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specifications early in the life-cycle deserve special attention: rapid prototyping and
some of the techniques of formal verification may be especially useful here. For really
critical requirements, formal verification of those properties should be considered;
conventional testing can be used to ensure that the less-critical requirements are
satisfied.
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“The goal of practical usefulness does not imply that the verification of
a program must be made independent of creative effort on the part of
the programmer ...such a requirement is utterly unrealistic.”

In reality, a verification system assists the human user to develop a convincing argu-
ment for his program by acting as an implacably skeptical colleague who demands
that all assumptions be stated and all claims justified. The requirement to expli-
cate and formalize what would otherwise be unexamined assumptions is especially
valuable. Speaking from substantial experience, Shankar [112] observes:

“The utility of proof-checkers is in clarifying proofs rather than in vali-
dating assertions. The commonly held view of proof-checkers is that they
do more of the latter than the former. In fact, very little of the time
spent with a proof-checker is actually spent proving theorems. Much of
it goes into finding counterexamples, correcting mistakes, and refining
arguments, definitions, or statements of theorems. A useful automatic
proof-checker plays the role of a devil’s advocate for this purpose.”

Our own experience supports this view. We have recently undertaken the formal
verification of an important and well-known algorithm for clock-synchronization and
have discovered that the published journal proof [82] contains major flaws [108, 107].
It was the relentless skepticism of our formal verification environment that led us to
this discovery, but our belief in the correctness of our current proof owes as much to
the increased understanding of the problem that we obtained through arguing with
the theorem prover as it does to the fact that the theorem prover now accepts our
proofs.

Another element in De Millo, Lipton and Perlis’ parody that is far from the
truth is their implicit assumption that formal verification is something that is done
after the program has been developed. In reality, formal verification is practised as
a component of a development methodology: the verification and the program (or
specification) are developed together, each generating new problems, solutions, and
insights that contribute to the further development of the other. Formal verification
can be made easier if the property being verified is achieved by direct and simple
means. Thus, in addition to helping the user build a convincing case for belief in his
program, formal verification encourages the programmer to build a more believable,
and often better, program in the first place.

Overall, the conclusion to be drawn from experimental and other data seems to
be that all testing methods have their merits, and these tend to be complementary to
each other. For the purpose of enhancing reliability, random testing is a clear winner.
For the purpose of finding bugs, anomaly detection and walk-throughs should be
used in combination with functional and structural testing (Howden [66] describes
such an integrated approach). Techniques for evaluating requirements and other



5.4. Discussion of Testing 51

technique depends on the extent to which errors are correlated between the two
versions. Recently, experiments have been performed to examine this hypothesis in
the context of N-Version programming® [79, 80, 44, 84]; the results indicate that
errors do tend to be correlated to some extent. Additional problems can arise with
numerical software, due to the character of finite-precision arithmetic [22].

The efficiency of the debugging process can be evaluated by seeding a program
with known errors—this is called mutation testing. If ten errors are seeded, and
debugging reveals 40 bugs, including 8 of those that were seeded, we may conclude
that 10 (= £2(10 — 8)) bugs (including two seeded ones) remain. The weakness in
this approach is that it is highly questionable whether the seeded bugs reflect the
characteristics of the natural bug population: being introduced by simple modifica-
tion to the program code, they are unlikely to reflect the behavior of subtle errors
committed earlier in the life-cycle. A counter-argument is that test sets that detect
simple errors will often catch subtle errors too (this is called “coupling” [90]) and
mutation testing provides a systematic technique for establishing the coverage of a
test set [25, 65].

For some very critical applications, formal verification is recommended as the
assurance mechanism of choice [41]. Some authors have cast doubt on the value of
this approach [39, 96], arguing that use of truly formal specification and verification
tends to overload the user with intricate detail, and that the soundness of the whole
process rests on the correctness of the underlying verification environment. Since
this will typically be a very large and complex program in its own right, located at
the limits of the state of the art, its own correctness should be regarded with more
than usual skepticism. The thrust of this argument is that formal verification moves
responsibility away from the “social process” that involves human scrutiny, towards
a mechanical process with little human participation. We believe this concern un-
founded and based on a mistaken view of how a mechanical verification environment
is used. De Millo, Lipton and Perlis [39] claim that:

“The scenario envisaged by the proponents of verification goes something
like this: the programmer inserts his 300-line input/output package into
the verifier. Several hours later, he returns. There is his 20,000-line
verification and the message ‘VERIFIED’.”

This is a parody of the scenario actually envisaged by the proponents of verification.
In a paper published several years earlier [117], von Henke and Luckham indicated
the true nature of this scenario when they wrote:

SN-version programming is an adaptation for software of the modular redundancy techniques
used to provide reliable and fault tolerant hardware. N (typically N = 3) separate modules perform
the computation and their results are submitted to a majority voter. Since all software faults
are design faults, the redundant software modules must be separately designed and programmed.
N-Version programming is advocated by Avizienis [31] (see also [47, 48] for a slightly different
perspective), but has been criticized by Leveson and others (see the discussion in [5]).
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discuss this issue and identify a historical evolution of concerns, starting with de-
bugging in the 1950s. They propose that the concern for 1988 and beyond should
be the use of testing as a fault prevention mechanism, based on the detection of
faults at the earliest possible stage in the life-cycle.

Of the systematic testing strategies, Howden’s data [64] ([62] is similar, but
based on a smaller sample of programs) provides evidence that functional testing
finds about twice as many bugs as structural testing; furthermore, several of the
bugs found by structural testing would be found more easily or more reliably by
other methods, so that the ratio three to one probably more accurately reflects the
superiority of functional over structural testing.

Howden’s data also shows that static testing (particularly automated anomaly
detection) found more bugs than dynamic testing—however, the two methods were
complementary, dynamic testing tending to find the bugs that static testing missed,
and vice versa. Myers [95] presented similar data, showing that code walk-throughs
were about as effective as dynamic testing at locating errors in PL/1 programs.

The efficacy of anomaly detection is likely to increase with the degree of redun-
dancy present in the programming language—indeed, the presence of redundancy
may often allow errors to be detected at compile-time that would otherwise only
be located at run-time. (Compare Lisp with Ada, for example: almost any string
with balanced parentheses is a syntactically valid Lisp program and any deficiencies
will only be discovered in dynamic testing, whereas writing a syntactically correct
Ada program is quite demanding and many errors will be caught at the compilation
stage.) There have been proposals to increase the degree of redundancy in programs
in order to improve early error-detection. One of the most common suggestions is
to allow physical units to be attached to variables and constants [73, 8]. Expres-
sions may then be subject to dimensional analysis in order to prevent a variable
representing length being added to one representing time, or assigned to one repre-
senting velocity.” Other proposals would render it impossible to read from an empty
message buffer, or to use a variable that has not yet been given a value [116].

All forms of dynamic testing assume that it is possible to detect errors when
they occur. This may not always be the case—as, for example, when the “correct”
value of a result may be unknown. Weyuker [119] first identified the problem of
“untestable” programs, and proposed two methods for alleviating the difficulty they
pose. The first is to use simplified test cases for which it is possible to compute
the “correct” answers. The second, and more interesting method suggested by
Weyuker is “dual coding”: writing a second—probably simpler but less efficient—
version of the program to serve as a check on the “real” one. The efficacy of this

5Strong typing, present in any modern programming language, provides some protection of this
sort—preventing booleans being added to integers, for example—but the use of physical units and
dimensional analysis represents a capability beyond the normal typing rules. The data abstraction
facilities of a modern language such as C++ or Ada can provide this capability, however [35, 60].
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respond gracefully to errors. The purpose of a rapid prototype is to allow early
experience with, and direct testing of, the main aspects of the system’s proposed
functionality—thereby allowing much earlier and more realistic appraisals of the
system’s requirements specifications.

An experimental comparison of a prototyping versus the conventional approach
to software development [20] found that both approaches yielded approximately
equivalent products, though the prototyping approach required much less effort
(45% less) and generated less code (chiefly due to the elimination of marginal re-
quirements). The products developed incrementally were easier to learn and use,
but the conventionally developed products had more coherent designs and were eas-
ier to integrate. (Another experimental evaluation of prototyping is described by
Alavi [1].)

Viewed as testing vehicles for evaluating and refining requirements specifications,
rapid prototypes fit neatly into the standard life-cycle model of software engineer-
ing. A more radical approach that has much in common with rapid prototyping is
incremental software development. Here, the complete software system is made to
run quite early in the development phase, even if it does nothing useful except call
dummy subprograms. Then it is fleshed out, with the subprograms being devel-
oped in their turn to call dummy routines at the next level down, and so on until
the system is complete. The advantages claimed for this approach [23] are that it
necessitates top-down design, allows easy backtracking to reconsider inappropriate
decisions, lends itself to rapid prototyping, and has a beneficial impact on morale.
See also Boehm’s “Spiral” Model of system development [19].

5.4 Discussion of Testing

Much attention has been focused on systematic testing strategies—especially struc-
turally based ones. However, there is evidence that, if increasing reliability (rather
than finding the maximum number of bugs) is the goal, then random testing is much
superior to other methods. Currit, Dyer and Mills [37] report data from major IBM
systems which shows that random testing would be 30 times more effective than
structural testing in improving the reliability of these systems. The reason for this
is the enormous variation in the rate at which different bugs lead to failure: one
third of all the bugs had a MTTF of over 5000 years (and thus have no effect on
overall MTTF), and a mere 2% of the bugs accounted for 1000 times more failures
than the 60% of bugs that were encountered least often.?

Interpretation of data such as these requires a context that establishes the pur-
pose of testing—is it to find bugs or to improve reliability? Gelperin and Hetzel [50]

*The thirty-fold improvement of random over structural testing is simply estimated by the
calculation 2 x 1000/60.



48 Chapter 5. Testing

5.3.5 Testing of Specifications

Conventional formal specification languages are optimized for ease and clarity of
expression and are not directly executable. Furthermore, high-level specifications
are often deliberately partial—they indicate what is required of any implementa-
tion, but do not provide enough information to uniquely characterize an acceptable
implementation. Nonetheless, it is highly desirable to subject such specifications
to tests and scrutiny in order to determine whether they accurately capture their
intended meaning.

If direct execution is infeasible for the specification technique chosen, indirect
testing methods must be used. As noted above, a formal specification defines proper-
ties that are required to be true of any implementation. In addition to the properties
S that have been specified in this way, there may be additional properties A that
are desired but not mandated, or that are believed to be subsumed by S, or that are
to be added in a later, more detailed, specification. Tests of formal specifications
consist of attempts to check whether these intended relationships between the given
S and various sets of properties A do, in fact, hold. Thus, to ensure whether the
property A is subsumed by S, we may try to establish the putative theorem S O A.
Independently of additional properties A, we may wish to ensure that the specifica-
tion S is consistent (i.e., has a model)—since otherwise S O A is a theorem for all
A.

Depending on the formal specification language and verification environment
available, examinations such as those described above may be conducted by at-
tempting to prove putative theorems, by symbolic evaluation, or by rapid prototyp-
ing. Kemmerer [76] describes the latter two alternatives. An important special case
is the checking of specifications for consistency with a notion of “multilevel secu-
rity.” This activity, which is a requirement for certain types of system [41], seeks
to demonstrate that a fairly concrete specification of a system is consistent with an
abstract specification of security [30].

5.3.6 Rapid Prototyping

As we have noted several times, errors made early but detected late in the life-cycle
are particularly costly and serious. This applies especially to missed or inappro-
priate requirements—yet such faults of omission are especially difficult to detect at
an early stage. Systematic review will often detect inconsistent, or ambiguous re-
quirements, but missing requirements generate no internal inconsistencies and often
escape detection until the system is actually built and tried in practice.

A rapid prototype is one that simulates the important interfaces and performs
the main functions of the intended system, while not necessarily being bound by
the same performance constraints. Prototypes typically perform only the mainline
tasks of the application, but make no attempt to handle the exceptional cases, or
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of detail, should be the focus of mathematical verification. Indeed, a whole hier-
archy of specifications may be verified in stepwise fashion from a highly abstract,
but intuitively understandable one, down to a very detailed one that can be used
as the basis for coding. If the original, abstract specification, is studied and un-
derstood by the user, and agreed by him to represent his requirements, then such
hierarchical verification (provided it is performed without error) accomplishes the
validation of the detailed specification. This approach is attractive in circumstances
where the properties of interest are difficult to validate directly—as in the case of
ultra-high reliability (where failure probabilities on the order of 107 per day may
be required, but are unmeasurable in practice) [106], and security (which requires
that no possible attack should be able to defeat the protection mechanisms) [114].

5.3.4 Executable Specifications

Specification languages provide mechanisms for saying what must be accomplished,
not how to accomplish it. As a result, specifications cannot usually be executed.
Programming languages on the other hand, reverse these concerns and provide many
mechanisms for stipulating how something is to be accomplished. As a result, pro-
grams generally execute very efficiently, but are inperspicuous. Recently, however,
logic programming languages have emerged that blur the distinction between speci-
fication and programming languages. By employing a more powerful interpreter (es-
sentially a theorem prover, though generally referred to as an “inference engine”),
logic programming languages allow the programmer to concentrate more on the
what, and less on the how of his program. Dually, these languages can be regarded
as ezecutable specification languages. The obvious merit of executable specification
languages is that they permit specifications to be tested and validated directly in
execution.

Prolog, the best known logic programming language [34], contains many com-
promises intended to increase its efficiency in execution that detract from its merit
as a specification language.® Languages based on equations, however, offer consid-
erable promise. OBJ [49], developed by Goguen and his coworkers in the Computer
Science Laboratory of SRI, is the best developed and most widely known of these. In
addition to a cleaner logical foundation than Prolog, OBJ has sophisticated typing
and parameterization features that contribute to the clarity and power of its specifi-
cations. (Being based on equational logic, OBJ could also exploit the completeness
and consistency checks described in Section 5.3.2 (page 46), although the present
version of the system does not do so.)

®Stickel’s Prolog Technology Theorem Prover (PTTP) [115], which provides correct first-order
semantics—but with Prolog-like efficiency when restricted to Horn clauses—overcomes some of
these disadvantages.
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In addition to the analysis and extraction tools described above, generation and
display tools provide two-dimensional graphical displays for R-Nets, and functional
and analytical simulators support validation of performance, accuracy, and func-
tional requirements. Both types of simulator automatically generate a PASCAL
program corresponding to the R-Net structure. FFach ALPHA becomes a call to a
PASCAL procedure—which is generally written by the requirements engineer and
associated with the corresponding ALPHA as an attribute.

The REVS simulation tools attempt to generate input data from the description
of the data provided by the user. The user can also declare artificial data, i.e., data
not required to be generated by the system when deployed. Typically, artificial data
will be more abstract than the data actually applied to the system in operation.
In addition to functionality, REVS supports simulation for the validation of perfor-
mance and accuracy constraints. The latter are evaluated using “rapid prototypes”
of the critical algorithms to be used in practice.

5.3.2 Completeness and Consistency of Specifications

Among the properties of specifications that are generally considered desirable, com-
pleteness and consistency rank highly. Informally, completeness means that the
specification gives enough information to totally determine the properties of the
object being specified; consistency means that it does not specify two contradictory
properties.

For a semi-formal specification language, it may be possible to give some pre-
cepts for the construction of complete and consistent specifications, and it may be
feasible to check adherence to these precepts mechanically. With formal specifica-
tion languages, however, rather more may be possible. For quantifier-free equational
logic—which logic has been found very suitable for the specification of abstract data
types [94]—there is a formal notion of “sufficient completeness” that can be checked
mechanically [53], and a sufficient test for consistency is that the Knuth-Bendix al-
gorithm [81] should terminate without adding the rule true -> false [71]. Kapur
and Srivas [72] discuss other important properties of such specifications and describe
appropriate tests. Meyer [89] provides some interesting examples of flawed specifi-
cations that have appeared in the literature, while Wing [123] describes 12 different
specifications for a single problem and discusses some of the incompletenesses and
ambiguities found therein.

5.3.3 Mathematical Verification of Specifications

As we explained in Section 5.2.3 (page 35), mathematical verification demonstrates
consistency between two different descriptions of a program. Often, one of these
descriptions is the program itself—so that a program is verified against its specifi-
cation. However, it is perfectly feasible that two specifications, at different levels
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meaning. Only dataflow concepts have meaning. Thus, in the conventional sense,
RSL is not an extensible language.

Using RSL, a user (called the requirements engineer) is encouraged to identify
significant units of processing, each of which is viewed as a single input/single output
ALPHA (inputs and outputs can have structure—rather like PASCAL records—so
the restriction to single inputs and outputs is not as severe as it might appear). The
definition of an ALPHA consists of declarations of its input and output, declarations
of any files the ALPHA will write to and a brief natural language description of the
transformations it effects on the input data.

ALPHAs are connected together with OR, AND, SELECT and FOR_EACH
nodes into what can be viewed as a dataflow graph.? The intention is to express
system requirements in terms of how significant units of processing are connected
with each other, and the kind of data that flows along the interconnections.

OR nodes resemble a PASCAL case statement and indicate conditions under
which each output path will be followed. The conditions attached to a path through
an R-Net identify the conditions under which an ALPHA is invoked and in which
an output message must be produced in response to an input message.

The AND node indicates that all of the paths following it are to be executed. Ex-
ecution of the paths can be in any order or with any degree of parallelism permitted
by the hardware base. It is intended that any file read in any of the parallel paths
is not written by any other path, otherwise the behavior of the system would be
indeterminate. In RSL, this constraint on files is called the independence property.

There is no goto statement in RSL. To produce other than loopless programs,
RSL provides the FOR_EACH node. This takes a set of data items as argument
and indicates that the path following it is to be executed once for each of the items
in the set; the order is not specified.

Multiple R-Nets can be linked together using EVENT nodes, and VALIDA-
TION_POINTS can be attached to paths in an R-Net in order to specify performance
and accuracy requirements.

Several tools have been constructed to support requirements descriptions writ-
ten in RSL. Collectively, these constitute the “Requirements Engineering Validation
System” (REVS). The most basic component of REVS is the RSL translator, which
analyzes RSL requirements definitions and generates entries in a central database
called the Abstract System Semantic Model (ASSM). Information in the ASSM may
be queried, and checked for consistency using the “Requirements Analysis and Data
Extraction” system (RADX). RADX generates reports that trace source document
requirements to RSL definitions, identify data items with no source or sink, unspec-
ified attributes, useless entities and so on. Other checks ensure, among other things,
that the paths following an AND satisfy the independence property.

2Strictly, it is incorrect to refer to RSL descriptions as dataflow programs since they can produce
side-effects to files.
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Again due to its origins in ballistic missile defense, SREM is very much concerned
with the constraints of accuracy and performance. It therefore makes provision
for traceable, testable, performance and accuracy constraints to be attached to
requirements specifications.

In addition to support for analyzing the problem and checking understanding,
SREM’s tools perform “internal” completeness and consistency checks (i.e., checks
that are performed relative to the requirements definition itself, without reference
to external reality). These checks ensure, for example, that all data has a source,
and that there are no dangling items still“to be done.”

The paradigm underlying SREM is that system requirements describe the nec-
essary processing in terms of all possible responses (and the conditions for each type
of response) to each input message across each interface. This paradigm is based on
a graph model of computation: requirements are specified as Requirement Networks,
or R-Nets, of processing steps. Fach R-Net is a tree of paths processing a given type
of stimulus.

R-nets are expressed in the Requirements Statement Language (RSL), the lan-
guage of SREM: an RSL requirements definition is a linear representation of a two-
dimensional R-net. Requirements definitions in RSL are composed of four types of
primitives:

e FElements in RSL include the types of data necessary in the system (DATA),
the objects manipulated by the system being described (MESSAGES), the
functional processing steps (ALPHAs), and the processing flow descriptions
themselves.

e Relationships are mathematical relations between elements. For example, the
relationship of DATA being INPUT to an ALPHA. Generally, a complemen-
tary relationship is defined for each basic relationship: for example, an ALPHA
INPUTS DATA.

o Attributes are properties of objects, such as the ACCURACY and INITIAL_VALUE

attributes of elements of type DATA. A set of values (names, numbers, or text
strings) may be associated with each attribute. For example, the set of values
associated with INITIAL_VALUE is the set of initial values allowed for data
items.

o Structures model the flows through the processing steps (ALPHAs) or the
flows between places where accuracy or timing requirements are stated (VAL-

IDATION_POINTS).

RSL is described as an extensible language. What this means is that the user
can declare new elements, relationships, and attributes; however, they do not have
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important component of this is traceability—items in the specification should
have clear antecedents in earlier specifications or statements of system objec-
tives.

Feasibility : A specification is feasible to the extent that the life-cycle benefits of
the system specified exceed its life-cycle costs. Thus feasibility involves more
than verifying that a system satisfies functional and performance requirements.
It also implies validating that the specified system will be sufficiently main-
tainable, reliable, and human-engineered to keep a positive life-cycle balance
sheet.

Testability : A specification is testable to the extent that one can identify an
economically feasible technique for determining whether or not the developed
software will satisfy the specification.

Among the methodologies that aim to satisfy these criteria TRW’s SREM [2, 3,
11, 38] is representative, and is described in the following section.

5.3.1.1 SREM

SREM (Software Requirements Engineering Methodology) was the product of a
program undertaken by TRW Defense and Space Systems Group as part of a larger
program sponsored by the Ballistic Missile Defense Advanced Technology Center
(BMDATC) in order to improve the techniques for developing correct, reliable BMD
software. Early descriptions of SREM include [2, 11]; descriptions of subsequent
extensions for distributed systems can be found in [3], and accounts of experience
using SREM are given in [18, 27, 110].

Owing to its genesis in the problems of software for ballistic missile defense,
SREM adopts a system paradigm derived from real-time control systems. Such sys-
tems are considered as “stimulus-response” networks: an “input message” is placed
on an “input interface” and the results of processing—the “output message” and the
contents of memory—are extracted from an “output interface” [2]. Furthermore, the
requirements for the system are understood in terms of the processing steps neces-
sary to undertake the required task. The essence of a SREM requirements definition
is therefore a dataflow-like description (called an R-net) of the processing steps to
be performed and the flow of data (messages) between them.

SREM recognizes that requirements engineering is concerned with more than
just writing a description of what is required—it is first necessary to analyze the
problem in order to discover just what ¢s required, and it is constantly necessary
to check one’s understanding of the problem and its evolving description against
external reality. Accordingly, SREM allows behavioral simulation studies in order
to verify that the system’s interfaces and processing relationships behave as required.
In addition, there is provision for traceability of all decisions back to source.



42 Chapter 5. Testing

e The documentation is likely to be inadequate, exacerbating the problem of
determining why certain decisions were made and assessing the impact of
decisions. It is also difficult to keep the documentation current as changes are
made.

Not only are errors in requirements and specifications expensive to correct, they
are also among the most frequent of all errors — one study [9] found that 30% of all
errors could be attributed to faulty statement or understanding of requirements and
specifications. Worse, it appears that errors made in these early stages are among
those most likely to lead to catastrophic failures [83].

These problems indicate the need for methodologies, languages, and tools that
address the earliest stages in the software life-cycle. The aims of such requirements
engineering are to see that the right system is built and that it is built correctly.
Since systems have many dimensions, there are several facets to the question of what
constitutes the right system. Roman [103] divides these facets of system require-
ments into two main categories: functional and non-functional (these latter are also
called constraints). Functional requirements capture the nature of the interaction
between the system and its environment—they specify what the system is to do.
Non-functional requirements restrict the types of system solutions that should be
considered. Examples of non-functional requirements include security, performance,
operating constraints, and cost.

Functional requirements can be expressed in two very different ways. The declar-
ative (or non-constructive) approach seeks to describe what the system must do
without any indication of how it is to do it. This style of requirement specification
imposes little structure on the system and leaves maximum freedom to the system
designer—but, since it says nothing about how the system is to work, it provides
little basis for checking non-functional constraints. The procedural approach to the
specification of functional requirements, on the other hand, aims to describe what
the system must do in terms of an outline design for accomplishing it. This approach
appeals to many engineers who find it most natural to think of a requirement in
terms of a mechanism for accomplishing it.

Both functional and non-functional requirements definitions, and declarative and
procedural specifications, should satisfy certain criteria. Boehm [18] identifies four
such criteria: namely, completeness, consistency, feasibility, and testability.

Completeness : A specification is complete to the extent that all of its parts are
present and each part is fully developed. Specifically, this means: no TBDs
(“To Be Done”), no nonexistent references, no missing specification items, and
no missing functions.

Consistency : A specification is consistent to the extent that its provisions do not
conflict with each other or with governing specifications and objectives. An
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5.3 Testing Requirements and Specifications

So far we have explicitly considered only the testing of finished programs, but there
is much to be said for the testing of specifications and requirements also. In the first
place, testing a program against its specification is of little value if the specification
is wrong; secondly, the cost of repairing faults increases dramatically as the number
of life-cycle stages between its commission and its detection increase. As we noted
in Section 2 (page 4), it is relatively simple, quick, and cheap, to correct an error in
a requirements statement if that error is discovered during review of that statement,
and before any further stages have begun; and it is also fairly simple, quick, and
cheap to correct a coding error during testing. It is, however, unlikely to be either
simple, quick, or cheap to correct an error in requirements that is only discovered
during system test. Major redesign may be required, and wholesale changes neces-
sitated. Any attempt to correct the problem by a “quick fix” is likely to generate
even more problems in the long run.

For these reasons, testing and evaluation of requirements, specifications, and
design documents may be considered a very wise investment. Of the testing meth-
ods we have described, only structured walk-throughs are likely to be feasible if the
requirements and specification documents are informal, natural-language texts. If
requirements and specifications are presented in some semi-formal design language,
then limited anomaly detection and mathematical verification may be feasible, and
possibly simulated execution also. If fully formal requirements and/or specifications
are available, then quite strong forms of anomaly detection, mathematical verifica-
tion, and even dynamic testing may be feasible.

In the following sections, we will briefly touch on some of these topics.

5.3.1 Requirements Engineering and Evaluation

Many studies of the software life-cycle have concluded that its early stages are
particularly crucial. It is in these early stages that the overall requirements for
a system are identified and the basic design of the system is specified. Errors or
misapprehensions made at these stages can prove ruinously expensive to correct later
on. Recent studies (e.g., [9, 18]) have shown that errors due to faulty requirements
are between 10 and 100 times more expensive to fix at the implementation stage
than at the requirements stage. There are two main reasons for the high cost of
modifying early decisions late in the life-cycle:

e The changes often have a widespread impact on the system, requiring many
lines of code to be modified. Furthermore, it can be difficult to identify all
of the code requiring attention, resulting in the modification being performed
incorrectly.
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hazards as possible, but does imply that additional procedures may be necessary to
ensure system safety.

The goal of SFTA is to show that the logic contained in the software design
will not produce system safety failures, and to determine environmental conditions
which could lead to the software causing a safety failure. The basic procedure is
to suppose that the software has caused a condition which the hazard analysis has
determined will lead to catastrophe, and then to work backward to determine the
set of possible causes for the condition to occur.

The root of the fault tree is the event to be analyzed, i.e., the “loss event.”
Necessary preconditions are described at the next level of the tree with either an
AND or an OR relationship. Each subnode is expanded in a similar fashion until all
leaves describe events of calculable probability or are incapable of further analysis
for some reason. SFTA builds software fault trees using a subset of the symbols
currently in use for hardware systems. Thus hardware and software fault trees can
be linked together at their interfaces to allow the entire system to be analyzed. This
is extremely important since software safety procedures cannot be developed in a
vacuum but must be considered as part of overall system safety. For example, a
particular software error may cause a mishap only if there is a simultaneous human
and/or hardware failure. Alternatively, environmental failure may cause the software
error to manifest itself. In many previous safety mishaps, e.g., the nuclear power
plant failure at Three Mile Island, the safety failure was actually the result of a
sequence of interrelated failures in different parts of the system.

Fault tree analysis can be used at various levels and stages of software develop-
ment. At the lowest level the code may be analyzed, but it should be noted that
higher levels of analysis are important and can and will be interspersed with the
code level. Thus the analysis can proceed and be viewed at various levels of ab-
straction. It is also possible to build fault trees from a program design language
(PDL) and to thus use the information derived from the trees early in the software
life cycle. When working at the code level, the starting place for the analysis is
the code responsible for the output. The analysis then proceeds backward deducing
both how the program got to this part of the code and determining the current
values of the variable (current state).

An experimental application of SFTA to the flight and telemetry control system
of a spacecraft is described by Leveson and Harvey [86]. They report that the
analysis of a program consisting of over 1250 lines of Intel 8080 assembly code took
two days and discovered a failure scenario that could have resulted in the destruction

of the spacecraft. Conventional testing performed by an independent group prior to
SFTA had failed to discover the problem revealed by SFTA.
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respects the structural properties given in its specification. One advantage of this
style of verification is that it can be performed with complete formality, but without
burdening the user with details. The PegaSys system developed in the Computer
Science Laboratory of SRI [92] supports the use of pictures as formal specifications
of system structure, and hides all the details of theorem proving from the user.

5.2.4 Fault-Tree Analysis

Reliability is not the same as safety, nor is a reliable system necessarily a safe one.
Reliability is concerned with the incidence of failures; safety concerns the occurrence
of accidents or mishaps—which are defined as unplanned events that result in death,
injury, illness, damage to or loss of property, or environmental harm. Whereas
system failures are defined in terms of system services, safety is defined in terms
of external consequences. If the required system services are specified incorrectly,
then a system may be unsafe, though perfectly reliable. Conversely, it is feasible for
a system to be safe, but unreliable. Enhancing the reliability of software, though
desirable and perhaps necessary, is not sufficient for achieving safe software.

Leveson [85, 86, 83] has discussed the issue of software safety at length and
proposed that some of the techniques of system safety engineering should be adapted
and applied to software. First, it is necessary to define some of the terms used in
system safety engineering. Damage is a measure of the loss in a mishap. A hazard
is a condition with the potential for causing a mishap; the severity of a hazard is an
assessment of the worst possible damage that could result, while the danger is the
probability of the hazard leading to a mishap. Risk is the combination of hazard
severity and danger. Software Safety is concerned with ensuring that software will
execute in a system context without resulting in unacceptable risk. One class of
techniques for software safety is concerned with design principles that will reduce
the likelihood of hazardous states; another is concerned with methods for analyzing
software in order to identify any unduly hazardous states. An example of the latter
is “Software Fault Tree Analysis” (SFTA). The description below is adapted from
that in [86].

SFTA is an adaptation to software of a technique that was developed and first
applied in the late 60’s in order to minimize the risk of inadvertent launch of a
Minuteman missile. The first step, as in any safety analysis, is a hazard analysis
of the entire system. This is essentially a listing and categorization of the hazards
posed by the system. The classifications range from “catastrophic,” meaning that
the hazard poses extremely serious consequences, down to “negligible” which denotes
that the hazard will not seriously affect system performance. Once the hazards have
been determined, fault tree analysis proceeds. It should be noted here that in a
complex system, it is possible, and perhaps even likely, that not all hazards can
be predetermined. This fact does not decrease the necessity of identifying as many



38 Chapter 5. Testing

were hired to add self-checks to programs containing a total 60 known faults (there
were 8 different programs, each was given to three students). Only 9 out the 24 self-
checking programs detected any faults at all; those that did find faults found only
6 of the 60 known faults, but they also discovered 6 previously unknown faults (in
programs which had already been subjected to one million test-cases). Sadly, 22 new
faults were introduced into the programs in the process of adding the self-checks.

5.2.3.2 Verification of Limited Properties

A common and familiar example of executable assertions is the “range check” gener-
ally compiled into array subscripting operations. Though a valuable safety net, these
checks can be very expensive when they appear in the inner loops of a program. An
approach which “turns the tables” on the relationship between formal verification
and executable assertions is to prove that subscripting errors, and other simple forms
of run-time error, cannot occur [51]. This is an example of an important variation
on the application of formal verification.

Conventionally, the goal of formal verification is understood to be “proof of
correctness.” We have been careful to make a more careful and accurate statement—
namely, that it provides a demonstration of consistency between a program and its
specification—but we have implicitly assumed that the specification concerned is one
that provides a full description of the functionality required of the program. This
need not be the case, however. The methods of formal verification can be applied
equally well when the specification is a limited, weak, or partial one: instead of
proving that the program does “everything right,” we can attempt to prove only
that it does certain things right, or even that it is does not do certain things wrong.
In fact, the properties proved of a program need not be functional properties at all,
but can be higher order (e.g., “security”), or structural.

The limited properties to be proved may be chosen because of their tractability—
i.e., because formal verification is among the most cost-effective ways of ensuring
those properties—or because of their importance. The absence of array subscripting
errors is an example of the first class; security exemplifies the second. In particular,
security is an example of a “critical property”: a property considered so important
that really compelling evidence must attest to its realization. What constitutes a
critical property is something that can only be determined by the customer (and the
law!), but it will generally include anything that could place human life, national
security, or major economic assets at risk.

Yet another variation on formal verification is to prove properties about the
structural properties of programs. For example, a specification may assert that the
program should have a certain structure, or that a certain structural relationship
should exist among some of its components (e.g., one may use the other, but not
vice-versa). Formal verification of these properties guarantees that the program
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stead of concentrating on what he wants to say, he has to spend all his effort on how
to say it—with the consequent danger that he may fail to say it correctly, and so
fall into the second kind of error. Similarly, the user may have to spend consider-
able ingenuity, not in proving his theorems directly, but in persuading a mechanical
theorem prover to prove them for him. This problem is compounded by the fact
that most verification systems do not allow the user to reason about programs di-
rectly (as he would do if performing the proof by hand), but reduce the question
of consistency to a (generally large) number of (generally lengthy) formulas called
“verification conditions” that rob the user of much of his intuition concerning the
program’s behavior. This latter difficulty should not affect the reliability of the
process (provided the theorem prover is sound), but will adversely affect its eco-
nomics. SRI’s EHDM system attempts to overcome these difficulties by providing
a very expressive specification language and powerful underlying logic (based on
multi-sorted higher order logic) together with the ability to reason about programs
directly (using the Hoare, or relational, calculus) [109].

5.2.3.1 Executable Assertions

The task of proving consistency between a program and its specification is generally
broken down into more manageable steps by embedding assertions at suitable points
in the program text and proving that the assertions will always be satisfied when
the locus of control passes these points during execution. An interesting alternative
to proving the assertions a priori is to test them during execution and to halt the
program with an error message if any assertion fails. This can permit a fairly simple
proof of consistency between a program and the weakened specification “X or fail,”
where “X” was the original specification. Variations on this theme include the use
of executable assertions during conventional dynamic testing [7], and in a dynamic
variant of anomaly detection [29]. In the former case, the presence of the assertions
allows the testing process to probe the “inner workings” of the program, rather
than merely its input-output behavior (recall our discussion of symbolic execution
in Section 5.1.4 on page 31). In the latter case, instrumenting the program with
executable assertions allows data flow anomaly detection to be performed without
requiring a data flow analyzer for the programming language concerned. Of course,
this approach can only perform anomaly detection on paths actually executed.
More radical techniques that have much in common with executable assertions
include “provably safe” programming [6], and the “recovery block” approach to
software fault tolerance—in which an “acceptance test” (effectively an executable
assertion) governs the invocation of alternative program components to replace those
that have failed [5]. An experiment by Anderson [4] showed promise for recovery
blocks (70% of software failures were eliminated, and MTBF was increased by 135% ),
but found that acceptance tests are hard to write. In another study [28], 24 students



36 Chapter 5. Testing

argument is provided to justify the claim that the component satisfies its speci-
fication. If a verification is difficult or unconvincing, the program is revised and
simplified so that the argument for its correctness becomes more perspicuous.

Mathematical verification subsumes structural testing in the Clean Room method-
ology, although functional testing is still performed. However, the major testing
effort performed in the Clean Room is random testing for the purposes of statistical
quality control. Software specifications in the Clean Room methodology include not
only a description of the functions to be supported by the software, but a prob-
ability distribution on scenarios for its use. The Clean Room methodology then
prescribes a testing procedure and a method for computing a certified statistical
quality measure for the delivered software.

The mathematical verification technique used in the Clean Room methodology
is called “functional verification” and is different from that employed in “classical”
mathematical verification. The “rigorous” techniques of Jones [69], and of the Ox-
ford school [56] are based on more conventional forms of mathematical verification
than the Clean Room methodology, and are also more formal, but share much of
their motivation with the Clean Room approach. An empirical evaluation of the
Clean Room methodology has recently been reported by Selby et al [111].

Beyond the techniques described above come the totally formal methods. These
generally employ the assistance of an automated specification and verification en-
vironment: the sheer quantity of detail entailed by complete formality is likely to
render verification less, rather than more, reliable unless mechanical assistance is
employed. Formal specification and verification environments generally provide a
formal specification language, a programming language, a means of reducing the
problem of establishing consistency between a program and its specification to a
putative theorem in some formal system, and a mechanical theorem prover for seek-
ing, or checking, proofs for such theorems. Three or four systems of this type have
been developed [77].

All verification methods are vulnerable to two classes of error. First is the pos-
sibility of a flaw in the verification itself—the demonstration of consistency between
the program and its specification may be flawed, and the two descriptions may, in
fact, be inconsistent. The second class of error arises when the verification is sound,
but irrelevant, because the specification does not reflect the actual user requirements
(i.e., the system may satisfy the verification process, but fail validation)

It is in order to avoid the first class of error that truly formal, and mechanically
assisted, formal verification is generally recommended. There are, however, draw-
backs to this approach. Firstly, in order to be amenable to mechanization, rather
restrictive specification and programming languages, built on a very elementary for-
mal system (usually a variation on first-order predicate calculus), must usually be
employed. Because of their lack of convenient expressiveness, such languages and
logics may make it difficult for the user to say what he really intends—so that in-
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that it remains constructive and purposeful. As the design and its implementation
become understood, the attention shifts to a conscious search for faults. A checklist
of likely errors may be used to guide the fault finding process.

One of the main advantages of structured walk-throughs over other forms of test-
ing is that it does not require an executable program, nor even formal specifications—
it can be applied early in the design cycle to help uncover errors and oversights before
they become entrenched.

5.2.3 Mathematical Verification

Mathematical verification is the demonstration of consistency between two different
descriptions of a program. Usually, one description is the program code itself and
the other its specification, though the method can equally well be applied to two
specifications at different levels of detail. This terminology is entirely consistent
with the notion of “verification” defined in Section 2.1 (page 4), but the presence
of the adjective “mathematical” qualifies this particular style of verification as a
mathematical activity, in which the two program descriptions are treated as formal,
mathematical texts and the notion of “consistency” that is to be demonstrated
between them is also a formal, mathematical one (for example, that of “theory
interpretation” or of a homomorphism).

Mathematical verification can be performed at various levels of formality. As
stated above, mathematical verification means that the process is grounded on for-
mal, mathematical principles. But just as conventional mathematicians do not
reduce everything to the level of Principia Mathematica, so it is entirely reasonable
to perform mathematical verification “rigorously,” but informally—that is to say, in
the style of a normal mathematical demonstration.!

There are many worthwhile points along the spectrum of formality in mathe-
matical verification. At the most informal end is the “Clean Room” methodology
espoused by Mills [91]. Though informal in the sense that the process is performed
manually at the level of ordinary mathematical discourse, the process itself is highly
structured and formalized. Its goal is to prevent faults getting into the software in
the first place, rather than to find and remove them once they have got in. (Hence
the name of the methodology—which refers to the dust-free environment employed
in hardware manufacturing in order to eliminate manufacturing defects.)

The two cornerstones of the Clean Room methodology are mathematical verifi-
cation and statistical quality control. The first requires that precise, formal, speci-
fications are written for all program components and that a detailed mathematical

"What we are calling mathematical verification is often called formal verification; we have chosen
our terminology to avoid having to talk about “informal” formal verification which, if it is not an
oxymoron, is undoubtedly a solecism. Our usage also avoids confusion with some notions of “formal”
verification that are anything but mathematical—the adjective “formal” being used in this case to
refer to a highly structured process of verification.
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of anomalies that are likely to indicate faults include supplying a constant as an
actual parameter to a procedure call in which the corresponding formal parameter
is modified, and subscripting an array with a loop index whose bounds exceed those
declared for the array.

Control flow anomalies include unreachable sections of program, and loops with
no exit. These circumstances indicate certain errors; other control flow anomalies
may merely indicate “bad style”—for example, jumping into the middle of a loop.

Among the most effective of techniques for anomaly detection are those based on
data flow analysis. For example, if it can be determined that the value of a program
variable may be used before it has been given a value (i.e., if there is a path to a use
occurrence that does not pass a def occurrence), then it is very likely that a fault
is present. Dually, def occurrences that do not lead to a subsequent use occurrence
are also suspect, as are paths that have two def occurrences of a variable, with no
intervening use occurrence.

Information flow analysis is related to data flow analysis, but is rather more
sophisticated in tracing the influence between program variables and statements.
For example, in the program fragment

if z = 0 then y := 1 endif

there is no data flow from z to y, but the value of z certainly influences the subse-
quent value of y, and so there is considered to be a flow of information from z to y.
Information flow analysis is used routinely in computer security verification [40, 114];
its application to more general analysis and anomaly detection is promising [12].
Automated tools have been developed to perform detection of anomalies of the
types described above for programs written in a variety of languages [98, 122].

5.2.2 Structured Walk-Throughs

Structured walk-throughs are a method for the manual inspection of program de-
signs and code. The method requires far more than mere “eyeballing”: it is highly
structured and somewhat grueling—its intensity is such that no more than two
two-hour sessions per day are recommended.

As first described by Fagan [45] (see [46] for an update), four participants are
required—the Moderator, the Designer, the Coder/Implementor/, and the Tester.
If a single person performed more than one role in the development of the program,
substitutes from related projects are impressed into the review team. The review
team scrutinizes the design or the program in considerable detail: typically, one
person (usually the coder) acts as a “reader” and describes the workings of the
program to the others, “walking through” its code in a systematic manner so that
every piece of logic is covered at least once, and every branch is taken at least once.
Intensive questioning is encouraged, but it is the Moderator’s responsibility to ensure
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The average size of the test sets needed to achieve this coverage was 12.8, with the
largest being 112. Since the test sets were randomly generated, they were far from
optimal, and contained subsets that provided the same coverage as the whole set.
Using zero-one integer linear programming, the minimum such subsets were found
for each test set. These were found to average only 3.1 in size, with the test set of
size 112 being reduced to only 10. Thus, the suggestion is to generate random test
data until adequate coverage is achieved relative the chosen structural testing crite-
rion (or until further tests result in little increased coverage). Coverage is measured
by instrumenting the program under test. The randomly generated test set is then
reduced to minimum size using zero-one integer linear programming, and the test
results obtained using this subset are examined.

5.2 Static Testing

Dynamic testing is an important method of validation; static testing tends to address
the complementary problem of verification. Static testing subjects the program text
(and its accompanying requirements and specification documents) to scrutiny and
review in order to detect inconsistencies and omissions. The scrutiny may operate
within a single level, in order to detect internal inconsistencies (this is the basis of
anomaly detection, discussed in the next section), or across two levels. In the latter
case, the purpose is to establish that the lower level specification (or program) fully
and exclusively implements the requirements of its superior specification. Every-
thing in a lower level specification should be traceable to a requirement in a higher
level specification; conversely, every requirement should ultimately be realized in
the implementation.

5.2.1 Anomaly Detection

The idea behind anomaly detection is to look for features in the program that
probably indicate the presence of a fault. For example, if a programmer declares a
variable name but never otherwise refers to it, he is guilty of carelessness at the very
least. More ominously, this situation may indicate that the programmer anticipated
a need for the variable early in the programming effort, but later forgot to deal
with the anticipated circumstance—in which case the existence of a genuine fault
may have been detected. Anomaly detection refers to the process of systematically
searching for “suspicious” quirks in the syntactic structure of the program, or in its
control or data flow.

At the syntactic level, the example given above is typical of a very fruitful tech-
nique: searching for identifiers that are declared but not used. The dual problem of
identifiers that are used but not identified usually violates the definition of the pro-
gramming language concerned and will be caught by its compiler. Other examples
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indicates the paths he wishes to explore and the symbolic execution system asserts
the necessary truth of the appropriate test predicates.

The output produced by a symbolic execution system consists of the symbolic
values accumulated in its variables through execution of a selected path. The pro-
grammer can compare these values with those expected. This is very convenient
and appropriate for some computations, less so for others. For example, How-
den [61] cites a subroutine to compute the sine function using the Maclaurin series
sin(z) = x— g—? + gg—? —... Twoiterations round the main loop in the subroutine yield
the symbolic value X-X**3/6+X*%5/120 for the variable SUM in which the result is
accumulating. This provides much more useful information than would the output
values for a couple of isolated points.

Another use for symbolic execution is to help partition the input domain by the
execution paths invoked. This is helpful in the generation of test data to satisfy path
coverage criteria. Symbolic execution systems and their applications are described
by several authors [61, 78]; one of the first such systems was developed in the
Computer Science Laboratory of SRI [21].

5.1.5 Automated Support for Systematic Testing Strategies

Given a systematic test selection criterion, the question naturally arises: how does
one generate test data satisfying the criterion? For functional testing, there seems
little alternative to generating the data by human inspection: generally the require-
ments and design documents from which functional test data are derived are not
formal and not amenable to mechanical analysis. However, it is feasible that auto-
matic test data selection could be performed once human inspection had performed
the classification of the input domain: that is to say, human skill would be used to
identify the primitive classifications, but the generation of combinations of elements
of each classification would be performed mechanically.

Unlike functional testing, structural testing is ideally suited to automation. The
program text is a formal object and well suited to systematic exploration. Unfortu-
nately, considerable computation is needed to calculate the input that will exercise
a particular path: symbolic execution is generally employed in order to derive the
“path predicates” associated with the path, then solutions must be found to the
systems of numerical inequalities that they induce. Consequently, most test case
generators are severely limited in the class of programs and/or in the class of test
criteria that they support. Ince [67] provides a modern survey of the field and also
suggests that systematic use of randomly generated test data could provide very
good coverage at low cost. The idea, which is elaborated in a short note [68], starts
from the observation that relatively small sets of random test data seem to provide
quite good coverage [43]. For example, with ten programs ranging in size from 12 to
102 branches, random test data achieved an average branch coverage of 92.80% [68].
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values +k and —k, where k is a very large value, are likely to suggest themselves.
But if the function is used in the context

if # > -2 then f(z) endif,

the test value —k will not exercise f at all, and faults manifest by negative values
for z, for example, will remain undiscovered. Given its contezt, appropriate test
values for f might be —2 4+ ¢ and +k.

If a formal specification is available for a program, it may be possible to derive a
functional testing strategy from that specification in a highly systematic fashion [57].
Other systematic functional testing strategies are described by Mandl [87] and by
Ostrand and Balcer [99].

5.1.4 Symbolic Execution

The model of testing described so far assumes that test data are presented to the
program and the results produced are compared with those expected. In practice,
however, programmers do not merely examine the final output of the program, but
often instrument or modify the program under test so that traces of its control flow
and of the intermediate values of its variables are generated during execution. These
traces greatly assist the programmer in determining whether the actual behavior of
the program corresponds to that intended. Since they provide a peek into the inner
workings of the program, traces often yield much more insight than the single datum
points provided by tests that only consider input-output values.

Symbolic Execution constitutes a systematic technique for generating informa-
tion about the inner workings of a program. The idea is to allow program variables
to take symbolic values and to evaluate the functions computed by program state-
ments symbolically also. Symbolic execution bears a similar relationship to conven-
tional execution as algebra does to arithmetic. Consider, for example, the following
(Fortran) program fragment from a subroutine to compute the sine of an angle:

1=3
TERM=TERM*X**2/ (I*(I-1))
SUM=SUM+ (-1) ** (I/2)+*TERM

We can compute the final values of variables I, TERM and SUM, given the initial
assignments TERM=SUM=X to be I=3, TERM=X**3/6, and SUM=X-X**3/6. The process
performed, statement by statement, is to substitute the current symbolic values
into each variable in the right hand side of each assignment statement, simplify the
resulting expression, and let this become the new symbolic value of the variable on
the left hand side. In a full symbolic execution system, it is necessary to be able
to carry the computation forward through branches. Typically, the programmer
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some subsequent c-use should be included. The all-c-uses/some-p-uses criterion is

defined dually.

The all-uses criterion is a comprehensive one but, like the all-paths criterion, may
require an excessive, or infinite, number of test cases. The all-defs criterion seems
an attractive compromise from this point of view. Systematic test selection criteria
should surely draw on both data and control flow perspectives—so a very reasonable
criterion would seem to be one that encompassed both all-defs and all-edges. Rapps
and Weyuker [100] showed that these are independent criteria—mneither implies the
other. This tends to confirm the belief that both are important, but complicates
test selection since two very different criteria are involved. It would be nice if
a single criterion could be found that would include both all-defs and all-edges.
Rapps and Weyuker [100] showed that all-p-uses/some-c-uses has this property
and recommended its use. Ntafos [97] provides a comprehensive comparison of the
relative coverage of these and other structural testing strategies. Clarke [33] provides
a more formal examination.

5.1.3.2 Functional Testing

Functional testing selects test data on the basis of the function of the program,
as described in its requirements, specification, and design documents. Generally
speaking, the detailed characteristics of the program itself are not considered when
selecting test data for functional testing, though general aspects of its design may

be.

Functional testing treats the program as a “black box” which accepts input, per-
forms one of a number of possible functions upon it, and produces output. Based on
the relevant requirements documents, classifications and groupings are constructed
for the input, output, and function domains. Test data are then constructed to ex-
ercise each of these classifications, and combinations thereof. Typically, an attempt
is made to select test data that lie well inside, just inside, and outside each of the
input domains identified. For example, if a program is intended to process “words”
separated by “whitespace,” we might select test data that consists of zero words,
one word, several words, and a huge number of words. Similarly, we would select
words consisting of but a single letter, a few letters, and very many letters—not
to mention words containing “illegal” letters. The “whitespace” domain would be
explored similarly.

Functional testing for a given program may take many forms, depending on which
of its requirements or design documents are used in the analysis. Howden [63] argues
that for maximum effectiveness, functional testing should consider the “high-level”
design of a program, and the context in which functions will be employed. For
example, if a particular function f(2) has the domain z € (—o00,00), then the test
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exercised. In terms of the control flow graph of the program, the first of these
criteria requires that all nodes must be visited during testing; the second requires
that all edges must be traversed, and properly includes the first (unless there are
isolated nodes—which surely represent errors in their own right).

Test data that simply visits all nodes, or traverses all edges, may not be very
effective: not many faults will be so gross that they will be manifest for all execu-
tions of the offending statement. Generally, faults are manifest only under certain
conditions, determined by the context—that is to say, the values of the accessible
variables—in which the offending statement is executed. Context is established in
part by the execution path taken through the control flow graph; the path testing
criterion requires test data that will exercise all possible paths through the program.

There are (at least) two problems with the all-paths criterion. Firstly, a path
does not uniquely establish an execution context: two different sets of input values
may cause the same execution path to be traversed, yet one set may precipitate a
failure while the other does not. Secondly, any program containing loops has an
infinite number paths. Some further equivalence partitioning is therefore needed.
One plausible strategy is to partition execution paths through each cycle in the
control flow graph into those involving zero, one, and many iterations.

A more sophisticated strategy considers the data flow relationships in the pro-
gram. Data flow analysis, which was first studied systematically for its application
in optimizing compilers, considers how values are given to variables, and how those
values are used. Fach occurrence of a variable in a program can be classified as a
def, or as a use: a def occurrence (for example, an appearance in the left hand side
of an assignment statement) assigns a value to a variable; a use occurrence (for ex-
ample, an appearance in the right hand side of an assignment statement) makes use
of the value of a variable. Use occurrences may be further distinguished as c-uses
(the value is used in a computation that assigns a value to a variable) and p-uses
(the value is used in a predicate that influences control flow). For example, in the
program fragment B

if z = 1 then y := 2z endif,

x has a p-use, z a c-use, and y a def.

Rapps and Weyuker [100] proposed a family of path selection criteria based on
data flow considerations. The all-defs criterion requires that for every def occurrence
of, say, variable z, the test data should cause a path to be traversed from that def
occurrence to some use occurrence of z (with no intervening def occurrences of z).
The all-p-uses criterion is similar but requires paths to be traversed from that def
occurrence to every p-use occurrence of z that can be reached without intervening
def occurrences of z. Definitions for the criteria all-c-uses, and all-uses are similar.
A hybrid criterion is all-p-uses/some-c-uses—this is the same as all-p-uses, except
that if there are no p-uses of x subsequent to a given def occurrence, then a path to
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because it captures the basic idea underlying all attempts to create thorough test
strategies, namely the search for test criteria that are both reliable and valid, yet
economical in the sense that they can be satisfied by relatively small test sets.

Unfortunately, there are several problems with the practical application of these
definitions [121]. First of all, the concepts of reliability and validity are not inde-
pendent. A test selection criterion is valid if, given that the program is faulty, at
least one test set satisfying the criterion is unsuccessful. Therefore, if a test selection
criterion is invalid, all test sets that satisfy it must be successful. Hence they will all
give the same result, and so the criterion is reliable. Thus, all test selection criteria
are either valid or reliable (or both) [121]. (Note also that if /' is correct, then all
criteria are both reliable and valid for F.)

Next, the concepts of validity and reliability are relative to a single, given pro-
gram. A criterion that is valid and reliable for program F may not be so for the
slightly different program F’. Furthermore, since I’ may result from correcting a
bug in F, the reliability and validity of a test selection criterion may not be preserved
during the debugging process.

A plausible repair to this deficiency is to construct modified definitions which
quantify over all programs. Thus, a test selection criterion is said to be uniformly
valid if it is valid for all programs F, and uniformly reliable if it is reliable for all
programs F. Unfortunately, a criterion is uniformly reliable if and only if it selects
a single test and uniformly valid if and only if the union of the test sets that satisfy
it is the entire input space D). Hence a criterion is uniformly reliable and valid if
and only if it selects the single test set D. Thus we see that the notions of uniform
reliability and validity are unhelpful [121]. A more recent attempt to axiomatize the
notion of software test data adequacy is described by Weyuker [120].

In theory, the construction of a reliable and valid test selection criterion for a
program is equivalent to proving the formal correctness of that program—a very hard
problem. In practice, constructing such a criterion is virtually impossible without
some knowledge, or at least some assumptions, about the faults that it may contain.
Thus, the search for a theoretical basis for thorough test selection has shifted from
the original goal of demonstrating that no faults are present, to the more modest
goal of showing that specified classes of faults are not present. In practice, the goal
is often reduced to that of finding as many faults as possible. This is accomplished
by systematic exploration of the state space based on one (or both) of two strategies
known as structural testing, and functional testing, respectively.

5.1.3.1 Structural Testing

Structural testing selects test data on the basis of the program’s structure. As a
minimum, test data are selected to exercise all statements in the program; a more
comprehensive criterion requires that all outcomes of all decision points should be
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5.1.3 Thorough Testing

The motivation behind random testing is find and remove the most costly faults
(generally interpreted as those that most frequently lead to operational failure) as
quickly and as cheaply as possible. Test selection without replacement and equiva-
lence partitioning may be used to enhance the testing compression factor and hence
the cost-effectiveness of the process. The motivation behind what we will call thor-
ough testing, on the other hand, is to find all the faults in a program (as efficiently
as possible). The theoretical framework for thorough testing was established by
Goodenough and Gerhart in a landmark paper [52].

Let I’ denote the program being considered, and D its input space. If d € D
then ok(d) denotes that I' behaves correctly when given input d. We say that

the test set T C D is successful if I behaves correctly on all its members, that

is successrFuL(T) ef (Vt € T : ok(t)). A correct program is one that behaves

correctly throughout its input space—i.e., one that satisfies successruL(D). A
faulty program is one that is not correct—i.e., one that satisfies =successruL(D).
A thorough test set is one which, if successful, guarantees that the program is correct,
that is

THOROUGH(T') def SUCCESSFUL(T) D SUCCESSFUL(D).

If C' is a test selection criterion and the test set T satisfies C', then we write
saTISFIES(T, C'). We would like test criteria to be reliable and valid. A criterion is
reliable if all test sets that satisfy it give the same result:

RELIABLE(C') ef (V11,15 € D : saTisFiEs(Ty, C') A sATISFIES(T,, C)

D sUCCESSFUL(T}) = succEssrUL(Ty)).

A criterion is valid if it is capable of revealing all faulty programs. That is, if F is
faulty, then there should be some T that satisfies ' and fails on [

VALID(C') ef —SUCCESSFUL(D) D (31" : saTisries(T, C') A =succEsSFUL(T)).

Given these definitions, Goodenough and Gerhart were able to state the Funda-
mental Theorem of Testing:

(37, C : RELIABLE(C') A VALID(C') A sATISFIES(T', C') A SUCCESSFUL(T))
D SUCCESSFUL(D).

In words, this says that if a successful test set satisfies a reliable and valid criterion,
then the program is correct. Another way of stating this result is that a test is
thorough if it satisfies a reliable and valid test criterion.

This result is called “Fundamental,” not because it is profound (indeed, its
proof is a trivial consequence of the definitions, and is omitted for that reason), but
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so the expected total time to cover the input space during operation is Ek 1 ppk Tk
min

Since only one execution of each input is required during test (Wlthout replacement),

the execution time to cover the input space during test is only Ek | Tk> and so the
testing compression factor is given by:

Zlfl Pk
C= WA (5.1)

k=1Tk
If all 7 are equal, then (5.1) simplifies to

op——
|I| * Pmin

If pg is assumed to be inversely proportional to k, then it can be shown that as |[|
grows from 10° to 10%, C' grows slowly from just less than 10 to a little over 20.

If a value for the testing compression factor can be calculated or estimated using
the methods given above, then the reliability formulas of Section 3.1 (page 8) can
be employed to extrapolate from the testing to the operational phase if execution
times are multiplied by C' (alternatively, failure intensities can be divided by C') in
order to convert observations made during test to those expected during operation.

The pure random test selection strategy described above assumes that all failures
have equal cost. In practice, some failures may be more expensive than others;
some may be unconscionable (perhaps endangering human life). In these cases,
the random test strategy may be modified in order to attempt to identify and
provide early tests of those inputs which might provoke especially costly failures.
The technique of software fault-tree analysis may be useful in identifying such critical
inputs [86, 83]-see Section 5.2.4.

5.1.2 Regression Testing

The desirability of test selection without replacement is considerably diminished
if we admit the possibility of imperfect debugging. Under the assumption that
debugging is imperfect, the repair that is initiated following each failure may not
only fail to remove the fault that caused it, but may actually introduce new faults.
These faults may cause failure on inputs that previously worked satisfactorily. Under
a regression testing regime, previously tested inputs are repeated whenever a repair
(or other modification) is made to the program. Under strict regression testing,
all previous tests are repeated; under less strict regimes, some subset of those tests
(usually including all those that provoked failure) are repeated. Models of the
software testing process under various assumptions are discussed by Downs [42].
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or cases that they believe the designers may have overlooked. This tactic may be
successful in finding bugs, but because those bugs are manifested by rare or unusual
inputs, they may not be encountered during normal operation and may therefore
contribute little to the incidence of operational failures.

5.1.1 Random Test Selection

This argument may be developed into a case for random testing. If individual fail-
ures are all assumed to have similar cost, then the cost of unreliability is proportional
to failure intensity. Since the cost of testing is primarily influenced by the execution
time taken to perform the tests themselves, the optimum test strategy is one which
yields the greatest reduction in failure intensity for a given amount of execution time
devoted to testing. This argues for concentrating on finding and eliminating those
faults that lead to failures on commonly occurring inputs—and therefore suggests
the strategy of selecting test cases randomly, with a probability distribution equal
to that expected to occur during operation. This approach has the advantage that
it essentially duplicates the operational profile and therefore yields failure intensity
data that approximates that which would have been found if the program had been
released into operation at that time. The failure intensity data obtained during test-
ing should therefore provide accurate estimates for the reliability formulas developed
in Section 3.1 (page 8).

A criticism of the random testing strategy is that it is wasteful: the same in-
put may be tested several times. However, it is usually easy to record each input
and to avoid repeating tests already performed. By reference to the classic sam-
pling problems of statistics, such methods are often called “test selection without
replacement.” If tests are selected and performed without replacement, then the
probability of selecting any particular input value becomes uniform. However, the
order in which inputs are selected will still follow their expected probability of oc-
currence in operation.

Although random test selection without replacement should be more cost-effective
than a purely random strategy, such tests do not follow the expected operational
profile and therefore do not provide an accurate estimate of the failure intensities
to be expected in practice. It is possible to take account of this divergence between
the testing and the operational profiles as follows.

Define C', the testing compression factor to be the ratio of the execution time
required to cover the entire input space during operation, to that required during
test. Let |I]| be the size (cardinality) of the input space, py the probability of
occurrence of input k& during operation, pumi, the probability of occurrence of the
least likely input, and let 7, be the execution time required for input k. If the entire
input space is covered during operation, then the least likely input must be executed
at least once. Hence the expected frequency of execution of input & is pi/pmin and
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Testing

Testing subjects software to scrutiny and examination under the controlled condi-
tions of a “test phase” before it is released into its “operational phase.” The purpose
of testing is to discover faults and thereby prevent failures in the operational phase.
Discussion of the efficiency of a test strategy must relate the actual cost of testing
to the avoided costs of the operational failures that are averted.

Testing can take two forms: static, and dynamic, though the unadorned term
“testing” generally refers only to the latter. Static testing is that which depends
only on scrutiny on the program text (and possibly that of its specifications and
requirements also). Dynamic testing, on the other hand, observes the behavior of
the program in execution. We will describe dynamic testing first, then three variants
of static testing: anomaly detection, code walk-throughs, and formal verification.

5.1 Dynamic Testing

The input space of any interesting program is so large (if not infinite) that it is
infeasible to examine the behavior of the program on all possible inputs. Given that
only a fraction of the total input space can be explored during testing, systematic
testing strategies attempt to maximize the likely benefit while minimizing the cost
of testing. Two tactics underlie most systematic testing strategies: the first is to
reduce cost by partitioning inputs into groups whose members are likely to have
very similar behavior, and then testing only one member from each group (this is
called “equivalence partitioning”); the second is to maximize benefit by selecting test
data from among inputs that are considered to have an above average likelihood of
revealing faults. The second of these tactics is not universally admitted to be a good
idea: the divergence of opinion occurs between those who are primarily interested in
enhancing reliability (actually, in reducing the cost of unreliability), and those who
are interested in finding bugs. Concentration on input states believed to be fault-
prone often leads testers to examine the boundaries of expected ranges of values,

24
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Effort metrics are rather less controversial and easier to validate than complexity
metrics—their purpose, if not their effectiveness, is clear: to enable the cost and
duration of a programming task to be estimated in advance. However, the efficacy
of existing effort metrics seems dubious at best. The COCOMO model, for example,
seems to perform very poorly when applied to projects other than those used in its
own validation. Kemerer [75], for example, reported an average error of over 600%,
and also found that the Basic COCOMO mode outperformed the more complex
Intermediate and Detailed modes. Conte et al. [36] suggest that the COCOMO
model is too complicated, and involves too many parameters that require estimation.
Kemerer’s data [75] suggests that a much simpler “function count” method, similar
to the Software Science metric, actually performs better than COCOMO.
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Kearney et al. also criticise the fact that complexity measures are developed
without regard to the intended application of the measure. There is a significant
difference between prescriptive uses of such metrics (using them to “score” program-
mer’s performance), and merely descriptive uses. A much greater burden of proof
attends the former use, since we must be sure that techniques that improve the
score really do improve the program. Kearney et al. find much to criticize in the
methodology and interpretation of experiments that purport to demonstrate the sig-
nificance and merit of selected complexity measures, and thereby cast serious doubt
on the wisdom of using complexity metrics in a prescriptive setting.

Criticism such as that levied by Kearney and his colleagues against much of
the work in complexity metrics is acknowledged by the more thoughtful practioners.
Shen, for example, introducing a magazine column dedicated to metrics [113], writes:

“Metrics researchers in the 1980’s are generally less optimistic than their
colleagues in the 1970’s. Even though the pressure to find better metrics
is greater because of the greater cost of software, fewer people today
are trying to formulate combinations of complexity metrics that they
relate to some definition of productivity and quality. Instead they set
very narrow goals and show whether these goals are met using focussed
metrics ...one narrow goal would be to test software thoroughly. An
appropriate metric might be some measure of test coverage.”

The issue addressed in this report is software quality; size and complexity metrics
are of interest only in so far as they contribute to the estimation or improvement
of software quality. As far as estimation is concerned, metrics research does not
yet seem able to provide accurate predictions for the properties of economic interest
(number of faults, cost to maintain or modify) from the measurable properties of the
program itself. The most accurate and best validated predictive techniques seem
to be the crudest—for example 20 faults per KLOC for a program entering unit
test [93, page 121]. Even these techniques are likely to need considerable calibration
and re-validation when used in new environments.

The application of software metrics to improving (as opposed to predicting) the
quality of software is even more questionable. Given their lack of substantiation, the
use of such metrics prescriptively seems highly ill-advised [74]. Their least contro-
versial application might be as components of “program comprehension aids.” By
these, we mean systems that assist a programmer to better comprehend his program
and to master its complexities—especially those due to scale. Examples of such aids
range from simple prettyprinters and cross-reference generators, to more semanti-
cally oriented browsers. Descriptive complexity metrics might assist the programmer
in identifying parts of the program worthy of restructuring or simplification in much
the same way that profiling tools help to identify the places where optimization can
be applied most fruitfully.
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the original Intermediate model. For all cost drivers, a “nominal” value corresponds
to a multiplier of 1.00.

Not all programs are written from scratch; the effort to develop a program that
includes a substantial quantity of reused code should be less than one of comparable
total size that consists of all new code. Various modifications have been suggested
to accommodate this factor; the simplest is to treat the total size of the program
(Se) as a linear combination of the number of lines of new (5,,) and “old” code (S,):

Se = Sn + kSm

where k is an appropriate constant—a value of & = 0.2 has been found reason-
able [36], though this could vary if the “old” code requires significant adaptation.

4.4 Discussion of Software Metrics

The attempt to measure and quantify the properties and characteristics of programs
is a laudable one—and one on which considerable effort has been expended (see, for
example, the survey and bibliography by Waguespack and Badlani [118]). However,
the substance and value of most of this work is open to serious question. Kearney
et al. marshal the arguments against the standard complexity measures in their
critique [74]. Firstly, they observe that existing complexity measures have been
developed in the absence of a theory of programming behavior—there is no compre-
hensive model of the programming process that provides any intellectual support
for the metrics developed. Any reasonable theory of programming behavior would
consider not only the program, but also the programmer (his skill and experience),
the programming environment, and the task that the program is to accomplish.
Yet existing complexity measures consider only the program itself, and ignore its
context. Furthermore, most complexity measures examine only the surface features
of programs—their lexical and syntactic structure—and ignore the deeper seman-
tic issues. Indeed, most metrics research seems stuck in the preoccupations of the
1960’s: it equates complexity with control flow (c.f. the “structured programming”
nostrums of the time) and seems unaware that the serious work on programming
methodology over the last 15 years has been concerned with the deeper problems of
hierarchical development and decomposition, and with the issues of data structur-
ing, abstraction, and hiding. Some more recent work does attempt to address these
issues—for example, Bastani and Iyengar [10] found that the perceived complexity
of data structures is strongly determined by the relationship between the concrete
data representation and its more abstract specification. They conjectured that a
suitable measure for the complexity of a data structure is the length of the map-
ping specification between its abstract and concrete representations—i.e., a semantic
measure.



20 Chapter 4. Size, Complexity, and Effort Metrics

‘ Rating ‘ Multiplier ‘
Very Low 0.75
Low 0.88
Nominal 1.00
High 1.15
Very High 1.40

Figure 4.1: Multipliers for the Reliability Cost Driver in the COCOMO Model

this approach is the “Delphi” technique in which several people prepare independent
estimates and are then told how their estimates compare with those of the others. (In
some variants, they discuss their estimates with each other). Next, they are allowed
to modify their estimates and the process is repeated until the estimates stabilize.
Often the estimates converge to a very narrow range, from which a consensus value
may be extracted.

A composite cost estimation technique (which combines the use of expert judg-
ment with statistical data fitting) is the COCOMO (COunstructive COst MOdel) of
Boehm [17, 16]. There are three “levels” of the COCOMO model; the most success-
ful seems to be the (modified) Intermediate Level. There are also three “modes”
to the COCOMO model—for simplicity we will pick just one (the “semidetached”
mode). This variant of the COCOMO predicts development effort £ in man-months
by the equation

16
E=3.0x85"x[[m

=1

where S is the estimated KLOC and each m; is the multiplier assigned to a particular
“cost driver.” Development time (in months) can be obtained from the COCOMO
effort measure by the equation 7 = 2.5E°3%, Each of the 16 cost drivers is evaluated
by experts on a five point descriptive scale, and a numerical value for the correspond-
ing multiplier is then extracted from a table. The table for the “reliability” cost
driver is given in Figure 4.1. The 16 cost-drivers used in the (modified) Intermediate
COCOMO model are: required software reliability, data base size, product complex-
ity, execution time constraint, main storage constraint, virtual machine volatility,
computer turnaround time, analyst capability, applications experience, programmer
capability, virtual machine experience, programming language experience, modern
programming practice, use of software tools, required development schedule, and
volatility of requirements. It is the presence of the last cost driver (volatility of
requirements) that distinguishes the modified Intermediate COCOMO model from
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4.3 Cost and Effort Metrics

Cost and effort metrics attempt to measure, or predict, the eventual size of a pro-
gram, the cost required to construct it, the “effort” needed to understand it, and
other such interesting and important attributes.

Halstead’s “Software Science” postulates several composite metrics that purport
to measure such attributes. Halstead hypothesized that the length of a program
should be a function of the numbers of its distinct operands and operators. That
is, it should be possible to predict N, the length of a program, from 7, and n;—the
numbers of its distinct operators and operands, respectively. Halstead encoded a
relationship between these quantities in his famous “length equation”:

N = 1y logym + 12 log, .

Going further, Halstead defined the “potential volume” V*, of a program as
the volume of the program of minimal size that accomplishes the same purpose
as the original. The “difficulty” D of a program is then defined by D = V/V*,
and its “level” L is defined as the reciprocal of difficulty. It is then but a small
step to hypothesize that the effort required to implement a program should be
related to both its length and its difficulty, and to define the “effort” F required
to implement a program by E = D x V(= V?/V*). Halstead claimed that F
represented “elementary mental discriminations” and, based on the suggestion of a
psychologist, J. Stroud, that the human mind is capable of making only between 5
and 20 elementary mental discriminations per second, he then proposed the equation
T = E/18, where T is the time required to construct a program in seconds.

The practical application of these last few formulae depend on a method for com-
puting or estimating the potential volume, V*, for a program. Halstead proposed
that potential volume could be defined by

V™ = (24 n3)logy(2 + 1),

where 73 is the number of input/output operands, and estimated by

2
vi= R oy
mN2
Using this estimation, we obtain
p="N2 4 oy B
217y 21

In contrast to the scientific pretensions of Software Science, a widely practised
method for predicting the time and effort required to construct a software project is
simply to ask the opinions of those experienced in similar projects. A refinement of
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of “diamonds” (DC') minus one (for the exit node). Thus e = n + DC' — 1. Hence

e—n+2
= (n+DC—-1)—n+2
= DC+ 1.

=
|

Thus, the highfalutin cyclomatic complexity measure turns out to be no different
than the elementary decision count!

Related to syntactic complexity measures are “style” metrics [13, 14, 55, 102,
101]. These seek to score programs on their adherence to coding practices considered
superior, in some sense. The details of these metrics vary according to the individual
preference of their inventors. Generally, marks are added for instances of “good”
style such as plenty of comments, and the use of symbolic constants, and deducted
for instances of “bad” style such as explicit goto’s, and excessive module length.
Some program style analysis systems also perform limited anomaly detection (e.g.,
variables declared but not used) and incorporate these into their scores. We discuss
anomaly detection separately in Section 5.2.1 (page 33).

4.2.2 Measures of Data Complexity

The simplest data complexity metrics simply count the number of variables used
by a program. Halstead’s 7, (the number of distinct operands) is a slightly more
elaborate measure of the same type. Such metrics only measure the total number
of different variables that are used in the program; they do not indicate how many
are “live” (i.e., must be actively considered by the programmer) in any one place. A
simple definition states that a variable is “live” in all statements lexically contained
between its first appearance and its last. It is then easy to compute the number
of variables that are live at each statement, and hence LV-—the average number of
variables that are live at each statement.

Another approach to quantifying the complexity of data usage is to measure
the extent of inter-module references. The work of Henry and Kafura [59, 58] is
representative of this type. The fan-in of a module may be defined as the number
of modules that pass data to the module, either directly or indirectly; similarly
the fan-out may be defined as the number of modules to which the present module
passes data, either directly or indirectly. The complexity of the interconnections to
the module are then defined as (fan-in x fan-out)?. Henry and Kafura then relate
the overall complexity of a module within a program to both its length and the
complexity of its interconnections by the definition: complexity = SLOC X (fan-in X
fan-out)?.
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4.2 Complexity Metrics

Two similarly sized programs may differ considerably in the effort required to com-
prehend them, or to create them in the first place. Complezity metrics attempt
to quantify the “difficulty” of a program. Generally, these metrics measure some
aspect of the program’s control flow—there being some agreement that complicated
control flow makes for a complex, hard-to-understand, program.

4.2.1 Measures of Control Flow Complexity

The simplest complexity metric is the decision count, denoted DC which can be de-
fined as the number of “diamonds” in a program’s flow chart. A good approximation
to DC' can be obtained by counting the number of conditional and loop constructs
in a program—and this can be reduced to the purely lexical computation of adding
the number of if, case, while and similar keywords appearing in the program.

An objection to this simple scheme is that it assigns a different complexity to
the program fragment

if A and B then X endif
than it does to the semantically equivalent fragment
if A then if B then X endif endif.

This objection can be overcome by defining DC to be the number of elementary
predicates in the program. Both the examples above contain two elementary predi-
cates: A and B.

Much the best-known of all syntactic complexity measures is the cyclomatic
complexity metric of McCabe [88]. This metric, denoted v, is given by v = e — n+ 2,
where € is the number of edges and n the number of nodes in the control flow graph of
the program. The cyclomatic complexity of a program is equivalent to the maximal
number of linearly independent cycles in its control flow graph. (Actually, in the
control flow graph modified by the addition of an edge from its exit point back to
its entry point.) Clearly, the simplest control flow graphs (i.e., those corresponding
to linear sequences of code) have e = n — 1 and hence v = 1. Motivated by testing
considerations, McCabe suggested that a value of v = 10 as a reasonable upper limit
on the cyclomatic complexity of program modules.

Despite their different origins, and the apparently greater sophistication of cyclo-
matic complexity, DC and v are intimately related. Fach “rectangle” in a program’s
flow chart has a single outgoing edge (except the exit node, which has none); each
“diamond” has two outgoing edges. Therefore, the total number of edges in the flow
chart is equal to the total number of nodes in the flow chart (n), plus the number
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obvious objection to these measures is that they do not account for the different
“densities” of different programming languages (e.g., a line of APL is generally
considered to contain more information, and to require more effort to write, than a
line of Cobol), and they do not account for the fact that different lines in the same
program, or lines written by different people, may have very different amounts of
information on them. A straightforward attempt to overcome the latter objection
(and perhaps the former also) is to count syntactic tokens rather than lines.

An early, controversial, and influential system of this type was the “Software
Science” of Halstead [54]. Software Science classifies tokens as either operators or
operands. Operators correspond to the control structures of the language, and to
system and user-provided procedures, subroutines, and functions. Operands corre-
spond to variables, constants, and labels. The basic Software Science metrics are
then defined as follows:

71 the number of distinct operators,
72¢ the number of distinct operands,
Ny: the total number of operators, and

Ny: the total number of operands.

The length of a program is then defined as N = Ny + Ny. It is a matter of
taste, if not dispute, how the multiple keywords of iterative and conditional state-
ments should be counted (e.g., does one count each of while do, and endwhile as
three separate operators, or as a single “while loop” operator). Similarly contro-
versial is the question whether tokens appearing in declarations should be counted,
or only those appearing in imperative statements (opinion currently favors the first
alternative). The Software Science metric N may be converted to SLOC by the rela-
tionship SLOC = N/¢, where ¢ is a language-dependent constant. For FORTRAN,
c is believed to be about 7.

Software Science derives additional metrics from the basic terms. The vocabulary
is defined as n = 1y 4+ n2. Clearly it requires logyn bits to represent each element of
the vocabulary in a uniform encoding, so the number of bits required to represent
the entire program is roughly V = Nlogyn. The metric V is called the volume of a
program and provides an alternative measure for the size of a program.

An alternative attempt to quantify the size of a program in a way that is some-
what independent of language, and that may get closer to measuring the semantic,
rather than the purely syntactic or even merely lexical, content of a program is one
based on function count: that is, a count of the number of procedures and func-
tions defined by the program. Lisp programs are often described in this way—for
example, a medium sized Lisp application might contain 10,000 function definitions.
For some languages (e.g., Ada), the number of modules might be a more natural or
convenient measure than function count.
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Size, Complexity, and Effort
Metrics

In the previous chapter, we have seen that a priori estimates for the reliability of
a program depend on estimates for the number of faults it contains and for its
initial failure intensity. It is plausible to suppose that these parameters may them-
selves be determined by the “size” and “complexity” of the program. Accordingly,
considerable effort has been expended in the attempt to define and quantify these
notions.

Whereas measurements of the static properties of completed programs (e.g., size
and complexity) may help in predicting some aspects of their behavior in execution
(e.g., reliability), similar measurements of “requirements” or “designs” may help to
predict the “effort” or cost required to develop the finished program.

In this chapter we will examine metrics that purport to measure the size, and
complexity of programs, and those that attempt to predict the cost of developing a
given piece of software.

4.1 Size Metrics

The size of a program is one of its most basic and measurable characteristics. It
seems eminently plausible that the effort required to construct a piece of software is
strongly influenced, if not fully determined, by its final size, and that its reliability
will be similarly influenced.

The crudest measure of the size of a piece of software is its length, measured
by the number of lines of code that it contains. A line of code is counted as any
non-blank, non-comment line, regardless of the number of statements or fragments
of statements on the line. The basic unit of program length is the “SLOC”—a single
“Source Line Of Code.” A variant is the “KILOC”—a thousand lines of code. An
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= 18.531n68
= 18.53(4.22)
= 78 CPU-hours.

3.2 Discussion of Software Reliability

Software reliability modeling is a serious scientific endeavor. It has been pursued
diligently by many of those with a real economic stake in the reliability of their
software products—for example, the manufacturers of embedded systems (where
repair is often impossible), and those with enormously stringent reliability objectives
(for example, the manufacturers of telephone switching equipment).

The “Basic Execution Time Model” described here has been validated over many
large projects [93] and has the virtue of relative simplicity compared with many
other models. A similar model, the “Logarithmic Poisson Model,” has been less
intensively applied, but may be preferred in some circumstances. Both of these
models use execution-time as their time base. This is one of the primary reasons for
their greater accuracy over earlier models, which used man-hours, or other human-
oriented measures of time. That execution time should prove more satisfactory is
not surprising: the number of failures manifested should surely be most strongly
determined by the amount of exercise the software has received. Converting from a
machine-oriented view of time to a human-oriented view is often necessary for the
application of the results obtained from the model; ways of doing this are described
by Musa et al. [93].

There are several circumstances that can complicate the application of reliability
models. Reliability is concerned with counting failures, and prediction is based on
collecting accurate failure data during the early stages of a project. These data may
be unreliable, and predications based upon them may be inaccurate, if any of the
following circumstances obtain:

e There is ambiguity or uncertainty concerning what constitutes a failure,

e There is a major shift in the operational profile between the data gathering
(e.g., testing) phase and the operational phase, or

e The software is undergoing continuous change or evolution.

We note that these circumstances which cause difficulty in the application of relia-
bility modeling, also characterize much Al-software development. We will return to
this issue in the second part of the report.
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of code—will lead to failure: particular circumstances may be needed to “trigger”
the bug). For the purposes of estimation, we may assume that fault encounters
are linearly related to the number of instructions executed (i.e., to the duration
of execution and to processor speed), and that failures are linearly related to fault
encounters. Since processor speed is generally given in objectinstructions per second,
we will also assume that the number of object instructions I, in a compiled program
is linearly related to the number of source lines I,. Thus, if ) is the code expansion
ratio (i.e., I,/1s), and R, is the number of object instructions executed in unit time,
then the number of source lines executed in unit time will be given by R; = R,/Q.
Now each source line executed exposes wy/[; faults. Thus wy x R/l faults will be
exposed in unit time. If each fault exposure leads to K failures, we see that the
initial failure intensity is given by Ag = K X wg X Rs/Is. Substituting the previously
derived expressions for wy and R, we obtain:

Ao=D x KX % (3.14)

In order to complete the estimation of Ay, we need values for three new parameters:
R,, Q, and K. The first of these is provided by the computer manufacturer, while
the second is a function of the programming language and compiler used. A table
of approximate expansion ratios is given by Jones [70, page 49]. The most difficult
value to estimate is the fault exposure ratio K. Experimental determinations of K
for several large systems yield values ranging from 1.41 x 1077 to 10.6 x 10~ "—a
range of 7.5 to 1, with an average of 4.2 x 1077 [93, page 122].

As an example, of the application of these estimates, consider a 20,000 line
program entering the system test phase. Using D = 6.01 and B = 0.955 as before,
and assuming a code expansion ratio ) of 4, a fault exposure ratio K of 4.2 x 10~
failures per fault, and a 3 MIPS processor, we obtain:

. R,
AO = DXI(Xa

6.01 4.2 3x10°

105 “ 1077 4

= 1.893x 1072 failures per CPU-sec,
= 6.8 failures per CPU-hour.

Given these estimates of the parameters vy and Ag, we may proceed to calculate
how long it will take to reduce the fault intensity to an acceptable level—say 0.1
failures per CPU-hour.

st = Dy /\—P
Ao AF
1261 6.8

n—
6.8 0.1
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‘ Development Phase ‘ Faults/K source lines ‘

Coding 99.50
Unit test 19.70
System test 6.01
Operation 1.48

Figure 3.1: Fault Density in Different Phases of Software Development

Prior to operational data becoming available, however, we can only attempt
to predict values for the parameters of the model, using characteristics of the pro-
gram itself, and the circumstances of its development. The total number of failures
can be predicted as the number of faults inherent in the program, divided by the
fault-reduction factor: vy = wy/B. Dozens of techniques have been proposed for
estimating the number of faults in a program based on static characteristics of the
program itself. These are generally related to some notion of “complexity” of pro-
grams and are described in detail in the following chapter. For the purposes of
exposition, we will use the simplest (yet one of the best) such measures: the length
of the program. There is quite good evidence that faults are linearly related to the
length of the source program. If we let I, denote the length of the program (mea-
sured by lines of source code), and D the fault density (in faults per source line),
then we have

wo =1, xD (3.12)
and I D
s X

Results from a large number of experiments to determine values of DD are sum-
marized in Figure 3.1 (taken from [93, page 118]). Experimental determinations of
the fault-reduction factor range from 0.925 to 0.993, with an average of 0.955 (again,
from [93, page 121]). Thus, an a priori estimate for the number of failures to be
expected from a 20,000 line program entering the system test phase is given by

I, xD

B
20 x 6.01

0.955
= 126 failures.

y =

The initial failure intensity Ay depends upon the number of faults in the program,
the rate at which faults are encountered during execution, and the ratio between
fault encounters and failures (not all fault encounters—i.e., execution of faulty pieces
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100 (1 - e—%lo)
100 (1 - e—l)
100(1 — 0.368)

= 63 failures.

((10)

Additional formulae can be derived to give the incremental number of failures
(6p) or elapsed time (8t) to progress from a known present failure intensity (Ap),
to a desired future goal (Ap):

Su = K—O(AP—AF), and (3.10)
0
_ Mo A
o = oIng- (3.11)

Using the same example as before (90 faults, fault-reduction factor 0.9, initial
failure intensity 10 per CPU-hour), we can ask how many additional failures may
be expected between a present failure intensity of 3.68 per CPU-hour, and a desired
intensity of 0.000454 per CPU-hour:

14
op = /\—O(AP—AF)
0
100
= (368 0.000454)
= 10(3.68)

= 37 failures.

Similarly we may inquire how long this may be expected to take:

0 = —In—

100, 3.68

10 1 0.000454

— 10In8106
10(9)

= 90 CPU-hours.

The reliability model just developed is determined by two parameters: the initial
fault intensity, Ag, and the total number of failures expected in infinite time, v. In
order to apply the model, we need values for these two parameters. If the program
of interest has been in operation for a sufficient length of time that accurate failure
data are available, then we can estimate the values of the two parameters. Maximum
likelihood or other methods of statistical estimation may be used, and confidence
intervals may be used to characterize the accuracy of the estimates.
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where vy = wp/B is the total expected number of failures, and
Galt) = 1 — B [ zal@) do
is the cumulative distribution function of the time to remove a fault. Similarly
A(t) = voga(t)

where g,(¢) is the probability density function associated with G, (t).

The consequent modifications to the important equations (3.4-3.6) are simple:
merely replace wg (the number of faults) by vy (the total number of failures ex-
pected). Thus we obtain

At) = Noe ™50, (3.7)
w(t) = w (1 — e_i_gt) , and (3.8)
M) = Ao (1-— fg) . (3.9)

As an example of the application of these formulae, consider a system containing
90 faults and whose fault-reduction factor is 0.9. The system may be expected to
experience 100 failures. Suppose its initial failure intensity was 10 failures per CPU-
hour and that it has now experienced 50 failures. Then the present failure intensity
should be given by

Alp)

A(B0) = 10 (1_%)
= 5 failures per CPU-hour.

Il
o
(e}
TN
—
|
S =
N

In addition we may ask what the failure intensity will be after 10 CPU-hours and
how many failures will have occurred by that time. For failure intensity we have:

o
At) = dge ™
A(10) = 10e~ 10510

10e~!

= 3.68 failures per CPU-hour,

and for failures we have
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2. The number of faults in the program initially is a Poisson random variable
with mean wg.

3. The hazard rate for all faults is the same for all faults, namely z,().

Under these additional assumptions, it can be shown that

u(t) = woFa(t) (3.1)
where F,(t) is the per-fault failure probability, and
A(t) = wo falt) (3.2)

where f,(¢) is the per-fault failure density.
The final assumption in the derivation of the model is that the per-fault failure
density has an exponential distribution. That is,

falt) = g™ (3.3)

(Note this implies that the per-fault hazard rate is constant, that is z,(f) = ¢).
Substituting (3.3) into (3.2), we obtain

A(t) = wope™?'.

Letting Ao denote A(0), we obtain ¢ = Ag/wy and hence

Ao

A(t) = Age =0, (3.4)

Similarly, from (3.1) we obtain

p(t) = w0 (1 — 6—3—21‘) . (3.5)

Some additional manipulation allows us to express failure intensity, A, as a function
of failures observed, u:
A(p) = Ao (1 — i) : (3.6)
“o
The assumption that the fault responsible for each failure is identified and re-
moved immediately the failure occurs is clearly unrealistic. The model can be mod-
ified to accommodate imperfect debugging by introducing a fault reduction factor
B. This attempts to account for faults that cannot be located, faults found by
code-inspection prior to causing failure, and faults introduced during debugging, by
assuming that, on average, each failure leads to the removal of B faults (0 < B < 1).
(Conversely, each fault will lead to 1/B failures.) It can then be shown that

p(t) = rolia(t)
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and reliability models are based on the mathematics of random or stochastic pro-
cesses. Because failures generally provoke (attempted) repair, the number of faults
in a program generally changes over time, and so the probability distributions of the
components of a reliability model vary with time. That is to say, reliability models
are based on nonhomogeneous random processes.

A great many software reliability models have been developed. These are treated
systematically in the first textbook to cover the field, which has just been pub-
lished [93]. The most accurate and generally recommended model is the “Basic
Execution Time Model.” We outline the derivation of this model below.

3.1 The Basic Execution Time Reliability Model

The starting point for this derivation (and that of most other reliability models)
is to model the software failure process as a NonHomogeneous Poisson Process
(NHPP)—a particular type of Markov model.

Let M(t) denote the number of failures experienced by time t. We make the
following assumptions:

1. No failures are experienced by time 0, that is M(0) = 0,

2. The process has independent increments, that is the value of M (t+0t) depends
only on the present value of M(¢) and is independent of its history,

3. The probability that a failure will occur during the half-open interval (¢, ¢+ §t]
is A(2).0t 4 o(6t), where A(t) is the failure intensity of the process.

4. The probability that more than one failure will occur during the half-open
interval (¢,¢ 4+ &t] is o(6t).

If we let P, ;) denote the probability that M(t) is equal to m, that is:
Pty = Prob[M(t) = m]

then it can be shown that M(¢) is distributed as a Poisson random variable. That
is:

where

Next we make some further assumptions:

1. Whenever a software failure occurs, the fault that caused it will be identified
and removed instantaneously. (A more realistic assumption will be substituted
later).



0.83 for 8 hours when employed by a hacker. To give an idea of the reliabilities
demanded of flight-critical aircraft systems (in which software components are in-
creasingly important), the FAA requires the probability of catastrophic failure to be
less than 10~ per 10-hour flight for a life-critical civil air transport flight control
system; the US Air Force requires the probability of mission failure to be less than
10~7 per hour for military aircraft.

From the basic notion of reliability, many different measures can be developed
to quantify the occurrence of failures in time. Some of the most important of these
measures, and their interrelationships are summarized below:

Reliability, denoted by R(t), is the probability of failure-free operation up to time
t.

Failure Probability, denoted by F'(t), is the probability that the software will
fail prior to time ¢t. Reliability and failure probability are related by R(t) =
1= F(t).

Failure Density, denoted by f(t), is the probability density for failure at time ¢.
It is related to failure probability by f(t) = %F(t). The probability of failure
in the half-open interval (¢,t 4 6t] is f(t).5t.

Hazard Rate, denoted by z(t), is the conditional failure density at time ¢, given
that no failure has occurred up to that time. That is, z(t) = f(t)/R(¢).

Reliability and hazard rate are related by
R(t) — fot z(@) dx‘

An important special case occurs when the hazard rate is a constant ¢. In
this case the failure density has an exponential distribution f(t) = ¢e~!, the
failure probability is given by F(t) = 1 — e~?" and the reliability is given by
R(t) = e~

Mean Value Function, denoted by (), is the mean number of failures that have
occurred by time ¢.

Failure Intensity, denoted by A(%), is the number of failures occurring per unit
time at time ¢. This is related to the mean value function by A(t) = £u(t).
The number of failures expected to occur in the half-open interval (¢, ¢+ dt] is

A(t).t.

Failure intensity is the measure most commonly used in the quantification of
software reliability. ! Because of the complexity of the factors influencing the oc-
currence of a failure, the quantities associated with reliability are random variables,

"Mean Time To Failure (MTTF), denoted by ©, is not employed to the extent that it is in
hardware reliability studies (probably because the models used in software reliability tend not to give
rise to closed form expressions for MTTF'). This measure is related to reliability by © = fooo R(z)dz.
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Software Reliability

Software reliability is concerned with quantifying how well software functions to
meet the needs of its customer. It is defined as the probability that the software will
function without failure for a specified period of time. “Failure” means that in some
way the software has not functioned according to the customer’s requirements. This
broad definition of failure ensures that the concept of reliability subsumes most prop-
erties generally associated with quality—mnot only correctness, but also adequacy of
performance, and user-friendliness. Reliability is a user-oriented view of software
quality: it is concerned with how well the software actually works. Alternative
notions of software quality tend to be introspective, developer-oriented views that
associate quality with the “complexity” or “structure” of the software. Fortunately,
software reliability is not only one of the most important and immediate attributes
of software quality, it is also the most readily quantified and measured.

Software reliability is a scientific field, and employs careful definition of terms.
The two most important are “failure” and “fault.” A software failure is a departure
of the external behavior of the program from the user’s requirements. The notion
of requirements is discussed in 5.3.1. A software fault is a defect in a program that,
when executed under certain conditions, causes a failure—that is, what is generally
called a “bug.” Failure occurrence is affected by two principal factors:

e The number of faults in the software being executed—clearly, the more bugs,
the more failures may be expected, and

e The circumstances of its execution (sometimes called the “operational pro-
file”). Some circumstances may be more exacting than others and may lead
to more failures.

Software reliability is the probability of failure-free operation of a computer program
for a specified time under specified circumstances. Thus, for example, a text-editor
may have a reliability of 0.97 for 8 hours when employed by a secretary—but only
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Verification is usually a manual process that examines descriptions of the soft-
ware, while validation depends on testing the software in execution. The two pro-
cesses are complementary: each is effective at detecting errors that the other will
miss, and they are therefore usually employed together. Procurements for mission-
critical systems often specify that an independent group, unconnected to the devel-
opment team, should undertake the V&V activity.
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There is considerable agreement that the early phases of the life-cycle are par-
ticularly important to the successful outcome of the whole process: Brooks, for
example observes [23]

“I believe the hard part of building software to be the specification,
design, and testing of this conceptual construct, not the labor of repre-
senting it and testing the fidelity of the representation. We still make
syntax errors, to be sure, but they are fuzz compared with the conceptual
errors in most systems.

“The hardest single part of building a software system is deciding pre-
cisely what to build. No other part of the work so cripples the resulting
system if done wrong. No other part is more difficult to rectify later.”

The more phases of the life-cycle that separate the commission and detection
of an error, the more expensive it is to correct. It is usually cheap and simple to
correct a coding bug caught during unit test, and it is usually equally simple and
cheap to insert a missed requirement that is caught during system requirements
review. But it will be ruinously expensive to correct such a missed requirement if it
is not detected until the system has been coded and is undergoing integration test.
Software Quality Assurance comprises a collection of techniques and guidelines that
endeavor to ensure that all errors are caught, and caught early.

2.1 Software Quality Assurance

Software Quality Assurance (SQA) is concerned with the problems of ensuring and
demonstrating that software (or, rather, software-intensive systems) will satisfy the
needs and requirements of those who procure them. These needs and requirements
may cover not only how well the software works now, but how well documented it
is, how easy to fix if it does go wrong, how adaptable it is to new requirements, and
other attributes that influence how well it will continue to satisfy the user’s needs in
the future. In the case of military procurements, a number of standards have been
established to govern the practice of various facets of software development: MIL-
S-52779A for software program requirements, DOD-STD-1679A and DOD-STD-
2167 for software development, DOD-STD-2168 for software quality evaluation, and
DOD-STD-7935 for software documentation. Similar standards exist in the civil
and international sectors.

One important methodology in SQA is “Verification and Validation” (V&V).
Verification is the process of determining whether each level of specification, and the
final code itself, fully and exclusively implements the requirements of its superior
specification. That is, all specifications and code must be traceable to a superior
specification. Validation is the process by which delivered code is directly shown to
satisfy the original user requirements.
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Software Engineering and
Software Quality Assurance

Before describing specific quality metrics and methods, we need briefly to review
the Software Engineering process, and some of the terms used in Software Quality
Assurance.

One of the key concepts in modern software engineering is the system life-cycle
model. Its premise is that development and implementation are carried out in several
distinguishable, sequential phases, each performing unique, well-defined tasks, and
requiring different skills. One of the outputs of each phase is a document that serves
as the basis for evaluating the outcome of the phase, and forms a guideline for the
subsequent phases. The life-cycle phases can be grouped into the following four
major classes:

Specification comprising problem definition, feasibility studies, system require-
ments specification, software requirements specification, and preliminary de-
sign.

Development comprising detailed design, coding and unit testing, and the estab-
lishment of operating procedures.

Implementation comprising integration and test, acceptance tests, and user train-
ing.

Operation and maintenance.
There have been many refinements to this basic model: Royce’s Waterfall model [104],

for example, recognized the existence of feedback between phases and recommended
that such feedback should be confined to adjacent phases.
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algorithms, including protocols [32]. The use of Binary Decision Diagrams
(BDDs) [24] has resulted in a significant increase in speed and, when used in
combination with other recent advances, allows massive systems to be checked
in reasonable amounts of time [26].

The treatment of most other topics still seems adequate—obviously more recent
references would be welcome (and I have added a few where I had them available),
but I am unaware of any major breakthroughs that should be brought to the reader’s
attention. The section on formal methods now seems dated, and recent work, as
reported in the September 1990 special issue of IEEE Software, and [15] should be
borne in mind. Naturally, I welcome suggestions and advice that will help me keep
this document useful in the "90s.

1.2 Acknowledgments
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Chapter 1

Introduction

This report is concerned with the software quality and evaluation measures. We
consider not only metrics that attempt to measure some aspect of software quality,
but also methodologies and techniques (such as systematic testing) that attempt
to improve some dimension of quality, without necessarily quantifying the extent of
the improvement.

It is now widely recognized that the cost of software vastly exceeds that of the
hardware it runs on—software accounts for 80% of the total computer systems bud-
get of the Department of Defense, for example. Furthermore, as much as 60% of
the software budget may be spent on maintenance. Not only does software cost a
huge amount to develop and maintain, but vast economic or social assets may be
dependent upon its functioning correctly. It is therefore essential to develop tech-
niques for measuring, predicting, and controlling the costs of software development
and the quality of the software produced.

1.1 Developments Since 1988

This report was originally written in early 1988 as part of a study on quality assur-
ance techniques for Al software. The focus of the original study, and the passage
of time, mean that some techniques and concerns are underrepresented here. The
areas where the present treatment is most deficient seem to include the following.

CASE tools: These have become much more popular and important over the last
few years. The system called SREM can now be seen as an early example
of a CASE tool and the section on that system (Section 5.3.1.1 on page 43),
gives something of the flavor of these systems. However, modern CASE tools
deserve greater attention than is provided here.

Model Checking: Model-checking techniques have become increasingly effective
and important for analyzing hardware circuits and properties of distributed
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Abstract

This report comprises chapters 2 to 5 of a report prepared for NASA on the applica-
tion of software quality and assurance techniques to Al software [105]. The chapters
included here provide a review of software quality assurance techniques as applied
to conventional software. The techniques covered include software reliability and
metrics, static and dynamic testing, and formal specification and verification.
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