
Model Checking and Other Ways of AutomatingFormal Methods�Position paper for panel on Model Checking for Concurrent ProgramsSoftware Quality Week, San Francisco, May/June 1995John RushbyComputer Science LaboratorySRI InternationalMenlo Park CA 94025 USA1 Automated Formal MethodsFormal methods can bene�t system design in two di�erent ways.� Concepts and notations from mathematics can provide methodological assis-tance: they can help us think, and can help us communicate our ideas.� Mathematical modeling can allow us to calculate some of the properties of ourdesigns.My interest is chie
y in the second of these and, more particularly, in automationof the calculations concerned.1 Automation provides repeatability and accuracyand|potentially, at least|speed and economy. The motivation and bene�ts hereare similar to those provided by mathematical modeling and automated calculationin other engineering �elds: computational 
uid dynamics, for example, allows theaerodynamic properties of airplane designs to be thoroughly explored and analyzedprior to construction.There are many kinds of computer systems, and many di�erent properties ofthose systems that are of interest. There are correspondingly many ways to modelcomputer systems and to calculate their properties. At one end of the spectrum ofdi�erent methods, we can build a simulation or rapid prototype of the system and�This work was partially sponsored by NASA Langley under Contract NAS1-20334, and by Arpathrough NASA Ames under contract NASA-NAG-2-891.1I generally use PVS for this purpose. PVS is a veri�cation (i.e., theorem proving) systemmainly developed by my colleagues Sam Owre and Shankar [13].1



test its behavior on selected inputs; at the other end of the spectrum, we can conducta mechanically-checked proof that a formally-speci�ed design satis�es its formally-speci�ed requirements. In between these extremes come various (mostly �nite-state)methods, including model checking. Although I just indicated that these methodsform a spectrum, they actually di�er from each other in several dimensions, thoughthese do tend to be correlated with each other. I discuss three of the more importantdimensions in the following sections.1.1 Number of behaviors examinedThe main reason computer programming and system design is hard is the sheer com-plexity of behavior that can be achieved by these means. Individual componentscan do complicated things, but the real explosion in complexity occurs when com-ponents interact with each other or with their environment. In order to understandour designs, and to predict their properties, we need some way to comprehend allthe di�erent behaviors that they can exhibit.For well-structured sequential programs of modest size, this is not too hardto achieve. By selecting suitable test data, it is possible to directly \calculate"through execution a sample of the possible behaviors of the program. If this sampleis fairly representative (e.g., satisfying some combination of functional and structuraltest criteria), we may feel some con�dence in extrapolating to the complete set ofbehaviors.This extrapolation from a �nite number of tests to the (possible in�nite) setof all possible behaviors cannot be guaranteed sound in general, but we are fairlycomfortable with it for sequential programs because we understand the basis bywhich the tested behaviors are considered representative of the whole set (e.g., bothdirections have been examined at each branch in the control 
ow and each loop hasbeen executed zero, once, and many times). With concurrent or reactive systems,however, it is all but impossible to achieve any degree of comfort in extrapolationfrom a �nite number of tests to the complete set of behaviors. This is because it ishard to de�ne, and even harder to conduct, tests that are representative of all thepossible interactions of the components concerned.Classical program veri�cation methods based on theorem proving do allow us toconsider all possible behaviors of such systems in a �nite but complete manner, how-ever. For sequential programs, we attach assertions at various points in the controlgraph (in particular, we identify an \invariant" assertion for each loop) and for eachsection of program connecting two assertions, we prove that if the �rst assertion istrue when control is at that point, then the program will ensure the that secondis true when control reaches that point. One way of generalizing this approach toconcurrent programs is to establish \rely" and \guarantee" assertions for each com-2



ponent and to prove that each component will hold its guarantee assertion invariantif the other components do the same for the assertions that it relies on.The principal di�culties with these program veri�cation methods are inventingsuitable invariants, and conducting the proofs without error. The latter can beensured, to some extent, by using a mechanized proof checker or theorem prover.There are also mechanized techniques that can help in the development of invariants,but even with such assistance it can be a very tedious task to develop these, andthe resulting formulas can be very complicated.So far, we have considered testing and simulating a sample of the behaviors thata system may exhibit, and using veri�cation methods to prove properties about allits behaviors. The �rst of these is fairly straightforward and automatic, but theextrapolation to all behaviors is questionable; the second is sound and complete,but challenging to undertake. We would like to have a method that falls betweenthese two.The number of essentially di�erent behaviors that a program can exhibit isrelated to its state space, that is, to the number of di�erent values that can beassumed by its state variables (including the program counters), considered as atotality. If the state space were �nite, and relatively small, it might be possibleto systematically enumerate all the possible di�erent behaviors of the program. Iftwo such �nite-state programs interact, the size of the state space of the combinedsystem will be the product of the sizes of the individual state spaces: the numberof di�erent behaviors of the combined system will be much larger than those of itscomponents, but it may still be feasible to enumerate all of them.Unfortunately, the state space of a typical program is vastly too great for suchbrute-force enumerations to be feasible, and the state space of a formal speci�cationcan be in�nite (since it can have true, mathematical, integers as state variables).However, it is often possible to \downscale" the state space of a program or speci�-cation to a fairly small �nite size in such a way that the reduced program exhibitsessentially all the behaviors of the original. For example, a sorting program may bedesigned to handle an arbitrary number of arbitrary sized records, but we may loselittle if we downscale the number of records to, say, �ve, each only two bits long.The number of di�erent inputs to the downscaled sorting program is 45 and it isfeasible to test them all. Obviously, great care must be taken in the downscaling ifwe are not to lose essential properties of the original program: for example, if thesorting program is a quicksort that reverts to linear insertion when the number ofrecords is less than �ve, then we must be sure to consider more than �ve records. Insome cases, it is possible to perform the downscaling in such a way that the reducedprogram is a true abstraction of the original (relative to some property); this meansthat if the downscaled program can be shown to satisfy the property concerned,then the original will satisfy it also. More often, it will be unsound to make thisextrapolation, but any bugs found in the downscaled system are likely to indicate3



a bug in the original. Experience suggests that enumerating all the behaviors of adownscaled system is a much more potent debugging method than exploring merelysome of the behaviors of the original system.There are several ways to organize the enumeration of behaviors for �nite-statesystems and to check their properties. The example of a sorting program suggestedabove is atypical: a sequential program whose behavior is determined by its input,and which can therefore be checked by presenting it with all possible inputs. Moreusually, these methods are applied to concurrent or reactive systems; the behaviorsof such systems are explored by interleaving execution of each of their components.The interleaving order is chosen nondeterministically in each run (if a componentcan select from any of a number of di�erent steps|for example, it may performits ordinary next step, or fail in one of a number of di�erent ways|then these arechosen nondeterministically also). By backtracking over many runs, all the di�erentnondeterministic choices|and hence all behaviors|can be explored.An explicit state-exploration system of this kind (examples are Mur� [12]|pronounce \Murphy"|and Spin [8]) can typically explore some millions of statesin a few minutes.2 The properties to be checked are generally speci�ed as explicitassertions or error-checks programmed into the component speci�cations; this ap-proach is generally known as \reachability analysis" since it aims to explore all thereachable states and to check that they satisfy their assertions. An alternative is toprovide a separate assertion language that can characterize required properties ofthe set of behaviors generated by the system. Typically, the assertion language isa temporal logic for which the �nite-state system description is putatively a Kripkemodel|this approach is therefore known as \model checking" [3]. Temporal logicspeci�cations can seldom express the full correctness requirement of a program, butthey can often express important safety and liveness properties. Related methodsare based on language inclusion: implementation and speci�cation are described byautomata and we show that the language (of behaviors) accepted by the implemen-tation is a subset of that accepted by the speci�cation [5].The requirement to severely downscale a system description to make it suitablefor �nite-state exploration, coupled with limitations on the properties that can bechecked in this way, mean that �nite-state methods are generally most suitable forexamining questions related to control, rather than data, complexity. A valuablecharacteristic of these methods is that they can often construct a counterexamplewhen a design is found not to satisfy a speci�ed property.2Using this type of system, the sorting program would be explored by composing it with aninput generator program that nondeterministically generates an input for it to sort. By exploringall the execution sequences of the generator program, the state-exploration system will cause it togenerate all possible inputs within the �nite space concerned.4



1.2 Concreteness of descriptionTesting, in the usual sense, can generally be applied only to speci�cations thatare directly executable. Such speci�cations contain a lot of concrete detail andare close to being programs. Yet much of the bene�t from formal methods comesfrom examining early lifecycle products such as requirements, architectures, abstractspeci�cations of designs, and algorithms. One way of testing these products is todevelop \rapid prototypes" that are directly executable|but this can be costly andit is not easy to distinguish those properties that truly belong to the requirement orspeci�cation under considerations from those that are accidental to the prototype.Using theorem proving techniques, however, it is often possible to \test" earlylifecycle products symbolically by challenging them with putative theorems. Forexample, conventional tests can only examine a speci�c sorting program (or at bestan algorithm), whereas we may be interested in whether our requirements speci�ca-tion for the sorting function is correct. If these requirements are expressed formally,we can challenge them by attempting to prove theorems such as sort(sort(x)) =sort(x). This challenge would reveal an inadequacy of many early formulations ofsorting (they required the output to be ordered, but omitted to state that it shouldbe a permutation of the input), and could also lead us to consider \stability" of sort-ing (i.e., whether the sort can reorder records that are equal with respect to the sortcriterion, but distinguishable in other ways) and to ask whether this is importantfor our application.Most �nite-state enumeration and model-checking methods are comparable todirect execution in that they require concrete representations of the algorithms anddata structures concerned. Because of the downscaling required to make these meth-ods feasible, the data representations and manipulations used are vestigial and it isgenerally only the control aspects of algorithms that are fully developed|and thisis reasonable, since it is what these methods are designed to examine. However,the need to provide even vestigial implementations of unimportant elements of thedesign is unattractive and a potential source of errors. For example, a standarddemonstration of model checking concerns processor pipeline control [2]. The pro-cessor design is abstracted to a register �le, an ALU, and a pipeline with, say, threestages. An external source generates the addresses of pairs of source data values tobe extracted from the register �le, an ALU operation is applied to the data values,and the result is written back to an externally generated destination address. Sinceit is possible for the address of a source value for one operation to be the destinationaddress for an earlier operation that is still in the pipeline, bypass circuitry is pro-vided to extract the appropriate data value from the pipeline rather than from theregister �le (to which it will not yet have been written back). The main interest inthis exercise is the bypass circuitry: the exact operation performed by the ALU, thewidth of the data buses, and the size of the register �le, are all irrelevant to this con-5



cern and would best be left uninterpreted (i.e., given no speci�c implementation).To apply model checking or other �nite-state methods, however, we must �x valuesfor the size of the data buses and register �le, and must give an implementation ofthe ALU. If we are too aggressive in giving a vestigial implementation for the ALU(e.g., if it always returns zero, or the value of one of its input arguments) we will losethe ability to detect certain errors, so we are forced to provide an implementationthat combines its input values in some fairly complicated way.1.3 Degree of automationDirect testing and model-checking methods are generally presented as fully au-tomatic, whereas those based on theorem proving are generally considered labor-intensive. This characterization needs to be quali�ed, in my view. If, for example,we are interested in exploring a formal requirements speci�cation, then we might beable to go straight to work with a theorem proving method, whereas direct execu-tion and model checking will require us to develop the more concrete representationsthat those methods require.The size of the state spaces that can be explored by model checking has been in-creased dramatically recently through the introduction of symbolic representationsbased on BDDs (SMV [11] is an example of a system that uses a BDD representa-tion). These representations are not always superior to explicit state enumeration,however. For some large state spaces, an explicit enumeration method may be ableto explore a large number of states before it runs out of memory, whereas a symbolicmethod may exhaust its memory before it can even construct the BDD. If someof the states visited by the explicit enumeration reveal errors (as is commonly thecase early in the design cycle), then this will have provided useful information thatthe symbolic method did not. The symbolic method is likely to prove more e�ectivein the long run, however, and it will be worth the e�ort needed to get it working.This may involve experimenting with the variable ordering used by the BDD, usingadvanced methods for symmetry reduction or reduction of interleavings using par-tial orderings, further downscaling of the speci�cation, or partitioning the probleminto pieces that can be attacked separately. These manipulations require skill andexperience and cannot be considered automatic.Theorem proving is not automatic either (even provers called \automatic" re-quire indirect guidance through the invention and ordering of lemmas, the orienta-tion of equations, and selection of strategies). However, it is often possible to providestrategies that are very e�ective for certain classes of problems. For example, a sin-gle PVS strategy is very e�ective against a wide variety of problems in hardwareveri�cation [4]. This strategy can deal with the pipeline example mentioned abovein a few tens of seconds|furthermore, it does not require an implementation for theALU operation (it can be left as an uninterpreted symbolic operation), nor speci�c6



sizes for the data buses and register �le. In contrast, symbolic model checking re-quires concrete representations for all of these, and CPU time running into tens ofminutes when the register �le has more than about 16 registers.2 Integrated Automation of Formal MethodsAutomated calculation of properties of formal descriptions of computer systems cansupport validation of requirements (by checking that they entail some expected prop-erties), early debugging of speci�cations and designs, identi�cation of assumptions,exploration of design alternatives, veri�cation that designs satisfy their speci�ca-tions, and adaptation to changes.Each of the methods mentioned in the previous section|executable (or simulat-able) speci�cations, �nite-state methods including model checking, and those basedon theorem proving|as well as other related methods including fault-tree analy-sis, o�ers valuable bene�ts and practitioners of formal methods should generally beprepared to use all of them. In many applications where full veri�cation throughtheorem proving is the ultimate goal, it will be sensible to �rst debug the designthrough direct execution and then through state exploration or model checking. Inthis way we can avoid the expense and frustration of applying theorem proving todesigns that contain errors that can be found more easily by other methods. At SRI,we have explored a number of di�erent combinations of methods that are outlinedin the sections below.2.1 Novel Uses of State ExplorationThese examples in this section do not combine di�erent methods, but illustrate noveluses of �nite-state exploration for problems that had previously been examined byhand or by theorem proving.2.1.1 Exploration of Fault-Diagnosis AlgorithmsI described earlier how a sequential sorting algorithm could be exhaustively testedover some �nite input space by combining it with a nondeterministic input genera-tor and using a state-exploration system to enumerate all possible behaviors of theinput generator. Of course, sorting algorithms have a very regular structure andbehavior, so this kind of exploration is unlikely to be enlightening in their case.However, there are other kinds of sequential programs that have very complex be-havior and where this kind of exploration can be very valuable. One such class ofprograms is concerned with fault diagnosis: the symptoms of failure of some deviceare provided to the program and it is expected to diagnose the faults that could havecaused those symptoms. These programs are notoriously hard to test and tend to7



be \brittle" (they are often developed as \expert systems" and fail catastrophicallywhen confronted with an unanticipated circumstance). Using a state-explorationsystem, it is possible to program a model of the device to be diagnosed and to non-deterministically inject faults; these will generate symptoms that can be suppliedto the diagnostic program and its diagnosis can then be compared with the injectedfault. The state-exploration system will systematically enumerate all faults withinthe class considered, thereby providing complete coverage of (this aspect of) thediagnosis program.The language of Mur� is rule-based and rather similar to those used for expertsystems. We are therefore considering applying Mur� to a diagnostic program forthe NASA Manned Maneuvering Unit that we have previously studied by hand [15].3I believe that an approach similar to that described for diagnosis programs can alsobe used to explore decision support systems and the procedural rules provided tothe operators of complex plants.2.1.2 Exploration of Fault-Tolerant AlgorithmsWhereas a fault-diagnosis algorithm is required to diagnose a fault in some exter-nal mechanism, a fault-tolerant algorithm is required to continue operation despitefaults in the mechanisms of its own execution. Typically, the algorithm is replicatedon di�erent processors and some form of voting is used. Interactive Consistency(also known as Byzantine Agreement and Distributed Consensus) is the problem ofdistributing sensor values consistently to such replicated components despite thepresence of faults. We have formally veri�ed several interactive consistency algo-rithms under increasingly complex fault models using PVS [9, 10, 13]. As the algo-rithms and fault models get more complex, worst-case analyses of the fault toleranceachieved become rather uninformative|it seems more useful to compare algorithmsaccording to the total number of di�erent fault scenarios they can tolerate (thereare some tens of thousands of scenarios for the cases we are interested in).We again used Mur� to perform the necessary exhaustive examination of sce-narios. We considered the �ve processor case and modeled each algorithm as a�ve-process distributed system; a sixth process performs the role of the environ-ment and nondeterministically injects faults. In running the exhaustive enumera-tion of all possible fault scenarios, we rediscovered a bug in one algorithm that wehad previously found, with much greater e�ort, while attempting to formally verifyit. We also found that one of the algorithms under consideration is able toleratesigni�cantly more faults than the others in regions beyond the simple worst-casebounds.3In fact, I suspect that the e�cient state enumeration provided by Mur� could be used to domodel-based diagnosis in a way that would be competitive with other methods.8



2.2 Combining Methods at the Language LevelWhen applying formal veri�cation with PVS to distributed algorithms, and to proto-cols in particular, we have found it advantageous �rst to check a downscaled instanceof the protocol using Mur�; we also �nd it useful to check proposed invariants inthis way. Constructing and maintaining both a PVS and a Mur� speci�cation of aprotocol is tedious and error-prone, so we have developed a translator from Mur�to PVS. The translator was built by Seungjoon Park of Stanford University whohas used it for two applications.� A distributed list protocol that is representative of the core of several directory-based cache coherence protocols was debugged using Mur� for the three-processor case, and then translated into PVS and formally veri�ed for thegeneral n-processor.� A Mur� model of Sparc International's multiprocessor memory consistencymodel that is used to verify synchronization routines was proved consistentwith the axiomatic de�nition of the memory model using PVS.Shankar has also developed a translation from the internal representation used byObjecTime (a Statechart-like CASE notation and system) to Mur�. The translation(done by hand at present) supplements the simulation capability of ObjecTime withexplicit state exploration.2.3 Combining Theorem Proving With Model CheckingUsing an o�-the-shelf BDD-based decision procedure for the �-calculus (i.e., quanti-�ed Boolean logic with least and greatest �xed-point operators), we have recently im-plemented CTL model checking in PVS [14]. That is to say, given a state-transitionrelation speci�ed in PVS on a hereditarily �nite type (that is a type that is Boolean,or an enumeration type, or a �nite subrange of integers, or a tuple, array, or record ofhereditarily �nite type), a start state, and a CTL speci�cation, the PVS rewriter anddecision procedures expand the speci�cation to yield a formula that can be trans-lated into the form required by the �-calculus decision procedure.4 Availability ofmodel checking within a theorem proving system creates new opportunities.� We have worked with NRL to provide support within PVS for checking tabularspeci�cations of the kind used in the SCR method for requirements speci�ca-tion [7]. For example, PVS provides a table construct, and can generate theproof obligations for mutually disjoint and exhaustive row and column condi-tions that are required for well-formedness of SCR mode transition tables [6].4The �-calculus is strictly more expressive than CTL, and can also be used to de�ne fair versionsof the CTL operators. Language inclusion methods can also be described in the �-calculus andmay be added to PVS at a later date. 9



Using the model checker we are now also able to check certain applicationproperties of these tables automatically, with regular theorem proving avail-able for the harder properties.5� Shankar has veri�ed an n-place mutual exclusion protocol by induction usingthe PVS theorem prover, but with the inductive step discharged automaticallyby the model checker. This is the �rst example we are aware of that usescombined methods in a truly integrated way.3 ConclusionModel checking and �nite-state methods are essential components of any toolkit forautomated formal methods. Such a toolkit should also provide a variety of othercapabilities including simulation and theorem proving and, for maximum bene�tand utility, the various di�erent methods should be integrated with each other.Loose integration provides a common language (or at least the ability to translatebetween the languages used by the di�erent components); tighter integration allowsa combination of methods to be applied to a single problem and is probably mostnaturally constructed in a theorem proving environment where model checking canbe treated as a decision procedure.6I believe that the future lies with even tighter integrations of these di�erentmethods: rather than combining a theorem prover with a model checker, we needto integrate their component techniques. For example, theorem proving could applysome of the e�cient symbolic representations developed in model checking, andmodel checking should be extended so that state-equivalence testing can use theoremproving and so that some aspects of a design can be left uninterpreted.These are signi�cant research challenges, but exciting progress is already beingmade. In the future, I expect the line between model checking and theorem provingto become blurred (e.g., it will be possible to apply model checking to certain in�nite-state systems) and that combined methods will be the rule. I also expect thesemethods to become su�ciently e�ective that their industrial use will become routine.References[1] Joanne M. Atlee and John Gannon. State-based model checking of event-drivensystem requirements. IEEE Transactions on Software Engineering, 19(1):24{40, January 1993.5Atlee and Gannon were the �rst to note that model checking could be applied to SCR modetransition tables [1].6Theorem proving systems also already have the bookkeeping necessary to keep track of theoutstanding obligations when a complex analysis is broken into many pieces.10
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