORTS NSPK;CONSTANTSAli
e, Bob: PKUser; 25



Mallory: PKUser, EXPOSED;AGENT A1 HOLDSA = Ali
e;B = Bob;AGENT B1 HOLDSB = Bob;EXPOSED{Bob}sk(Ali
e);END;An environment spe
i�
ation imports the proto
ol spe
i�
ation it appliesto, in order to refer to its proto
ol variables (A, et
.). Agents are named(this is an impli
it de
laration of a 
onstant of type Agent) and 
onstantsmust be given as values for the proto
ol variables initially held by the agent,as required in the proto
ol assumptions. The �rst equation, by 
onvention,names the prin
ipal that owns the agent, so that the role of the agent 
anbe determined. Non
es 
ould be assigned values here or not, depending onthe needs of the analysis tool.When several environment spe
i�
ations are in
luded to analyze di�erents
enarios, ea
h one 
an import previous spe
i�
ations to take advantage ofthe 
onstant de
larations in them. Agent de
larations are not imported.The initial knowledge of the atta
ker is in the EXPOSED se
tion. This wouldnormally be a list of terms that the atta
ker is assumed to hold initially,possibly in
luding some items that are de
lared in the proto
ol as se
ret.The atta
ker may be impli
itly assumed to hold agent names.A prin
ipal with an EXPOSED property is one whose private data is all heldinitially by the atta
ker. In this example, if Mallory is EXPOSED, the valuesof private fun
tions with Mallory as the �rst argument (su
h as, for example,sk(Mallory)) would not have to be added to the EXPOSED list, be
ause theyare impli
itly assumed to be exposed.Agents are, by default, assumed to run 
on
urrently. CAPSL permits anORDER se
tion to spe
ify some series-parallel sequen
ing of agents, for thebene�t of sear
h tools that 
ould save time when su
h a restri
tion is as-sumed. For example, we might say: ORDER (A1; A2)||B1 to mean thatagent A2 does not start until A1 ends, but that sequen
e runs 
on
urrentlywith B1.An environment spe
i�
ation may have an AXIOMS se
tion for assumptions26



about its 
onstants, e.g., AXIOMS sk(Ali
e) = SKa.

27



Chapter 3CIL
3.1 Multiset Rewrite RulesSupport for multiple analysis tools is a

omplished through the CAPSLIntermediate Language (CIL) [DM99b℄. The purpose of CIL is to unam-biguously de�ne the meaning of a proto
ol spe
i�
ation. CIL also a
ts asan interfa
e through whi
h proto
ols spe
i�ed in CAPSL 
an be analyzedusing a variety of tools.The 
hallenge for the design of CIL was to make it general enough andexpressive enough to represent a wide range of proto
ols, and yet at a lowenough level to be 
lose to the representation used by most veri�
ationor model-
he
king tools. Many su
h tools share a spe
i�
ation style thatin
orporates state-transition rules spe
i�ed in a pattern-mat
hing style, withsymboli
 terms to represent en
ryption and other 
omputations. There isusually a separate and fairly standard intruder model.As an example of the use of pattern mat
hing, if there is a message B -> A:B, fNa, NbgPK(A), we infer that A will a

ept only messages whose se
ond�eld is of the form fNa, NbgPK(A). This implies that A must de
rypt themessage 
ontent and 
on�rm that the result is a 
on
atenation of two �eldsof type Non
e. Furthermore, if A already holds a value for Na or Nb, it will
ompare that with the one in the message. \A

epting" a message meansthat A will undergo a state transition as a result of re
eiving it.The 
ommonality in the abstra
t symboli
 treatment of proto
ols was re
-ognized and 
odi�ed in the Cervesato, et al meta-notation, in whi
h state28



transitions are expressed with multiset rewriting (MSR) rules [CDL+99℄.The MSR notation was adapted for CIL. Their notation, a

ording to theauthors, 
ould be regarded as either an extension of multiset rewriting witha kind of existential quanti�
ation, or a Horn fragment of linear logi
. Thesimpli
ity and generality of this formalism made it suitable to serve as thelanguage in whi
h to express the semanti
s of CAPSL. Furthermore, theterm-rewriting aspe
t 
orresponded well with the analysis approa
h takenby Denker, Meseguer, and Tal
ott with Maude [DMT98b℄. CIL may beregarded as a notational variant of the MSR formalism in whi
h 
ertainspe
i�
 
onventions have been used to set up proto
ol models derived fromCAPSL spe
i�
ations.3.1.1 The MSR Proto
ol ModelThe MSR formalism uses transition rules of the formF1; :::; Fk �! (9X1; :::;Xm)G1; :::; Gn;where ea
h Fi and Gj is a \fa
t." Fa
ts are atomi
 formulas of the formP (t1; :::; tr) where P is a predi
ate symbol and the arguments ti are terms. Aterm is 
onstru
ted from typed 
onstants, variables, and fun
tion symbols.Free variables are impli
itly universally quanti�ed.The state of a system 
an be represented by a multiset of fa
ts. A rule iseligible to �re when the fa
ts on the left side of the rule 
an be mat
hedwith fa
ts in the multiset. When a rule �res, the mat
hing fa
ts in themultiset are removed from it and repla
ed by the fa
ts on the right side ofthe rule, instantiated a

ording to the substitution required by the patternmat
h. Removing a fa
t from the multiset redu
es its multipli
ity by one, ifit was more than one. Fa
ts in the multiset are typi
ally ground terms (novariables) when �nite-state sear
h tools are used.The existential quanti�er in linear logi
 has a spe
ial meaning. Quanti�edvariables are instantiated with fresh (unused) 
onstants. This behavior isused to model generation of non
es.In proto
ol modeling, fa
ts are used to express the entran
e of a pro
ess intoa state, or the transmission of a message. In MSR, a state is represented bya fa
t Ai(:::) where A is the name of a proto
ol variable of type Prin
ipal,i is a state label, usually an integer, and the arguments are the \memory"of the agent in that role and state. A message (in our diale
t) is a fa
t29



M(a; b; t) where a and b are prin
ipals and t is a term representing themessage 
ontent. Another kind of fa
t 
an represent atta
ker knowledge.Rules with an empty left side are interpreted as initialization or fa
t-gener-ating rules. For ea
h role in the proto
ol, an initial state fa
t is generatedwith initially held variables. The rule�! A0(A;B); B0(B)
reates two fa
ts representing the initial state of two new agents. Sin
e Aand B are variables of type Prin
ipal, this rule 
an initiate sessions betweenany pair of prin
ipals. Thus, A0(A;B) says that an agent playing the `A'role of the proto
ol is in a state labeled 0 and is ready to begin a sessionbetween prin
ipal A, whi
h owns the agent, and prin
ipal B.The message A -> B: A, {N}SK(A) would result in at least two transitions,one for the sender A and one for the re
eiver B. The A transition would be:A0(A;B) �! (9N)A1(A;B;N);M(A;B; fA; fNgsk(A)g):The B transition would be:B0(B);M(X;B; fA; fNgsk(A)g) �! B1(B;A;N):The X in the sender position of the re
eived message is a new variable.We assume here (like Paulson [Pau98℄) that message fa
ts indi
ate the truesender of the message, but that re
eiver transitions 
an depend only on the
ontent of the message, and therefore the sender �eld is not mat
hed withany other variable.3.1.2 CIL Rule SyntaxMSR rules appearing in the output of the CAPSL translator are expressedin CIL syntax, in a uniform fun
tional notation. All state fa
ts are of theform state(role, num, terms(...)), where role is a role 
onstant 
onstru
tedfrom a prin
ipal variable name, su
h as roleA, and num is a state label,usually a natural number. The memory items are arguments of the termslist. En
ryption and 
on
atenation are expressed using the fun
tional formsde
lared in the prelude or other typespe
s. Messages are msg fa
ts.So, for example, the transitionA0(A;B) �! (9K)A1(A;B;K);M(A;B; fAgK)30



would appear in CIL asrule(fa
ts(state(roleA,0,terms(A,B))),ids(K),fa
ts(state(roleA,1,terms(A,B,K)),msg(A,B,terms(se(K,A)))))The syntax of CIL, whi
h in
ludes other items besides rules, is given inAppendix A.2.3.2 Translator Overview3.2.1 CIL OutputThe translator from CAPSL to CIL has some 
ommonpla
e tasks to per-form, like parsing and type
he
king, and it also performs the 
on
eptually
hallenging task of unraveling a message-list proto
ol des
ription into a setof rewrite rules. Besides the rules, the output of the translator in
ludes sym-bol table information and other information that will be used by 
onne
torsand analysis tools.The output of the CIL translation has several parts:1. slot table2. symbol table3. axioms4. lo
alized assumptions5. proto
ol rewrite rules6. lo
alized goals7. environment informationThe a
tual output of the CAPSL translator is a text �le expressing thisinformation in the abstra
t syntax of CIL, using a fun
tional notation. ACIL spe
i�
ation has the form:CILspe
(symbols(symbol(...),...), 31



slots(slot(A,roleA,1),...),axioms(...),assums(...),rules(rule(fa
ts(...),ids(...),fa
ts(...)),...),goals(...),envs(...),)The CIL spe
i�
ation of NSPK 
an be found in Appendix D.A symbol table entry has the formsymbol(ident,status,arg-types,value-type,properties)where ident is the symbol name, status is the kind of symbol, one of opfor a fun
tion or 
onstant, pvar for a proto
ol variable, var for a dummyvariable, or type for a type name. The argument types are in a list ofthe form ids(...) and the properties are in a list of the form props(...).The symbol table 
ontains all identi�ers de
lared in all of the spe
i�
ationmodules.The slot table maps ea
h proto
ol variable in the original spe
i�
ation toan argument position in the state predi
ate of ea
h role. This is ne
essaryfor interpreting goals, agent initialization, and other statements that referto proto
ol variables.For example, if we assume that B has the value Bob in the initial state of anagent in role `A', namely state(roleA,0,terms(Ali
e,Bob)), we need toknow that B is the se
ond argument in the terms list of the roleA state fa
t.This is expressed by the slot table entry slot(B,roleA,2). The slot numberfor a program variable does not 
hange on
e it is 
reated; this 
onvention isenfor
ed by the way the translator generates state fa
ts.Axioms from typespe
s and environment spe
i�
ations are 
onsolidated intoa single list.The di�eren
e between axioms and assumptions is that axioms are universaland only refer to dummy variables, while assumptions, like goals, refer toprogram variables and are lo
alized to parti
ular states. Thus, axioms are32



simply passed on as the abstra
t-syntax form of axioms that o

ur in theCAPSL spe
i�
ation. Assumptions and goals are expressed in the formlo
(nodes(node(role, state), ... ), assertion).A CAPSL assumption is lo
alized to the initial state, and a typi
al nodewould be node(roleA,0). De
larations of su
h role 
onstants are addedautomati
ally to the symbol table. CAPSL goals are lo
alized to the �nalstate, as determined by the translator. The assertion is the abstra
t-syntaxform of the CAPSL assertion.The CIL format for rules was summarized above, and the pro
ess for gen-erating them is dis
ussed in detail below in this 
hapter.An environment entry has the formenvironment(ident, agents(...), exposed(...), order(...))where the exposed and order 
omponents may be empty, and an agent isspe
i�ed as agent(ident, eqns(eqn(pvar, term), ...)). The identi�er is justa referen
e 
onstant, and the equations assign values to proto
ol variables.The �rst proto
ol variable listed is the prin
ipal whose variable name de�nesthe role being played by the agent. Other proto
ol variables are set asrequired to provide initial values. The values are usually given as 
onstantsde
lared in the environment. The CIL symbol table in
ludes those 
onstants.3.2.2 Translation StagesThe major stages in translation are the following:1. Parsing and type 
he
king2. Syntax transformations3. Rule generation4. Lo
al Assertions5. OptimizationParsing 
he
ks CAPSL syntax and produ
es a parse tree. Type 
he
king
on�rms the 
onsisten
y of type and signature de
larations with ea
h other33



and with terms o

urring in axioms, messages and elsewhere. In the pro
ess,it repla
es generi
 en
ryption expressed with bra
keted terms by a 
hoi
e ofped or se by 
he
king the type of the key. It also generates a symbol table.There are several syntax transformations:1. INCLUDE phrases are expanded by repla
ing them by the message listof the named proto
ol.2. In�x arithmeti
 operators are 
onverted to fun
tional form.3. 
at and 
on appli
ations are made binary by assuming right asso
ia-tivity.4. Uses of % are 
he
ked and lifted to the top level of ea
h term. Thefun
tion symbol for % is lowe.5. Role 
onstants are 
reated for parti
ipating prin
ipals.6. DENOTES equations are inserted where ne
essary. This is 
overed inmore detail in the next subse
tion.3.2.3 DENOTES Pro
essingThe idea behind DENOTES pro
essing is to insert an equational a
tion intothe message list when a variable with a DENOTES equation is seen for the �rsttime by ea
h prin
ipal. These modi�
ations are made in abstra
t syntax tothe parse tree, rather than to the original CAPSL text.Suppose that the spe
i�
ation 
ontains DENOTES X = f(Y ) : A, and thatthe �rst referen
e to X by A is in an a
tion, say Z = g(X). This is thesimplest 
ase, and the equation for X is pla
ed just before the a
tion.Even in this simplest 
ase, we must 
onsider that Y might have a DENOTESde�nition, and its use will re
ursively require the insertion of its equation,and so on. This 
on
ern is handled by (1) requiring that DENOTES equationsbe pla
ed in logi
al order, so that, in this 
ase, the equation for Y 
omesbefore the equation for X; and (2) pro
essing the DENOTES equations in re-verse order, so that the equation for Y will be inserted before the previouslyinserted equation for X. 34



Suppose the �rst referen
e to X by A is in a transmitted message, say A ->B: Y, X. As in the 
ase of of an a
tion, we pla
e the equation for X justbefore the message.Suppose the �rst referen
e to X by A is in a re
eived message, say B ->A: Y, X. Then we 
annot pla
e the equation before the message, be
ause itwould be exe
uted by B rather than A.What we do, instead, is (1) repla
e X in the message by the right side of theequation, f(Y ); and then (2) insert the equation for X after the message.This is equivalent to having writtenB -> A: Y, f(Y);X = f(Y);3.3 Abstra
t Rule GenerationThe 
ore of translating CAPSL to CIL is the 
reation of rewrite rules frommessages and a
tions. To 
reate rules su

essfully for a message, the messagemust be implementable. Two issues for implementability are invertibility and
omputablitity of message �elds.Ea
h message gives rise to at least two transitions, one for the sender andone for the re
eiver. With respe
t to the sender, the translator must 
he
kwhether the sender is 
apable of 
omputing all the message �elds{that is,whether the message is 
omputable. For a message to be 
omputable, thesender must hold the variables mentioned in it and be able to a

ess anyprivate fun
tions used.With respe
t to the re
eiver, the translator has to test the message for"re
eivability." A variable is re
eivable, whether it is already held or not. Ifit is held, the re
eiver performs a 
omparison with the prior value. If it isnot held, it is learned, and a slot in the state is 
reated for it. In the 
ase ofa fun
tional term, re
eivability means that the term is either 
omputable,so that the re
eiver 
an 
ompare the re
eived value to its own lo
ally storedor re
omputed value, or it is invertible, so that the re
eiver 
an de
omposeit, and then test or store or further de
ompose ea
h extra
ted subterm.The algorithm for generating rules, with de�nitions for 
omputability andinvertibility, is given in this se
tion. For purposes of presenting the algo-rithm, we regard the translator as a �nite-state ma
hine. Its state is a set35



of role states, its inputs are the messages in the message list, presented inorder, and its outputs are the generated rules.3.3.1 Translator StateThe state of a role is represented by a term S(p; n;x) where p is a proto
olvariable of type Prin
ipal, n is a state number, and x is a sequen
e of termsheld by p. Most of the terms in x are proto
ol variables, but 
ompoundterms may be present as well.Before any message is pro
essed, the initialization rules are generated, onefor ea
h role in the proto
ol. The initial role state for p has n = 0 and asequen
e x that begins with p and also in
ludes any variables de
lared asheld by that prin
ipal in the ASSUMPTIONS de
laration.For our purposes in des
ribing the translation, we represent a message as aterm M(p; q; t%r) where p and q are the variables representing the senderand re
eiver of the message, and t%r shows the sender's version t of themessage 
ontent and the re
eiver's version r. In CAPSL, a message 
an haveseveral �elds, but for simpli
ity we assume here that t and r are single terms.If the message has more than one �eld, its 
ontent 
ould be represented asa 
on
atenation of these �elds.3.3.2 Computability and Re
eivabilityWe begin with some ne
essary terminology. In general, a boldfa
e symbolis a sequen
e, so x = x1; :::; xn for some n. In some 
ontexts we will alsouse x to refer to the set of its 
omponents. R(p) denotes the symbol of typeRole whi
h 
orresponds to a symbol p of type Prin
ipal.A

essibility. A fun
tion f(y) is p-a

essible if f is not private (does nothave the PRIVATE property) or f is private and y1 = p.Computability. In de�ning 
omputability of a term, we assume that someterms are held{this is the set G{and we derive the set of additional variablesX that are needed to 
ompute the term. The prin
ipal p is mentioned onlybe
ause of the need to test a

essibility.t is p-
omputable given G with X if1. t 2 G and X = ; or 36



2. t is a proto
ol variable and t =2 G and X = ftg or3. t = f(y), f(y) is p-a

essible, ea
h yi is p-
omputable given G withXi, and X = SiXi.We say that t is p-
omputable given G if t is p-
omputable given G with ;.If Z is a set of terms, we say that Z is p-
omputable given G with St2Z Atif ea
h t 2 Z is p-
omputable given G with At.As an example, 
onsider t := ped(SK(A); N). t is A-
omputable given fAgwith fNg be
ause ped is not private, and, although SK is private, SK(A) isA-a

essible.Invertibility. To de�ne p-invertibility, we assume that there are axiomsof the form inv(f(y); yi; Z) for some operators f , where y is a sequen
e ofdi�erent variables and Z is a list of terms not in
luding yi. An invertibilityaxiom states that f(y) 
an be inverted to 
ompute a value for yi providedthat the values of all terms in Z are 
omputable. For example, fXgpk(A) 
anbe inverted to 
ompute the value for X given sk(A). The CAPSL 
on
retesyntax for an invertibility axiom uses the keyword INVERT, and in the CILsyntax this be
omes an invertible statement. En
yrption fun
tions aregenerally invertible; look at the prelude for examples of invertibility axiomsfor them.t is p-invertible at i given G if t = f(y) and invertible(f(y); yi; Z) and Zis p-
omputable given G.Re
eivability. If a term t is a variable or 
onstant (a fun
tion with noarguments), re
eiving it means to 
ompare it with the terms in the held setG and add it to G if it is not there. If t is 
ompound, it must be either
omputable or invertible, and in the latter 
ase the 
omponents extra
tedfrom it are re
eived re
ursively. This pro
ess enlarges G to H.t is p-re
eivable given G to H if1. t is p-
omputable given G and H = G, or2. t is p-
omputable given G with ftg and H = G [ ftg, or3. We have:(a) t = f(y) is p-invertible at some j given G and37



(b) y0 is sequentially p-re
eivable given G to H 0, where y0 is themaximum subsequen
e yi1 ; :::; yik su
h that t is p-invertible at ijgiven G, and(
) if t is p-
omputable given H 0 then H = H 0 else H = H 0 [ ftg.Sequential re
eivability expresses the notion that variables learned whilere
eiving a message 
an be used to 
ompute terms re
eived later in thesame message.y = y1; :::; yn is sequentially p-re
eivable given G to H if, for j = 1; :::; n, yjis p-re
eivable given Gj to Hj, where Gj = Hj�1 and H0 = G and Hn = H.The su

ess or failure of the sequential re
eivability test depends on theorder of the sequen
e of terms, sin
e the held set G is augmented as partof the pro
ess. A more forgiving de�nition would be able to rearrange theorder to �nd one that works, and it 
ould be implemented by making severalpasses over the sequen
e.As an example, 
onsider t := ped(sk(A); N). t is B-re
eivable given fAg tofA;N; tg. Upon re
eiving t the agent in role B not only learns the non
e Nbut also the whole term t sin
e t is not B-
omputable given fA;Ng.3.3.3 Message RulesA message M(p; q; t%r) gives rise to two proto
ol rewrite rules, one for pto send the message t, and one for q to re
eive r. Ea
h proto
ol rewriterule is generated by a translator state transition. A transition asso
iatedwith sending the message a�e
ts only the sender-role state, and the oneasso
iated with re
eiving the message a�e
ts only the re
eiver-role state.A s
hema is a way of presenting a set of translator transitions in a parame-terized form, independent of the parti
ular state number and term sequen
e.There is a Send s
hema for the sender-role transition and a Re
eive s
hemafor the re
eiver-role transition. A s
hema may spe
ify 
onditions on thestate transition; if they are not satis�ed, the transition fails, and so does thetranslation. A s
hema ends with a proto
ol rewrite rule.The Send s
hema says that if the message is 
omputable, possibly with aset of new variables, the sender 
an transmit the message. The sender mustalso hold the identity of the re
eiver.38



Notation. If A is a set of variables, A 
onsists of the elements of A writtenas a sequen
e, in some arbitrary but 
onsistently 
hosen order.In the s
hemas below, a variable t is 
alled new in the 
urrent translatorstate if t is a proto
ol variable, t is of type Non
e or has the FRESH property,and no other prin
ipal q has t in its 
urrent state. A set of new variables isalso 
alled new.Send s
hema:Current state: S(p; n;x)Message: M(p; q; t%r)Condition: q 2 x and t is p-
omputable given x with A and A isnewNext state: S(p; n+ 1;xA)Rule: S(R(p); n;x) �! (9A); S(R(p); n + 1;xA);M(p; q; t)The Re
eive s
hema says that if the message 
ontent is re
eivable withlearned terms A, the re
eiver a

epts the message and adds the terms inA to its state.Re
eive s
hema:Current state: S(q; n;x)Message: M(p; q; t%r)Condition: r is q-re
eivable given x to H and A = H � xNext state: S(q; n+ 1;xA)Rule: S(R(q); n;x);M(U; q; r) �! S(R(q); n+ 1;xA)The re
eiver of a message 
annot see the sender's address. Thus, we assumean arbitrary sender variable U of type Prin
ipal.Example. Given the translator state S(B; 2; [B;A℄) and the messageM(A;B;fNgsk(A)), the new translator state is S(B; 3; [B;A;N; fNgsk(A)℄) and thefollowing CIL rule is generated to re
eive the message:rule(fa
ts(state(roleB,2,terms(B,A)),msg(Z,B,terms(ped(sk(A),N)))),ids(),fa
ts(state(roleB,3,terms(B,A,N,ped(sk(A),N))))).39



3.3.4 Equational A
tionsThe right side of an equational a
tion is always tested for 
omputability.Depending on the 
omputability of the left side, the a
tion is understood tobe an assignment or a test for equality. If the left side terms are 
on or 
at,we handle them in a parti
ular way.The Test s
hema says that if both sides of the a
tion are 
omputable, thenthe re
eiver performs a test. Two rules are 
reated for this purpose. Inthe �rst transition the equation is added to the list of terms. If the test isevaluated to true, then the se
ond transition advan
es the state number anddeletes the equation.A
tion s
hema (test):Current state: S(p; n;x)A
tion: t = t0Condition: t and t0 are p-
omputable given xNext state: S(p; n+ 2;x)Rules: S(R(p); n;x) �! S(R(p); n+ 1;x(t = t0))S(R(p); n+ 1; true) �! S(R(p); n+ 2;x)The Assignment s
hema requires that the right side is 
omputable and thatthe left side is a proto
ol variable that is not held by the agent. Then theagent 
an perform an assignment transition.A
tion s
hema (assignment):Current state: S(p; n;x)A
tion: y = t0Condition: t0 is p-
omputable given x and y is a proto
ol vari-able, y =2 xNext state: S(p; n+ 1;xy)Rule: S(R(p); n;x) �! S(R(p); n+ 1;xt0)If the left hand of the a
tion is a variable that is not held by the a
tingagent, then the a
tion is an assignment. The newly assigned term is addedto the termlist and there is an asso
iated slot table entry that relates the40



term to the variable y. Consequently, the next rule, if any, refers to the termas variable y.There are two spe
ial a
tion s
hemas in 
ase the outmost fun
tion on the leftside is one of the two 
on
atenation fun
tions. If the left side of the equalityis a term using 
at or 
on, then the a
tion is split into two equalities, onefor ea
h 
omponent of the 
on
atenation.A
tion s
hema (
on):Current state: S(p; n;x)A
tion: 
on(y; z) = t0Condition: t0 is p-
omputable given xRules: < rules for y = head(t0) >< rules for z = tail(t0) >A
tion s
hema (
at):Current state: S(p; n;x)A
tion: 
at(y; z) = t0Condition: t0 is p-
omputable given x and y is atomi
Rules: < rules for y = first(t0) >< rules for z = rest(t0) >The s
hema for 
at is more restri
tive sin
e the first operator on 
at isonly de�ned if the �rst argument is an atom.3.3.5 Subproto
olsThe s
hema for sele
tion says that the agent �rst has to evaluate the 
on-dition. If the 
ondition is true, it transitions into a new state that is thestarting state for all rules generated for the subproto
ol P1. If there are ktransitions for p in subproto
ol P1, then the p starts from state n+ k+3 inthe bran
h in whi
h the 
ondition did not hold true.Sele
tion s
hema:Current state: S(p; n;x)Phrase: if t then P1 else P2 41



Rules: S(R(p); n;x) �! S(R(p); n+ 1;x(t = true))S(R(p); n+ 1;xtrue) �! S(R(p); n+ 2;x)S(R(p); n+ 1;xfalse) �! S(R(p); n+ 3 + k;x)< rules from P1; p starts from n+ 2; p has k transitions >< rules from P2; p starts from n+ 3 + k >States of other agents in the proto
ol may be 
hanged in the invoked sub-proto
ols. Thus, the next states of other agents have to be also re
e
teda

ordingly in the bran
hes of the sele
tion.3.4 Lo
al AssertionsWhen initial 
onditions, messages and a
tions are 
onverted to state transi-tion rules and assertions are moved into a separate list, the temporal inter-leaving of intermediate goals or idealization assumptions with the messagelist must be repla
ed by a di�erent kind of interleaving, whi
h asso
iatesthem with network states. A network state is represented with a list of rolesand state labels.For the sake of uniformity, initial assumptions are lo
alized to the networkstate in whi
h all roles are at state zero. Assertions in the GOALS se
tion arelo
alized to the network state in whi
h all roles are in the last states produ
edby the rule generation pro
ess. (Or all su
h last states, if bran
hing o

urs.)A lo
al assertion is of the (abstra
t) formlo
(node sequen
e, assertion)where nodes have the following (abstra
t) syntax:node(role, state-label)3.5 An Atta
ker ModelThe CAPSL translator does not generate atta
ker rules, be
ause most at-ta
ker rules would be standard and built into any analysis tool that needs42



them. A standard atta
ker model would in
lude an atta
ker memory fa
tsu
h as N(u), meaning that the atta
ker holds the term u. Be
ause theatta
ker 
an inter
ept any message, there 
ould be a rule M(A;B; T ) �!N(T ) and a similar rule for forging messages, N(T ) �! N(T );M(A;B; T ).There would be rules for de
omposing and synthesizing messages using theavailable 
on
atenation and en
ryption fun
tions. A general atta
ker modelof this kind is des
ribed in [CDL+99℄.The atta
ker should be able to 
ompute the value of any fun
tion de
laredin a typespe
, given its arguments, ex
ept private fun
tions. If there is astandard (\Spy") or de
lared dishonest prin
ipal, the atta
ker 
an 
omputethat prin
ipal's private values, e.g., sk(Spy). The atta
ker 
an 
ompute
onstants, sin
e they are simply fun
tions with no arguments.Conne
tors should generate 
ertain proto
ol-spe
i�
 or s
enario-spe
i�
 rulesfor initializing the atta
ker, using information from the environment spe
i-�
ation.Initially the atta
ker holds all exposed terms as de
lared in the environmentse
tion. For instan
e, in the environment used as an example in Se
tion 2.5,the exposed term fBobgsk(Ali
e) results in a fa
t-generating rule for theatta
ker, in CIL syntax:rule(fa
ts(),ids(),fa
ts(net(ped(sk(Ali
e),Bob)))),where net(...) is the CIL version N(:::) above.If a prin
ipal is exposed, then all private fun
tions de�ned for this prin
ipalare also exposed. If Mallory is a PKUser, there would be a rulerule(fa
ts(),ids(),fa
ts(net(sk(Mallory)))),for example.Sin
e all 
onstants are 
omputable by the atta
ker, there would be rules likerule(fa
ts(),ids(),fa
ts(net(Ali
e)))for all prin
ipal 
onstants named in the environment.For purposes of indu
tive proof, it is simpler to assume that all prin
ipalsare held by the atta
ker, with a rule43



rule(fa
ts(),ids(),fa
ts(net(A)))where A is a variable of type Prin
ipal. On the other hand, indu
tive proofsmight model the atta
ker in a way that is equivalent to a rule model butexpressed quite di�erently, using Paulson's Analz and other set 
losure fun
-tions [Pau98, MR00℄.An environment might de
lare 
onstants that are supposed to be se
ret,su
h as non
es, session keys, and perhaps symbols de�ned to name long-term se
ret keys using axioms. These 
onstants 
an be de
lared with theCRYPTO property to prevent them from being given to the atta
ker initially.A proto
ol might in
lude variables representing non
es that are not se
ret,su
h as sequen
e numbers, or weak passwords. If these values are not pro-te
ted in messages, the atta
ker will obtain them by eavesdropping, but ifthey are prote
ted by en
ryption, there will need to be further atta
ker rulesstating that they 
an be produ
ed by the atta
ker, to represent guessing orroutine 
omputations.

44



Chapter 4Optimization of CIL RewriteRules
4.1 MotivationThe basi
, natural translation from CAPSL to CIL, as des
ribed Chapter 3and [DM99a℄, generates two rewrite rules per message, one for the messagesender and one for the message re
eiver. Often, however, the transitionthat re
eives a message and the one from the same agent that sends a reply
an be 
ollapsed into a single transition that does both, and MSR proto
olen
odings produ
ed by hand usually have this 
hara
teristi
. Su

essive
omputations by the same agent to update or enlarge its state memory 
analso be 
ombined.The optimization algorithm des
ribed in this 
hapter automati
ally imple-ments the kind of rule 
ombinations that would typi
ally be done by hand.Relative to the simple message-by-message translation, this redu
es thenumber of rules, as well as the number of states per role, by about 50%. Weshow that this redu
tion is sound in the sense that it is atta
k-preserving,by essentially the same de�nition used in [SS98℄. The optimizing trans-formation has been implemented as a post-pro
essing step in the CAPSLtranslator.The number of rules has dire
t impa
t on the performan
e of state evalua-tion tools su
h as model 
he
kers. In the model-
he
king approa
h, a �niteinstantiation of the proto
ol is tested for se
urity brea
hes. For this purpose,45



an exhaustive sear
h strategy enumerates all rea
hable states for a given ini-tial state and tests whether they invalidate a given se
urity property. Evenfor small proto
ols and very restri
ted numbers of sessions the number ofstates explodes. This is due partly to the fa
t that the intruder behavioris highly non-deterministi
, and partly due to the fa
t that new sessionsinvolving legitimate prin
ipals may be 
reated and exe
ute asyn
hronously.Thus, a linear redu
tion in the number of rules 
an redu
e the number ofstates to be explored by an exponential fa
tor.Be
ause optimizations are performed as a series of su

essive rule-
ombina-tion steps, there is a question as to whether the order of 
ombination stepsa�e
ts the size of the �nal set of rules. We show that the optimization,
onsidered as a redu
tion system, is terminating and 
on
uent, and hen
e
anoni
al, so that the �nal set of rules is unique.4.2 Optimization ExamplesWe illustrate the optimization steps with the help of the NSPK proto
olgiven in Se
tion 2.1.6. The following two rewrite rules represent B's re
eiptof the �rst message and B's sending of the se
ond message of NSPK.rule1 : B0(B) M(X;B; fNa; Agpk(B))! B1(B;Na; A)rule2 : B1(B;Na; A)!(9Nb) B2(B;Na; A;Nb) M(B;A; fNa; Nbgpk(A))Under the assumption that agents have a deterministi
 behavior, i.e., atmost one rule is appli
able in ea
h agent state, we know that after there
eiving the message from A, the only thing B 
an do is to reply with these
ond message to A. The following optimized rule 
ombines B's behaviorinto a one-step transition in whi
h B re
eives A's message and immediatelyreplies to it:rule1; 2 : B0(B) M(X;B; fNa; Agpk(B))!(9Nb) B2(B;Na; A;Nb) M(B;A; fNa; Nbgpk(A))When the two rules are 
ombined, the original pair of rules is deleted. Op-timization o

urs only when there is no other way to enter state B1, so ine�e
t state B1 is also eliminated. 46



Combining the rules in this example is straightforward sin
e the right-handside of the �rst rule and the left-hand side of the se
ond rule are identi
al.More generally, for two rules R and R0 to be optimizable it is ne
essary(though not suÆ
ient) that the state fa
t on the right-hand side of R is aninstantiation of the state fa
t on the left-hand side of R0. The next exampleillustrates this.For the sake of this example, repla
e the message B -> A: {Na,Nb}pk(A)message in NSPK by a sequen
e of two a
tions, an assignment and a messagetransmission, so that the message list is:MESSAGESA -> B: {A,Na}pk(B);T = {Na, Nb};B -> A: {T%{Na,Nb}}pk(A);A -> B: {Nb}pk(B);This message list yields the following CIL rules for B transitions.rule1 : B0(B) M(X;B; fNa; Agpk(B))! B1(B;Na; A)rule2 : B1(B;Na; A)!(9Nb) B2(B;Na; A;Nb; fNa; Nbg)rule3 : B2(B;Na; A;Nb; T )!B3(B;Na; A;Nb; T ) M(B;A; fTgpk(A))In this 
ase, besides 
ombining rule1 and rule2, we 
an also 
ombine rule2and rule3, sin
eB2(B;Na; A;Nb; T ) 
an be instantiatiated to B2(B;Na; A;Nb;fNa; Nbg) with the substitution T 7! fNa; Nbg. Thus, we 
an optimize theserules torule2; 3 : B1(B;Na; A)!(9Nb) B3(B;Na; A;Nb; fNa; Nbg)M(B;A; fNa; Nbgpk(A)).Atta
k Preservation. In order to assure that our optimization te
hniqueis atta
k-preserving, we need to make further restri
tions on the form ofoptimizable rules. For a pair (R;R0) of rewrite rules to be 
ombined, werequire that the se
ond rule has no messages on the left-hand side. Weshow with the help of a simpli�ed example that allowing a message on theleft-hand side of the se
ond rule is unsafe.47



Assume the following two rewrite rules for an agent in role B.rule1 : B0(B) ! B1(B;B)rule2 : B1(B;B) M(A;B; sk(B))! B2(B;B)Sin
e the state predi
ate B1(B;B) o

urs in both rule1 and rule2 one mightbe tempted to optimize these rules torule1; 2 : B0(B) M(A;B; sk(B))! B2(B;B).Assume furthermore that M(A;B; sk(B)) is an impossible message, be
auseB never transmits sk(B), and that B1 is a state in whi
h a proto
ol invariantfails, perhaps be
ause it requires that the �rst two 
omponents of B's statemust be di�erent. Thus, the failure state is rea
hable in the original proto
olspe
i�
ation, but sin
e B1 has been deleted by optimization and B2 
annotbe rea
hed sin
e M is impossible, the atta
k state is no longer present inthe optimized proto
ol. This is why the left-hand side of the se
ond rule isnot allowed to have messages.Name 
lashes. Before we 
an formally de�ne the optimization of tworewrite rules, we have to deal with variable name 
lashes. In order toavoid a

identally introdu
ing bindings between variables, we apply renam-ing fun
tions. The following example illustrates the need for renaming.Assume the following two rules whi
h a

identally use the same variable X:rule1 : B0(B) M(X;B;A) ! B1(B;A)rule2 : B1(B;A) ! (9X) B2(B;A;X).These rules are optimizable. The variable X is used in both rules, thoughthere is no relation between the variable X of rule1 and the variable Xof rule2. To avoid introdu
ing a binding between these two independentvariables, we rename X of rule2 to X 0 in the optimized rule. Thus, theoptimized rule for rule1 and rule2 isrule1; 2 : B0(B)M(X;B;A) ! (9X 0) B2(B;A;X 0):The 
oin
iden
e of variables B and A in the two rules is not a problembe
ause the need to unify the B1 fa
ts in the two rules determines theappropriate substitution for them. 48



4.3 Optimization StepsAs intuitively illustrated in the previous se
tion some restri
tions on rulesare ne
essary to guarantee an atta
k-preserving optimization. In summary,we only 
onsider rules that des
ribe asyn
hronously 
ommuni
ating, deter-ministi
ally behaving agents, where ea
h agent state is generated by at mostone rule.Lo
al rule. For optimizations we deal only with lo
al rules, in whi
h onlyone state fa
t appears on the left and one on the right of the rule. Therules that arise from proto
ol transitions in an asyn
hronous environmentare normally lo
al, sin
e only one agent 
hanges state at a time.A rule is lo
al if it is of the formR : F M! (9V) F 0 M0where F; F 0 are state fa
ts for the same role, and M and M0 
ontain nostate fa
ts. Sets of variables and multisets of fa
ts are denoted in bold-fa
eletters.Deterministi
 rule. States that are optimized away have to be determin-isti
 in both dire
tions. The �rst rule of an optimized pair needs a ba
kwarddeterministi
 state on the right, while the se
ond rule needs a forward de-terministi
 state (the same state) on the left.A state Ai is forward deterministi
 in R if there exists at most one rule inR with a fa
t of that state on its left-hand side. A lo
al rule is forwarddeterministi
 if its state is forward deterministi
.A state Ai is ba
kward deterministi
 in R if there exists at most one rule inR with a fa
t of that state on its right-hand side. A lo
al rule is ba
kwarddeterministi
 if its state is ba
kward deterministi
.A state Ai is deterministi
 in R if it is both forward and ba
kward deter-ministi
.Optimizable pair of rules. In the following de�nition of optimizable pairsof rules, Vars(G) is the set of variables o

uring in G.Given a pair of lo
al rules (R;R0) in R of the form:R : F M1 ! (9V1) G M2R0 : G0 ! (9V2) H M3 49



Then the pair (R;R0) is �-optimizable if1. R and R0 are lo
al on the same role2. There are no variable name 
lashes between R and R03. There exists a substitution � on Vars(G0) su
h that G0=� = G4. The state of whi
h G is a fa
t is deterministi
.As mentioned before, name 
lashes have to be resolved before our optimiza-tion te
hnique is applied. Name 
lashes 
an always easily be resolved byrenaming variables. In se
tion 4.5 we des
ribe how variable renaming 
anbe eÆ
iently realized for CIL.Optimization step and optimized rule. We now 
an present the de�-nition of the optimized rule for an optimizable pair of rules.Given a pair (R;R0) of �-optimizable proto
ol rewrite rules of the form:R : F M1 ! (9V1) G M2R0 : G0 ! (9V2) H M3then an optimization step removes R;R0 from R and repla
es them withRo = opt(R;R0), de�ned asRo : F M1 ! (9V1 V2) M2 (H M3)=�:4.4 Properties of OptimizationWe show that optimization is sound in the sense that it is atta
k-preserving.We also show that, under additional assumptions, it delivers a unique set ofoptimized rewrite rules regardless of the order in whi
h optimization stepsare applied. Detailed proofs 
an be found in [DMKFG00℄.Proto
ol Se
urity InvariantsBefore we go into the details of the proof, we make some observations aboutproto
ol properties. Like Shmatikov and Stern [SS98℄, we only deal withproto
ol se
urity properties that are invariants; that is, they are propertiesof the global state that are supposed to hold for all rea
hable states.50



Furthermore, the invariants depend only on state fa
ts and intruder memory,not on message fa
ts. Se
re
y invariants state that the intruder memory doesnot 
ontain 
ertain terms (whi
h appear in the state memory of some honestprin
ipal), and other se
urity properties su
h as agreements and pre
eden
erefer only to state fa
ts. As pointed out in [SS98℄, if a se
urity invariant isfalse, it remains false if the intruder's knowledge in
reases. They 
alled thisproperty monotoni
ity of invarian
e.We make use of a more general 
hara
terization of se
urity invariants. Inproto
ols that 
an be expressed in CAPSL and translated to CIL, statememory is monotoni
 for honest prin
ipals as well. On
e an honest agentholds a value for a proto
ol variable (asso
iated with an argument positionin its state memory), that value never 
hanges. It follows that invariantsthat depend only on the global state 
annot 
hange their truth value on
ethe relevant variables have be
ome de�ned for a given agent. In parti
ular,if a state invalidates a proto
ol invariant, every su

essor state will violatethis invariant as well. We refer to this property as persisten
e of violations.4.4.1 SoundnessOur soundness argument reasons about the state graph (S; T ) of a rule set.The nodes of this state graph are the possible global states (multisets ofground fa
ts) S of the proto
ol. The graph has dire
ted, labelled transitions(edges) T 
onsisting of pairs of states related by the instantiation of a rule,whi
h labels the transition. A state is rea
hable if there is a sequen
e oftransitions to it from the empty multiset, whi
h is the initial state. We willrefer to a state graph simply by its transition set T , sin
e one 
an �nd allrea
hable states in it.For example, the transition s R=�! s0 means that there exists a rule R : F!(9V) G and a substitution � su
h that F=� is a subset of s and the resultingsystem state s0 is derived from s by repla
ing the multiset of ground termsF=� with the multiset of ground terms G=�. (The substitution � assignsunused values to the variables in V.)Optimization steps eliminate two rules and repla
e them with a new 
om-bined rule. This 
hanges the state graph by eliminating those transitionslabelled with instantiations of the eliminated rules, and adding new transi-tions made possible by the new 
ombined rule. The new state graph has thesame set of states, but some of the states have be
ome unrea
hable be
ause51



some lo
al states have been optimized away.Atta
k preservation. An optimization step taking T to T 0 is atta
k-preserving if, for any se
urity invariant ', and any state s rea
hable in Tthat violates ', there is a state s0 rea
hable in T 0 that also violates '.Theorem 1 Optimization steps are atta
k-preserving.In the proof of the above Theorem we make use of a lemma that showsthat a transition instantiating the se
ond rule R0 of an optimizable pair(R;R0) 
ommutes with any other transition in T . The basi
 idea is toshow that if a state violating a se
urity invariant is rea
hable with a paththat in
ludes transitions due to one or both of the rules that have beeneliminated by the optimization step, then that state is rea
hable using analternate path that uses the new rule resulting from the optimization. Thealternate path is 
onstru
ted using 
ommutativity properties implied by thelemma. Sometimes, one 
annot rea
h the original violation state, but thenone 
an rea
h another state rea
hable from the violation state, whi
h mustbe a violation state by the persisten
e-of-violations assumption.4.4.2 Termination and UniquenessThe motivation for optimization is to redu
e the number of states in orderto speed up state evaluation tools su
h as model 
he
kers. Our proposedoptimization te
hnique 
onsists of single optimization steps performed insequen
e. For analysis tools it is of importan
e whether the order in whi
hoptimization steps are performed has an impa
t on the �nal set of rules oron the �nal number of rules. We will show that optimization is terminatingand delivers a unique result.Optimization 
an be understood as a rewrite system in whi
h a set of rules (aterm) is rewritten to an optimized set of rules (another term). A well knownresult in the theory of rewrite systems says that a term has a unique normalform (i.e., it 
annot be further rewritten into another term) if the rewritesystem is 
anoni
al (for details see for instan
e [Sny91℄). For a rewritesystem to be 
anoni
al it has to be noetherian and 
on
uent. Noetheriansystems have no in�nite sequen
es of rewrites. A rewrite system is termed
on
uent when for any term whi
h 
an be rewritten into two di�erent termsvia several rewrite steps, there exists a 
ommon redu
tion term.52



We show that our optimization pro
ess, understood as a rewrite systemtranforming between sets of rules, is 
anoni
al. That means that optimiza-tion is a terminating pro
ess whi
h delivers a unique set of rules as result.Therefore, speaking in terms of the asso
iated state graphs, the originalstate graph T and the fully optimized state graph T 0, we 
an infer that T 0 isuniquely determined. For pra
ti
al purposes that means that applying theoptimization steps proposed in this paper in any order always leads to thesame optimized state graph whi
h 
an be used for se
urity analysis.Theorem 2 Given a state graph T , then there exists a uniquely determinedfully optimized state graph T 0.In order to prove termination and uniqueness of optimization we make useof two lemmas. The �rst one states that a rule is optimizable with at mostone rule to the right (in an optimizable pair) and at most one rule to theleft.Using this lemma, we 
an argue that a given set of rules 
an be arrangedinto a totally ordered list of rules su
h that two rules are optimizable only ifthey are adja
ent (but adja
ent rules do not ne
essarily form an optimizablepair). In the following we refer to su
h a list as list of optimizable rules.We show that optimization steps are lo
ally 
on
uent. That means one 
analways rea
h a 
ommon list of rules after two optimization steps (generally,lo
al 
on
uen
e allows for more than two rewrite steps).The se
ond lemma is 
on
erned with lo
al 
on
uen
e. It states that if twooptimization steps involve di�erent optimizable pairs of rules, then they are
ommutative. That is, they might be exe
uted in either order and the orderhas no e�e
t on the resulting list of rules. If two optimization steps havea 
ommon rule, then after one optimization step the other optimizationstep is no longer appli
able sin
e the rule whi
h both steps had in 
ommonhas been deleted. But the new optimized rule 
an be taken for anotheroptimization step to yield a 
ommon list of rules. Moreover, the optimizationrelation between rules is preserved. In summary, we show that performingoptimization steps on a list of optimizable rules satis�es the following two
onditions.1. Performing an optimization step rewrites a list of optimizable rulesinto another list of optimizable rules. Assume in the original list thepair (R1; R2) has been optimized to Ro, then Ro is optimizable to53



the left with whatever rule R1 was optimizable to the left, and Ro isoptimizable to the right with whatever rule R2 was optimizable to theright.2. Moreover, we show that optimization steps are lo
ally 
on
uent. Thatis, given a list of optimizable rules that 
an be rewritten into twodi�erent list of optimizable rules, we 
an always perform one moreoptimization step in order to rea
h a 
ommon list of optimizable rules.Sin
e the set of rules is �nite and ea
h optimization step redu
es the numberof rules by one, the optimization pro
ess is terminating. Therefore, theoptimization pro
ess des
ribes a rewrite system that is noetherian. A wellknown result in the theory of term rewrite system says that a system is
anoni
al if it is noetherian and 
on
uent. A noetherian system is 
on
uentif and only if it is lo
ally 
on
uent. Thus, using the lo
al 
on
uen
e Lemma
on
ludes the proof of Theorem 2.4.5 ImplementationA CIL rewrite-rule optimizer has been implemented in Java and is applied asa post-pro
essing step in the CAPSL-CIL translator. It is publi
ly availabletogether with the CAPSL parser, type-
he
ker and CAPSL-CIL translatorat the CAPSL web site [Mil00b℄.The optimizer starts reading a CIL spe
i�
ation and 
he
ks pairs of rewriterules for optimizability. In order to de
ide whether two rules are optimiz-able, the optimizer needs to a

ess information from the CIL spe
i�
ation.In parti
ular, in order to de
ide whether two state fa
ts are optimization
ompatible, the types of symbols are 
he
ked. This way we 
an guaranteethat a proper substitution mapping between state predi
ates exists. More-over, the optimizer needs to a

ess assumptions and goals in order to 
he
kthat the states to be eliminated are not named in goals and assumptions.As long as two optimizable rules are found, the optimizer 
omputes the op-timized rule, deletes the original rules and adds the new optimized one tothe rule set.Variable Renaming. In previous se
tions we mentioned the problem ofname 
lashes. The simple-minded solution is to rename all variables in oneof the rules in an optimizable pair to new variables. For instan
e, given theoptimizable rules 54



rule1 : B0(B;A) M(X;B;A) ! (9X)B1(B;A)rule2 : B1(B;A)! (9X) B2(B;A;X)we 
ould rename the variables B;A; and X of rule2 using the renaming mapB 7! B0; A 7! A0;X 7! X 0:rule2 : B1(B0; A0)! (9X 0) B2(B0; A0;X 0)Now, the rules do not have any variable names in 
ommon and we mayoptimize them obtainingrule1; 2 : B0(B) M(X;B;A) ! (9X 0) B2(B;A;X 0):As one 
an observe, some of the renamed variables are mapped ba
k totheir original name due to the given substitution map �. For instan
e,in the example above B0 has been mapped ba
k to B using �. Thus, amore eÆ
ient solution for eliminating name 
lashes is to only rename thosevariables whi
h are not mapped by the substitution mapping �.Let (R;R0) be an optimizable pair of proto
ol rewrite rulesR : F M1 ! (9V1) Pn(�x) M2and R0 : Pn(�y)! (9V2) G M3where F;G; Pn(�x); Pn(�y) are state fa
ts, �x = x1 : : : xr, �y = y1 : : : yr, andM1;M2;M3 are multisets of message fa
ts. Let W and W0 be the set ofvariables o

urring in R and R0 respe
tively.The optimum of R and R0, Ro, is 
omputed by the following algorithm:1. E = fxi j xi = yi ^ i = 1; : : : ; rg2. C = fu j u 2W ^ u 2W0 ^ u 62 Eg3. Mren = fu 7! u0 j u 2 C ^ u0 62 (W [W0)g4. Rren = R0=MrenLet Rren = Pn( �y0) ! (9V02) G0 M035. Msubst = fy0i 7! xi j y0i 6= xi ^ i = 1; : : : ; rg55



6. Ro : F M1 ! (9V1 V02) M2 (G0 M03)=Msubst)7. The symbol table of the CIL spe
i�
ation is updated with all newlyintrodu
ed variables.C represents the set of variables whi
h may 
ause a 
lash. The variables inC are renamed in R0 with new variables using the renaming map Mren. Theoptimum is now 
omputed using the new rule Rren. At last, new variablesare introdu
ed in the symbol table.We have applied the optimizer to several proto
ol spe
i�
ations. The CAPSLspe
i�
ations of the proto
ols may be found at our web site [Mil00b℄. TheCIL spe
i�
ations were generated using the publi
ly available CAPSL-CILtranslator. Table 4.1 shows the results. The redu
tion ratios 
learly showProto
ol # Input Rules # Output Rules Redu
tion RatioNSPK 7 5 28.57%EKE 14 6 57.14%Otway 9 6 33.33%WMF 5 4 20%SRP 19 8 57.89%SSL 29 11 62.07%Vou
her 10 5 50%Table 4.1: Redu
tion ratio of CIL rulesthat the optimizer may redu
e the number of rules signi�
antly. This way,the performan
e of veri�
ation tools, su
h as �nite-state exploration tools,
an be drasti
ally in
reased.

56



Chapter 5Analysis Tools
Integration of CAPSL with proto
ol analysis tools in
ludes two prin
ipala
tivities: development of 
onne
tors for interfa
es from CIL to existingtools, and development of analysis te
hniques using general-purpose toolsthat 
an be adapted for this purpose. In parti
ular, PVS 
an be applied to
onstru
t indu
tive proofs of proto
ols, and Maude 
an be used as a model
he
ker with a suitable meta-level sear
h strategy.Conne
tors are being written to integrate CIL with a variety of formal se-
urity analysis tools, not only PVS and Maude, but also Athena [Son99,Mil00a℄. In this se
tion we des
ribe the analysis te
hniques developed forthe appli
ation of PVS and Maude. Before doing so, we summarize the
ommon features of the 
onne
tors developed for PVS, Maude, and Athena.5.1 Conne
tor DesignEa
h 
onne
tor has to ful�ll the following two 
hara
teristi
s:Synta
ti
al and semanti
al 
orre
tness. One has to de
ide whi
h CILpie
es are ne
essary for the translation into the targeted tool, andhow they are translated. The resulting spe
i�
ation needs to meetall synta
ti
al requirements of the target language and the translationhas to express CIL 
onstru
ts in a way that �ts with the semanti
sof the analysis tool. In some 
ases CIL 
onstru
ts 
an be translatedin a straightforward fashion into 
on
epts of the target language, in57



other 
ases the 
onne
tor translation re-interprets CIL 
onstru
ts andexpresses them via appropriate (
ombinations of) language 
onstru
tsof the target language.Pra
ti
ability. Though there might exists an obvious translation into thelanguage of the analysis tool, the resulting spe
i�
ation might not bein a format that supports eÆ
ient and pra
ti
al analysis. For instan
e,exe
utability, non-determinism, and performan
e aspe
ts of the trans-formed spe
i�
ation have to be taken into 
onsideration. The 
onne
-tor algorithm might need to perform alterations or optimizations inorder to meet these 
riteria.In order to a

omplish these obje
tive, 
ertain issues must be addressed:- The translation strategy for transition rules- Initialization- Type and fun
tion limitations- Goal generation- Software engineering 
onsiderations for expediting 
onne
tor writing.The translation strategy is di�erent for ea
h tool, and generally it is not toodiÆ
ult, due to the fun
tional 
ongruen
e between CIL rules and most tooltransition rules.Intialization refers to the transfer of proto
ol-spe
i�
 de
larations into thelanguage of the analysis tool, as well as the generation of any proto
ol-spe
i�
 atta
ker rules.Tools are sometimes limited with regard to the set of datatypes and fun
tionswith whi
h they 
an deal e�e
tively. The 
onne
tor must resolve in
ompati-bilities between the tool's vo
abulary and the typespe
s provided in CAPSLby the prelude and the user.The CAPSL translator passes goal statements on almost un
hanged to the
onne
tor, whi
h must do the best it 
an to generate tool-spe
i�
 versionsof those goals.Given that we have written three 
onne
tors and expe
t that others will bewritten, we have attempted to make the 
ommon features as transferable58



as possible. There is fairly good support for writing 
onne
tors in Java.There is a Java 
lass to parse the CIL output into a labelled tree stru
ture,using another Java 
lass de�ning the labelled tree type. The user-invoked
onne
tor 
lass is typi
ally a short standard program that invokes the parserand passes the parse tree to a workhorse translator 
lass.The parser and tree 
lass 
an be re-used as is, and the user-invoked 
onne
tor
lass of one 
onne
tor is only a few lines di�erent from that of another. Theworkhorse translator 
lass is, of 
ourse, tool-dependent, but it 
an make gooduse of the tree-manipulating fun
tions provided. Programming a 
onne
torin this environment is mu
h like LISP programming.5.2 PVSThe PVS spe
i�
ation and veri�
ation environment was developed at SRIand has been applied to many di�erent design problems for high-assuran
ehardware and software [ORS92℄. Our approa
h to using PVS for 
rypto-graphi
 proto
ol veri�
ation began with Paulson's tra
e model [Pau98℄.We then modi�ed and further developed the approa
h to work with a state-based model whi
h is more 
ompatible with the one built into CIL.While the summary of our PVS approa
h in this se
tion is intended tobe readable without a prior ba
kground in the appli
ation of PVS, someexperien
e with PVS would be ne
essary to put it into pra
ti
e.While the proto
ol modeling approa
h and the indu
tive proof te
hniqueapply to both se
re
y and authenti
ation goals, the main emphasis of thisse
tion lies in the des
ription of our formalization of the se
re
y theorempublished in [MR00℄. This theorem redu
es se
re
y proofs for proto
ols to�rst-order reasoning; in parti
ular, dis
harging these proof obligations doesnot require any indu
tions. The tri
k is to 
on�ne the indu
tions to general,proto
ol-independent lemmas, so that the proto
ol-spe
i�
 part of the proofis minimized. Moreover, se
re
y proto
ols are modularized in the sense thatthere are separate veri�
ation 
onditions for ea
h proto
ol rule.We illustrate the en
oding of spe
i�
 proto
ols in our model using theOtway-Rees proto
ol [OR87℄. We do not, however, go into details of proofs,sin
e they are mostly straightforward adaptations of the ones stated in [MR00℄.In order to formulate our results, we borrow the notion of ideals on strandspa
es [THG98℄, and we show how this 
on
ept is useful in a state model59




ontext for stating and proving se
re
y invariants. We show how the 
om-plement of an ideal, whi
h we 
all a 
oideal, serves as a 
atalyst to applyPaulson's 
al
ulus-like set operators. Our proto
ol model is also unusual inthat message events are interspersed with \spell" events that generate theshort-term se
rets in a session and spe
ify whi
h prin
ipals are supposed toshare them.Besides proving se
re
y results of standard ben
hmark proto
ols like theOtway-Rees and the Needham-S
hroeder (publi
 key) proto
ols, our meth-ods have been applied su

essfully (by B. Dutertre of SRI International) inthe pro
ess of verifying the group management servi
es of En
laves [Gon97℄.5.2.1 ModelingThe modeling task begins by de�ning the primitive data types that mayo

ur as message �elds: agents, keys, and non
es. This 
hoi
e of primitivetypes is derived from Paulson's approa
h, and the PVS 
onne
tor has to
onvert CAPSL types into these, su
h as from Prin
ipal (and all subtypes)to agent.These sets of obje
ts belonging to these primitive data types are assumedto be disjoint, and they are all subtypes (subsets) of the �eld type field.They are modeled as abstra
t datatypes in PVS.An agent is either an `ordinary' user, a dedi
ated server Srv, or the sup-posedly mali
ious Spy. Ea
h agent A has some long-term keys: a publi
 keyPub(A), a 
orresponding private key Prv(A), and a symmetri
 key Shr(A).Message �elds are divided into primitive and 
ompound �elds. The primi-tive �elds 
ontaining agents, non
es, and keys are 
onstru
ted as Agent(A),Non
e(N), and Key(K). (The PVS 
onversion me
hanism is used to suppressthese inje
tions in the sequel.) Compound �elds are 
onstru
ted by 
on
ate-nation or en
ryption. The 
on
atenation of X and Y is the term X ++ Y. Theen
ryption of X using the key K is En
r(K,X), regardless of the type of key.The possible message �elds are elements of the datatype field.Agents and 
ompound �elds are never designated as se
ret by poli
y, thoughsome 
ompound �elds may have to be prote
ted to maintain the se
re
y ofsome of their 
omponents. Thus, we de�ne basi
 �elds as non
es and keys,whi
h are the kinds of primitive �elds that may be designated as se
reta

ording to poli
y. The PVS de�nition of the membership predi
ate basi
?60



is shown below.basi
?: set[field℄ = union(Non
e?, Key?)As a notational 
onvention, variables A, B and variants always stand foragents; K and variants always stand for keys; and N and variants are alwaysnon
es. X, Y and Z are arbitrary �elds.Ea
h key K has an inverse.inv(K): key =CASES K OFPub(A): Prv(A), Prv(A): Pub(A),Shr(A): Shr(A), Ssk(A): Ssk(A)ENDCASESThus, both Shr(A) and Ssk(A) are symmetri
. The spe
ial agent Server isassumed to hold the symmetri
 (and thus, shared) key Shr(A) of any agentA.There are three kinds of events: messages, spells, and state events.event: DATATYPEBEGINMsg(Cont: field): Msg?Cast(Se
rets: set[(basi
?)℄, Cabal: set[agent℄): Spell?State(Role: nat, Label: nat, Memory: field): State?END eventMessages are essentially Paulson's Says events, and the 
ontent of a messageevent is a �eld. We do not need to refer to the sender and re
eiver ofa message. A spell generates 
ertain session-spe
i�
 primitive �elds anddesignates them as se
ret. A spell is an event Cast(S, C), where S is a setof short-term basi
 �elds 
alled the book, and C, the so-
alled 
abal, is a setof agents who are permitted to share the se
rets in S.As a notational 
onvention, we use E (and variants) to denote events, whileM is a message and C is a spell. 61



A global state is simply a 
olle
tion of events. Notationally, variants of H areglobal states. We shall see later that states rea
hable by a proto
ol 
ontainmessages in transit and lo
al states of agents parti
ipating in the proto
ol.global: TYPE = set[event℄We extend the notion of a 
ontent to global states in the natural way. Spellsand state events do not 
ontribute to the 
ontent. Similarly, the se
rets ofa state are obtained as the basi
 �elds of the se
rets of its 
ast events.sees(H)(X): boolean =EXISTS (M: (Msg?)): member(M,H) & Cont(M) = Xse
rets(H)(X): boolean =EXISTS (C: (Spell?)):member(C,H) & basi
?(X) & member(X,Se
rets(C))5.2.2 Indu
tive RelationsThe fundamental operations on sets S of message �elds, as introdu
ed byPaulson, are Parts(S), Analz(S), and Synth(S).Brie
y, Parts(S) is the set of all sub�elds of �elds in the set S, in
luding
omponents of 
on
atenations and the plaintext of en
ryptions (but not thekeys). Note that if member(X, Parts(fYg)), then X is a subterm of Y, in thesense of [THG98℄, written X <= Y. The subterm relation is a partial order.Analz(S) is the subset of Parts(S) 
onsisting of only those sub�elds thatare a

essible to an atta
ker. These in
lude 
omponents of 
on
atenations,and the plaintext of those en
ryptions where the inverse key is in Analz(S).Analz(S)(X): INDUCTIVE bool =S(X)OR (EXISTS Y: Analz(S)(X ++ Y))OR (EXISTS Y: Analz(S)(Y ++ X))OR (EXISTS K: Analz(S)(En
r(K, X)) AND Analz(S)(inv(K)))The intruder in our model synthesizes faked messages from analyzable partsof a set of available �elds. This motivates the de�nition of fake(S).62



Fake(S): set[field℄ = Synth(Analz(S))Fake_Parts: LEMMA Parts(Fake(S)) = union(Parts(S), Fake(S))5.2.3 Ideals and CoidealsIf the spy ever obtains some se
ret �eld X, it 
an transmit X as the 
ontentof a message. Thus, our se
re
y poli
y is that if the message with 
ontentX o

urs in some tra
e, then NOT member(X,S), where S is a set of basi
se
rets.The invariant that we will a
tually prove is that NOT member(X, Ideal(S)),where Ideal(S) is the ideal generated by S: the smallest set of �elds thatin
ludes S and whi
h is 
losed under 
on
atenation with any �elds and underen
ryption with keys whose inverses are not in S. Here, Ideal(S) is the k-ideal Ik[S℄ from [THG98℄ where k is the set of keys whose inverses are notin S.With our 
hoi
e of k, the ideal is de�ned as follows:Ideal(S)(X): INDUCTIVE boolean =S(X)OR (EXISTS Y, Z: X = Y ++ Z & (Ideal(S)(Y) OR Ideal(S)(Z)))OR (EXISTS Y, K: X = En
r(K, Y) & Ideal(S)(Y) & NOT S(inv(K)))Under the assumption that any term not in the ideal may be already 
om-promised, it is ne
essary to prote
t this whole ideal, be
ause 
ompromisingany element of the ideal e�e
tively 
ompromises some element of S. It turnsout that prote
ting this ideal is also suÆ
ient.The 
omplement of and ideal, whi
h we 
all a 
oideal, is denoted by Coideal(S).This de�nes the set of �elds that are publi
 with respe
t to the basi
 se
retsS, i.e., �elds whose release would not 
ompromise any se
rets in S.The property that makes the notion of \
oideal" worth de�ning is that
oideals are 
losed under atta
ker analysis, thereby implying that prote
tionof the ideal is suÆ
ient.Analz_Closure: LEMMA Analz(Coideal(S)) = Coideal(S)63



Synth_Closure: LEMMA subset?(S,(basi
?)) =>Synth(Coideal(S)) = Coideal(S)5.2.4 Proto
ols and Se
re
yA proto
ol spe
i�es whi
h messages or spells 
an be added to a global state.A se
ret in a spell book must be unused in the prior state, in the sense thatit is not a part of any message 
ontent and it has not o

urred as a se
retin a prior spell.unused(H: global)(X: field): boolean =basi
?(X) & NOT(Parts(sees(H))(X)) & NOT(se
rets(H)(X))A proto
ol rule is a triple 
onsisting of a pre- and a post set of events anda set of non
es. Intuitively, su
h a rule is appli
able in some global state Hif the pre events are a subset of H and if the non
es in the rule are unusedin H. A rule �res by deleting the pre events from the state and adding thepost events.rule: TYPE =[# Pre: set[event℄,Non
es: set[(basi
?)℄,Post: set[event℄ #℄There are several lo
al 
onditions on proto
ol rules. First, there is at mostone spell in the post, and a 
ast and a message event may not o

ur simul-taneously in the post. Se
ond, all se
rets of 
asts in the post must be subsetof the rule non
es. Third, regularity states that whenever a longterm keyK is neither in the parts of the 
ontent or the memory of the pre then it isalso not in the parts of the 
ontent or the memory of the post.single_spell(post: set[event℄): boolean =FORALL (C, C1: (Cast?), E: (Event?)):(member(C, post) & member(C1, post) => C = C1)& (member(C, post) & member(E, post) => NOT Msg?(E))64



fresh(Ns: set[(basi
?)℄, post: set[event℄): boolean =FORALL (C: (Cast?)): member(C,post) => subset?(Se
rets(C),Ns)regular(pre, tau1): boolean =FORALL(K: longterm):(NOT(Parts(sees(pre))(K)) & NOT(Parts(memory(pre))(K)))=> (NOT(Parts(sees(post))(K))& NOT(Parts(memory(post))(K)))It is usually straightforward to 
he
k that rules of a spe
i�
 proto
ol obeythese 
onditions. Usually, we (mis)use the PVS prover to automati
ally
he
k these stati
 
onditions.Rules that satis�es the 
onditions above are 
olle
ted in the type proto
ol.protrule(rl: rule): boolean =single_spell(Post(rl))& fresh(Non
es(rl),Post(rl))& regular(Pre(rl),Post(rl))proto
ol: TYPE = set[(protrule)℄A proto
ol P and a given set of initial knowledge I (of the spy), a global I-extension is a binary relation of states. This relation determines a transitionsystem. An extension is either honest, i.e. it 
orresponds to a move by aplayer following the rules, or it is faked by the spy. As usually, the spy isredu
ed to add only messages with a 
ontent that 
an be inferred from the
ontent of the 
urrent state and the initial knowledge.honest(P: proto
ol)(H, H1): boolean =EXISTS(rl: (P)):subset?(Non
es(rl), unused(H))& subset?(Pre(rl), H)& H1 = union(Post(rl), differen
e(H, Prestates(rl)))fake(I: set[field℄)(H, H1): boolean =EXISTS(X: (Fake(union(sees(H), I)))): H1 = add(Msg(X), H)65



global_extension(P: proto
ol, I: set[field℄)(H, H1): boolean= honest(P)(H, H1) OR fake(I)(H, H1)We need some further 
on
epts before stating our se
re
y theorem. Thebasi
 se
rets asso
iated with a spell in
lude not only the elements of thespell book but also the long-term se
rets of the agents in the 
abal.ltk(C: (Cast?))(X: field): boolean =Key?(X)& longterm(Val(X))& EXISTS(A: agent): Q(A)(Val(X)) & Cabal(C)(A)basi
_se
rets(C)(X: field): boolean =basi
?(X) AND (Se
rets(C)(X) OR ltk(C)(X))A spell is 
ompatible with an initial knowledge set that does not 
ompromiseits asso
iated basi
 se
rets, or mention the short-term se
rets in its book.
ompatible(I: set[field℄)(C: (Cast?)): boolean =disjoint?(basi
_se
rets(C), Parts(I))The set of rea
hable states H is de�ned in the usual way using a least �xed-point de�nition.rea
hable(P, I)(H): INDUCTIVE boolean =empty?(H) OR (EXISTS (G: global):rea
hable(P, I)(G)& global_extension(P, I)(G, H))A proto
ol is se
ure with respe
t to its se
re
y poli
y and the spy's ini-tial knowledge I if every rea
hable state it generates is se
ret-se
ure. Thisproperty, for tra
es, was 
alled \dis
reet" in [MR00℄.se
ret_se
ure(I: set[field℄)(H: global): boolean =FORALL C: 
ompatible(I)(C) & H(C)=> subset?(sees(H), Coideal(basi
_se
rets(C)))66



The se
re
y proof for a proto
ol has a proto
ol-independent part and aproto
ol-dependent part. The proto
ol-dependent part is expressed by theo

ultness property de�ned below. It says that if the prior state is se
ret-se
ure, the next message event generated by the proto
ol does not 
ompro-mise a se
ret. This has to be proved individually for ea
h proto
ol. Thisproto
ol property was 
alled \dis
reet" in [MR00℄.o

ult(P: proto
ol): boolean =FORALL (I: set[field℄, H: global,C: (Cast?), rp: (protrule)):rea
hable(P, I)(H)& se
ret_se
ure(I)(H)& 
ompatible(I)(C)& H(C)& subset?(Pre(rp), H)& P(rp)=> subset?(sees(Post(rp)),Coideal(basi
_se
rets(C)))The proto
ol-independent part of a se
re
y proof is the Se
re
y theorem. Itonly has to be proved on
e.se
re
y: THEOREMo

ult(P) => subset?(rea
hable(P, I), se
ret_se
ure(I))The proof of this theorem is along the lines of the proof in [MR00℄ for provinga se
re
y theorem for tra
e models, but now the indu
tion is on the lengthof proto
ol extensions.Noti
e that these are stri
tly se
re
y results, and show only that the se
retsgenerated in a parti
ular run of the proto
ol are not 
ompromised. Mostauthors of proto
ol proofs have noted that the se
urity obje
tives of a proto-
ol may be undermined in other ways than by 
ompromising se
rets, usuallydue to some failure of authenti
ation. Possible 
ombinations of se
re
y andauthenti
ation are dis
ussed in [MR00℄.5.2.5 Example: The Otway-Rees Proto
olThe goal of the Otway-Rees proto
ol is to mutually authenti
ate an initiatorand responder and to distribute a session key generated by the server. The67



proto
ol 
onsists of four messages, presented below as they appear in aCAPSL MESSAGES se
tion.The se
urity obje
tive is to prove that none of the se
rets Na, Nb, or K aredis
losed.or1. A -> B: M,A,B,{Na,M,A,B}Kas%F1 ;or2. B -> Srv: M,A,B,F1%{Na,M,A,B}Kas,{Nb,M,A,B}Kbs;or3. Srv -> B: M,{Na,Kab}Kas%F2,{Nb,Kab}Kbs;or4. B -> A: M,F2%{Na,Kab}Kas;The full proto
ol spe
i�
ation in
ludes DENOTES de
larations indi
ating thatKas and Kbs are the keys shared by A and B, respe
tively, with the serverSrv.The PVS en
oding of this proto
ol shown below was produ
ed by hand. ThePVS 
onne
tor produ
es a mu
h less readable version. The PVS 
onne
toris also, as of this writing, not yet 
apable of produ
ing the spells and proofobligations automati
ally. Here we only state a sele
tion of the formalizationof the Otway-Rees proto
ol rules.The spell rule spl1 generates the non
e Na as needed for the �rst proto
olstep. Note that the server need not be mentioned in the 
abal.spl1(A, B: agent, Na: non
e): (protrule) =(# Pre := emptyset,Non
es := singleton(Na),Post := singleton(Cast(add(Na,emptyset),add(A, add(B, emptyset))))#)The type 
onstraint (protrule) 
auses the PVS type 
he
ker to generateveri�
ation 
onditions 
orresponding to the 
onditions on proto
ol rules.These and all the other veri�
ation 
onditions are easily dis
harged usingthe PVS prover.Sending and re
eiving is split into two parts. The �rst step in the Otway-Rees proto
ol, for example, is trans
ribed as follows.snd1(A, B: agent, N, Na: non
e): (protrule) =68



(# Pre := add(State(roleA, 0, A ++ B ++ Srv),add(Cast(add(Na, emptyset),add(A, add(B, emptyset))), emptyset)),Non
es := add(N, emptyset),Post := add(State(roleA, 1, A ++ B ++ Srv ++ Na),add(Msg(N ++ A ++ B ++En
r(Shr(A), Na ++ N ++ A ++ B)), emptyset))#)r
v1(A, B: agent, N, Na: non
e): (protrule) =(# Pre := add(State(roleB, 0, B ++ Srv),singleton(Msg(N ++ A ++ B++ En
r(Shr(A), Na ++ N ++ A ++ B)))),Non
es := emptyset,Post := singleton(State(roleB, 1, B ++ Srv ++ N ++ A))#)Rules that introdu
e non
es (to be kept se
ret) take them from a prior spellwith the expe
ted 
abal. When an agent uses a se
ret from a spell book, theagent does not see any of the other se
rets in the same spellbook, though itmight know about them from prior messages.In general, a sequen
e of states generated by these rules interleaves thebehavior of as many agents as we wish, and any number of 
on
urrent orsequential sessions of the same agents. Altogether, the Otway-Rees proto
olis formalized as follows.otway_rees: proto
ol ={ r: (protrule) |EXISTS A, B, N, Na, Nb, K:r = init(A, B)OR r = spl1(A, B, Na)OR r = snd1(A, B, N, Na)OR r = r
v1(A, B, N, Na)OR ...}The se
re
y theorem states that it suÆ
es to show o

ult(otway rees). Ina �rst step, using skolemization and split rules in order to show o

ultnessfor rea
h rule separately. For the lemma below o

ultness follows triviallyfor most proto
ol rules. 69



suffi
ient_for_o

ultness: LEMMAdisjoint?(Msg?, Post(rp)) => o

ult(singleton(rp))It remains to prove o

ultness for four rules in the Otway-Rees proto
ol. Inthe 
ase of the snd1 rule, for example, one has to prove:{-1} subset?(sees(H), Coideal(basi
_se
rets(C))){-2} rea
hable(OR, I)(H){-3} H(C){-4} H(State(roleA, 0, A ++ B ++ Srv)){-5} H(Cast(add(Non
e(Na), emptyset),add(A, add(B, emptyset))))|----------{1} Coideal(basi
_se
rets(C))(N ++ A ++ B ++ En
r(Shr(A), Na ++ N ++ A ++ B))Currently, we still prove these kinds of veri�
ation 
onditions in an inter-a
tive way (typi
ally around 20-40 intera
tions per rule), but the repetitivepatterns in these proofs suggest higher-level proof strategies.5.2.6 Con
lusionsOur se
re
y theorem separates proto
ol-dependent and proto
ol-independentaspe
ts of se
re
y proofs. The proto
ol-dependent part is to show the o
-
ultness property, whi
h only asks whether honest messages 
ompromisese
rets, given strong assumptions about the preservation of se
re
y in theprior message history.The se
rets to be prote
ted are de�ned in an expli
it, uniform way by intro-du
ing \spell" events into the proto
ol. Spell events generate the short-termse
rets for a parti
ular \
abal", the set of agents sharing the new se
rets.Se
rets are shown to be prote
ted even when the long-term se
rets of otheragents, or the short-term se
rets in other proto
ol runs (with other spells)are 
ompromised.The 
losure results on the 
oideal have turned out to be a useful addition tothe arsenal of proof te
hniques, enabling interesting examples to be shownse
ure. Proto
ol proofs are still 
omplex enough so that we feel proof-
he
king and automation to be valuable for the sake of assuran
e, and we70



believe that the same te
hniques that simplify manual proofs will also behelpful in organizing ma
hine-assisted proofs.Currently, we are developing high-level PVS strategies for automati
allydis
harging most veri�
ation 
onditions for typi
al proto
ol rules. In thesestrategies we try to 
apture the repetitive patterns that have been showingup in hand and me
hanized intera
tive proofs. It is our hope that, usingthese strategies, we 
an prove se
re
y results about realisti
 proto
ols ina fairly automati
 way. We have developed an initial version of the PVS
onne
tor, but it needs to be improved to 
reate more readable proto
oltheories and to in
orporate goal information.5.3 MaudeIn this se
tion we des
ribe the design de
isions and optimization solutionsfor a CIL 
onne
tor to Maude. Maude is a novel, wide-spe
trum exe
utableformal spe
i�
ation language that has been su

essfully applied to 
ommu-ni
ation and se
urity proto
ols (see 
ase studies on the Maude web page[Mau00℄). In parti
ular, Maude 
an be eÆ
iently used as a model 
he
kerfor se
urity proto
ols as shown in [BD00, DMT00, DMT98b℄. In order tominimize translation e�orts into Maude and a
hieve maximal reusability ofsear
h strategies, atta
ker model and other prede�ned data stru
tures, wedesigned a CIL-to-Maude 
onne
tor that has been implemented in Java.Su
h a 
onne
tor automati
ally translates CIL spe
i�
ations into Maude,and, thus, enables a proto
ol designer to make use of the Maude model
he
king fa
ilities without knowing Maude spe
i�
s. The following is a listof \ingredients" for the CIL 
onne
tor to Maude:- Spe
i�
ation of pre-de�ned CAPSL data types in Maude;- Representation of the CIL model in Maude;- De�nition of an atta
ker model;- Algorithm for translating proto
ol spe
i�
 CIL 
onstru
ts (su
h mes-sage lists and environments) into Maude;- De�nition of a general sear
h strategy for model 
he
king;- Proto
ol-dependent and proto
ol-independent optimization te
hniquesthat improve the performan
e of the Maude model 
he
ker;71



We illustrate the design of the CIL-to-Maude 
onne
tor by means of anexample. A prototypi
al implementation of the Maude 
onne
tor in Java is�nished. In the appendix we present the Maude spe
i�
ation that has beenprodu
ed using the 
onne
tor.5.3.1 The Maude LanguageMaude [CDE+99, CELM96, Mau00℄ is a multi-paradigm spe
i�
ation lan-guage based on rewriting logi
 [Mes92℄. Maude spe
i�
ations 
an be eÆ-
iently exe
uted using the Maude rewrite engine, thus allowing their use forsystem prototyping and the debugging of spe
i�
ations.Part of what makes Maude very well suited for the purpose of proto
olanalysis is its 
exible wide-spe
trum 
hara
ter: it 
an deal with very earlydesign phases su
h as ar
hite
tures and high-level designs, 
an be used toqui
kly develop exe
utable prototypes, and 
an also be used to generate
ode. There is also a wide range of options on the kind of analyses that
an be performed. One 
an develop formal models of a system very early,
an debug formal spe
i�
ations|whi
h 
an be partial and in
omplete|by exe
uting them, 
an do more exhaustive model-
he
king and symboli
simulation analyses, or, for highly 
riti
al subsystems, 
an in fa
t do fullformal veri�
ation using Maude's theorem proving tools.The Maude model 
he
ker makes use of the re
e
tive 
apabilities of rewritinglogi
 and Maude [CM96℄. Re
e
tion allows user-de�ned exe
ution strategiesthat 
an be formally spe
i�ed by rewrite rules at the metalevel, in
ludingstrategies su
h as breadth-�rst-sear
h that 
an exhaustively explore all theexe
utions of a system from a given initial state.We brie
y summarize the syntax of Maude. In the CIL-to-Maude 
onne
torwe mainly make use of the following two types of modules:- fun
tional modules, that are equational theories used to spe
ify alge-brai
 data types; they are de
lared with the syntax fmod ... endfm,and- system modules, that are rewrite theories spe
ifying 
on
urrent sys-tems; they are de
lared with the syntax mod ... endm, andImmediately after the module's keyword, the name of the module is given.After this, a list of imported submodules 
an be added. One 
an also de-72




lare sorts and subsorts (spe
ifying sort in
lusion) and operators. Operatorsare introdu
ed with the op keyword. They are de
lared with the sorts oftheir arguments and result, and syntax is user de�nable using unders
ores` ' to mark the argument positions. Some operators 
an have equational at-tributes, su
h as asso
 and 
omm, stating, for example, that the operator isasso
iative and 
ommutative. Su
h attributes are then used by the Maudeengine to mat
h terms modulo the de
lared axioms.We make use of two kinds of logi
al axioms, namely, equations|introdu
edwith the keywords eq, or, for 
onditional equations, 
eq|and rewrite rules|introdu
ed with the keywords rl, or for 
onditional rules 
rl. Fun
tionalmodules 
an only have equations, whereas system modules 
an have anykind of axioms. The mathemati
al variables in su
h axioms are de
laredwith the keywords var and vars.5.3.2 Translation of the CAPSL PreludeOur 
urrent 
onne
tor is restri
ted to the operators provided in the CAPSLprelude (i.e., list 
on
atenation, 
ryptographi
 operators for symmetri
 andpubli
 key en
ryption, et
.) whi
h have been eÆ
iently translated intoMaude. The Maude module with the CAPSL prelude is automati
allyloaded with any CAPSL proto
ol spe
i�
ation.In general any CAPSL type de
laration 
an be translated into Maude. Thereason for this restri
tion lies in the atta
ker model. The 
omplexity of theatta
ker model is proportional to the number of fun
tion de
larations andaxioms. The more operators are de�ned, the more possible 
omputationsan atta
ker 
an perform. We restri
ted our atta
ker model to the usualfun
tionality of 
omposing and de
omposing as well as en
rypting and de-
rypting messages using the standard operators de�ned in the prelude (e.g.,
at,
on,ped,se). As a 
onsequen
e, we only deal with type spe
i�
ationsfrom the CAPSL prelude.Type, fun
tion, and 
onstant de
larations. Type and subtype de
la-rations 
orrespond to sort and subsort de
larations in Maude. Forinstan
e, the de
laration TYPES Role, Spe
, Agent: Obje
t trans-lates into the Maude sort de
larationssorts Obje
t Role Spe
 Agent .and additional subsort de
larations73



subsorts Role Spe
 Agent < Obje
t .Sin
e there exists no default supersort in Maude we have to expli
itlyde�ne subsort relationship for all subtypes of Atom. Fun
tions and 
on-stants are both translated into Maude operator de
larations. In Maudean operator is de�ned by a name, a list of argument sorts and its targetsort. Constants are operators with empty argument parameter. Forinstan
e, the CAPSL fun
tion 
at(Field, Field): Tape, ASSOCis translated into op 
at : Field Field -> Tape [asso
℄. Weintrodu
ed two additional boolean operators to deal with invertibil-ity statements: op INVERT : | : Field Field List[Field℄ ->Boolean to 
apture invertibility axioms that have a list of �elds asthird parameter and op INVERT_:_ : Field Field -> Boolean torepresent invertibility axioms with only two parameters.Variables and axioms. Variable de
larations su
h as VARIABLES Al:Atomare expressed in Maude as var Al : Atom. CAPSL axioms are rep-resented by Maude (
onditional) equations. For instan
e, the axiomfirst(
at(Al, Xl)) = Al looks like this eq first(
at(Al,Xl)) =Al in Maude. IF-THEN-ELSE axioms su
h asIF keypair(PKl,PKIl) THEN ped(PKIl, ped(PKl, Xl)) = XlENDIF
an be represented by a 
onditional equation
eq ped(PKIl, ped(PKl, Xl)) = Xlif (keypair(PKl, PKIl) == true).Properties. As for properties, asso
iativity (ASSOC) and 
ommutativity(COMM) are supported by Maude. The priva
y property PRIVATE istreated indire
tly. A private fun
tion symbol is one whi
h 
annot bea

essed by the atta
ker (unless the symbol is private to the atta
ker).We provide a tailored solution to assure that the atta
ker only usesappropriate fun
tions in rewrite rules. CRYPTO is treated similarly. Sofar we only handle the FRESH property of Non
es by introdu
ing a
ounter that guarantees freshness of non
e values (see Se
tion 5.3.4and Se
tion 5.3.5).Using these general guidelines we translated the CAPSL prelude into aMaude module. 74



5.3.3 De�nition of the CIL modelThe 
exibility of Maude allows us to simulate CIL rewrite rules using asynta
ti
al representation that mat
hes a mix�x1 version of the CIL notationof Se
tion 3.1.2. In order to a
hieve this goal, we provide a standard Maudespe
i�
ation that de�nes all sorts, operations and equations ne
essary todes
ribe the spe
i�
s of a CIL model su
h as state, msg and intruder fa
ts.The following fun
tional theory (i.e., a fun
tional module without equations)de�nes CIL fa
ts.fth FACT isprote
ting FIELDS .prote
ting CAPSLPRELUDE .sort Fa
t .op Msg : Prin
ipal Prin
ipal Fields -> Fa
t . *** msg fa
top State : Role Ma
hineInt Fields -> Fa
t . *** state fa
top Net : Fields -> Fa
t . *** intruder fa
tendfthThe imported module FIELDS de�nes an operator op [_℄ : List[Field℄-> Fields . to represent �eld lists en
losed in square bra
kets su
h as[A,B,Na℄. LIST is another parameterized module that de�nes list opera-tions. The CAPSL prelude is also imported in order to refer to the sortsPrin
ipal and Role. Multiset of fa
ts are then de�ned by the followingtheory.fth FACTS isprote
ting MSET[Fa
t℄ .sort Fa
ts .op [_℄ : MSet[Fa
t℄ -> Fa
ts .op atta
k : -> Fa
ts .endfth1We prefer to use the mix�x notation over pre�x notation sin
e it is more readableand shortens the proto
ol spe
i�
ations. Thus, instead of using the pre�x operator fa
tsfor multisets of fa
ts, we used square bra
kets around multisets of fa
ts. We also en
loseterm lists in square bra
kets. 75



The imported module MSET[Fa
t℄ de�nes multisets of fa
ts using \," forseparating fa
ts. The term [State(roleA, 1, [A,B,Na℄), Msg(UNK, A,[ped(pk(A), 
at(Na,Nb))℄)℄ is of sort Fa
ts due to the above theory(assuming appropriate variable de
larations). This representation is very
lose to the CIL notation introdu
ed in Se
tion 3.1.2. The 
onstant atta
kof sort Fa
ts is used in the sear
h. For a given proto
ol spe
i�
ation, wenegate the goals and de�ne systems states as patterns that invalidate thegoals. We then de�ne equations that rewrite a system state that invalidatesa goal into atta
k. The sear
h strategy terminates when an atta
k state isfound. Further down we give details for the sear
h strategy.With the help of the above module we 
an mirror the CIL rules in Maude ina very straightforward way with only few alterations. One alteration is thatMaude rewrite rules need a label. The 
urrent automated CIL-to-Maudetranslator numbers the rules 
onse
utively.5.3.4 Maude Atta
ker ModelThe 
omputational 
apabilities of an intruder are modelled by rewrite rules.Information that 
an be extra
ted from messages sent to, or inter
eptedby, the atta
ker are stored in the global state as data of the form Net(l)where l is a variable of sort Fields. We model possible atta
ker a
tionsusing additional rules that inter
eptmessages (and pla
e them on the net),fake new messages, de
ompose messages on the net and pla
e their partson the net, 
ompose messages from parts, and en
rypt messages. We givea few examples here.
rl [inter
ept℄ :[Msg(a,b,l), fs℄ => [Net(l), fs℄if (not(Net(l) in fs) and not(spyOf(a) == true)) .
rl [fake℄ :[Net([a℄), Net(l), fs℄=> [Net([a℄), Net(l), Msg(Spy,a,l), fs℄if (not(spyOf(a) == true) and not(Msg(Spy,a,l) in fs)) .
rl [fake2℄ :[Net([a℄), fs℄ => [Net([a℄), Msg(Spy,a,[a℄), fs℄if (not(spyOf(a) == true) and not(Msg(Spy,a,[a℄) in fs)) .
rl [de
ompose℄ :[fs℄ => [analyze(nets(partition(fs))),76



nonNets(partition(fs))℄if (
ard(analyze(nets(partition(fs))),nonNets(partition(fs))) > 
ard(fs)) .The inter
ept rule says that the 
ontent of any message that is not ad-dressed to a spy 
an be inter
epted by it (there may be more than one spyin the system) if the spy 
an learn some new data. The latter 
ondition,formalized as not(Net(l), assures that the intruder only inter
epts whenshe gains some value by inter
epting the message. If the intruder alreadyknows the 
ontent of the message, that is Net(l) in fs (fs is a variableof sort fa
t set), than inter
epting the message is useless. This 
onditionspeeds up the sear
h pro
ess by avoiding exploring unne
essary states. fakestates that for an agent a on the network and for a message l, the messageMsg(Spy,a,l) is inserted into the global state. The 
ondition assures thatthe spy does not send a faked messages to himself and that the messageis new. Note that we have adopted the 
onvention of [Pau98℄ where themessage sour
e and destination arguments are the true sour
e and intendeddestination of the message, and they are not a

essible to the re
eiver ofthe message. Hen
e, Spy is the sender here (and in r
vMsg1 the sender isunknown). The rule fake2 is similar but allows mat
hing with only one statefa
t. The de
ompose rule is implemented in su
h a way that in one step theatta
ker retrieves the maximum amount of information from the 
urrentlyheld �elds by applying de
omposition and de
ryption fun
tions de�ned inthe prelude. The de
ompose rule partitions the fa
t set into atta
ker fa
tsand non-atta
ker fa
ts. The fun
tion analyzed re
ursively applies de
om-position and de
ryption operators on the atta
ker fa
ts until no more addi-tional knowledge is extra
ted. For performan
e reasond, this rule only �resif the atta
ker knowledge 
an be in
reased. In order to a
hieve determinismfor ea
h 
omposing step, the 
orresponding rules only 
reate one new termusing one of the 
omposition or en
ryption fun
tions de�ned in the prelude.Thus, for ea
h of the 
onstru
tional operators su
h as ped, se, 
on, 
atthere are rules in the Maude atta
ker module that des
ribe state transitionsthat 
reate new atta
ker fa
ts. The atta
ker might need to apply these rulesseveral times su

essively in order to build a 
omposed message whi
h hewants to fake.
77



5.3.5 Translating CIL Proto
ols and EnvironmentsThe parts of a CIL spe
i�
ation that are relevant for produ
ing the 
orre-sponding Maude spe
i�
ation are Symbols, Axioms, Rules, Environment,and Goals.SymbolsSymbol de
larations are translated in very straightforward manner to Maude.Depending on the kind of symbol de
laration, they result in Maude sort andsubsort de
larations or operator de
larations.Type de
larations. A type de
laration symbol(ident1,type,ids(),ident2,props()) turns into sort de
larations with asso
iated subsort de
la-rations: sort ident1 and subsort ident1 < ident2.Constant or fun
tion de
larations. The de
laration symbol(ident, op,args, val, props) is translated into op ident : args -> val [ props ℄ .Variable de
larations. A variable de
laration symbol(ident, var/pvar,ids(), val, props) 
orresponds to the following Maude variable de
la-ration var ident : val .Properties of variables 
annot be expressed dire
tly in Maude. So farwe treat FRESH, CRYPTO, and EXPOSED properties in the 
onne
tor toMaude. They are not expressed by similar Maude 
on
epts, rather weprovide tailor-made solutions.For the sort of a fresh variable we de�ne 
onstru
tors that ful�ll thefreshness requirement. For example in the 
ase of non
es, our 
ur-rent implementation uses integers to enumerate instan
es of a sort.op Non
e : Ma
hineInt -> Non
e de�nes a non
e generator thatprodu
es Non
e 1, Non
e 2, .... Ma
hineInt is a Maude spe
i�
data type for integers. There are several ways to assure freshness ofnon
es. We 
hose to maintain a system 
ounter as part of the proto
olthat is in
reased ea
h time a fresh variable of some sort is generated.Analogous to the PRIVATE property of fun
tions, a CRYPTO property ofa variable is expressed impli
itly. That means that no atta
ker rule 
anmake use of a 
rypto variable, unless it is held by the atta
ker or 
anbe generated by the atta
ker using publi
 fun
tions. The semanti
s of78



the RANDOM property is still to be de�ned in CIL. EXPOSED terms willbe handled in the initial state of an atta
ker. EXPOSED(sk(Ali
e))is translated into Net([sk(Ali
e)℄) expressing that the se
ret key ofAli
e is on the network (and thus, known to the atta
ker).AxiomsIt is relatively easy to translate CIL Axioms into Maude. CIL only usesequations, boolean predi
ates, if-then-else expressions and the invertibilitypredi
ate. Ea
h of these 
on
epts 
an the represented via 
onditional equa-tions in Maude. For instan
e, the following set of CIL axiomsaxioms(if(keypair(K1,K2),eqn(ped(K1,ped(K2,F)),F),true),keypair(sk(U),pk(U)),invertible(ped(pk(U),F), F, terms(sk(U)))translates into the Maude (
onditional) equations
eq ped(K1,ped(K2,F)) = F if keypair(K1,K2) .eq keypair(sk(U),pk(U)) = true .eq INVERT ped(pk(U),F) : F | sk(U) = true .RulesUsing the Maude module for the CIL model, we 
an mirror CIL rewriterules almost identi
ally in Maude. There are two main di�eren
es. Forone, rules in Maude have to be labelled. We 
urrently number rules rules
onse
utively. The se
ond di�eren
e is that, depending on the solution we
hose for generating fresh values, additional predi
ates might show up in therules. This 
annot be avoided, sin
e the abstra
t 
on
ept of fresh values hasto be implemented in an exe
utable formalism like Maude. In the followingwe 
hose to use a 
ounter fa
t Cnt(n), whi
h determines the next available,fresh integer in order to 
reate non
es. The 
ounter is updated any time anon
e is 
reated. Though the 
ounter is not by itself se
ret, and thus, itlooks as if the atta
ker 
an generate any non
e (in
luding those generatedby honest agents), we assure in the atta
ker model, that the atta
ker doesnot a

ess the 
ounter, unless to 
reate its own non
es.79



The following rules 
orrespond to the CIL rules for NSPK for sending andre
eiving the �rst message.rl [1℄ :[State(roleA,0,[A,B℄),Cnt(n),fs℄=> [State(roleA,1,[A,B,Non
e (n+1)℄),Msg(A,B,[ped(pk(B),
at(Non
e (n+1),A))℄),Cnt(n+1),fs℄ .rl [2℄ :[State(roleB,0,[B℄),Msg(UNK,B,[ped(pk(B),
at(Na,A))℄),Cnt(n),fs℄=> [State(roleB,1,[B,Na,A℄),Cnt(n),fs℄ .fs is a free variable that mat
hes the remaining fa
ts in the multiset.Con
eptually, initialization rules 
ould be translated one-to-one into Mauderules:rl [initA℄ :[mt℄ => [State(roleA,0,[A,B℄)℄ .The problem with su
h an initialization rule is that it is always enabled sin
emt is the identity element of the multiset operator [ ℄ for fa
ts, and thus,any system 
on�guration has mt as a sub-
on�guration. This would unne
-essarily 
ause the Maude model 
he
ker to loop in�nitely. Moreover, thevariables on the righthand side are free. The Maude model 
he
ker needs tobind variables to values in order to exe
ute the proto
ol for spe
i�
 agent in-stantiations. To resolve both problems, we de
ided to skip the initializationrules and instead provide a means of setting up agents for model 
he
kingsessions by using the environment information.EnvironmentEa
h test environment results in an initial 
on�guration that is modelledas a fa
t set. Currently, we only handle environment in whi
h all agentsexists 
on
urrently. Here is the initial state for the test environment Test1of NSPK given in Se
tion 2.5.op Test1 : -> Fa
ts . 80



eq Test1 = [State(roleA,0,[Ali
e,Bob℄),State(roleB,0,[Bob℄),Net([Mallory℄),Net([Ali
e℄), Net([Bob℄),Net([ped(sk(Ali
e),Bob)℄) ℄ .The atta
ker knows the names of all prin
ipals that are part of the sessionand the exposed term.GoalsThe se
re
y goal for Na in NSPK is lo
alized into the CIL goal lo
( nodes(node(roleA,3), node(roleB,3)), se
ret(Na,ids(A,B))). This goal isviolated for an agent A, if the A-agent is in a session with another honestagent, has the non
e Na in its memory, and the spy also knows this non
e(i.e., Net([Na℄) is in the multiset of fa
ts). Therefore, we 
an 
hara
terizewhat states represent atta
ks. For the given NSPK se
re
y goal, a state rep-resents an atta
k when an agent has sent his non
e, en
rypted, to anotheragent (di�erent from the spy) but the non
e has been 
ompromised by thespy, i.e., is on the net. For eÆ
ien
y reasons, we implement this 
hara
teriza-tion in the following way. We sear
h for the smallest A-state that 
ontains these
ret Na. For NSPK this is State(roleA,1,[A,B,Na℄). Sin
e the A-agent
an grow over time, the state number 
an 
hange and there might be addi-tional slots after Na. Thus, we use the pattern State(roleA,n,[A,B,Na,fl℄)where the free variable fl mat
hes the rest of the �elds.A violation of the se
re
y goal for Na is de�ned by the following axiom.
eq [Net([Na℄),State(roleA,n,[A,B,Na,fl℄), fs℄ = atta
kif not(spyOf(A) == true) and not(spyOf(B) == true) .The predi
ate spyOf determines that the non
e was not deliberately sent byan agent to an intruder.PRECEDES goals 
an also be interpreted in Maude with the help of additionalequations. The PRECEDES goal lo
(nodes(node(roleA,3),node(roleB,3)),pre
edes(B,A,ids(Na))) is ful�lled whenever B is in its �nal (third) statein whi
h it holds a value for A, B, and Na, then there exists an agent inrole A that agrees with B on these values. Here is the appropriate Maudeformalization 81




eq [State(roleB,3,[B,Na,A,Nb℄),fs) = atta
kif not(State(roleA,n,[A,B,Na,fl℄) in fs)and not(spyOf(A) == true) and not(spyOf(B) == true) .5.3.6 Sear
h Strategy and OptimizationThe aim of model 
he
king is to explore the state spa
e for possible atta
ks.In problems like ours where the state spa
e is in�nite, model 
he
king basedon enumerative sear
h 
onstitutes a semi-de
ision pro
edure.By applying rewrite rules, Maude 
an be used to build parts of the 
ompu-tation tree rooted at the initial state. In parti
ular, the Maude interpreterdelivers one parti
ular bran
h of the 
omputation tree determined by in-terpreter's default evaluation strategy for applying rules. However, to �ndpossible atta
ks we need to explore all possible bran
hes.We pro
eed by employing Maude's metalevel reasoning 
apabilities and de-�ne, at the metalevel (in Maude), a strategy that spe
i�es how the rulesshould be applied. To do this we de�ne, within a Maude module, a fun
tionthat implements an iterative deepening sear
h on a tree spe
i�ed, impli
itly,by an initial state and rewrite rules of another module. Writing the sear
hstrategy for model-
he
king on the meta-level allows to import any proto
oldes
ription and run the sear
h strategy with that proto
ol. Thus, we spe-
ialize the sear
h strategy to the given initial proto
ol state and the modulede�ning the proto
ol rules. In doing so, the proto
ol spe
i�
ation be
omesa term on the metalevel that is passed to, and manipulated by, the sear
hstrategy.(fmod SEARCH isprote
ting META-LEVEL[NSPK℄ ....endfm)For pra
ti
ality reasons we de�ned a bounded depth-�rst sear
h strategyinstead of a breadth-�rst sear
h strategy. A breadth-�rst sear
h strategy
an be obtained by iteratively 
alling the depth-�rst strategy with in
reas-ing depths. To spe
ify a depth-�rst sear
h strategy, we formalize a fun
-tion whose arguments are the proto
ol module in whi
h the redu
tion takespla
e, the 
urrent sear
h path (i.e., a sequen
e of steps, where ea
h step is a82



triple 
onsisting of a rule label, a Maude-internal substitution number, andthe new term), the 
urrent depth of the sear
h tree, the maximum depths,and a list of proto
ol rule names (quoted identi�er list QIDL). Initially, thepath is the initial test term as de�ned by the environment spe
i�
ationop bdfs : Module Path Ma
hineInt QidList -> Strategy . Qid is aMaude spe
i�
 data type for strings.Below we show part of our bounded depth �rst sea
h strategy.
eq bdfs(M,path(APATH,step(L,N,T)),DEPTH,MAX,QIDL)= if DEPTH < MAXthen (if nextRewrite(M, T, L, QIDL) == nonethen ba
ktra
k(M,path(APATH,step(L,N,T)),DEPTH,MAX,QIDL)else ids(M,path(path(APATH,step(L,N,T)),nextRewrite(M,T,L,QIDL)),DEPTH + 1,MAX,QIDL)fi)else ba
ktra
k(M,path(APATH,step(L,N,T)),DEPTH,MAX,QIDL)fiif T =/= f'atta
kg'Fa
ts .
eq bdfs(M, path(APATH, step(L, N, T)), DEPTH, MAX, QIDL)= stop(DEPTH, path(APATH, step(L, N, T)))if T == f'atta
kg'Fa
ts .The strategy 
on
eptually builds a sear
h tree, where ea
h node 
orre-sponds to a state of the proto
ol, and ea
h su

essor node is rea
hed byapplying a rewrite rule, mat
hing the variables of the rule with valuesfrom the 
urrent multiset of fa
ts. The sear
h strategy remembers the
urrent path of the sear
h tree as a sequen
e of steps. A step re
ordsthe latest rule that has been applied, the substitution number (that isa Maude spe
i�
 number from whi
h one 
an derive the substitution be-tween the proto
ol state and the rule variables) and the new proto
ol state(op step : Qid Ma
hineInt Term -> Step).For a given state, this strategy performs a rewrite step that generates asu

essor state. At ea
h step, we test for an atta
k or ba
ktra
k in 
ase thebran
h terminates or the maximum depth is rea
hed.f'atta
kg'Fa
ts is the representation of the NSPK term atta
k at the83



sear
h meta-level.In theory, iterative deepening 
an �nd any atta
k, but in pra
ti
e heuristi
sare needed to do so using manageable resour
es. The performan
e of asear
h strategy like the one above 
an be enhan
ed signi�
antly if one addsheuristi
s that tune the model 
he
king pro
ess to the appli
ation at hand.In the 
ase of se
urity proto
ols analysis we have gained lots of experien
eby model 
he
king several proto
ols. In the following we summarize ourmain ideas to speed up the model 
he
king pro
ess.Proto
ol-independent OptimizationWhi
h rules and in what order those rules are applied has an impa
t onthe performan
e of the model 
he
ker. Our optimization te
hniques andheuristi
s for the Maude model 
he
ker either e�e
tively prune the sear
htree or reorder it.Dis
arding rules. Some rules might be redundant in the sense that theyare not ne
essary to �nd atta
ks. For instan
e, the overhear rule of anthe atta
ker is an example of su
h a rule. As long as there are rulesfor inter
epting and faking a message, the e�e
t of overhearing a rule
an always be simulated by replaying it. Therefore, we 
hose not toimplement su
h a rule in our atta
ker model.Prioritizing rules. During the pro
ess of building the sear
h tree one 
anapply re-ordering fun
tions that give priorities to rules whi
h are ex-pe
ted to lead faster to atta
ks. This is a heuristi
 in the sense that fordi�erent proto
ols and atta
ks di�erent heuristi
s might turn out to bebetter. In the proto
ols we investigated we were su

essful with order-ing the Maude rewrite rules, su
h that the atta
ker inter
ept rule getshigh priority, next followed by the rules whi
h des
ribe the proto
ol,and lower priorities for the other atta
ker rules, with the 
ompositionrules having the lowest priority. Essentially we followed the intuitionthat, the more restri
ted the enabling 
ondition for a rule is, the lesslikely it is that it will o

ur. Thus, giving it a high priority does notresult in sear
h trees, in whi
h those rules are always applied �rst.This is similar to optimization te
hniques suggested by Shmatikov etal [SS98℄. In their approa
h an intruder always inter
epts (our weakerversion: inter
ept has high priority), and an intruder does not send84



if an honest agent 
an send (our version: proto
ol rules have higherpriority then fake rules).Restri
ting rules sequen
es. Another optimization te
hnique we usedwas to prune the sear
h tree su
h that ea
h sequen
e of applied rulessatis�es spe
ial su

essor-rule 
onditions. For example, on
e an at-ta
ker fakes a message, he does that with the intent of some agentre
eiving that message. Thus, during the sear
h we assure that a fakerule is always followed by a rule whi
h denotes the re
eipt of the mes-sage. Moreover, optimization steps as dis
ussed in Chapter 4 
an alsobe implemented on the meta-level of sear
h. In [BD00℄ we formalizethat 
ertain a
tion sequen
es must o

ur as a blo
k (without otherinterleaved a
tions). For example, lo
al 
omputations of agents, su
has re
eiving a message, followed by internal 
omputations, followed bysending a new message, 
an be summarized to one step. Similarly, amessage whi
h was inter
epted by an atta
ker should be de
omposedin the subsequent step. One 
an de�ne arbitrary dependen
ies betweenrules and enfor
e their order in the sear
h strategy.As long as those dependen
ies are only used to reorder the sear
h tree,there is no danger of missing out on an atta
k. In those 
ases whereone 
an show that the optimization preserves all atta
ks, one 
an evenprune the sear
h tree.The above listed optimization ideas have been implemented in Maude onthe meta-level,and,thus, they are independent of the proto
ol to whi
h thesear
h is applied. Further details 
an be found in [BD00℄.Proto
ol-dependent OptimizationOther optimization te
hniques depend heavily on the proto
ol whi
h is tobe analyzed. We made use of two te
hniques.Message format This te
hnique tests the message format of 
omposedand faked messages. For this purpose we added 
onditions to the fake-rule and the rules for 
omposing (i.e., 
on
atenation or en
ryption)su
h that they are only enabled if the resulting �eld ful�lls the for-mat of the message 
ontents of the proto
ol. We de�ned a predi
ateisInMsgContentFormat that is de�ned to be true for any �eld that85



has (partially) the format of a valid proto
ol message. The followingdes
ribes part of the de�nition for NSPK.eq Net([A,Na℄) isInMsgContentFormat = true .eq Net([ped(K,
at(Na,A))℄) isInMsgContentFormat = true .Re
eivability of faked messages. Moreover, we test whether a faked mes-sage is re
eivable in a given state of the proto
ol. For instan
e, the�rst message of NSPK is re
eivable whenever an agent in role B instate zero exists in the multiset of fa
ts.eq Msg(UNK,b,[ped(pk(B),
at(Na,A))℄) isRe
eivableIn[State(roleB,0,[B℄), fs℄ = true .5.3.7 Con
lusionIn the pro
ess of designing a CIL 
onne
tor to Maude, we ta
kled someessential issues about the pra
ti
ability of a 
onne
tor. Our aim is not justto translate the CIL spe
i�
ation into an exe
utable Maude spe
i�
ation,but to yield an eÆ
iently exe
utable and pra
ti
ally analyzable proto
olspe
i�
ation. In order to meet this goal, we solved the issues involved intranslating CIL into an equivalent Maude spe
i�
ation and we proposed and�ne-tuned several optimization te
hniques that will improve the performan
eof the Maude model 
he
king tool.A prototype of the CIL-to-Maude 
onne
tor has been implemented in Javausing the existing support 
lasses. The implementation of the CIL-to-Maude
onne
tor took one-person week.As mentioned before the 
urrent 
onne
tor is restri
ted on the prede�neddata types of the CAPSL prelude and supports the optimization strategiesdis
ussed in the previous session. Order spe
i�
ation in environment de
la-rations are not yet handled. In environment spe
i�
ations one 
an de�ne aprin
ipal as exposed, meaning that all the se
rets of that prin
ipal are knownto the atta
ker. This issues needs to be addressed in future extensions ofthe 
onne
tor. Further investigation is also ne
essary in order to de�ne thesemanti
s of proto
ol goals other than se
re
y or agreement goals.
86



5.4 AthenaAthena is a model 
he
ker for se
urity proto
ols [Son99℄, based on the strandspa
e representation [THG98℄. The required input format for Athena wasobtained from draft material supplied by its author, Song.An Athena spe
i�
ation has two parts: a sequen
e of strands and a sequen
eof veri�
ation 
onditions. A strand is a sequen
e of nodes. A node 
onsistsof a \sign" or dire
tion (send or re
eive, represented by \->" and \<-") anda term representing the 
ontent of a message. Non
es introdu
ed or \origi-nated" in a sent message are also listed. A strand spe
i�
ation of a proto
olis a parametri
 strand in the sense of [CDL+00℄, whi
h addresses transla-tions between MSR and strand spa
e proto
ol models in a general setting.A strand spe
i�
ation is parameterized by the list of proto
ol variables thatmust be instantiated to 
reate a parti
ular strand.Here is the \A" strand from the NSPK example in Athena:P_A(0,3) {VAR: P_A, P_B, NONCE_Na, NONCE_Nb;-> : E{C[NONCE_Na,P_A℄,PUBKEY_P_B}| New(NONCE_Na);<- : E{C[NONCE_Na,NONCE_Nb℄,PUBKEY_P_A};-> : E{NONCE_Nb,PUBKEY_P_B};}Issues in writing a 
onne
tor to Athena 
ome up in �ve areas:1. The basi
 translation strategy to produ
e strands2. Normalization: non-message rules3. Type and fun
tion limitations4. Goal generation5.4.1 The Translation StrategyCIL rewrite rules update the state of exa
tly one role at a time. A rule mayhave a re
eived message on the left or a sent message on the right, or both.87



A message on the left generates a \re
eive" node in the strand asso
iatedwith the rule's role, and a message on the right generates a \send" nodefor the same role. Any variables listed as non
es of the rule be
ome non
esof the send node. In [CDL+00℄, MSR spe
i�
ations were \normalized" togenerate all non
es in the initialization rule of ea
h role, but we do not dothat, be
ause we would lose the information as to whi
h node originated thenon
e, whi
h is required for Athena.Rewrite rules are not required to be in the expe
ted order asso
iated withmessage events or state 
hanges, and the 
onne
tor was written so that nodeswill be added in the 
orre
t sequen
e regardless of the rule order. However,the CAPSL translator now generates rules in the expe
ted order, primarilyto make the rule output as readable as possible, and future 
onne
tors shouldbe able to take advantage of that.There must be a strand for ea
h role in the proto
ol. To �nd the roles, we
an get a list of symbols of type Role from the CIL symbol table; but thisnot quite right be
ause the translator generates a role 
onstant for everyvariable of type Prin
ipal. Su
h a variable is usually a role, but it 
ould bejust a message �eld, and the translator does not 
he
k whether a message isa
tually sent to or from that prin
ipal. The 
onne
tor generates an emptystrand for a non-role prin
ipal, whi
h is a nuisan
e but not a serious problem.The CAPSL translator should probably refrain from generating roles for su
hvariables.The strand parameters are the proto
ol variables that must be instantiatedto produ
e a parti
ular strand. These variables o

ur as slots in states ofthe strand's role, and they are found in the slot table.On
e the proto
ol variable parameters used by the strand are found, wehave to ensure that these same variables are used in the strand node spe
i�-
ations. Strands are generated from rewrite rules, but, as remarked earlier,the variables in rewrite rules are, in prin
iple, dummy variables that aresubje
t to renaming, and the renaming 
an be di�erent in ea
h rule. TheCAPSL translator ordinarily uses the original proto
ol variables in the rules,for the sake of rule readability, but there is presently no guarantee of that.Hen
e the 
onne
tor repla
es the rule variables with proto
ol variables. Thisis done using the slot table. The proto
ol variable 
orresponding to a rulevariable is found by observing whi
h slot it o

upies in the rule's right-handstate fa
t, whi
h should have them all.In an Athena spe
i�
ation, variable names are pre�xed by the variable type88



name. The mapping of CAPSL type names to 
orresponding Athena typenames is built into the present 
onne
tor. This topi
 is dis
ussed furtherbelow under the limitations issue.5.4.2 Normalization: Non-Message RulesA normalized MSR rule in [CDL+00℄ either sends or re
eives one message.CIL rules may have a message on both the re
eive and the send side, and they
ould also have no messages, as in the 
ase of state initialization rules, a
tionsthat assign a value to a new variable, and a
tions that test an equation orother boolean 
ondition.Initialization rules are not a problem; they just 
reate a strand to whi
hnodes will be added. Rules that both send and re
eive messages are alsono problem, they just 
reate two nodes. Non-initialization rules with nomessages are a problem be
ause no node is 
reated for them; the informationthey 
arry is lost.An assignment a
tion in CAPSL, su
h as C = A, generates a rule likeB1(B;A) ! B2(B;A;A) and 
reates a slot table entry for C as slot 3 ofB. Later rules will refer to slot 3 of B by the variable C without regard forits value. For example, the message B ! A : C be
omes B2(B;A;C) !B3(B;A;C);M(B;A;C). The B strand will have A;B and C as parameters,and the 
onne
tor will give it a node to send C. The 
orre
t strand shouldsend A instead.Fortunately, the assignment a
tion problem goes away be
ause the CAPSLoptimizer 
ombines assignment rules with other rules, so that the CIL out-put only has the single rule B1(B;A) ! B3(B;A;A);M(B;A;A), whi
hgenerates the 
orre
t node. This may be viewed as a kind of normalizationstep.We are less fortunate with test a
tions. A test C = A (in a state whereC and A are held) generates two rules, one to evaluate the equation andone to 
ontinue if it is true: B2(B;A;C) ! B3(B;A;C;C = A) andB3(B;A;C; true) ! B3(B;A;C). Neither of these generates a node, andthe information that C = A is lost. Both C and A are strand parameters,and they 
ould be instantiated to be unequal to produ
e a strand that isin
onsistent with the proto
ol. Furthermore, the optimizer does not helphere; it 
an only 
ombine the se
ond rule with a later one.89



The way to handle this, at the moment, is just to write the proto
ol withoutputting in test a
tions. Most proto
ols don't need them; their main purposein CAPSL is to 
ontrol 
onditional bran
hing, an advan
ed feature.5.4.3 Type and Fun
tion LimitationsCAPSL permits new �eld types, as well as new en
ryption and other 
ompu-tational fun
tions, to be introdu
ed using abstra
t datatype spe
i�
ations(
alled typespe
s in CAPSL). Analysis tools are often limited in their adapt-ability to extensions. Like the PVS tools we are developing, Athena 
anpresently deal only with simple abstra
t operators. The ones 
urrently sup-ported are publi
-key and symmetri
-key en
ryption, 
on
atenation, hash-ing, MAC (keyed hash) and a few standard data types like P for prin
ipalsand NONCE for non
es. The 
onne
tor translates the equivalent CAPSL stan-dard types and fun
tions (in the prelude) into them { for example, Prin
ipalto P, ped(.,.) to Ef.,.g, et
.For types and fun
tions without equivalents in Athena, the 
onne
tor pre-serves their names, and they appear in the 
onne
tor output. The Athenauser 
an then see the unre
ognized symbols and attempt to rewrite the pro-to
ol spe
i�
ation without them. The 
onne
tor 
an be modi�ed easily toadd more types and fun
tions. When future versions of Athena permit user-de�ned new �eld types and fun
tions, the 
onne
tor will have to be extendedto make use of the symbol table and axiom entries in the CIL.5.4.4 Goal GenerationGoals in Athena are spe
i�ed with a list of partially instantiated strands,with 
onditions as to whi
h 
ombinations of these strands are permittedto appear in a bundle. A se
re
y goal says that a strand with a givenvalue for a se
ret variable is not 
ompatible with a standard intruder (or\penetrator") \
ush" strand with the same value. An agreement goal saysthat the existen
e of a strand with values for 
ertain variables implies theexisten
e (in the same bundle) of another strand with the same values forthe same variables. These goals 
an be generated in a straightforward wayfrom the SECRET and PRECEDES goals in CAPSL.In the 
urrent version of Athena, symboli
 
onstants used to indi
ate valuesof variables are always formed simply by appending \0" to the name of the90



variable, and the 
onne
tor does that. More general value assignments arepossible in CAPSL through the use of environment modules.As an example, the CAPSL goal appearing in CIL as pre
edes(B,A,ids(Na))says that if A rea
hes its �nal state, there is or was a state of B agreeingwith A on B, A, and Na. This goal is stated in Athena as:VC. {Strand(0,3)[(P_B,B0),(P_A,A0),(NONCE_Na,Na0)℄} =>{Strand(1,3)[(P_B,B0),(P_A,A0),(NONCE_Na,Na0)℄}where strand 0 is the A strand and strand 1 is the B strand.

91



Chapter 6Con
luding Remarks
CAPSL, CIL and the translation between them are designed to addressimportant goals in 
ryptographi
 proto
ol spe
i�
ation for analysis pur-poses. With a 
ommon spe
i�
ation language, it be
omes possible to har-ness the 
ombined power of many tools for proto
ol analysis in a pra
ti
alway. The 
omponents of the CAPSL environment in
lude transportablesoftware for translation of CAPSL to CIL, and 
onne
tors to adapt CIL tothe input languages of various analysis tools. This software is still underdevelopment, but a CAPSL-to-CIL translator is available on the Web sitehttp://www.
sl.sri.
om/~millen/
apsl. The site also 
ontains more ex-amples of CAPSL spe
i�
ations and other do
umentation.With CAPSL, one 
an express proto
ols in the simplest a

epted message-list form. Type spe
i�
ations in CAPSL and their use for introdu
ing newoperators and subtypes bring an expanding 
lass of proto
ols within rea
h.There are plans to broaden the appli
ability of CAPSL further with exten-sions for multi
ast proto
ols.CAPSL simpli�es what used to be the most awkward aspe
t of abstra
tproto
ol spe
i�
ation, the distin
tion between short-term session data andthe long-term data asso
iated with persistent entities. This was done byapplying the general type spe
i�
ation me
hanism, together with the novel
on
epts of private fun
tions and invertibility axioms.The intermediate language CIL was 
hosen with an eye toward a 
learanalysis-level modeling semanti
s and a universal pattern-mat
hing tran-sition rule style that lends itself both to model 
he
king and indu
tive proof92



te
hniques.We have te
hniques for indu
tive proto
ol proof using PVS and model 
he
k-ing using Maude. In the pro
ess, we have 
on�rmed that CIL output is agood mat
h for the spe
i�
ation needs of these tools. With the Athena 
on-ne
tor, we have made a start on linking CAPSL to independently developedanalysis tools as well.

93



Bibliography[BAN90℄ M. Burrows, M. Abadi, and R. Needham. A logi
 of authenti-
ation. ACM Transa
tions on Computer Systems, 8(1):18{36,1990.[BD00℄ D. Basin and G. Denker. Maude versus Haskell: an Experi-mental Comparison in Se
urity Proto
ol Analysis. In K. Fu-tatsugi, editor, Third Intern. Workshop on Rewriting Logi
and Its Appli
ations, Kanazawa City Cultural Hall, Kanazawa,Japan, September 18-20, 2000, pages 235{256. To appear: El-sevier S
ien
e B.V., Ele
troni
 Notes in Theoreti
al ComputerS
ien
e, http://www.elsevier.nl/lo
ate/ent
s/, 2000.[BMM99℄ S Bra
kin, C. Meadows, and J. Millen. CAPSL interfa
e for theNRL proto
ol analyzer. In IEEE Symposium on Appli
ation-Spe
i�
 Systems and Software Engineering Te
hnology (AS-SET '99), 1999.[Bra97℄ S. Bra
kin. An interfa
e spe
i�
ation language for automati-
ally analyzing 
ryptographi
 proto
ols. In Symposium on Net-work and Distributed System Se
urity. Internet So
iety, Febru-ary 1997.[Car94℄ U. Carlsen. Generating formal 
ryptographi
 proto
ol spe
-i�
ations. In IEEE Symposium on Resear
h in Se
urity andPriva
y, pages 137{146. IEEE Computer So
iety, 1994.[CDE+99℄ M. Clavel, F. Dur�an, S. Eker, P. Lin
oln, N. Mart��-Oliet,J. Meseguer, and J. Quesada. Maude: Spe
i�
ation andProgramming in Rewriting Logi
. SRI International, Com-puter S
ien
e Laboratory, Menlo Park, CA, January 1999.http://maude.
sl.sri.
om/manual/.94



[CDL+99℄ I. Cervesato, N. Durgin, P. Lin
oln, J. Mit
hell, and A. S
e-drov. A meta-notation for proto
ol analysis. In 12th IEEEComputer Se
urity Foundations Workshop, pages 55{69. IEEEComputer So
iety, 1999.[CDL+00℄ I. Cervesato, N. Durgin, P. Lin
oln, J. Mit
hell, and A. S
e-drov. Relating strands and multiset rewriting for se
urity pro-to
ol analysis. In 13th IEEE Computer Se
urity FoundationsWorkshop. IEEE Computer So
iety, 2000.[CELM96℄ M. Clavel, S. Eker, P. Lin
oln, and J. Meseguer. Prin
iples ofMaude. In Meseguer [Mes96℄, pages 65{89.[CJM98℄ E. Clarke, S. Jha, and W. Marrero. Using state spa
e explo-ration and a natural dedu
tion style message derivation engineto verify se
urity proto
ols. In Pro
. IFIP Working Confer-en
e on Programming Con
epts and Methods (PROCOMET),1998.[CM96℄ M. Clavel and J. Meseguer. Re
e
tion and Strategies inRewriting Logi
. In Meseguer [Mes96℄, pages 125{147.[DM99a℄ G. Denker and J. Millen. CAPSL and CIL Language Design:A Common Authenti
ation Proto
ol Spe
i�
ation Languageand Its Intermediate Language. CSL Report SRI-CSL-99-02, Computer S
ien
e Laboratory, SRI International, MenloPark, CA 94025, 1999. http://www.
sl.sri.
om/~denker/pub_99.html.[DM99b℄ G. Denker and J. Millen. CAPSL intermediate language. InFLoC Workshop on Formal Methods and Se
urity Proto
ols,1999.[DM00℄ G. Denker and J. Millen. CAPSL integrated proto
ol environ-ment. In DARPA Information Survivability Conferen
e (DIS-CEX 2000), pages 207{221. IEEE Computer So
iety, 2000.[DMKFG00℄ G. Denker, J. Millen, J. Kuester-Filipe, and A. Grau. Optimiz-ing proto
ol rewrite rules of CIL spe
i�
ations. In 13th IEEEComputer Se
urity Foundations Workshop, pages 52{62. IEEEComputer So
iety, 2000.95



[DMT98a℄ G. Denker, J. Meseguer, and C. Tal
ott. Proto
ol spe
i�
a-tion and analysis in Maude. In Formal Methods and Se
urityProto
ols, 1998. LICS '98 Workshop.[DMT98b℄ G. Denker, J. Meseguer, and C. Tal
ott. Proto
ol Spe
i�
ationand Analysis in Maude. In N. Heintze and J. Wing, editors,Pro
. of Workshop on Formal Methods and Se
urity Proto
ols,25 June 1998, Indianapolis, Indiana, 1998. http://www.
s.bell-labs.
om/who/n
h/fmsp/index.html.[DMT00℄ G. Denker, J. Meseguer, and C. Tal
ott. Formal Spe
i�
ationand Analysis of A
tive Networks and Communi
ation Pro-to
ols: The Maude Experien
e. In D. Maughan, G. Koob,and S. Saydjari, editors, Pro
. DARPA Information Surviv-ability Conferen
e and Exposition, DISCEX2000, January 25-27, Hilton Head Island, SC, USA, pages 251{266, 2000. http://s
hafer
orp-ballston.
om/dis
ex/.[GNY90℄ L. Gong, R. Needham, and R. Yahalom. Reasoning aboutbelief in 
ryptographi
 proto
ols. In IEEE Symposium on Re-sear
h in Se
urity and Priva
y, pages 234{248. IEEE Com-puter So
iety, 1990.[Gon97℄ L. Gong. En
laves: enabling se
ure 
ollaboration over theInternet. IEEE J. of Sele
ted Areas in Communi
ations,15(3):567{575, April 1997.[Kem89℄ R. Kemmerer. Analyzing en
ryption proto
ols using formalveri�
ation te
hniques. IEEE Journal on Sele
ted Areas inCommuni
ation, 7(4), May 1989.[Low96℄ G. Lowe. Breaking and �xing the Needham-S
hroeder publi
-key proto
ol using FDR. In Pro
eedings of TACAS, volume1055 of Le
ture Notes in Computer S
ien
e, pages 147{166.Springer-Verlag, 1996.[Low98℄ G. Lowe. Casper: a 
ompiler for the analysis of se
urity pro-to
ols. Journal of Computer Se
urity, 6(1):53{84, 1998.[Mau00℄ Maude Web Site. http://maude.
sl.sri.
om/, 2000.[MCF87℄ J. Millen, S. Clark, and S. Freedman. The Interrogator: pro-to
ol se
urity analysis. IEEE Transa
tions on Software Engi-neering, SE-13(2):274{288, February 1987.96



[Mea91℄ C. Meadows. A system for the spe
i�
ation and veri�
ation ofkey management proto
ols. In IEEE Symposium on Se
urityand Priva
y, pages 182{195. IEEE Computer So
iety, 1991.[Mes92℄ J. Meseguer. Conditional Rewriting Logi
 as a Uni�ed Modelof Con
urren
y. Theoreti
al Computer S
ien
e, 96(1):73{155,1992.[Mes96℄ J. Meseguer, editor. Rewriting Logi
 and Its Appli
ations,First International Workshop, Asilomar Conferen
e Center,Pa
i�
 Grove, CA, September 3-6, 1996. Elsevier S
ien
e B.V.,Ele
troni
 Notes in Theoreti
al Computer S
ien
e, Volume4, http://www.elsevier.nl/lo
ate/ent
s/volume4.html,1996.[Mil97℄ J. Millen. CAPSL: Common Authenti
ation Proto
ol Spe
i�-
ation Language. Te
hni
al Report MP 97B48, The MITRECorporation, 1997.[Mil00a℄ J. Millen. A CAPSL 
onne
tor to Athena. In H. Veith,N. Heintze, and E. Clarke, editors, Workshop of Formal Meth-ods and Computer Se
urity. CAV, 2000.[Mil00b℄ J. Millen. CAPSL web site.http://www.
sl.sri.
om/~millen/
apsl, 2000.[MR00℄ J. Millen and H. Rue�. Proto
ol-independent se
re
y. In 2000IEEE Symposium on Se
urity and Priva
y. IEEE ComputerSo
iety, 2000.[NS78℄ R. Needham and M. S
hroeder. Using en
ryption for authen-ti
ation in large networks of 
omputers. Communi
ations ofthe ACM, 21(12):993{998, De
ember 1978.[OR87℄ D. Otway and O. Rees. EÆ
ient and timely mutual authenti-
ation. ACM Operating System Review, 21(1):8{10, 1987.[ORS92℄ S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototypeveri�
ation system. In Deepak Kapur, editor, 11th Interna-tional Conferen
e on Automated Dedu
tion (CADE), volume607 of Le
ture Notes in Arti�
ial Intelligen
e, pages 748{752.Springer-Verlag, 1992. 97



[Pau98℄ L. Paulson. The indu
tive approa
h to verifying 
ryptographi
proto
ols. Journal of Computer Se
urity, 6(1):85{128, 1998.[Ros95℄ A. W. Ros
oe. Modelling and verifying key-ex
hange proto
olsusing CSP and FDR. In 8th IEEE Computer Se
urity Founda-tions Workshop, pages 98{107. IEEE Computer So
iety, 1995.[Sny91℄ W. Snyder. A Proof Theory for General Uni�
ation.Birkh�auser, 1991.[Son99℄ D. Song. Athena: a new eÆ
ient automati
 
he
ker for se
u-rity proto
ol analysis. In 12th IEEE Computer Se
urity Foun-dations Workshop, pages 192{202. IEEE Computer So
iety,1999.[SS98℄ V. Shmatikov and U. Stern. EÆ
ient Finite State Analysis forLarge Se
urity Proto
ols. In 11th IEEE Computer Se
urityFoundations Workshop, Ro
kport, Massa
husetts, June 1998,pages 106{115. IEEE Computer So
iety, 1998.[THG98℄ J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strandspa
es. In 11th IEEE Computer Se
urity Foundations Work-shop, pages 66{78. IEEE Computer So
iety, 1998.

98



Appendix ACAPSL and CIL Syntax
A.1 CAPSL SyntaxHere is an informal presentation of the CAPSL 
on
rete syntax. In thisgrammar, 
urly bra
kets f g indi
ate a sequen
e of one or more of theen
losed item. A verti
al bar | separates 
hoi
es. Optional items areen
losed in square bra
kets [ ℄. Literal tokens appear en
losed in singlequotes ', ex
ept for keywords, whi
h are all 
aps.There is a general meta-rule for forming nonterminals representing lists. Ifx is a nonterminal symbol, then x list represents zero or more o

urren
esof x separated by 
ommas.Comments in CAPSL are surrounded by /* */, e.g., /* this is a 
omment*/.The grammar permits 
onstru
ts that are illegal for semanti
 reasons, su
has improper ordering or type in
onsisten
y. The grammar also permits someillegal 
onstru
ts that 
ould have been eliminated with a more elaborategrammar, but 
an also be handled by later 
he
ks. An example is that the% operator should be used only in message �elds.Identi�ers are sequen
es of alphabeti
 
hara
ters and digits, and may also
ontain the underline 
hara
ter. An identi�er that 
onsists solely of digitsis a number.spe
ifi
ation: 99



{proto
ol | typespe
 | environment}proto
ol:PROTOCOL ident `;'{de
laration}[ASSUMPTIONS{assertion `;'}℄MESSAGESphrase_seq[GOALS{assertion `;'}℄END;typespe
:TYPESPEC ident `;'{de
laration}AXIOMS {statement `;'}END;environment:ENVIRONMENT ident `;'{de
laration}[AXIOMS{statement `;'}℄{agent}[EXPOSED term_list `;'℄[ORDER order `;'℄END;agent:AGENT ident HOLDS{equation `;'}order:ident /* of agent */|̀(' order `;' order `)'|̀(' order `||' order `)' 100



de
laration:IMPORTS ident_list `;'|FUNCTIONS {fun
_de
}|VARIABLES {variable_de
}|CONSTANTS {variable_de
}|DENOTES {equation [`:' ident_list℄ `;'}|TYPES {type_de
}assertion:HOLDS ident `:' ident_list|BELIEVES ident `:' assertion|KNOWS ident `:' assertion|ASSUME assertion /* as an a
tion */|PROVE assertion /* as an a
tion */|SECRET ident [`:' ident_list℄|AGREE ident_list `:' ident_list `|' ident_list|PRECEDES ident `:' ident `|' ident_list|statementstatement:logi
stmt|IF logi
stmt THEN simplestmt [ELSE simplestmt℄ ENDIF|INVERT term `:' ident | term_listlogi
stmt: 101



simplestmt|NOT `(' simplestmt `)'simplestmt:equation|termequation:term `=' termvariable_de
:ident_list `:' ident [`,' property_list℄ `;'type_de
:ident_list [`:' ident℄ `;'fun
_de
:ident `(' ident_list `)' `:' ident [`,' property_list℄ `;'phrase_seq:phrase|phrase [`/'℄ phrase_seqphrase:[{a
tion `;'}℄message[{a
tion `;'}℄|invo
ation|sele
tiona
tion:equation | ASSUME assertion | PROVE assertioninvo
ation:INCLUDE ident `;' /* naming a proto
ol */102



sele
tion:IF statement THEN phrase ELSE phrase ENDIF `;'message:[ident `.'℄ ident `->' ident `:' term_list `;'property:CRYPTO | FRESH | PRIVATE | EXPOSED | ASSOC | COMMterm:ident|fun
tion
all|bra
ket|lowe|parenfun
tion
all :ident `(' term_list `)'/* arithmeti
 expressions with +, -, *, /, and ^(for exponentiation) are supported, andtreated as fun
tion 
alls on pls, mns, et
. */bra
ket:`{' term_list `}' [`''℄ [term℄ /* single quote for de
rypt */|̀[' term_list `℄' [`''℄ [term℄lowe:term `%' termparen:`(' term `)' 103



A.2 CIL SyntaxThis is the syntax of CIL output in fun
tional notation. Identi�ers in quotesare literal tokens, as are parentheses and 
ommas. Other identi�ers arenonterminals. We use the ` list' meta-rule here too.spe
ifi
ation: `CILspe
'(symbols, slots, axioms, assums,rules, goals, envs)symbols: `symbols'(symbol_list)symbol: `symbol'(ident, status, ids, ident, props)status: `type' | `op' | `var' | `pvar'ids: `ids'(ident_list)props: `props'(property_list)slots: `slots'(slot_list)slot: `slot'(term, ident, number)axioms: `axioms'(stmt_list)stmt: equation | termequation: `eqn'(term, term)term: ident | fn
allfn
all: ident(term_list)assums: `assums'(lo
_list)lo
: `lo
'(nodes, statement)nodes: `nodes'(node_list) 104



node: `node'(ident, number)rules: `rules'(rule_list)rule: `rule'(fa
ts, ids, fa
ts)fa
ts: `fa
ts'(term_list)goals: `goals'(lo
_list)envs: `envs'(env_list)env: `environment'(ident, agents, exposed, order)agents: `agent'(ident, eqns)eqns: `eqns'(equation_list)exposed: `exposed'(terms(term_list))order: `order'(orderspe
)orderspe
:ident| `allpar'| `seq'(orderspe
, orderspe
)| `par'(orderspe
, orderspe
)

105



Appendix BThe Prelude
This appendix spe
i�es the prede�ned types. The typespe
s given here are
ombined into a �le prelude.
ap that is automati
ally read and importedby the CAPSL translator prior to user-supplied spe
i�
ations.B.1 Basi
 and BooleanThese types are for basi
 obje
ts that are not message �elds. Note that thereis an unde
lared "Obje
t" type. No axioms are given for booleans be
auseit is assumed that any proto
ol analysis tool will have these built in.TYPESPEC BASIC;TYPESRole, Spe
, Agent: Obje
t;Tspe
, Pspe
, Espe
: Spe
;END;TYPESPEC BOOLEAN;IMPORTS BASIC;TYPESBoolean: Obje
t;CONSTANTStrue, false: Boolean;FUNCTIONSand(Boolean, Boolean): Boolean, ASSOC, COMM;106



or(Boolean, Boolean): Boolean, ASSOC, COMM;not(Boolean): Boolean;if(Boolean, Boolean, Boolean): Boolean;END;B.2 FieldThe Field type is the universal supertype for all message �elds. There isa subtype Atom of Field for �elds that 
an be deta
hed from the left of a
on
atenation. A type de
laration with no expli
it supertype implies a su-pertype of Atom. A Tape is a nonatomi
 �eld; it is a 
on
atenated sequen
eof atoms. The ASSOC property of 
at de
lares that it is asso
iative withoutthe need for expli
it axioms.TYPESPEC FIELD;IMPORTS BOOLEAN;TYPESField: Obje
t;Tape, Atom: Field;Prin
ipal, Non
e, Number: Atom;FUNCTIONS
at(Field, Field): Tape, ASSOC;first(Tape): Atom;rest(Tape): Field;VARIABLESX: Atom;Y: Field;AXIOMSfirst(
at(X, Y)) = X;rest(
at(X, Y)) = Y;INVERT 
at(X, Y): X;INVERT 
at(X, Y): Y | X;END;
107



B.3 Symmetri
-Key En
ryptionThe basi
 Skey type is used by several sets of en
ryption operators. Theonly operators given in this root typespe
 are a hash fun
tion and a keyedhash (message authenti
ation 
ode). The DES system 
ould be modeledwith the se, sd pair. The only form of single-operator symmetri
 systemthat is 
ommonly seen in pra
ti
e is xor, given below.TYPESPEC SKEY;IMPORTS FIELD;TYPES Skey;FUNCTIONSsha(Field): Skey;ma
(Skey,Field): Skey;END;TYPESPEC DSKE;IMPORTS SKEY;FUNCTIONSse(Skey, Field): Field;sd(Skey, Field): Field;AXIOMSse(Skey, Atom): Atom;sd(Skey, Atom): Atom;sd(K, se(K, D)) = D;se(K, sd(K, D)) = D;INVERT se(K, D): D | K;INVERT sd(K, D): D | K;END;TYPESPEC XOR;IMPORTS SKEY;FUNCTIONSxor(Skey, Skey): Skey, ASSOC, COMM;AXIOMSxor(xor(K,K),K1) = K1;INVERT xor(K,K1): K | K1;INVERT xor(K,K1): K1 | K;END; 108



/* Symmetri
 Key Client, Server */TYPESPEC SKCS;IMPORTS SKEY;TYPES Client, Server: Prin
ipal;VARIABLESS : Server;C : Client;FUNCTIONS
sk(Client): Skey, PRIVATE;ssk(Server,Client): Skey, PRIVATE;AXIOMS ssk(S, C) = 
sk(C);END;/* Mutual Symmetri
 Key Node */TYPESPEC MSKN;IMPORTS SKEY;TYPES Node: Prin
ipal;FUNCTIONSmsk(Node, Node): Skey, COMM, PRIVATE;END;/* Arithmeti
 operations may be used in CAPSL with theinfix syntax +, -, *, /, ^.*/TYPESPEC ARITH;IMPORTS SKEY;CONSTANTS 1: Skey;FUNCTIONSpls(Skey, Skey): Skey, ASSOC, COMM;mns(Skey): Skey;tms(Skey, Skey): Skey, ASSOC, COMM;div(Skey, Skey): Skey;exp(Skey, Skey): Skey;/*AXIOMS 109



*/END;B.4 Publi
-Key En
ryptionAs in symmetri
-key en
ryption, there is a basi
 publi
-key type, used forboth publi
 and private keys. The single-operator version ped models RSAat a very abstra
t level.TYPESPEC PKEY;IMPORTS FIELD;TYPES Pkey;FUNCTIONSkeypair(Pkey, Pkey): Boolean, COMM;END;TYPESPEC SPKE;IMPORTS PKEY;FUNCTIONSped(Pkey, Atom): Atom;ped(Pkey, Field): Field;AXIOMSif keypair(K, K1) THEN ped(K1, ped(K, X)) = X ENDIF;if keypair(K, K1) THEN INVERT ped(K, X): X | K1 ENDIF;END;/* PPK provides simple standard publi
/private key lookup. */TYPESPEC PPK;IMPORTS PKEY;TYPES PKUser: Prin
ipal;FUNCTIONSsk(PKUser): Pkey, PRIVATE;pk(PKUser): Pkey;AXIOMSkeypair(sk(P),pk(P));INVERT ped(sk(P),X): X | pk(P);INVERT ped(pk(P),X): X | sk(P);110



END;B.5 Key AgreementThis key agreement type is meant to express the basi
 properties of DiÆe-Hellman key agreement. The kap operation 
reates a publi
 value that 
anbe 
ombined with an Skey to produ
e another Skey using kas. This typespe
i�
ation omits signi�
ant relations that emerge when kap is implementedby raising a known base value to the Skey power modulo a prime.TYPESPEC KeyAgreement;IMPORTS SKEY;TYPES Pval;FUNCTIONSkap(Skey): Pval;kas(Pval, Skey): Skey;AXIOMSkas(kap(Ka),Kb) = kas(kap(Kb),Ka);END;B.6 Publi
-Key SealingThe following publi
-key seal operation 
ould be implemented with a keyedhash, but it may also be viewed as a primitive operation. It 
ould be thebasis for a signature if one assumes that the sealing key is private to thesigner.TYPESPEC PKSeal;IMPORTS PKEY;TYPES Pseal;FUNCTIONSseal(Pkey, Field): Pseal;verify(Pkey, Pseal, Field): Boolean;AXIOMSIF keypair(K, K1) THEN verify(K1,seal(K, X), X) ENDIF;END; 111



B.7 TimestampsTimestamps are used simply by assuming that ea
h agent that generates or
he
ks a timestamp holds it initially. Equality 
omparisons 
an be used tosimulate \nearness." A more advan
ed version might 
he
k ordering.TYPESPEC TIMESTAMP;TYPES Timestamp;END;B.8 ListThe List type support the non-asso
iative 
on
atenation operator.TYPESPEC LIST;IMPORTS FIELD;TYPES List;FUNCTIONS
on(Field, Field): List;head(List): Field;tail(List): Field;AXIOMShead(
on(X, Y)) = X;tail(
on(X, Y)) = Y;INVERT 
on(X, Y): X;INVERT 
on(X, Y): Y;END;B.9 End Prelude MarkerThis type is pla
ed at the end of the prelude to mark the separation ofsymbols and axioms in the prelude from those in user-supplied typespe
s.This separation is helpful for 
onne
tors that provide built-in support forthe prelude types.TYPESPEC ENDPRELUDE; 112



CONSTANTS endprelude: Boolean;AXIOMSendprelude = true;END;

113



Appendix CCAPSL Examples
This appendix 
ontains two relatively 
omplex examples of CAPSL. The SSLexample illustrates 
onditional sele
tion of subproto
ols. The SRP exampleillustrates use of arithmeti
. Both utilize 
ustomized subtypes of Prin
ipal.C.1 SSL HandshakeThe Se
ure So
ket Layer (SSL) Handshake Proto
ol, version 3, is an InternetDraft that 
an be found on the Nets
ape site, http://home.nets
ape.
om/eng/ssl3. This CAPSL example is a partial version that expands only oneof the 
ipher spe
 options, DiÆe-Hellman. RSA and Fortezza-DMS arethe others. This version also does not perform 
lient authenti
ation. Forsimpli
ity we omit the 
ipher suite and 
ompression method lists.The CAPSL text illustrates 
onditional sele
tion of subproto
ols and theDENOTES se
tion. The sha operator is used wherever hashes are 
alled for,and mu
h of the detailed 
onstru
tion of hashes and key material has beensimpli�ed. The method for simplifying hashes is to in
lude the 
ontribut-ing data but ignore ordering, 
onstants, and other details that a�e
t the
ryptographi
 strength but not the logi
al stru
ture of the proto
ol. Thekey agreeement operators are used instead of expli
it exponentiation in theDiÆe-Hellman ex
hange, so the base and modulus are not mentioned.TYPESPEC SSLS;TYPES CertServer: PKUser; 114



FUNCTIONST(CertServer): Field; /* PK 
ertifi
ate */VARIABLESSv: CertServer;CONSTANTSCA: PKUser; /* Certifi
ate Authority */AXIOMST(Sv) = {Sv,pk(Sv)}sk(CA);END;PROTOCOL SSLHandshake;IMPORTS SSLS;TYPES CipherSpe
;VARIABLESC: PKUser;S: CertServer;R
,Rs: Non
e, CRYPTO; /* Client/ServerHello.random */CS: CipherSpe
;SID: Non
e; /* session id */PMS: Skey; /* pre-master-se
ret */MS: Skey; /* master se
ret */PKs: Pkey; /* Server publi
 key pk(S) */CONSTANTSDH, RSA, DMS: CipherSpe
;SSLDH, SSLRSA, SSLDMS: Pspe
;DENOTESMS = sha({PMS,R
,Rs});ASSUMPTIONSHOLDS C: S, CS;MESSAGESClientHello. C -> S: C,R
,CS;ServerHello. S -> C: S,Rs,CS;ServerCertifi
ate. S -> C: T(S)%{S,PKs}sk(CA);IF CS = DH THEN INCLUDE SSLDH;ELSE IF CS = RSA THEN INCLUDE SSLRSA;ELSE IF CS = DMS THEN INCLUDE SSLDMS;/* ELSE INCLUDE SSLERR; */ ENDIF;ENDIF; ENDIF;GOALSSECRET MS; 115



PRECEDES C: S | MS,Rs,R
;END;PROTOCOL SSLDH;IMPORTS SSLHandshake;VARIABLESY
,Ys: Pval; /* key agreement publi
 values */X
,Xs: Skey, FRESH,CRYPTO; /* key agreement se
ret values */D: Field;MESSAGESServerKeyEx
hange. S -> C: kap(Xs)%Ys,({sha(kap(Xs))}sk(S))%D;{D}PKs = sha(Ys);/* SeverHelloDone. S -> C: { } */ClientKeyEx
hange. C -> S: kap(X
)%Y
;PMS = kas(Y
,Xs);/PMS = kas(Ys,X
);ClientFinished. C -> S: sha({MS,C});ServerFinished. S -> C: sha({MS,S});END;/* proto
ols SSLRSA, SSLDMS, and SSLERR would be needed */C.2 Se
ure Remote Password (SRP) Proto
olSRP is a proto
ol in the EKE family designed to defeat password guessing,developed at Stanford. There is a web site for it, http://srp.stanford.edu/srp/. This CAPSL spe
i�
ation in
orporates a few modi�
ations forsimpli
ity:1. There is no mention of the modulusN for �nite �eld arithmeti
. Arith-meti
 is done on Skeys.2. The 
he
ks that B; u, and A are not zero are omitted.3. Messages 3 and 4 to 
on�rm re
eption of the key K are simpler thanthe suggested ones.TYPESPEC User;TYPES User, Host: Prin
ipal; 116



FUNCTIONSg: Skey; /* generator */p(User): Field, PRIVATE, CRYPTO; /* password */s(Host,User): Field, PRIVATE; /* salt */v(Host,User): Skey, PRIVATE; /* password verifier */AXIOMSv(H1,U1) = g^sha({s(H1,U1),p(U1)});END;PROTOCOL SRP;IMPORTS User;VARIABLESU: User;H: Host;A, B: Skey;a, b, u: Skey, FRESH, CRYPTO;K,S,s,x: Skey;DENOTESA = g^a;B = v(H,U) + g^b;x = sha({s,p(U)});v = g^x;ASSUMPTIONSHOLDS U: H;MESSAGES1. U -> H: U, A; /* U generates a */S = (A*v(H,U)^u)^b; /* H generates b */K = sha(S);2. H -> U: s(H,U)%s, B, u;S = (B - v)^(a + u*x);K = sha(S);3. U -> H: {A}K; /* proves U holds K */4. H -> U: {B}K; /* proves H holds K */GOALSSECRET K;END;
117



Appendix DCIL Output Example
This appendix shows the a
tual CIL output for the NSPK proto
ol with asample environment.D.1 CAPSL Spe
i�
ation for NSPKPROTOCOL NSPK;VARIABLESA, B: PKUser;Na, Nb: Non
e, CRYPTO;ASSUMPTIONSHOLDS A: B;MESSAGESA -> B: {A,Na}pk(B);B -> A: {Na,Nb}pk(A);A -> B: {Nb}pk(B);GOALSSECRET Na;SECRET Nb;PRECEDES A: B | Na;PRECEDES B: A | Nb;END;ENVIRONMENT Test1; 118



IMPORTS NSPK;CONSTANTSAli
e, Bob: PKUser;Mallory: PKUser, EXPOSED;AGENT A1 HOLDSA = Ali
e;B = Bob;AGENT B1 HOLDSB = Bob;EXPOSED{Bob}sk(Ali
e);END;D.2 CIL Output for NSPKThis is the CIL output from the CAPSL spe
i�
ation above. Note thatthe prelude was in
orporated, resulting in many symbol table entries andaxioms.CILspe
(symbols(symbol(Obje
t,type,ids(),Obje
t,props()),symbol(BASIC,op,ids(),Tspe
,props()),symbol(Role,type,ids(),Obje
t,props()),symbol(Spe
,type,ids(),Obje
t,props()),symbol(Agent,type,ids(),Obje
t,props()),symbol(Tspe
,type,ids(),Spe
,props()),symbol(Pspe
,type,ids(),Spe
,props()),symbol(Espe
,type,ids(),Spe
,props()),symbol(BOOLEAN,op,ids(),Tspe
,props()),symbol(Boolean,type,ids(),Obje
t,props()),symbol(true,op,ids(),Boolean,props()),symbol(false,op,ids(),Boolean,props()),symbol(and,op,ids(Boolean,Boolean),Boolean,props()),symbol(or,op,ids(Boolean,Boolean),Boolean,props()),symbol(not,op,ids(Boolean),Boolean,props()),symbol(if,op,ids(Boolean,Boolean,Boolean),Boolean,props()),symbol(FIELD,op,ids(),Tspe
,props()),119



symbol(Field,type,ids(),Obje
t,props()),symbol(Tape,type,ids(),Field,props()),symbol(Atom,type,ids(),Field,props()),symbol(Prin
ipal,type,ids(),Atom,props()),symbol(Non
e,type,ids(),Atom,props()),symbol(Number,type,ids(),Atom,props()),symbol(
at,op,ids(Field,Field),Tape,props(ASSOC)),symbol(first,op,ids(Tape),Atom,props()),symbol(rest,op,ids(Tape),Field,props()),symbol(Al,var,ids(),Atom,props()),symbol(Xl,var,ids(),Field,props()),symbol(SKEY,op,ids(),Tspe
,props()),symbol(Skey,type,ids(),Atom,props()),symbol(sha,op,ids(Field),Skey,props()),symbol(ma
,op,ids(Skey,Field),Skey,props()),symbol(DSKE,op,ids(),Tspe
,props()),symbol(se,op,ids(Skey,Atom),Atom,props()),symbol(sd,op,ids(Skey,Atom),Atom,props()),symbol(se,op,ids(Skey,Field),Field,props()),symbol(sd,op,ids(Skey,Field),Field,props()),symbol(Kl,var,ids(),Skey,props()),symbol(K1l,var,ids(),Skey,props()),symbol(XOR,op,ids(),Tspe
,props()),symbol(xor,op,ids(Skey,Skey),Skey,props(ASSOC,COMM)),symbol(SKCS,op,ids(),Tspe
,props()),symbol(Client,type,ids(),Prin
ipal,props()),symbol(Server,type,ids(),Prin
ipal,props()),symbol(Sl,var,ids(),Server,props()),symbol(Cl,var,ids(),Client,props()),symbol(
sk,op,ids(Client),Skey,props(PRIVATE)),symbol(ssk,op,ids(Server,Client),Skey,props(PRIVATE)),symbol(MSKN,op,ids(),Tspe
,props()),symbol(Node,type,ids(),Prin
ipal,props()),symbol(msk,op,ids(Node,Node),Skey,props(COMM,PRIVATE)),symbol(ARITH,op,ids(),Tspe
,props()),symbol(1,op,ids(),Skey,props()),symbol(pls,op,ids(Skey,Skey),Skey,props(ASSOC,COMM)),symbol(mns,op,ids(Skey),Skey,props()),symbol(tms,op,ids(Skey,Skey),Skey,props(ASSOC,COMM)),symbol(div,op,ids(Skey,Skey),Skey,props()),120



symbol(exp,op,ids(Skey,Skey),Skey,props()),symbol(PKEY,op,ids(),Tspe
,props()),symbol(Pkey,type,ids(),Atom,props()),symbol(PKl,var,ids(),Pkey,props()),symbol(PKIl,var,ids(),Pkey,props()),symbol(keypair,op,ids(Pkey,Pkey),Boolean,props(COMM)),symbol(SPKE,op,ids(),Tspe
,props()),symbol(ped,op,ids(Pkey,Atom),Atom,props()),symbol(ped,op,ids(Pkey,Field),Field,props()),symbol(PPK,op,ids(),Tspe
,props()),symbol(PKUser,type,ids(),Prin
ipal,props()),symbol(sk,op,ids(PKUser),Pkey,props(PRIVATE)),symbol(pk,op,ids(PKUser),Pkey,props()),symbol(PKUl,var,ids(),PKUser,props()),symbol(KEYAGREEMENT,op,ids(),Tspe
,props()),symbol(Pval,type,ids(),Atom,props()),symbol(kap,op,ids(Skey),Pval,props()),symbol(kas,op,ids(Pval,Skey),Skey,props()),symbol(PKSeal,op,ids(),Tspe
,props()),symbol(Pseal,type,ids(),Atom,props()),symbol(seal,op,ids(Pkey,Field),Pseal,props()),symbol(verify,op,ids(Pkey,Pseal,Field),Boolean,props()),symbol(TIMESTAMP,op,ids(),Tspe
,props()),symbol(Timestamp,type,ids(),Atom,props()),symbol(LIST,op,ids(),Tspe
,props()),symbol(List,type,ids(),Atom,props()),symbol(
on,op,ids(Field,Field),List,props()),symbol(head,op,ids(List),Field,props()),symbol(tail,op,ids(List),Field,props()),symbol(Xl,var,ids(),Field,props()),symbol(Yl,var,ids(),Field,props()),symbol(ENDPRELUDE,op,ids(),Tspe
,props()),symbol(endprelude,op,ids(),Boolean,props()),symbol(NSPK,op,ids(),Pspe
,props()),symbol(A,pvar,ids(),PKUser,props()),symbol(B,pvar,ids(),PKUser,props()),symbol(Na,pvar,ids(),Non
e,props(CRYPTO,FRESH)),symbol(Nb,pvar,ids(),Non
e,props(CRYPTO,FRESH)),symbol(Test1,op,ids(),Espe
,props()),symbol(Ali
e,op,ids(),PKUser,props()),121



symbol(Bob,op,ids(),PKUser,props()),symbol(Mallory,op,ids(),PKUser,props(EXPOSED)),symbol(A1,op,ids(),Agent,props()),symbol(B1,op,ids(),Agent,props()),symbol(roleA,op,ids(),Role,props()),symbol(roleB,op,ids(),Role,props()),symbol(UNK,pvar,ids(),Prin
ipal,props())),slots(slot(A,roleA,1),slot(B,roleA,2),slot(B,roleB,1),slot(Na,roleA,3),slot(A,roleB,2),slot(Na,roleB,3),slot(Nb,roleB,4),slot(Nb,roleA,4)),axioms(eqn(first(
at(Al,Xl)),Al),eqn(rest(
at(Al,Xl)),Xl),invertible(
at(Al,Xl),Al,terms()),invertible(
at(Al,Xl),Xl,terms()),eqn(sd(Kl,se(Kl,Xl)),Xl),eqn(se(Kl,sd(Kl,Xl)),Xl),invertible(se(Kl,Xl),Xl,terms(Kl)),invertible(sd(Kl,Xl),Xl,terms(Kl)),eqn(xor(xor(Kl,Kl),K1l),K1l),invertible(xor(Kl,K1l),Kl,terms(K1l)),invertible(xor(Kl,K1l),K1l,terms(Kl)),eqn(ssk(Sl,Cl),
sk(Cl)),if(keypair(PKl,PKIl),eqn(ped(PKIl,ped(PKl,Xl)),Xl),true),keypair(sk(PKUl),pk(PKUl)),invertible(ped(sk(PKUl),Xl),Xl,terms(pk(PKUl))),invertible(ped(pk(PKUl),Xl),Xl,terms(sk(PKUl))),eqn(kas(kap(Kl),K1l),kas(kap(K1l),Kl)),eqn(keypair(PKl,PKIl),verify(PKIl,seal(PKl,Xl),Xl)),eqn(head(
on(Xl,Yl)),Xl),eqn(tail(
on(Xl,Yl)),Yl),invertible(
on(Xl,Yl),Xl,terms()),122



invertible(
on(Xl,Yl),Yl,terms()),eqn(endprelude,true)),assums(lo
(nodes(node(roleA,0),node(roleB,0)),holds(A,ids(B)))),rules(rule(fa
ts(),ids(),fa
ts(state(roleA,0,terms(A,B)))),rule(fa
ts(),ids(),fa
ts(state(roleB,0,terms(B)))),rule(fa
ts(state(roleA,0,terms(A,B))),ids(Na),fa
ts(state(roleA,1,terms(A,B,Na)),msg(A,B,terms(ped(pk(B),
at(A,Na)))))),rule(fa
ts(state(roleB,0,terms(B)),msg(UNK,B,terms(ped(pk(B),
at(A,Na))))),ids(Nb),fa
ts(state(roleB,2,terms(B,A,Na,Nb)),msg(B,A,terms(ped(pk(A),
at(Na,Nb)))))),rule(fa
ts(state(roleA,1,terms(A,B,Na)),msg(UNK,A,terms(ped(pk(A),
at(Na,Nb))))),ids(),fa
ts(state(roleA,3,terms(A,B,Na,Nb)),msg(A,B,terms(ped(pk(B),Nb))))),rule(fa
ts(state(roleB,2,terms(B,A,Na,Nb)),msg(UNK,B,terms(ped(pk(B),Nb)))),ids(),fa
ts(state(roleB,3,terms(B,A,Na,Nb))))),goals(lo
(nodes(node(roleA,3),node(roleB,3)),se
ret(Na,ids())),lo
(nodes(node(roleA,3),node(roleB,3)),se
ret(Nb,ids())),lo
(nodes(node(roleA,3),node(roleB,3)),pre
edes(A,B,ids(Na))),lo
(nodes(node(roleA,3),node(roleB,3)),pre
edes(B,A,ids(Nb)))), 123



envs(environment(Test1,agents(agent(A1,eqns(eqn(A,Ali
e),eqn(B,Bob))),agent(B1,eqns(eqn(B,Bob)))),exposed(terms(ped(sk(Ali
e),Bob))),order(allpar))))

124


