
Bibliography 63[114] J.M. Silverman. Re
ections on the veri�cation of the security of an operatingsystem kernel. In Proc. 9th ACM Symposium on Operating Systems Principles,pages 143{154, Bretton Woods, NH, October 1983. (ACM Operating SystemsReview, Vol 17, No. 5).[115] Mark E. Stickel. A Prolog technology theorem prover: Implementation byan extended Prolog compiler. Journal of Automated Reasoning, 4(4):353{380,December 1988.[116] R.E. Strom. Mechanisms for compile-time enforcement of security. In Proceed-ings 10th Symposium on Principles of Programming Languages, pages 276{284, Austin, TX, January 1983.[117] F.W. von Henke and D.C. Luckham. A methodology for verifying programs.In Proceedings, International Conference on Reliable Software, pages 156{164,Los Angeles, CA, April 1975. IEEE Computer Society.[118] Leslie J. Waguespack, Jr. and Sunil Badlani. Software complexity assess-ment: An introduction and annotated bibliography. ACM Software Engineer-ing Notes, 12(4):52{71, October 1987.[119] Elaine J. Weyuker. On testing non-testable programs. Computer Journal,25(4):465{470, April 1982.[120] Elaine J. Weyuker. The evaluation of program-based software test data ade-quacy criteria. Communications of the ACM, 31(6):668{675, June 1988.[121] Elaine J. Weyuker and Thomas J. Ostrand. Theories of program testing andthe application of revealing subdomains. IEEE Transactions on Software En-gineering, SE-6(3):236{246, May 1980.[122] C. Wilson and L.J. Osterweil. Omega|a data
ow analysis tool for the Cprogramming language. In Proceedings COMPSAC, pages 9{18, 1982.[123] Jeannette M. Wing. A study of 12 speci�cations of the library problem. IEEESoftware, 5(4):66{76, July 1988.

62 Bibliography[102] K.A. Redish and W.F. Smyth. Evaluating measures of program quality. Com-puter Journal, 30(3):228{232, June 1987.[103] G-C. Roman. A taxonomy of current issues in requirements engineering. IEEEComputer, 18(4):14{21, April 1985.[104] W. W. Royce. Managing the development of large software systems. In Pro-ceedings WESCON, August 1970.[105] John Rushby. Quality measures and assurance for AI software. Technical Re-port SRI-CSL-88-7R, Computer Science Laboratory, SRI International, MenloPark, CA, September 1988. Also available as NASA Contractor Report 4187.[106] John Rushby. Formal speci�cation and veri�cation of a fault-masking andtransient-recovery model for digital
ight-control systems. Technical ReportSRI-CSL-91-3, Computer Science Laboratory, SRI International, Menlo Park,CA, January 1991. Also available as NASA Contractor Report 4384.[107] John Rushby and Friedrich von Henke. Formal veri�cation of the interac-tive convergence clock synchronization algorithm using Ehdm. Technical Re-port SRI-CSL-89-3R, Computer Science Laboratory, SRI International, MenloPark, CA, February 1989 (Revised August 1991). Also available as NASAContractor Report 4239.[108] John Rushby and Friedrich von Henke. Formal veri�cation of algorithms forcritical systems. In SIGSOFT '91: Software for Critical Systems, New Orleans,LA, December 1991. (To appear.).[109] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formalspeci�cation and veri�cation using Ehdm. Technical Report SRI-CSL-91-2,Computer Science Laboratory, SRI International, Menlo Park, CA, February1991.[110] P.A. Sche�er, A.H. Stone III, and W.E. Rzepka. A case study of SREM. IEEEComputer, 18(4):47{54, April 1985.[111] Richard W. Selby, Victor R. Basili, and F. Terry Baker. Cleanroom soft-ware development: An empirical evaluation. IEEE Transactions on SoftwareEngineering, SE-13(9):1027{1037, September 1987.[112] N. Shankar. A mechanical proof of the Church-Rosser theorem. Journal ofthe ACM, 35(3):475{522, July 1988.[113] Vincent Shen. Editor's introduction to \Quality Time" department. IEEESoftware, 4(5):84, September 1987.

Bibliography 61[89] Bertrand Meyer. On formalism in speci�cations. IEEE Software, 2(1):6{26,January 1985.[90] R.A. De Millo, R.J. Lipton, and F.G. Sayward. Hints on test data selection:Help for the practicing programmer. IEEE Computer, 11(4):34{41, April 1978.[91] Harlan D. Mills, Michael Dyer, and Richard Linger. Cleanroom software en-gineering. IEEE Software, 4(5):19{25, September 1987.[92] M. Moriconi and D.F. Hare. The PegaSys system: Pictures as formal docu-mentation of large programs. ACM Transactions on Programming Languagesand Systems, 8(4):524{546, October 1986.[93] John D. Musa, Anthony Iannino, and Kazuhira Okumoto. SoftwareReliability|Measurement, Prediction, Application. McGraw Hill, New York,NY, 1987.[94] David R. Musser. Abstract data type speci�cation in the AFFIRM system.IEEE Transactions on Software Engineering, SE-6(1):24{32, January 1980.[95] G.J. Myers. A controlled experiment in program testing and code walk-throughs/inspections. Communications of the ACM, 21(9):760{768, Septem-ber 1978.[96] Peter Naur. Formalization in program development. BIT, 22:437{453, 1982.[97] Simeon C. Ntafos. A comparison of some structural testing strategies. IEEETransactions on Software Engineering, SE-14(6):868{874, June 1988.[98] L.J. Osterweil and L.D. Fosdick. DAVE|a validation error detection and doc-umentation system for Fortran programs. Software|Practice and Experience,6:473{486, October{December 1976.[99] Thomas J. Ostrand and Marc J. Balcer. The category-partition method forspecifying and generating functional tests. Communications of the ACM,31(6):676{686, June 1988.[100] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data
ow information. IEEE Transactions on Software Engineering, SE-11(4):367{375, April 1985.[101] K.A. Redish and W.F. Smyth. Program style analysis: A natural by-product ofprogram compilation. Communications of the ACM, 29(2):126{133, February1986.

60 Bibliography[76] Richard A. Kemmerer. Testing formal speci�cations to determine design er-rors. IEEE Transactions on Software Engineering, SE-11(1):32{43, January1985.[77] Richard A. Kemmerer. Veri�cation assessment study �nal report. TechnicalReport C3-CR01-86, National Computer Security Center, Ft. Meade, MD,1986. 5 Volumes. US distribution only.[78] J.C. King. Symbolic execution and program testing. Communications of theACM, 19(7):385{394, July 1976.[79] J.C. Knight and N.G. Leveson. An empirical study of failure probabilities inmulti-version software. In Digest of Papers, FTCS 16, pages 165{170, Vienna,Austria, July 1986. IEEE Computer Society.[80] J.C. Knight and N.G. Leveson. An experimental evaluation of the assumptionof independence in multiversion programming. IEEE Transactions on SoftwareEngineering, SE-12(1):96{109, January 1986.[81] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. InJ. Leech, editor, Computational Problems in Abstract Algebra, pages 263{293.Pergamon, New York, NY, 1970.[82] L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the presence offaults. Journal of the ACM, 32(1):52{78, January 1985.[83] Nancy G. Leveson. Software safety: Why, what and how. ACM ComputingSurveys, 18(2):125{163, June 1986.[84] Nancy G. Leveson and John C. Knight. On N-Version programming. ACMSoftware Engineering Notes, 15(1):24{35, January 1990.[85] N.G. Leveson. Software safety in computer controlled systems. IEEE Com-puter, 17(2):48{55, February 1984.[86] N.G. Leveson and P.R. Harvey. Analyzing software safety. IEEE Transactionson Software Engineering, SE-9(5):569{579, September 1983.[87] Robert Mandl. Orthogonal Latin squares: an application of experiment designto compiler testing. Communications of the ACM, 28(10):1054{01058, October1985.[88] Thomas J. McCabe. A complexity measure. IEEE Transactions on SoftwareEngineering, SE-2(4):308{320, December 1976.

Bibliography 59[62] William E. Howden. An evaluation of the e�ectiveness of symbolic testing.Software|Practice and Experience, 8:381{397, 1978.[63] William E. Howden. Functional program testing. IEEE Transactions on Soft-ware Engineering, SE-6(2):162{169, March 1980.[64] William. E. Howden. Software validation techniques applied to scienti�c pro-grams. ACM Transactions on Programming Languages and Systems, 2(3):307{320, July 1980.[65] William E. Howden. Weak mutation testing and completeness of test sets.IEEE Transactions on Software Engineering, SE-8(4):371{379, July 1982.[66] William E. Howden. A functional approach to program testing and analysis.IEEE Transactions on Software Engineering, SE-12(10):997{1005, October1986.[67] D.C. Ince. The automatic generation of test data. Computer Journal,30(1):63{69, February 1987.[68] D.C. Ince and S. Hekmatpour. An empirical evaluation of random testing.Computer Journal, 29(4):380, August 1986.[69] Cli� B. Jones. Software Development: A Rigorous Approach. Prentice-Hall,Englewood Cli�s, NJ, 1986.[70] T.C. Jones. Programming Productivity. McGraw Hill, New York, NY, 1986.[71] D. Kapur and D.R. Musser. Proof by consistency. Arti�cial Intelligence,31(2):125{157, February 1987.[72] Deepak Kapur and Mandayam Srivas. Computability and implementabilityissues in abstract data types. Science of Computer Programming, 10:33{63,1988.[73] M. Karr and D.B. Lovemann III. Incorporation of units into programminglanguages. Communications of the ACM, 21(5):385{391, May 1978.[74] Joseph K. Kearney, Robert L. Sedlmeyer, William B. Thompson, Michael A.Gray, and Michael A. Adler. Software complexity measurement. Communica-tions of the ACM, 29(11):1044{1050, November 1986.[75] Chris F. Kemerer. An empirical validation of software cost estimation models.Communications of the ACM, 30(5):416{429, May 1987.

58 Bibliography[49] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jos�eMeseguer. Principles of OBJ2. In Brian K. Reid, editor, Proceedings of 12thACM Symposium on Principles of Programming Languages, pages 52{66. As-sociation for Computing Machinery, 1985.[50] David Gelperin and Bill Hetzel. The growth of software testing. Communica-tions of the ACM, 31(6):687{695, June 1988.[51] S. German. Automating proofs of the absence of common runtime errors.In Proceedings, 5th ACM Symposium on the Principles of Programming Lan-guages, pages 105{118, Tucson, AZ, January 1978.[52] John B. Goodenough and Susan L. Gerhart. Toward a theory of test dataselection. IEEE Transactions on Software Engineering, SE-1(2):156{173, June1975.[53] J.V. Guttag and J.J. Horning. The algebraic speci�cation of abstract datatypes. Acta Informatica, 10(1):27{52, 1978.[54] M.H. Halstead. Elements of Software Science. Elsevier North-Holland, NewYork, NY, 1977.[55] Warren Harrison and Curtis R. Cook. A note on the Berry-Meekings stylemetric. Communications of the ACM, 29(2):123{125, February 1986.[56] Ian Hayes, editor. Speci�cation Case Studies. Prentice-Hall International (UK)Ltd., Hemel Hempstead, UK, 1987.[57] Ian J. Hayes. Speci�cation directed module testing. IEEE Transactions onSoftware Engineering, SE-12(1):124{133, January 1986.[58] S. Henry and D. Kafura. Software structure metrics based on information
ow. IEEE Transactions on Software Engineering, SE-7(5):510{518, Septem-ber 1981.[59] S. Henry and D. Kafura. The evaluation of software systems' structure usingquantitative software metrics. Software|Practice and Experience, 14(6):561{573, June 1984.[60] Paul N. Hil�nger. An Ada package for dimensional analysis. ACM Transac-tions on Programming Languages and Systems, 10(2):189{203, April 1988.[61] William E. Howden. Symbolic testing and the DISSECT symbolic evaluationsystem. IEEE Transactions on Software Engineering, SE-4(1):70{73, January1977.

Bibliography 57[36] S.D. Conte, H.E. Dunsmore, and V.Y. Shen. Software Engineering Metricsand Models. Benjamin/Cummings, Menlo Park, CA, 1986.[37] P. Allen Currit, Michael Dyer, and Harlan D. Mills. Certifying the reliabil-ity of software. IEEE Transactions on Software Engineering, SE-12(1):3{11,January 1986.[38] C.G. Davis and C.R. Vick. The software development system. IEEE Trans-actions on Software Engineering, SE{3(1):69{84, January 1977.[39] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social pro-cesses and proofs of theorems and programs. Communications of the ACM,22(5):271{280, May 1979.[40] D. E. Denning and P. J. Denning. Certi�cation of programs for secure infor-mation
ow. Comm. ACM, 20(7):504{513, July 1977.[41] Department of Defense Trusted Computer System Evaluation Criteria. De-partment of Defense, December 1985. DOD 5200.28-STD (supersedes CSC-STD-001-83).[42] Thomas Downs. An approach to the modeling of software testing with someapplications. IEEE Transactions on Software Engineering, SE-11(4), April1985.[43] Joe W. Duran and Simeon C. Ntafos. An evaluation of random testing. IEEETransactions on Software Engineering, SE-10(4):438{443, April 1984.[44] Dave E. Eckhardt, Alper K. Caglayan, John C. Knight, Larry D. Lee, David F.McAllister, Mladen A. Vouk, and John P.J. Kelly. An experimental evaluationof software redundancy as a strategy for improving reliability. IEEE Transac-tions on Software Engineering, 17(7):692{702, July 1991.[45] Michael E. Fagan. Design and code inspections to reduce errors in programdevelopment. IBM Systems Journal, 15(3):182{211, March 1976.[46] Michael E. Fagan. Advances in software inspection. IEEE Transactions onSoftware Engineering, SE-12(7):744{751, July 1986.[47] M. A. Fischler and O. Firschein. A fault-tolerant multiprocessor architecturefor real-time control applications. In First Annual Symposium in ComputerArchitecture, pages 151{157, December 1973.[48] M. A. Fischler, O. Firschein, and D.L. Drew. Distinct software: An approachto reliable computing. In Second Annual USA-Japan Computer Conference,pages 27{4{1{27{4{7, Tokyo, Japan, August 1975.

56 Bibliography[24] R.E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE Transactions on Computers, C-35(8):677{691, August 1986.[25] T.A. Budd, R.A. De Millo, R.J. Lipton, and F.G. Sayward. Theoretical andempirical studies on using program mutation to test the functional correct-ness of programs. In Proceedings, 7th ACM Symposium on the Principles ofProgramming Languages, Las Vegas, NV, January 1980.[26] J.R. Burch, E.M. Clarke, K.L McMillan, D.L. DIll, and L.J. Hwang. Symbolicmodel checking 220 states and beyond. In 5th Annual IEEE Symposium onLogic in Computer Science, pages 428{439, Philadelphia, PA, June 1990. IEEEComputer Society.[27] J. Celko, J.S. Davis, and J. Mitchell. A demonstration of three requirementslanguage systems. SIGPLAN Notices, 18(1):9{14, January 1983.[28] S. Cha, N.G. Leveson, T.J. Shimeall, and J.C. Knight. An empirical studyof software error detection using self-checks. In Digest of Papers, FTCS 17,pages 156{161, Pittsburgh, PA., July 1987. IEEE Computer Society.[29] Fun Ting Chan and Tsong Hueh Chen. AIDA|a dynamic data
ow anomalydetection system for Pascal programs. Software|Practice and Experience,17(3):227{239, March 1987.[30] M. Cheheyl et al. Verifying security. Computing Surveys, 13(3):279{339,September 1981.[31] L. Chen and A. Avizienis. N-version programming: A fault-tolerance approachto reliability of software operation. In Digest of Papers, FTCS 8, pages 3{9,Toulouse, France, June 1978.[32] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state concurrent systems using temporal logic speci�cations. ACM Transac-tions on Programming Languages and Systems, 8(2):244{263, April 1986.[33] Lori Clarke, Andy Podgurski, Debra Richardson, and Steven Zeil. A formalevaluation of data
ow path selection criteria. IEEE Transactions on SoftwareEngineering, 15(11):1318{1332, November 1989.[34] William F. Clocksin and Christopher S. Mellish. Programming in Prolog.Springer-Verlag, New York, NY, 1981.[35] Robert F. Cmelik and Narain H. Gehani. Dimensional analysis with C++.IEEE Software, 5(3):21{27, May 1988.

Bibliography 55[11] T.E. Bell, D.C. Bixler, and M.E. Dyer. An extendable approach to computer{aided software requirements engineering. IEEE Transactions on Software En-gineering, SE{3(1):49{59, January 1977.[12] Jean-Fran�cois Bergeretti and Bernard A. Carr�e. Information-
ow and data-
ow analysis of while-programs. ACM Transactions on Programming Lan-guages and Systems, 7(1):37{61, January 1985.[13] Gerald M. Berns. Assessing software maintainability. Communications of theACM, 27(1):14{23, January 1984.[14] R.E. Berry and B.A.E. Meekings. A style analysis of C programs. Communi-cations of the ACM, 28(1):80{88, January 1985.[15] William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, and William D.Young. An approach to systems veri�cation. Journal of Automated Reasoning,5(4):411{428, December 1989.[16] Barry W. Boehm. Software Engineering Economics. Prentice-Hall, EnglewoodCli�s, NJ, 1981.[17] Barry W. Boehm. Software engineering economics. IEEE Transactions onSoftware Engineering, SE-10(1):4{21, January 1984.[18] Barry W. Boehm. Verifying and validating software requirements. IEEESoftware, 1(1):75{88, January 1984.[19] Barry W. Boehm. A spiral model of software development and enhancement.IEEE Computer, 21(5):61{72, May 1988.[20] Barry W. Boehm, Terence E. Gray, and Thomas Seewaldt. Prototyping ver-sus specifying: A multiproject experiment. IEEE Transactions on SoftwareEngineering, SE-10(3):290{303, May 1984.[21] R.S. Boyer, B. Elspas, and K.N Levitt. SELECT: A formal system for testingand debugging programs by symbolic execution. In Proceedings, InternationalConference on Reliable Software, pages 234{245, Los Angeles, CA, April 1975.IEEE Computer Society.[22] Susan .S. Brilliant and John C. Knight ans Nancy G. Leveson. The consistentcomparison problem in N-Version software. IEEE Transactions on SoftwareEngineering, 15(11):1481{1485, November 1989.[23] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of softwareengineering. IEEE Computer, 20(4):10{19, April 1987.

Bibliography[1] Maryam Alavi. An assessment of the prototyping approach to information sys-tems development. Communications of the ACM, 27(6):556{563, June 1984.[2] M.W. Alford. A requirements engineering methodology for real{time process-ing requirements. IEEE Transactions on Software Engineering, SE{3(1):60{69, January 1977.[3] M.W. Alford. SREM at the age of eight; the distributed computing designsystem. IEEE Computer, 18(4):36{46, April 1985.[4] T. Anderson, P.A. Barrett, D.N. Halliwell, and M.R. Moulding. An evaluationof software fault tolerance in a practical system. In Digest of Papers, FTCS15, pages 140{145, Ann Arbor, MI, June 1985. IEEE Computer Society.[5] T. Anderson and P.A. Lee. Fault-Tolerance: Principles and Practice (Second,revised edition). Springer Verlag, Wien and New York, 1990.[6] T. Anderson and R.W. Witty. Safe programming. BIT, 18:1{8, 1978.[7] Dorothy M. Andrews and Jeo�rey P. Benson. An automated program test-ing methodology and its implementation. In Proceedings, 5th InternationalConference on Software Engineering, pages 254{261, San Diego, CA, March1981.[8] Geo� Baldwin. Implementation of physical units. SIGPLAN Notices,22(8):45{50, August 1987.[9] V.R. Basili and B.T. Perricone. Software errors and complexity: An empiricalinvestigation. Communications of the ACM, 27(1):42{52, January 1984.[10] Farokh B. Bastani and S. Sitharama Iyengar. The e�ect of data structures onthe logical complexity of programs. Communications of the ACM, 30(3):250{259, March 1987. 54

5.4. Discussion of Testing 53speci�cations early in the life-cycle deserve special attention: rapid prototyping andsome of the techniques of formal veri�cation may be especially useful here. For reallycritical requirements, formal veri�cation of those properties should be considered;conventional testing can be used to ensure that the less-critical requirements aresatis�ed.

52 Chapter 5. Testing\The goal of practical usefulness does not imply that the veri�cation ofa program must be made independent of creative e�ort on the part ofthe programmer : : :such a requirement is utterly unrealistic."In reality, a veri�cation system assists the human user to develop a convincing argu-ment for his program by acting as an implacably skeptical colleague who demandsthat all assumptions be stated and all claims justi�ed. The requirement to expli-cate and formalize what would otherwise be unexamined assumptions is especiallyvaluable. Speaking from substantial experience, Shankar [112] observes:\The utility of proof-checkers is in clarifying proofs rather than in vali-dating assertions. The commonly held view of proof-checkers is that theydo more of the latter than the former. In fact, very little of the timespent with a proof-checker is actually spent proving theorems. Much ofit goes into �nding counterexamples, correcting mistakes, and re�ningarguments, de�nitions, or statements of theorems. A useful automaticproof-checker plays the role of a devil's advocate for this purpose."Our own experience supports this view. We have recently undertaken the formalveri�cation of an important and well-known algorithm for clock-synchronization andhave discovered that the published journal proof [82] contains major
aws [108, 107].It was the relentless skepticism of our formal veri�cation environment that led us tothis discovery, but our belief in the correctness of our current proof owes as much tothe increased understanding of the problem that we obtained through arguing withthe theorem prover as it does to the fact that the theorem prover now accepts ourproofs.Another element in De Millo, Lipton and Perlis' parody that is far from thetruth is their implicit assumption that formal veri�cation is something that is doneafter the program has been developed. In reality, formal veri�cation is practised asa component of a development methodology: the veri�cation and the program (orspeci�cation) are developed together, each generating new problems, solutions, andinsights that contribute to the further development of the other. Formal veri�cationcan be made easier if the property being veri�ed is achieved by direct and simplemeans. Thus, in addition to helping the user build a convincing case for belief in hisprogram, formal veri�cation encourages the programmer to build a more believable,and often better, program in the �rst place.Overall, the conclusion to be drawn from experimental and other data seems tobe that all testing methods have their merits, and these tend to be complementary toeach other. For the purpose of enhancing reliability, random testing is a clear winner.For the purpose of �nding bugs, anomaly detection and walk-throughs should beused in combination with functional and structural testing (Howden [66] describessuch an integrated approach). Techniques for evaluating requirements and other

5.4. Discussion of Testing 51technique depends on the extent to which errors are correlated between the twoversions. Recently, experiments have been performed to examine this hypothesis inthe context of N-Version programming6 [79, 80, 44, 84]; the results indicate thaterrors do tend to be correlated to some extent. Additional problems can arise withnumerical software, due to the character of �nite-precision arithmetic [22].The e�ciency of the debugging process can be evaluated by seeding a programwith known errors|this is called mutation testing. If ten errors are seeded, anddebugging reveals 40 bugs, including 8 of those that were seeded, we may concludethat 10 (= 408 (10 � 8)) bugs (including two seeded ones) remain. The weakness inthis approach is that it is highly questionable whether the seeded bugs re
ect thecharacteristics of the natural bug population: being introduced by simple modi�ca-tion to the program code, they are unlikely to re
ect the behavior of subtle errorscommitted earlier in the life-cycle. A counter-argument is that test sets that detectsimple errors will often catch subtle errors too (this is called \coupling" [90]) andmutation testing provides a systematic technique for establishing the coverage of atest set [25, 65].For some very critical applications, formal veri�cation is recommended as theassurance mechanism of choice [41]. Some authors have cast doubt on the value ofthis approach [39, 96], arguing that use of truly formal speci�cation and veri�cationtends to overload the user with intricate detail, and that the soundness of the wholeprocess rests on the correctness of the underlying veri�cation environment. Sincethis will typically be a very large and complex program in its own right, located atthe limits of the state of the art, its own correctness should be regarded with morethan usual skepticism. The thrust of this argument is that formal veri�cation movesresponsibility away from the \social process" that involves human scrutiny, towardsa mechanical process with little human participation. We believe this concern un-founded and based on a mistaken view of how a mechanical veri�cation environmentis used. De Millo, Lipton and Perlis [39] claim that:\The scenario envisaged by the proponents of veri�cation goes somethinglike this: the programmer inserts his 300-line input/output package intothe veri�er. Several hours later, he returns. There is his 20,000-lineveri�cation and the message `VERIFIED'."This is a parody of the scenario actually envisaged by the proponents of veri�cation.In a paper published several years earlier [117], von Henke and Luckham indicatedthe true nature of this scenario when they wrote:6N-version programming is an adaptation for software of the modular redundancy techniquesused to provide reliable and fault tolerant hardware. N (typically N = 3) separate modules performthe computation and their results are submitted to a majority voter. Since all software faultsare design faults, the redundant software modules must be separately designed and programmed.N-Version programming is advocated by Avizienis [31] (see also [47, 48] for a slightly di�erentperspective), but has been criticized by Leveson and others (see the discussion in [5]).

50 Chapter 5. Testingdiscuss this issue and identify a historical evolution of concerns, starting with de-bugging in the 1950s. They propose that the concern for 1988 and beyond shouldbe the use of testing as a fault prevention mechanism, based on the detection offaults at the earliest possible stage in the life-cycle.Of the systematic testing strategies, Howden's data [64] ([62] is similar, butbased on a smaller sample of programs) provides evidence that functional testing�nds about twice as many bugs as structural testing; furthermore, several of thebugs found by structural testing would be found more easily or more reliably byother methods, so that the ratio three to one probably more accurately re
ects thesuperiority of functional over structural testing.Howden's data also shows that static testing (particularly automated anomalydetection) found more bugs than dynamic testing|however, the two methods werecomplementary, dynamic testing tending to �nd the bugs that static testing missed,and vice versa. Myers [95] presented similar data, showing that code walk-throughswere about as e�ective as dynamic testing at locating errors in PL/1 programs.The e�cacy of anomaly detection is likely to increase with the degree of redun-dancy present in the programming language|indeed, the presence of redundancymay often allow errors to be detected at compile-time that would otherwise onlybe located at run-time. (Compare Lisp with Ada, for example: almost any stringwith balanced parentheses is a syntactically valid Lisp program and any de�ciencieswill only be discovered in dynamic testing, whereas writing a syntactically correctAda program is quite demanding and many errors will be caught at the compilationstage.) There have been proposals to increase the degree of redundancy in programsin order to improve early error-detection. One of the most common suggestions isto allow physical units to be attached to variables and constants [73, 8]. Expres-sions may then be subject to dimensional analysis in order to prevent a variablerepresenting length being added to one representing time, or assigned to one repre-senting velocity.5 Other proposals would render it impossible to read from an emptymessage bu�er, or to use a variable that has not yet been given a value [116].All forms of dynamic testing assume that it is possible to detect errors whenthey occur. This may not always be the case|as, for example, when the \correct"value of a result may be unknown. Weyuker [119] �rst identi�ed the problem of\untestable" programs, and proposed two methods for alleviating the di�culty theypose. The �rst is to use simpli�ed test cases for which it is possible to computethe \correct" answers. The second, and more interesting method suggested byWeyuker is \dual coding": writing a second|probably simpler but less e�cient|version of the program to serve as a check on the \real" one. The e�cacy of this5Strong typing, present in any modern programming language, provides some protection of thissort|preventing booleans being added to integers, for example|but the use of physical units anddimensional analysis represents a capability beyond the normal typing rules. The data abstractionfacilities of a modern language such as C++ or Ada can provide this capability, however [35, 60].

5.4. Discussion of Testing 49respond gracefully to errors. The purpose of a rapid prototype is to allow earlyexperience with, and direct testing of, the main aspects of the system's proposedfunctionality|thereby allowing much earlier and more realistic appraisals of thesystem's requirements speci�cations.An experimental comparison of a prototyping versus the conventional approachto software development [20] found that both approaches yielded approximatelyequivalent products, though the prototyping approach required much less e�ort(45% less) and generated less code (chie
y due to the elimination of marginal re-quirements). The products developed incrementally were easier to learn and use,but the conventionally developed products had more coherent designs and were eas-ier to integrate. (Another experimental evaluation of prototyping is described byAlavi [1].)Viewed as testing vehicles for evaluating and re�ning requirements speci�cations,rapid prototypes �t neatly into the standard life-cycle model of software engineer-ing. A more radical approach that has much in common with rapid prototyping isincremental software development. Here, the complete software system is made torun quite early in the development phase, even if it does nothing useful except calldummy subprograms. Then it is
eshed out, with the subprograms being devel-oped in their turn to call dummy routines at the next level down, and so on untilthe system is complete. The advantages claimed for this approach [23] are that itnecessitates top-down design, allows easy backtracking to reconsider inappropriatedecisions, lends itself to rapid prototyping, and has a bene�cial impact on morale.See also Boehm's \Spiral" Model of system development [19].5.4 Discussion of TestingMuch attention has been focused on systematic testing strategies|especially struc-turally based ones. However, there is evidence that, if increasing reliability (ratherthan �nding the maximum number of bugs) is the goal, then random testing is muchsuperior to other methods. Currit, Dyer and Mills [37] report data from major IBMsystems which shows that random testing would be 30 times more e�ective thanstructural testing in improving the reliability of these systems. The reason for thisis the enormous variation in the rate at which di�erent bugs lead to failure: onethird of all the bugs had a MTTF of over 5000 years (and thus have no e�ect onoverall MTTF), and a mere 2% of the bugs accounted for 1000 times more failuresthan the 60% of bugs that were encountered least often.4Interpretation of data such as these requires a context that establishes the pur-pose of testing|is it to �nd bugs or to improve reliability? Gelperin and Hetzel [50]4The thirty-fold improvement of random over structural testing is simply estimated by thecalculation 2� 1000=60.

48 Chapter 5. Testing5.3.5 Testing of Speci�cationsConventional formal speci�cation languages are optimized for ease and clarity ofexpression and are not directly executable. Furthermore, high-level speci�cationsare often deliberately partial|they indicate what is required of any implementa-tion, but do not provide enough information to uniquely characterize an acceptableimplementation. Nonetheless, it is highly desirable to subject such speci�cationsto tests and scrutiny in order to determine whether they accurately capture theirintended meaning.If direct execution is infeasible for the speci�cation technique chosen, indirecttesting methods must be used. As noted above, a formal speci�cation de�nes proper-ties that are required to be true of any implementation. In addition to the propertiesS that have been speci�ed in this way, there may be additional properties A thatare desired but not mandated, or that are believed to be subsumed by S, or that areto be added in a later, more detailed, speci�cation. Tests of formal speci�cationsconsist of attempts to check whether these intended relationships between the givenS and various sets of properties A do, in fact, hold. Thus, to ensure whether theproperty A is subsumed by S, we may try to establish the putative theorem S � A.Independently of additional properties A, we may wish to ensure that the speci�ca-tion S is consistent (i.e., has a model)|since otherwise S � A is a theorem for allA. Depending on the formal speci�cation language and veri�cation environmentavailable, examinations such as those described above may be conducted by at-tempting to prove putative theorems, by symbolic evaluation, or by rapid prototyp-ing. Kemmerer [76] describes the latter two alternatives. An important special caseis the checking of speci�cations for consistency with a notion of \multilevel secu-rity." This activity, which is a requirement for certain types of system [41], seeksto demonstrate that a fairly concrete speci�cation of a system is consistent with anabstract speci�cation of security [30].5.3.6 Rapid PrototypingAs we have noted several times, errors made early but detected late in the life-cycleare particularly costly and serious. This applies especially to missed or inappro-priate requirements|yet such faults of omission are especially di�cult to detect atan early stage. Systematic review will often detect inconsistent, or ambiguous re-quirements, but missing requirements generate no internal inconsistencies and oftenescape detection until the system is actually built and tried in practice.A rapid prototype is one that simulates the important interfaces and performsthe main functions of the intended system, while not necessarily being bound bythe same performance constraints. Prototypes typically perform only the mainlinetasks of the application, but make no attempt to handle the exceptional cases, or

5.3. Testing Requirements and Speci�cations 47of detail, should be the focus of mathematical veri�cation. Indeed, a whole hier-archy of speci�cations may be veri�ed in stepwise fashion from a highly abstract,but intuitively understandable one, down to a very detailed one that can be usedas the basis for coding. If the original, abstract speci�cation, is studied and un-derstood by the user, and agreed by him to represent his requirements, then suchhierarchical veri�cation (provided it is performed without error) accomplishes thevalidation of the detailed speci�cation. This approach is attractive in circumstanceswhere the properties of interest are di�cult to validate directly|as in the case ofultra-high reliability (where failure probabilities on the order of 10�9 per day maybe required, but are unmeasurable in practice) [106], and security (which requiresthat no possible attack should be able to defeat the protection mechanisms) [114].5.3.4 Executable Speci�cationsSpeci�cation languages provide mechanisms for saying what must be accomplished,not how to accomplish it. As a result, speci�cations cannot usually be executed.Programming languages on the other hand, reverse these concerns and provide manymechanisms for stipulating how something is to be accomplished. As a result, pro-grams generally execute very e�ciently, but are inperspicuous. Recently, however,logic programming languages have emerged that blur the distinction between speci-�cation and programming languages. By employing a more powerful interpreter (es-sentially a theorem prover, though generally referred to as an \inference engine"),logic programming languages allow the programmer to concentrate more on thewhat, and less on the how of his program. Dually, these languages can be regardedas executable speci�cation languages. The obvious merit of executable speci�cationlanguages is that they permit speci�cations to be tested and validated directly inexecution.Prolog, the best known logic programming language [34], contains many com-promises intended to increase its e�ciency in execution that detract from its meritas a speci�cation language.3 Languages based on equations, however, o�er consid-erable promise. OBJ [49], developed by Goguen and his coworkers in the ComputerScience Laboratory of SRI, is the best developed and most widely known of these. Inaddition to a cleaner logical foundation than Prolog, OBJ has sophisticated typingand parameterization features that contribute to the clarity and power of its speci�-cations. (Being based on equational logic, OBJ could also exploit the completenessand consistency checks described in Section 5.3.2 (page 46), although the presentversion of the system does not do so.)3Stickel's Prolog Technology Theorem Prover (PTTP) [115], which provides correct �rst-ordersemantics|but with Prolog-like e�ciency when restricted to Horn clauses|overcomes some ofthese disadvantages.

46 Chapter 5. TestingIn addition to the analysis and extraction tools described above, generation anddisplay tools provide two-dimensional graphical displays for R-Nets, and functionaland analytical simulators support validation of performance, accuracy, and func-tional requirements. Both types of simulator automatically generate a PASCALprogram corresponding to the R-Net structure. Each ALPHA becomes a call to aPASCAL procedure|which is generally written by the requirements engineer andassociated with the corresponding ALPHA as an attribute.The REVS simulation tools attempt to generate input data from the descriptionof the data provided by the user. The user can also declare arti�cial data, i.e., datanot required to be generated by the system when deployed. Typically, arti�cial datawill be more abstract than the data actually applied to the system in operation.In addition to functionality, REVS supports simulation for the validation of perfor-mance and accuracy constraints. The latter are evaluated using \rapid prototypes"of the critical algorithms to be used in practice.5.3.2 Completeness and Consistency of Speci�cationsAmong the properties of speci�cations that are generally considered desirable, com-pleteness and consistency rank highly. Informally, completeness means that thespeci�cation gives enough information to totally determine the properties of theobject being speci�ed; consistency means that it does not specify two contradictoryproperties.For a semi-formal speci�cation language, it may be possible to give some pre-cepts for the construction of complete and consistent speci�cations, and it may befeasible to check adherence to these precepts mechanically. With formal speci�ca-tion languages, however, rather more may be possible. For quanti�er-free equationallogic|which logic has been found very suitable for the speci�cation of abstract datatypes [94]|there is a formal notion of \su�cient completeness" that can be checkedmechanically [53], and a su�cient test for consistency is that the Knuth-Bendix al-gorithm [81] should terminate without adding the rule true -> false [71]. Kapurand Srivas [72] discuss other important properties of such speci�cations and describeappropriate tests. Meyer [89] provides some interesting examples of
awed speci�-cations that have appeared in the literature, while Wing [123] describes 12 di�erentspeci�cations for a single problem and discusses some of the incompletenesses andambiguities found therein.5.3.3 Mathematical Veri�cation of Speci�cationsAs we explained in Section 5.2.3 (page 35), mathematical veri�cation demonstratesconsistency between two di�erent descriptions of a program. Often, one of thesedescriptions is the program itself|so that a program is veri�ed against its speci�-cation. However, it is perfectly feasible that two speci�cations, at di�erent levels

5.3. Testing Requirements and Speci�cations 45meaning. Only data
ow concepts have meaning. Thus, in the conventional sense,RSL is not an extensible language.Using RSL, a user (called the requirements engineer) is encouraged to identifysigni�cant units of processing, each of which is viewed as a single input/single outputALPHA (inputs and outputs can have structure|rather like PASCAL records|sothe restriction to single inputs and outputs is not as severe as it might appear). Thede�nition of an ALPHA consists of declarations of its input and output, declarationsof any �les the ALPHA will write to and a brief natural language description of thetransformations it e�ects on the input data.ALPHAs are connected together with OR, AND, SELECT and FOR EACHnodes into what can be viewed as a data
ow graph.2 The intention is to expresssystem requirements in terms of how signi�cant units of processing are connectedwith each other, and the kind of data that
ows along the interconnections.OR nodes resemble a PASCAL case statement and indicate conditions underwhich each output path will be followed. The conditions attached to a path throughan R-Net identify the conditions under which an ALPHA is invoked and in whichan output message must be produced in response to an input message.The AND node indicates that all of the paths following it are to be executed. Ex-ecution of the paths can be in any order or with any degree of parallelism permittedby the hardware base. It is intended that any �le read in any of the parallel pathsis not written by any other path, otherwise the behavior of the system would beindeterminate. In RSL, this constraint on �les is called the independence property.There is no goto statement in RSL. To produce other than loopless programs,RSL provides the FOR EACH node. This takes a set of data items as argumentand indicates that the path following it is to be executed once for each of the itemsin the set; the order is not speci�ed.Multiple R-Nets can be linked together using EVENT nodes, and VALIDA-TION POINTs can be attached to paths in an R-Net in order to specify performanceand accuracy requirements.Several tools have been constructed to support requirements descriptions writ-ten in RSL. Collectively, these constitute the \Requirements Engineering ValidationSystem" (REVS). The most basic component of REVS is the RSL translator, whichanalyzes RSL requirements de�nitions and generates entries in a central databasecalled the Abstract System Semantic Model (ASSM). Information in the ASSM maybe queried, and checked for consistency using the \Requirements Analysis and DataExtraction" system (RADX). RADX generates reports that trace source documentrequirements to RSL de�nitions, identify data items with no source or sink, unspec-i�ed attributes, useless entities and so on. Other checks ensure, among other things,that the paths following an AND satisfy the independence property.2Strictly, it is incorrect to refer to RSL descriptions as data
ow programs since they can produceside-e�ects to �les.

44 Chapter 5. TestingAgain due to its origins in ballistic missile defense, SREM is very much concernedwith the constraints of accuracy and performance. It therefore makes provisionfor traceable, testable, performance and accuracy constraints to be attached torequirements speci�cations.In addition to support for analyzing the problem and checking understanding,SREM's tools perform \internal" completeness and consistency checks (i.e., checksthat are performed relative to the requirements de�nition itself, without referenceto external reality). These checks ensure, for example, that all data has a source,and that there are no dangling items still\to be done."The paradigm underlying SREM is that system requirements describe the nec-essary processing in terms of all possible responses (and the conditions for each typeof response) to each input message across each interface. This paradigm is based ona graph model of computation: requirements are speci�ed as Requirement Networks,or R-Nets, of processing steps. Each R-Net is a tree of paths processing a given typeof stimulus.R-nets are expressed in the Requirements Statement Language (RSL), the lan-guage of SREM: an RSL requirements de�nition is a linear representation of a two-dimensional R-net. Requirements de�nitions in RSL are composed of four types ofprimitives:� Elements in RSL include the types of data necessary in the system (DATA),the objects manipulated by the system being described (MESSAGES), thefunctional processing steps (ALPHAs), and the processing
ow descriptionsthemselves.� Relationships are mathematical relations between elements. For example, therelationship of DATA being INPUT to an ALPHA. Generally, a complemen-tary relationship is de�ned for each basic relationship: for example, an ALPHAINPUTS DATA.� Attributes are properties of objects, such as the ACCURACY and INITIAL VALUEattributes of elements of type DATA. A set of values (names, numbers, or textstrings) may be associated with each attribute. For example, the set of valuesassociated with INITIAL VALUE is the set of initial values allowed for dataitems.� Structures model the
ows through the processing steps (ALPHAs) or the
ows between places where accuracy or timing requirements are stated (VAL-IDATION POINTs).RSL is described as an extensible language. What this means is that the usercan declare new elements, relationships, and attributes; however, they do not have

5.3. Testing Requirements and Speci�cations 43important component of this is traceability|items in the speci�cation shouldhave clear antecedents in earlier speci�cations or statements of system objec-tives.Feasibility : A speci�cation is feasible to the extent that the life-cycle bene�ts ofthe system speci�ed exceed its life-cycle costs. Thus feasibility involves morethan verifying that a system satis�es functional and performance requirements.It also implies validating that the speci�ed system will be su�ciently main-tainable, reliable, and human-engineered to keep a positive life-cycle balancesheet.Testability : A speci�cation is testable to the extent that one can identify aneconomically feasible technique for determining whether or not the developedsoftware will satisfy the speci�cation.Among the methodologies that aim to satisfy these criteria TRW's SREM [2, 3,11, 38] is representative, and is described in the following section.5.3.1.1 SREMSREM (Software Requirements Engineering Methodology) was the product of aprogram undertaken by TRW Defense and Space Systems Group as part of a largerprogram sponsored by the Ballistic Missile Defense Advanced Technology Center(BMDATC) in order to improve the techniques for developing correct, reliable BMDsoftware. Early descriptions of SREM include [2, 11]; descriptions of subsequentextensions for distributed systems can be found in [3], and accounts of experienceusing SREM are given in [18, 27, 110].Owing to its genesis in the problems of software for ballistic missile defense,SREM adopts a system paradigm derived from real-time control systems. Such sys-tems are considered as \stimulus-response" networks: an \input message" is placedon an \input interface" and the results of processing|the \output message" and thecontents of memory|are extracted from an \output interface" [2]. Furthermore, therequirements for the system are understood in terms of the processing steps neces-sary to undertake the required task. The essence of a SREM requirements de�nitionis therefore a data
ow-like description (called an R-net) of the processing steps tobe performed and the
ow of data (messages) between them.SREM recognizes that requirements engineering is concerned with more thanjust writing a description of what is required|it is �rst necessary to analyze theproblem in order to discover just what is required, and it is constantly necessaryto check one's understanding of the problem and its evolving description againstexternal reality. Accordingly, SREM allows behavioral simulation studies in orderto verify that the system's interfaces and processing relationships behave as required.In addition, there is provision for traceability of all decisions back to source.

42 Chapter 5. Testing� The documentation is likely to be inadequate, exacerbating the problem ofdetermining why certain decisions were made and assessing the impact ofdecisions. It is also di�cult to keep the documentation current as changes aremade.Not only are errors in requirements and speci�cations expensive to correct, theyare also among the most frequent of all errors { one study [9] found that 30% of allerrors could be attributed to faulty statement or understanding of requirements andspeci�cations. Worse, it appears that errors made in these early stages are amongthose most likely to lead to catastrophic failures [83].These problems indicate the need for methodologies, languages, and tools thataddress the earliest stages in the software life-cycle. The aims of such requirementsengineering are to see that the right system is built and that it is built correctly.Since systems have many dimensions, there are several facets to the question of whatconstitutes the right system. Roman [103] divides these facets of system require-ments into two main categories: functional and non-functional (these latter are alsocalled constraints). Functional requirements capture the nature of the interactionbetween the system and its environment|they specify what the system is to do.Non-functional requirements restrict the types of system solutions that should beconsidered. Examples of non-functional requirements include security, performance,operating constraints, and cost.Functional requirements can be expressed in two very di�erent ways. The declar-ative (or non-constructive) approach seeks to describe what the system must dowithout any indication of how it is to do it. This style of requirement speci�cationimposes little structure on the system and leaves maximum freedom to the systemdesigner|but, since it says nothing about how the system is to work, it provideslittle basis for checking non-functional constraints. The procedural approach to thespeci�cation of functional requirements, on the other hand, aims to describe whatthe systemmust do in terms of an outline design for accomplishing it. This approachappeals to many engineers who �nd it most natural to think of a requirement interms of a mechanism for accomplishing it.Both functional and non-functional requirements de�nitions, and declarative andprocedural speci�cations, should satisfy certain criteria. Boehm [18] identi�es foursuch criteria: namely, completeness, consistency, feasibility, and testability.Completeness : A speci�cation is complete to the extent that all of its parts arepresent and each part is fully developed. Speci�cally, this means: no TBDs(\To Be Done"), no nonexistent references, no missing speci�cation items, andno missing functions.Consistency : A speci�cation is consistent to the extent that its provisions do notcon
ict with each other or with governing speci�cations and objectives. An

5.3. Testing Requirements and Speci�cations 415.3 Testing Requirements and Speci�cationsSo far we have explicitly considered only the testing of �nished programs, but thereis much to be said for the testing of speci�cations and requirements also. In the �rstplace, testing a program against its speci�cation is of little value if the speci�cationis wrong; secondly, the cost of repairing faults increases dramatically as the numberof life-cycle stages between its commission and its detection increase. As we notedin Section 2 (page 4), it is relatively simple, quick, and cheap, to correct an error ina requirements statement if that error is discovered during review of that statement,and before any further stages have begun; and it is also fairly simple, quick, andcheap to correct a coding error during testing. It is, however, unlikely to be eithersimple, quick, or cheap to correct an error in requirements that is only discoveredduring system test. Major redesign may be required, and wholesale changes neces-sitated. Any attempt to correct the problem by a \quick �x" is likely to generateeven more problems in the long run.For these reasons, testing and evaluation of requirements, speci�cations, anddesign documents may be considered a very wise investment. Of the testing meth-ods we have described, only structured walk-throughs are likely to be feasible if therequirements and speci�cation documents are informal, natural-language texts. Ifrequirements and speci�cations are presented in some semi-formal design language,then limited anomaly detection and mathematical veri�cation may be feasible, andpossibly simulated execution also. If fully formal requirements and/or speci�cationsare available, then quite strong forms of anomaly detection, mathematical veri�ca-tion, and even dynamic testing may be feasible.In the following sections, we will brie
y touch on some of these topics.5.3.1 Requirements Engineering and EvaluationMany studies of the software life-cycle have concluded that its early stages areparticularly crucial. It is in these early stages that the overall requirements fora system are identi�ed and the basic design of the system is speci�ed. Errors ormisapprehensions made at these stages can prove ruinously expensive to correct lateron. Recent studies (e.g., [9, 18]) have shown that errors due to faulty requirementsare between 10 and 100 times more expensive to �x at the implementation stagethan at the requirements stage. There are two main reasons for the high cost ofmodifying early decisions late in the life-cycle:� The changes often have a widespread impact on the system, requiring manylines of code to be modi�ed. Furthermore, it can be di�cult to identify allof the code requiring attention, resulting in the modi�cation being performedincorrectly.

40 Chapter 5. Testinghazards as possible, but does imply that additional procedures may be necessary toensure system safety.The goal of SFTA is to show that the logic contained in the software designwill not produce system safety failures, and to determine environmental conditionswhich could lead to the software causing a safety failure. The basic procedure isto suppose that the software has caused a condition which the hazard analysis hasdetermined will lead to catastrophe, and then to work backward to determine theset of possible causes for the condition to occur.The root of the fault tree is the event to be analyzed, i.e., the \loss event."Necessary preconditions are described at the next level of the tree with either anAND or an OR relationship. Each subnode is expanded in a similar fashion until allleaves describe events of calculable probability or are incapable of further analysisfor some reason. SFTA builds software fault trees using a subset of the symbolscurrently in use for hardware systems. Thus hardware and software fault trees canbe linked together at their interfaces to allow the entire system to be analyzed. Thisis extremely important since software safety procedures cannot be developed in avacuum but must be considered as part of overall system safety. For example, aparticular software error may cause a mishap only if there is a simultaneous humanand/or hardware failure. Alternatively, environmental failure may cause the softwareerror to manifest itself. In many previous safety mishaps, e.g., the nuclear powerplant failure at Three Mile Island, the safety failure was actually the result of asequence of interrelated failures in di�erent parts of the system.Fault tree analysis can be used at various levels and stages of software develop-ment. At the lowest level the code may be analyzed, but it should be noted thathigher levels of analysis are important and can and will be interspersed with thecode level. Thus the analysis can proceed and be viewed at various levels of ab-straction. It is also possible to build fault trees from a program design language(PDL) and to thus use the information derived from the trees early in the softwarelife cycle. When working at the code level, the starting place for the analysis isthe code responsible for the output. The analysis then proceeds backward deducingboth how the program got to this part of the code and determining the currentvalues of the variable (current state).An experimental application of SFTA to the
ight and telemetry control systemof a spacecraft is described by Leveson and Harvey [86]. They report that theanalysis of a program consisting of over 1250 lines of Intel 8080 assembly code tooktwo days and discovered a failure scenario that could have resulted in the destructionof the spacecraft. Conventional testing performed by an independent group prior toSFTA had failed to discover the problem revealed by SFTA.

5.2. Static Testing 39respects the structural properties given in its speci�cation. One advantage of thisstyle of veri�cation is that it can be performed with complete formality, but withoutburdening the user with details. The PegaSys system developed in the ComputerScience Laboratory of SRI [92] supports the use of pictures as formal speci�cationsof system structure, and hides all the details of theorem proving from the user.5.2.4 Fault-Tree AnalysisReliability is not the same as safety, nor is a reliable system necessarily a safe one.Reliability is concerned with the incidence of failures ; safety concerns the occurrenceof accidents ormishaps|which are de�ned as unplanned events that result in death,injury, illness, damage to or loss of property, or environmental harm. Whereassystem failures are de�ned in terms of system services, safety is de�ned in termsof external consequences. If the required system services are speci�ed incorrectly,then a system may be unsafe, though perfectly reliable. Conversely, it is feasible fora system to be safe, but unreliable. Enhancing the reliability of software, thoughdesirable and perhaps necessary, is not su�cient for achieving safe software.Leveson [85, 86, 83] has discussed the issue of software safety at length andproposed that some of the techniques of system safety engineering should be adaptedand applied to software. First, it is necessary to de�ne some of the terms used insystem safety engineering. Damage is a measure of the loss in a mishap. A hazardis a condition with the potential for causing a mishap; the severity of a hazard is anassessment of the worst possible damage that could result, while the danger is theprobability of the hazard leading to a mishap. Risk is the combination of hazardseverity and danger. Software Safety is concerned with ensuring that software willexecute in a system context without resulting in unacceptable risk. One class oftechniques for software safety is concerned with design principles that will reducethe likelihood of hazardous states; another is concerned with methods for analyzingsoftware in order to identify any unduly hazardous states. An example of the latteris \Software Fault Tree Analysis" (SFTA). The description below is adapted fromthat in [86].SFTA is an adaptation to software of a technique that was developed and �rstapplied in the late 60's in order to minimize the risk of inadvertent launch of aMinuteman missile. The �rst step, as in any safety analysis, is a hazard analysisof the entire system. This is essentially a listing and categorization of the hazardsposed by the system. The classi�cations range from \catastrophic," meaning thatthe hazard poses extremely serious consequences, down to \negligible" which denotesthat the hazard will not seriously a�ect system performance. Once the hazards havebeen determined, fault tree analysis proceeds. It should be noted here that in acomplex system, it is possible, and perhaps even likely, that not all hazards canbe predetermined. This fact does not decrease the necessity of identifying as many

38 Chapter 5. Testingwere hired to add self-checks to programs containing a total 60 known faults (therewere 8 di�erent programs, each was given to three students). Only 9 out the 24 self-checking programs detected any faults at all; those that did �nd faults found only6 of the 60 known faults, but they also discovered 6 previously unknown faults (inprograms which had already been subjected to one million test-cases). Sadly, 22 newfaults were introduced into the programs in the process of adding the self-checks.5.2.3.2 Veri�cation of Limited PropertiesA common and familiar example of executable assertions is the \range check" gener-ally compiled into array subscripting operations. Though a valuable safety net, thesechecks can be very expensive when they appear in the inner loops of a program. Anapproach which \turns the tables" on the relationship between formal veri�cationand executable assertions is to prove that subscripting errors, and other simple formsof run-time error, cannot occur [51]. This is an example of an important variationon the application of formal veri�cation.Conventionally, the goal of formal veri�cation is understood to be \proof ofcorrectness." We have been careful to make a more careful and accurate statement|namely, that it provides a demonstration of consistency between a program and itsspeci�cation|but we have implicitly assumed that the speci�cation concerned is onethat provides a full description of the functionality required of the program. Thisneed not be the case, however. The methods of formal veri�cation can be appliedequally well when the speci�cation is a limited, weak, or partial one: instead ofproving that the program does \everything right," we can attempt to prove onlythat it does certain things right, or even that it is does not do certain things wrong.In fact, the properties proved of a program need not be functional properties at all,but can be higher order (e.g., \security"), or structural.The limited properties to be proved may be chosen because of their tractability|i.e., because formal veri�cation is among the most cost-e�ective ways of ensuringthose properties|or because of their importance. The absence of array subscriptingerrors is an example of the �rst class; security exempli�es the second. In particular,security is an example of a \critical property": a property considered so importantthat really compelling evidence must attest to its realization. What constitutes acritical property is something that can only be determined by the customer (and thelaw!), but it will generally include anything that could place human life, nationalsecurity, or major economic assets at risk.Yet another variation on formal veri�cation is to prove properties about thestructural properties of programs. For example, a speci�cation may assert that theprogram should have a certain structure, or that a certain structural relationshipshould exist among some of its components (e.g., one may use the other, but notvice-versa). Formal veri�cation of these properties guarantees that the program

5.2. Static Testing 37stead of concentrating on what he wants to say, he has to spend all his e�ort on howto say it|with the consequent danger that he may fail to say it correctly, and sofall into the second kind of error. Similarly, the user may have to spend consider-able ingenuity, not in proving his theorems directly, but in persuading a mechanicaltheorem prover to prove them for him. This problem is compounded by the factthat most veri�cation systems do not allow the user to reason about programs di-rectly (as he would do if performing the proof by hand), but reduce the questionof consistency to a (generally large) number of (generally lengthy) formulas called\veri�cation conditions" that rob the user of much of his intuition concerning theprogram's behavior. This latter di�culty should not a�ect the reliability of theprocess (provided the theorem prover is sound), but will adversely a�ect its eco-nomics. SRI's EHDM system attempts to overcome these di�culties by providinga very expressive speci�cation language and powerful underlying logic (based onmulti-sorted higher order logic) together with the ability to reason about programsdirectly (using the Hoare, or relational, calculus) [109].5.2.3.1 Executable AssertionsThe task of proving consistency between a program and its speci�cation is generallybroken down into more manageable steps by embedding assertions at suitable pointsin the program text and proving that the assertions will always be satis�ed whenthe locus of control passes these points during execution. An interesting alternativeto proving the assertions �a priori is to test them during execution and to halt theprogram with an error message if any assertion fails. This can permit a fairly simpleproof of consistency between a program and the weakened speci�cation \X or fail,"where \X" was the original speci�cation. Variations on this theme include the useof executable assertions during conventional dynamic testing [7], and in a dynamicvariant of anomaly detection [29]. In the former case, the presence of the assertionsallows the testing process to probe the \inner workings" of the program, ratherthan merely its input-output behavior (recall our discussion of symbolic executionin Section 5.1.4 on page 31). In the latter case, instrumenting the program withexecutable assertions allows data
ow anomaly detection to be performed withoutrequiring a data
ow analyzer for the programming language concerned. Of course,this approach can only perform anomaly detection on paths actually executed.More radical techniques that have much in common with executable assertionsinclude \provably safe" programming [6], and the \recovery block" approach tosoftware fault tolerance|in which an \acceptance test" (e�ectively an executableassertion) governs the invocation of alternative program components to replace thosethat have failed [5]. An experiment by Anderson [4] showed promise for recoveryblocks (70% of software failures were eliminated, and MTBF was increased by 135%),but found that acceptance tests are hard to write. In another study [28], 24 students

36 Chapter 5. Testingargument is provided to justify the claim that the component satis�es its speci-�cation. If a veri�cation is di�cult or unconvincing, the program is revised andsimpli�ed so that the argument for its correctness becomes more perspicuous.Mathematical veri�cation subsumes structural testing in the Clean Roommethod-ology, although functional testing is still performed. However, the major testinge�ort performed in the Clean Room is random testing for the purposes of statisticalquality control. Software speci�cations in the Clean Room methodology include notonly a description of the functions to be supported by the software, but a prob-ability distribution on scenarios for its use. The Clean Room methodology thenprescribes a testing procedure and a method for computing a certi�ed statisticalquality measure for the delivered software.The mathematical veri�cation technique used in the Clean Room methodologyis called \functional veri�cation" and is di�erent from that employed in \classical"mathematical veri�cation. The \rigorous" techniques of Jones [69], and of the Ox-ford school [56] are based on more conventional forms of mathematical veri�cationthan the Clean Room methodology, and are also more formal, but share much oftheir motivation with the Clean Room approach. An empirical evaluation of theClean Room methodology has recently been reported by Selby et al [111].Beyond the techniques described above come the totally formal methods. Thesegenerally employ the assistance of an automated speci�cation and veri�cation en-vironment: the sheer quantity of detail entailed by complete formality is likely torender veri�cation less, rather than more, reliable unless mechanical assistance isemployed. Formal speci�cation and veri�cation environments generally provide aformal speci�cation language, a programming language, a means of reducing theproblem of establishing consistency between a program and its speci�cation to aputative theorem in some formal system, and a mechanical theorem prover for seek-ing, or checking, proofs for such theorems. Three or four systems of this type havebeen developed [77].All veri�cation methods are vulnerable to two classes of error. First is the pos-sibility of a
aw in the veri�cation itself|the demonstration of consistency betweenthe program and its speci�cation may be
awed, and the two descriptions may, infact, be inconsistent. The second class of error arises when the veri�cation is sound,but irrelevant, because the speci�cation does not re
ect the actual user requirements(i.e., the system may satisfy the veri�cation process, but fail validation)It is in order to avoid the �rst class of error that truly formal, and mechanicallyassisted, formal veri�cation is generally recommended. There are, however, draw-backs to this approach. Firstly, in order to be amenable to mechanization, ratherrestrictive speci�cation and programming languages, built on a very elementary for-mal system (usually a variation on �rst-order predicate calculus), must usually beemployed. Because of their lack of convenient expressiveness, such languages andlogics may make it di�cult for the user to say what he really intends|so that in-

5.2. Static Testing 35that it remains constructive and purposeful. As the design and its implementationbecome understood, the attention shifts to a conscious search for faults. A checklistof likely errors may be used to guide the fault �nding process.One of the main advantages of structured walk-throughs over other forms of test-ing is that it does not require an executable program, nor even formal speci�cations|it can be applied early in the design cycle to help uncover errors and oversights beforethey become entrenched.5.2.3 Mathematical Veri�cationMathematical veri�cation is the demonstration of consistency between two di�erentdescriptions of a program. Usually, one description is the program code itself andthe other its speci�cation, though the method can equally well be applied to twospeci�cations at di�erent levels of detail. This terminology is entirely consistentwith the notion of \veri�cation" de�ned in Section 2.1 (page 4), but the presenceof the adjective \mathematical" quali�es this particular style of veri�cation as amathematical activity, in which the two program descriptions are treated as formal,mathematical texts and the notion of \consistency" that is to be demonstratedbetween them is also a formal, mathematical one (for example, that of \theoryinterpretation" or of a homomorphism).Mathematical veri�cation can be performed at various levels of formality. Asstated above, mathematical veri�cation means that the process is grounded on for-mal, mathematical principles. But just as conventional mathematicians do notreduce everything to the level of Principia Mathematica, so it is entirely reasonableto perform mathematical veri�cation \rigorously," but informally|that is to say, inthe style of a normal mathematical demonstration.1There are many worthwhile points along the spectrum of formality in mathe-matical veri�cation. At the most informal end is the \Clean Room" methodologyespoused by Mills [91]. Though informal in the sense that the process is performedmanually at the level of ordinary mathematical discourse, the process itself is highlystructured and formalized. Its goal is to prevent faults getting into the software inthe �rst place, rather than to �nd and remove them once they have got in. (Hencethe name of the methodology|which refers to the dust-free environment employedin hardware manufacturing in order to eliminate manufacturing defects.)The two cornerstones of the Clean Room methodology are mathematical veri�-cation and statistical quality control. The �rst requires that precise, formal, speci-�cations are written for all program components and that a detailed mathematical1What we are calling mathematical veri�cation is often called formal veri�cation; we have chosenour terminology to avoid having to talk about \informal" formal veri�cation which, if it is not anoxymoron, is undoubtedly a solecism. Our usage also avoids confusion with some notions of \formal"veri�cation that are anything but mathematical|the adjective \formal" being used in this case torefer to a highly structured process of veri�cation.

34 Chapter 5. Testingof anomalies that are likely to indicate faults include supplying a constant as anactual parameter to a procedure call in which the corresponding formal parameteris modi�ed, and subscripting an array with a loop index whose bounds exceed thosedeclared for the array.Control
ow anomalies include unreachable sections of program, and loops withno exit. These circumstances indicate certain errors; other control
ow anomaliesmay merely indicate \bad style"|for example, jumping into the middle of a loop.Among the most e�ective of techniques for anomaly detection are those based ondata
ow analysis. For example, if it can be determined that the value of a programvariable may be used before it has been given a value (i.e., if there is a path to a useoccurrence that does not pass a def occurrence), then it is very likely that a faultis present. Dually, def occurrences that do not lead to a subsequent use occurrenceare also suspect, as are paths that have two def occurrences of a variable, with nointervening use occurrence.Information
ow analysis is related to data
ow analysis, but is rather moresophisticated in tracing the in
uence between program variables and statements.For example, in the program fragmentif x = 0 then y := 1 endifthere is no data
ow from x to y, but the value of x certainly in
uences the subse-quent value of y, and so there is considered to be a
ow of information from x to y.Information
ow analysis is used routinely in computer security veri�cation [40, 114];its application to more general analysis and anomaly detection is promising [12].Automated tools have been developed to perform detection of anomalies of thetypes described above for programs written in a variety of languages [98, 122].5.2.2 Structured Walk-ThroughsStructured walk-throughs are a method for the manual inspection of program de-signs and code. The method requires far more than mere \eyeballing": it is highlystructured and somewhat grueling|its intensity is such that no more than twotwo-hour sessions per day are recommended.As �rst described by Fagan [45] (see [46] for an update), four participants arerequired|the Moderator, the Designer, the Coder/Implementor/, and the Tester.If a single person performed more than one role in the development of the program,substitutes from related projects are impressed into the review team. The reviewteam scrutinizes the design or the program in considerable detail: typically, oneperson (usually the coder) acts as a \reader" and describes the workings of theprogram to the others, \walking through" its code in a systematic manner so thatevery piece of logic is covered at least once, and every branch is taken at least once.Intensive questioning is encouraged, but it is the Moderator's responsibility to ensure

5.2. Static Testing 33The average size of the test sets needed to achieve this coverage was 12.8, with thelargest being 112. Since the test sets were randomly generated, they were far fromoptimal, and contained subsets that provided the same coverage as the whole set.Using zero-one integer linear programming, the minimum such subsets were foundfor each test set. These were found to average only 3.1 in size, with the test set ofsize 112 being reduced to only 10. Thus, the suggestion is to generate random testdata until adequate coverage is achieved relative the chosen structural testing crite-rion (or until further tests result in little increased coverage). Coverage is measuredby instrumenting the program under test. The randomly generated test set is thenreduced to minimum size using zero-one integer linear programming, and the testresults obtained using this subset are examined.5.2 Static TestingDynamic testing is an important method of validation; static testing tends to addressthe complementary problem of veri�cation. Static testing subjects the program text(and its accompanying requirements and speci�cation documents) to scrutiny andreview in order to detect inconsistencies and omissions. The scrutiny may operatewithin a single level, in order to detect internal inconsistencies (this is the basis ofanomaly detection, discussed in the next section), or across two levels. In the lattercase, the purpose is to establish that the lower level speci�cation (or program) fullyand exclusively implements the requirements of its superior speci�cation. Every-thing in a lower level speci�cation should be traceable to a requirement in a higherlevel speci�cation; conversely, every requirement should ultimately be realized inthe implementation.5.2.1 Anomaly DetectionThe idea behind anomaly detection is to look for features in the program thatprobably indicate the presence of a fault. For example, if a programmer declares avariable name but never otherwise refers to it, he is guilty of carelessness at the veryleast. More ominously, this situation may indicate that the programmer anticipateda need for the variable early in the programming e�ort, but later forgot to dealwith the anticipated circumstance|in which case the existence of a genuine faultmay have been detected. Anomaly detection refers to the process of systematicallysearching for \suspicious" quirks in the syntactic structure of the program, or in itscontrol or data
ow.At the syntactic level, the example given above is typical of a very fruitful tech-nique: searching for identi�ers that are declared but not used. The dual problem ofidenti�ers that are used but not identi�ed usually violates the de�nition of the pro-gramming language concerned and will be caught by its compiler. Other examples

32 Chapter 5. Testingindicates the paths he wishes to explore and the symbolic execution system assertsthe necessary truth of the appropriate test predicates.The output produced by a symbolic execution system consists of the symbolicvalues accumulated in its variables through execution of a selected path. The pro-grammer can compare these values with those expected. This is very convenientand appropriate for some computations, less so for others. For example, How-den [61] cites a subroutine to compute the sine function using the Maclaurin seriessin(x) = x� x33! + x55! � : : : Two iterations round the main loop in the subroutine yieldthe symbolic value X-X**3/6+X**5/120 for the variable SUM in which the result isaccumulating. This provides much more useful information than would the outputvalues for a couple of isolated points.Another use for symbolic execution is to help partition the input domain by theexecution paths invoked. This is helpful in the generation of test data to satisfy pathcoverage criteria. Symbolic execution systems and their applications are describedby several authors [61, 78]; one of the �rst such systems was developed in theComputer Science Laboratory of SRI [21].5.1.5 Automated Support for Systematic Testing StrategiesGiven a systematic test selection criterion, the question naturally arises: how doesone generate test data satisfying the criterion? For functional testing, there seemslittle alternative to generating the data by human inspection: generally the require-ments and design documents from which functional test data are derived are notformal and not amenable to mechanical analysis. However, it is feasible that auto-matic test data selection could be performed once human inspection had performedthe classi�cation of the input domain: that is to say, human skill would be used toidentify the primitive classi�cations, but the generation of combinations of elementsof each classi�cation would be performed mechanically.Unlike functional testing, structural testing is ideally suited to automation. Theprogram text is a formal object and well suited to systematic exploration. Unfortu-nately, considerable computation is needed to calculate the input that will exercisea particular path: symbolic execution is generally employed in order to derive the\path predicates" associated with the path, then solutions must be found to thesystems of numerical inequalities that they induce. Consequently, most test casegenerators are severely limited in the class of programs and/or in the class of testcriteria that they support. Ince [67] provides a modern survey of the �eld and alsosuggests that systematic use of randomly generated test data could provide verygood coverage at low cost. The idea, which is elaborated in a short note [68], startsfrom the observation that relatively small sets of random test data seem to providequite good coverage [43]. For example, with ten programs ranging in size from 12 to102 branches, random test data achieved an average branch coverage of 92.80% [68].

5.1. Dynamic Testing 31values +k and �k, where k is a very large value, are likely to suggest themselves.But if the function is used in the contextif x > -2 then f(x) endif,the test value �k will not exercise f at all, and faults manifest by negative valuesfor x, for example, will remain undiscovered. Given its context, appropriate testvalues for f might be �2� � and +k.If a formal speci�cation is available for a program, it may be possible to derive afunctional testing strategy from that speci�cation in a highly systematic fashion [57].Other systematic functional testing strategies are described by Mandl [87] and byOstrand and Balcer [99].5.1.4 Symbolic ExecutionThe model of testing described so far assumes that test data are presented to theprogram and the results produced are compared with those expected. In practice,however, programmers do not merely examine the �nal output of the program, butoften instrument or modify the program under test so that traces of its control
owand of the intermediate values of its variables are generated during execution. Thesetraces greatly assist the programmer in determining whether the actual behavior ofthe program corresponds to that intended. Since they provide a peek into the innerworkings of the program, traces often yield much more insight than the single datumpoints provided by tests that only consider input-output values.Symbolic Execution constitutes a systematic technique for generating informa-tion about the inner workings of a program. The idea is to allow program variablesto take symbolic values and to evaluate the functions computed by program state-ments symbolically also. Symbolic execution bears a similar relationship to conven-tional execution as algebra does to arithmetic. Consider, for example, the following(Fortran) program fragment from a subroutine to compute the sine of an angle:I=3TERM=TERM*X**2/(I*(I-1))SUM=SUM+(-1)**(I/2)*TERMWe can compute the �nal values of variables I, TERM and SUM, given the initialassignments TERM=SUM=X to be I=3, TERM=X**3/6, and SUM=X-X**3/6. The processperformed, statement by statement, is to substitute the current symbolic valuesinto each variable in the right hand side of each assignment statement, simplify theresulting expression, and let this become the new symbolic value of the variable onthe left hand side. In a full symbolic execution system, it is necessary to be ableto carry the computation forward through branches. Typically, the programmer

30 Chapter 5. Testingsome subsequent c-use should be included. The all-c-uses/some-p-uses criterion isde�ned dually.The all-uses criterion is a comprehensive one but, like the all-paths criterion, mayrequire an excessive, or in�nite, number of test cases. The all-defs criterion seemsan attractive compromise from this point of view. Systematic test selection criteriashould surely draw on both data and control
ow perspectives|so a very reasonablecriterion would seem to be one that encompassed both all-defs and all-edges. Rappsand Weyuker [100] showed that these are independent criteria|neither implies theother. This tends to con�rm the belief that both are important, but complicatestest selection since two very di�erent criteria are involved. It would be nice ifa single criterion could be found that would include both all-defs and all-edges.Rapps and Weyuker [100] showed that all-p-uses/some-c-uses has this propertyand recommended its use. Ntafos [97] provides a comprehensive comparison of therelative coverage of these and other structural testing strategies. Clarke [33] providesa more formal examination.5.1.3.2 Functional TestingFunctional testing selects test data on the basis of the function of the program,as described in its requirements, speci�cation, and design documents. Generallyspeaking, the detailed characteristics of the program itself are not considered whenselecting test data for functional testing, though general aspects of its design maybe. Functional testing treats the program as a \black box" which accepts input, per-forms one of a number of possible functions upon it, and produces output. Based onthe relevant requirements documents, classi�cations and groupings are constructedfor the input, output, and function domains. Test data are then constructed to ex-ercise each of these classi�cations, and combinations thereof. Typically, an attemptis made to select test data that lie well inside, just inside, and outside each of theinput domains identi�ed. For example, if a program is intended to process \words"separated by \whitespace," we might select test data that consists of zero words,one word, several words, and a huge number of words. Similarly, we would selectwords consisting of but a single letter, a few letters, and very many letters|notto mention words containing \illegal" letters. The \whitespace" domain would beexplored similarly.Functional testing for a given programmay take many forms, depending on whichof its requirements or design documents are used in the analysis. Howden [63] arguesthat for maximum e�ectiveness, functional testing should consider the \high-level"design of a program, and the context in which functions will be employed. Forexample, if a particular function f(x) has the domain x 2 (�1;1), then the test

5.1. Dynamic Testing 29exercised. In terms of the control
ow graph of the program, the �rst of thesecriteria requires that all nodes must be visited during testing; the second requiresthat all edges must be traversed, and properly includes the �rst (unless there areisolated nodes|which surely represent errors in their own right).Test data that simply visits all nodes, or traverses all edges, may not be verye�ective: not many faults will be so gross that they will be manifest for all execu-tions of the o�ending statement. Generally, faults are manifest only under certainconditions, determined by the context|that is to say, the values of the accessiblevariables|in which the o�ending statement is executed. Context is established inpart by the execution path taken through the control
ow graph; the path testingcriterion requires test data that will exercise all possible paths through the program.There are (at least) two problems with the all-paths criterion. Firstly, a pathdoes not uniquely establish an execution context: two di�erent sets of input valuesmay cause the same execution path to be traversed, yet one set may precipitate afailure while the other does not. Secondly, any program containing loops has anin�nite number paths. Some further equivalence partitioning is therefore needed.One plausible strategy is to partition execution paths through each cycle in thecontrol
ow graph into those involving zero, one, and many iterations.A more sophisticated strategy considers the data
ow relationships in the pro-gram. Data
ow analysis, which was �rst studied systematically for its applicationin optimizing compilers, considers how values are given to variables, and how thosevalues are used. Each occurrence of a variable in a program can be classi�ed as adef, or as a use: a def occurrence (for example, an appearance in the left hand sideof an assignment statement) assigns a value to a variable; a use occurrence (for ex-ample, an appearance in the right hand side of an assignment statement) makes useof the value of a variable. Use occurrences may be further distinguished as c-uses(the value is used in a computation that assigns a value to a variable) and p-uses(the value is used in a predicate that in
uences control
ow). For example, in theprogram fragmentif x = 1 then y := z endif,x has a p-use, z a c-use, and y a def.Rapps and Weyuker [100] proposed a family of path selection criteria based ondata
ow considerations. The all-defs criterion requires that for every def occurrenceof, say, variable x, the test data should cause a path to be traversed from that defoccurrence to some use occurrence of x (with no intervening def occurrences of x).The all-p-uses criterion is similar but requires paths to be traversed from that defoccurrence to every p-use occurrence of x that can be reached without interveningdef occurrences of x. De�nitions for the criteria all-c-uses, and all-uses are similar.A hybrid criterion is all-p-uses/some-c-uses|this is the same as all-p-uses, exceptthat if there are no p-uses of x subsequent to a given def occurrence, then a path to

28 Chapter 5. Testingbecause it captures the basic idea underlying all attempts to create thorough teststrategies, namely the search for test criteria that are both reliable and valid, yeteconomical in the sense that they can be satis�ed by relatively small test sets.Unfortunately, there are several problems with the practical application of thesede�nitions [121]. First of all, the concepts of reliability and validity are not inde-pendent. A test selection criterion is valid if, given that the program is faulty, atleast one test set satisfying the criterion is unsuccessful. Therefore, if a test selectioncriterion is invalid, all test sets that satisfy it must be successful. Hence they will allgive the same result, and so the criterion is reliable. Thus, all test selection criteriaare either valid or reliable (or both) [121]. (Note also that if F is correct, then allcriteria are both reliable and valid for F .)Next, the concepts of validity and reliability are relative to a single, given pro-gram. A criterion that is valid and reliable for program F may not be so for theslightly di�erent program F 0. Furthermore, since F 0 may result from correcting abug in F , the reliability and validity of a test selection criterion may not be preservedduring the debugging process.A plausible repair to this de�ciency is to construct modi�ed de�nitions whichquantify over all programs. Thus, a test selection criterion is said to be uniformlyvalid if it is valid for all programs F , and uniformly reliable if it is reliable for allprograms F . Unfortunately, a criterion is uniformly reliable if and only if it selectsa single test and uniformly valid if and only if the union of the test sets that satisfyit is the entire input space D. Hence a criterion is uniformly reliable and valid ifand only if it selects the single test set D. Thus we see that the notions of uniformreliability and validity are unhelpful [121]. A more recent attempt to axiomatize thenotion of software test data adequacy is described by Weyuker [120].In theory, the construction of a reliable and valid test selection criterion for aprogram is equivalent to proving the formal correctness of that program|a very hardproblem. In practice, constructing such a criterion is virtually impossible withoutsome knowledge, or at least some assumptions, about the faults that it may contain.Thus, the search for a theoretical basis for thorough test selection has shifted fromthe original goal of demonstrating that no faults are present, to the more modestgoal of showing that speci�ed classes of faults are not present. In practice, the goalis often reduced to that of �nding as many faults as possible. This is accomplishedby systematic exploration of the state space based on one (or both) of two strategiesknown as structural testing, and functional testing, respectively.5.1.3.1 Structural TestingStructural testing selects test data on the basis of the program's structure. As aminimum, test data are selected to exercise all statements in the program; a morecomprehensive criterion requires that all outcomes of all decision points should be

5.1. Dynamic Testing 275.1.3 Thorough TestingThe motivation behind random testing is �nd and remove the most costly faults(generally interpreted as those that most frequently lead to operational failure) asquickly and as cheaply as possible. Test selection without replacement and equiva-lence partitioning may be used to enhance the testing compression factor and hencethe cost-e�ectiveness of the process. The motivation behind what we will call thor-ough testing, on the other hand, is to �nd all the faults in a program (as e�cientlyas possible). The theoretical framework for thorough testing was established byGoodenough and Gerhart in a landmark paper [52].Let F denote the program being considered, and D its input space. If d 2 Dthen ok(d) denotes that F behaves correctly when given input d. We say thatthe test set T � D is successful if F behaves correctly on all its members, thatis successful(T) def= (8t 2 T : ok(t)). A correct program is one that behavescorrectly throughout its input space|i.e., one that satis�es successful(D). Afaulty program is one that is not correct|i.e., one that satis�es :successful(D).A thorough test set is one which, if successful, guarantees that the program is correct,that is thorough(T) def= successful(T) � successful(D):If C is a test selection criterion and the test set T satis�es C, then we writesatisfies(T; C). We would like test criteria to be reliable and valid. A criterion isreliable if all test sets that satisfy it give the same result:reliable(C) def= (8T1; T2 2 D : satisfies(T1; C)^ satisfies(T2; C)� successful(T1) = successful(T2)):A criterion is valid if it is capable of revealing all faulty programs. That is, if F isfaulty, then there should be some T that satis�es C and fails on F :valid(C) def= :successful(D) � (9T : satisfies(T; C)^ :successful(T)):Given these de�nitions, Goodenough and Gerhart were able to state the Funda-mental Theorem of Testing :(9T; C : reliable(C) ^ valid(C)^ satisfies(T; C)^ successful(T))� successful(D):In words, this says that if a successful test set satis�es a reliable and valid criterion,then the program is correct. Another way of stating this result is that a test isthorough if it satis�es a reliable and valid test criterion.This result is called \Fundamental," not because it is profound (indeed, itsproof is a trivial consequence of the de�nitions, and is omitted for that reason), but

26 Chapter 5. Testingso the expected total time to cover the input space during operation isPjIjk=1 pkpmin�k.Since only one execution of each input is required during test (without replacement),the execution time to cover the input space during test is only PjIjk=1 �k, and so thetesting compression factor is given by:C = PjIjk=1 pkpmin�kPjIjk=1 �k : (5:1)If all �k are equal, then (5.1) simpli�es toC = 1jI j � pmin :If pk is assumed to be inversely proportional to k, then it can be shown that as jI jgrows from 103 to 109, C grows slowly from just less than 10 to a little over 20.If a value for the testing compression factor can be calculated or estimated usingthe methods given above, then the reliability formulas of Section 3.1 (page 8) canbe employed to extrapolate from the testing to the operational phase if executiontimes are multiplied by C (alternatively, failure intensities can be divided by C) inorder to convert observations made during test to those expected during operation.The pure random test selection strategy described above assumes that all failureshave equal cost. In practice, some failures may be more expensive than others;some may be unconscionable (perhaps endangering human life). In these cases,the random test strategy may be modi�ed in order to attempt to identify andprovide early tests of those inputs which might provoke especially costly failures.The technique of software fault-tree analysis may be useful in identifying such criticalinputs [86, 83]{see Section 5.2.4.5.1.2 Regression TestingThe desirability of test selection without replacement is considerably diminishedif we admit the possibility of imperfect debugging. Under the assumption thatdebugging is imperfect, the repair that is initiated following each failure may notonly fail to remove the fault that caused it, but may actually introduce new faults.These faults may cause failure on inputs that previously worked satisfactorily. Undera regression testing regime, previously tested inputs are repeated whenever a repair(or other modi�cation) is made to the program. Under strict regression testing,all previous tests are repeated; under less strict regimes, some subset of those tests(usually including all those that provoked failure) are repeated. Models of thesoftware testing process under various assumptions are discussed by Downs [42].

5.1. Dynamic Testing 25or cases that they believe the designers may have overlooked. This tactic may besuccessful in �nding bugs, but because those bugs are manifested by rare or unusualinputs, they may not be encountered during normal operation and may thereforecontribute little to the incidence of operational failures.5.1.1 Random Test SelectionThis argument may be developed into a case for random testing. If individual fail-ures are all assumed to have similar cost, then the cost of unreliability is proportionalto failure intensity. Since the cost of testing is primarily in
uenced by the executiontime taken to perform the tests themselves, the optimum test strategy is one whichyields the greatest reduction in failure intensity for a given amount of execution timedevoted to testing. This argues for concentrating on �nding and eliminating thosefaults that lead to failures on commonly occurring inputs|and therefore suggeststhe strategy of selecting test cases randomly, with a probability distribution equalto that expected to occur during operation. This approach has the advantage thatit essentially duplicates the operational pro�le and therefore yields failure intensitydata that approximates that which would have been found if the program had beenreleased into operation at that time. The failure intensity data obtained during test-ing should therefore provide accurate estimates for the reliability formulas developedin Section 3.1 (page 8).A criticism of the random testing strategy is that it is wasteful: the same in-put may be tested several times. However, it is usually easy to record each inputand to avoid repeating tests already performed. By reference to the classic sam-pling problems of statistics, such methods are often called \test selection withoutreplacement." If tests are selected and performed without replacement, then theprobability of selecting any particular input value becomes uniform. However, theorder in which inputs are selected will still follow their expected probability of oc-currence in operation.Although random test selection without replacement should be more cost-e�ectivethan a purely random strategy, such tests do not follow the expected operationalpro�le and therefore do not provide an accurate estimate of the failure intensitiesto be expected in practice. It is possible to take account of this divergence betweenthe testing and the operational pro�les as follows.De�ne C, the testing compression factor to be the ratio of the execution timerequired to cover the entire input space during operation, to that required duringtest. Let jI j be the size (cardinality) of the input space, pk the probability ofoccurrence of input k during operation, pmin the probability of occurrence of theleast likely input, and let �k be the execution time required for input k. If the entireinput space is covered during operation, then the least likely input must be executedat least once. Hence the expected frequency of execution of input k is pk=pmin and

Chapter 5TestingTesting subjects software to scrutiny and examination under the controlled condi-tions of a \test phase" before it is released into its \operational phase." The purposeof testing is to discover faults and thereby prevent failures in the operational phase.Discussion of the e�ciency of a test strategy must relate the actual cost of testingto the avoided costs of the operational failures that are averted.Testing can take two forms: static, and dynamic, though the unadorned term\testing" generally refers only to the latter. Static testing is that which dependsonly on scrutiny on the program text (and possibly that of its speci�cations andrequirements also). Dynamic testing, on the other hand, observes the behavior ofthe program in execution. We will describe dynamic testing �rst, then three variantsof static testing: anomaly detection, code walk-throughs, and formal veri�cation.5.1 Dynamic TestingThe input space of any interesting program is so large (if not in�nite) that it isinfeasible to examine the behavior of the program on all possible inputs. Given thatonly a fraction of the total input space can be explored during testing, systematictesting strategies attempt to maximize the likely bene�t while minimizing the costof testing. Two tactics underlie most systematic testing strategies: the �rst is toreduce cost by partitioning inputs into groups whose members are likely to havevery similar behavior, and then testing only one member from each group (this iscalled \equivalence partitioning"); the second is to maximize bene�t by selecting testdata from among inputs that are considered to have an above average likelihood ofrevealing faults. The second of these tactics is not universally admitted to be a goodidea: the divergence of opinion occurs between those who are primarily interested inenhancing reliability (actually, in reducing the cost of unreliability), and those whoare interested in �nding bugs. Concentration on input states believed to be fault-prone often leads testers to examine the boundaries of expected ranges of values,24

4.4. Discussion of Software Metrics 23E�ort metrics are rather less controversial and easier to validate than complexitymetrics|their purpose, if not their e�ectiveness, is clear: to enable the cost andduration of a programming task to be estimated in advance. However, the e�cacyof existing e�ort metrics seems dubious at best. The COCOMO model, for example,seems to perform very poorly when applied to projects other than those used in itsown validation. Kemerer [75], for example, reported an average error of over 600%,and also found that the Basic COCOMO mode outperformed the more complexIntermediate and Detailed modes. Conte et al. [36] suggest that the COCOMOmodel is too complicated, and involves too many parameters that require estimation.Kemerer's data [75] suggests that a much simpler \function count" method, similarto the Software Science metric, actually performs better than COCOMO.

22 Chapter 4. Size, Complexity, and E�ort MetricsKearney et al. also criticise the fact that complexity measures are developedwithout regard to the intended application of the measure. There is a signi�cantdi�erence between prescriptive uses of such metrics (using them to \score" program-mer's performance), and merely descriptive uses. A much greater burden of proofattends the former use, since we must be sure that techniques that improve thescore really do improve the program. Kearney et al. �nd much to criticize in themethodology and interpretation of experiments that purport to demonstrate the sig-ni�cance and merit of selected complexity measures, and thereby cast serious doubton the wisdom of using complexity metrics in a prescriptive setting.Criticism such as that levied by Kearney and his colleagues against much ofthe work in complexity metrics is acknowledged by the more thoughtful practioners.Shen, for example, introducing a magazine column dedicated to metrics [113], writes:\Metrics researchers in the 1980's are generally less optimistic than theircolleagues in the 1970's. Even though the pressure to �nd better metricsis greater because of the greater cost of software, fewer people todayare trying to formulate combinations of complexity metrics that theyrelate to some de�nition of productivity and quality. Instead they setvery narrow goals and show whether these goals are met using focussedmetrics : : :one narrow goal would be to test software thoroughly. Anappropriate metric might be some measure of test coverage."The issue addressed in this report is software quality; size and complexity metricsare of interest only in so far as they contribute to the estimation or improvementof software quality. As far as estimation is concerned, metrics research does notyet seem able to provide accurate predictions for the properties of economic interest(number of faults, cost to maintain or modify) from the measurable properties of theprogram itself. The most accurate and best validated predictive techniques seemto be the crudest|for example 20 faults per KLOC for a program entering unittest [93, page 121]. Even these techniques are likely to need considerable calibrationand re-validation when used in new environments.The application of software metrics to improving (as opposed to predicting) thequality of software is even more questionable. Given their lack of substantiation, theuse of such metrics prescriptively seems highly ill-advised [74]. Their least contro-versial application might be as components of \program comprehension aids." Bythese, we mean systems that assist a programmer to better comprehend his programand to master its complexities|especially those due to scale. Examples of such aidsrange from simple prettyprinters and cross-reference generators, to more semanti-cally oriented browsers. Descriptive complexity metrics might assist the programmerin identifying parts of the program worthy of restructuring or simpli�cation in muchthe same way that pro�ling tools help to identify the places where optimization canbe applied most fruitfully.

4.4. Discussion of Software Metrics 21the original Intermediate model. For all cost drivers, a \nominal" value correspondsto a multiplier of 1.00.Not all programs are written from scratch; the e�ort to develop a program thatincludes a substantial quantity of reused code should be less than one of comparabletotal size that consists of all new code. Various modi�cations have been suggestedto accommodate this factor; the simplest is to treat the total size of the program(Se) as a linear combination of the number of lines of new (Sn) and \old" code (So):Se = Sn + kSo;where k is an appropriate constant|a value of k = 0:2 has been found reason-able [36], though this could vary if the \old" code requires signi�cant adaptation.4.4 Discussion of Software MetricsThe attempt to measure and quantify the properties and characteristics of programsis a laudable one|and one on which considerable e�ort has been expended (see, forexample, the survey and bibliography by Waguespack and Badlani [118]). However,the substance and value of most of this work is open to serious question. Kearneyet al. marshal the arguments against the standard complexity measures in theircritique [74]. Firstly, they observe that existing complexity measures have beendeveloped in the absence of a theory of programming behavior|there is no compre-hensive model of the programming process that provides any intellectual supportfor the metrics developed. Any reasonable theory of programming behavior wouldconsider not only the program, but also the programmer (his skill and experience),the programming environment, and the task that the program is to accomplish.Yet existing complexity measures consider only the program itself, and ignore itscontext. Furthermore, most complexity measures examine only the surface featuresof programs|their lexical and syntactic structure|and ignore the deeper seman-tic issues. Indeed, most metrics research seems stuck in the preoccupations of the1960's: it equates complexity with control
ow (c.f. the \structured programming"nostrums of the time) and seems unaware that the serious work on programmingmethodology over the last 15 years has been concerned with the deeper problems ofhierarchical development and decomposition, and with the issues of data structur-ing, abstraction, and hiding. Some more recent work does attempt to address theseissues|for example, Bastani and Iyengar [10] found that the perceived complexityof data structures is strongly determined by the relationship between the concretedata representation and its more abstract speci�cation. They conjectured that asuitable measure for the complexity of a data structure is the length of the map-ping speci�cation between its abstract and concrete representations|i.e., a semanticmeasure.

20 Chapter 4. Size, Complexity, and E�ort MetricsRating MultiplierVery Low 0.75Low 0.88Nominal 1.00High 1.15Very High 1.40Figure 4.1: Multipliers for the Reliability Cost Driver in the COCOMO Modelthis approach is the \Delphi" technique in which several people prepare independentestimates and are then told how their estimates compare with those of the others. (Insome variants, they discuss their estimates with each other). Next, they are allowedto modify their estimates and the process is repeated until the estimates stabilize.Often the estimates converge to a very narrow range, from which a consensus valuemay be extracted.A composite cost estimation technique (which combines the use of expert judg-ment with statistical data �tting) is the COCOMO (COnstructive COst MOdel) ofBoehm [17, 16]. There are three \levels" of the COCOMO model; the most success-ful seems to be the (modi�ed) Intermediate Level. There are also three \modes"to the COCOMO model|for simplicity we will pick just one (the \semidetached"mode). This variant of the COCOMO predicts development e�ort E in man-monthsby the equation E = 3:0� S1:12 � 16Yi=1miwhere S is the estimated KLOC and eachmi is the multiplier assigned to a particular\cost driver." Development time (in months) can be obtained from the COCOMOe�ort measure by the equation T = 2:5E0:35. Each of the 16 cost drivers is evaluatedby experts on a �ve point descriptive scale, and a numerical value for the correspond-ing multiplier is then extracted from a table. The table for the \reliability" costdriver is given in Figure 4.1. The 16 cost-drivers used in the (modi�ed) IntermediateCOCOMO model are: required software reliability, data base size, product complex-ity, execution time constraint, main storage constraint, virtual machine volatility,computer turnaround time, analyst capability, applications experience, programmercapability, virtual machine experience, programming language experience, modernprogramming practice, use of software tools, required development schedule, andvolatility of requirements. It is the presence of the last cost driver (volatility ofrequirements) that distinguishes the modi�ed Intermediate COCOMO model from

4.3. Cost and E�ort Metrics 194.3 Cost and E�ort MetricsCost and e�ort metrics attempt to measure, or predict, the eventual size of a pro-gram, the cost required to construct it, the \e�ort" needed to understand it, andother such interesting and important attributes.Halstead's \Software Science" postulates several composite metrics that purportto measure such attributes. Halstead hypothesized that the length of a programshould be a function of the numbers of its distinct operands and operators. Thatis, it should be possible to predict N , the length of a program, from �1 and �2|thenumbers of its distinct operators and operands, respectively. Halstead encoded arelationship between these quantities in his famous \length equation":bN = �1 log2�1 + �2 log2�2:Going further, Halstead de�ned the \potential volume" V �, of a program asthe volume of the program of minimal size that accomplishes the same purposeas the original. The \di�culty" D of a program is then de�ned by D = V=V �,and its \level" L is de�ned as the reciprocal of di�culty. It is then but a smallstep to hypothesize that the e�ort required to implement a program should berelated to both its length and its di�culty, and to de�ne the \e�ort" E requiredto implement a program by E = D � V (= V 2=V �). Halstead claimed that Erepresented \elementary mental discriminations" and, based on the suggestion of apsychologist, J. Stroud, that the human mind is capable of making only between 5and 20 elementary mental discriminations per second, he then proposed the equationT = E=18, where T is the time required to construct a program in seconds.The practical application of these last few formulae depend on a method for com-puting or estimating the potential volume, V �, for a program. Halstead proposedthat potential volume could be de�ned byV � = (2 + ��2) log2(2 + ��2);where ��2 is the number of input/output operands, and estimated byV � = 2�2�1N2 � V:Using this estimation, we obtainD = �1N22�2 and E = V � �1N22�2 :In contrast to the scienti�c pretensions of Software Science, a widely practisedmethod for predicting the time and e�ort required to construct a software project issimply to ask the opinions of those experienced in similar projects. A re�nement of

18 Chapter 4. Size, Complexity, and E�ort Metricsof \diamonds" (DC) minus one (for the exit node). Thus e = n+DC � 1. Hence� = e� n + 2= (n+DC � 1)� n + 2= DC + 1:Thus, the highfalutin cyclomatic complexity measure turns out to be no di�erentthan the elementary decision count!Related to syntactic complexity measures are \style" metrics [13, 14, 55, 102,101]. These seek to score programs on their adherence to coding practices consideredsuperior, in some sense. The details of these metrics vary according to the individualpreference of their inventors. Generally, marks are added for instances of \good"style such as plenty of comments, and the use of symbolic constants, and deductedfor instances of \bad" style such as explicit goto's, and excessive module length.Some program style analysis systems also perform limited anomaly detection (e.g.,variables declared but not used) and incorporate these into their scores. We discussanomaly detection separately in Section 5.2.1 (page 33).4.2.2 Measures of Data ComplexityThe simplest data complexity metrics simply count the number of variables usedby a program. Halstead's �2 (the number of distinct operands) is a slightly moreelaborate measure of the same type. Such metrics only measure the total numberof di�erent variables that are used in the program; they do not indicate how manyare \live" (i.e., must be actively considered by the programmer) in any one place. Asimple de�nition states that a variable is \live" in all statements lexically containedbetween its �rst appearance and its last. It is then easy to compute the numberof variables that are live at each statement, and hence LV|the average number ofvariables that are live at each statement.Another approach to quantifying the complexity of data usage is to measurethe extent of inter-module references. The work of Henry and Kafura [59, 58] isrepresentative of this type. The fan-in of a module may be de�ned as the numberof modules that pass data to the module, either directly or indirectly; similarlythe fan-out may be de�ned as the number of modules to which the present modulepasses data, either directly or indirectly. The complexity of the interconnections tothe module are then de�ned as (fan-in � fan-out)2. Henry and Kafura then relatethe overall complexity of a module within a program to both its length and thecomplexity of its interconnections by the de�nition: complexity = SLOC� (fan-in�fan-out)2.

4.2. Complexity Metrics 174.2 Complexity MetricsTwo similarly sized programs may di�er considerably in the e�ort required to com-prehend them, or to create them in the �rst place. Complexity metrics attemptto quantify the \di�culty" of a program. Generally, these metrics measure someaspect of the program's control
ow|there being some agreement that complicatedcontrol
ow makes for a complex, hard-to-understand, program.4.2.1 Measures of Control Flow ComplexityThe simplest complexity metric is the decision count, denoted DC which can be de-�ned as the number of \diamonds" in a program's
ow chart. A good approximationto DC can be obtained by counting the number of conditional and loop constructsin a program|and this can be reduced to the purely lexical computation of addingthe number of if, case, while and similar keywords appearing in the program.An objection to this simple scheme is that it assigns a di�erent complexity tothe program fragmentif A and B then X endifthan it does to the semantically equivalent fragmentif A then if B then X endif endif.This objection can be overcome by de�ning DC to be the number of elementarypredicates in the program. Both the examples above contain two elementary predi-cates: A and B.Much the best-known of all syntactic complexity measures is the cyclomaticcomplexity metric of McCabe [88]. This metric, denoted �, is given by � = e�n+2,where e is the number of edges and n the number of nodes in the control
ow graph ofthe program. The cyclomatic complexity of a program is equivalent to the maximalnumber of linearly independent cycles in its control
ow graph. (Actually, in thecontrol
ow graph modi�ed by the addition of an edge from its exit point back toits entry point.) Clearly, the simplest control
ow graphs (i.e., those correspondingto linear sequences of code) have e = n � 1 and hence � = 1. Motivated by testingconsiderations, McCabe suggested that a value of � = 10 as a reasonable upper limiton the cyclomatic complexity of program modules.Despite their di�erent origins, and the apparently greater sophistication of cyclo-matic complexity, DC and � are intimately related. Each \rectangle" in a program's
ow chart has a single outgoing edge (except the exit node, which has none); each\diamond" has two outgoing edges. Therefore, the total number of edges in the
owchart is equal to the total number of nodes in the
ow chart (n), plus the number

16 Chapter 4. Size, Complexity, and E�ort Metricsobvious objection to these measures is that they do not account for the di�erent\densities" of di�erent programming languages (e.g., a line of APL is generallyconsidered to contain more information, and to require more e�ort to write, than aline of Cobol), and they do not account for the fact that di�erent lines in the sameprogram, or lines written by di�erent people, may have very di�erent amounts ofinformation on them. A straightforward attempt to overcome the latter objection(and perhaps the former also) is to count syntactic tokens rather than lines.An early, controversial, and in
uential system of this type was the \SoftwareScience" of Halstead [54]. Software Science classi�es tokens as either operators oroperands. Operators correspond to the control structures of the language, and tosystem and user-provided procedures, subroutines, and functions. Operands corre-spond to variables, constants, and labels. The basic Software Science metrics arethen de�ned as follows:�1: the number of distinct operators,�2: the number of distinct operands,N1: the total number of operators, andN2: the total number of operands.The length of a program is then de�ned as N = N1 + N2. It is a matter oftaste, if not dispute, how the multiple keywords of iterative and conditional state-ments should be counted (e.g., does one count each of while do, and endwhile asthree separate operators, or as a single \while loop" operator). Similarly contro-versial is the question whether tokens appearing in declarations should be counted,or only those appearing in imperative statements (opinion currently favors the �rstalternative). The Software Science metric N may be converted to SLOC by the rela-tionship SLOC = N=c, where c is a language-dependent constant. For FORTRAN,c is believed to be about 7.Software Science derives additional metrics from the basic terms. The vocabularyis de�ned as � = �1 + �2. Clearly it requires log2� bits to represent each element ofthe vocabulary in a uniform encoding, so the number of bits required to representthe entire program is roughly V = N log2�. The metric V is called the volume of aprogram and provides an alternative measure for the size of a program.An alternative attempt to quantify the size of a program in a way that is some-what independent of language, and that may get closer to measuring the semantic,rather than the purely syntactic or even merely lexical, content of a program is onebased on function count: that is, a count of the number of procedures and func-tions de�ned by the program. Lisp programs are often described in this way|forexample, a medium sized Lisp application might contain 10,000 function de�nitions.For some languages (e.g., Ada), the number of modules might be a more natural orconvenient measure than function count.

Chapter 4Size, Complexity, and E�ortMetricsIn the previous chapter, we have seen that �a priori estimates for the reliability ofa program depend on estimates for the number of faults it contains and for itsinitial failure intensity. It is plausible to suppose that these parameters may them-selves be determined by the \size" and \complexity" of the program. Accordingly,considerable e�ort has been expended in the attempt to de�ne and quantify thesenotions.Whereas measurements of the static properties of completed programs (e.g., sizeand complexity) may help in predicting some aspects of their behavior in execution(e.g., reliability), similar measurements of \requirements" or \designs" may help topredict the \e�ort" or cost required to develop the �nished program.In this chapter we will examine metrics that purport to measure the size, andcomplexity of programs, and those that attempt to predict the cost of developing agiven piece of software.4.1 Size MetricsThe size of a program is one of its most basic and measurable characteristics. Itseems eminently plausible that the e�ort required to construct a piece of software isstrongly in
uenced, if not fully determined, by its �nal size, and that its reliabilitywill be similarly in
uenced.The crudest measure of the size of a piece of software is its length, measuredby the number of lines of code that it contains. A line of code is counted as anynon-blank, non-comment line, regardless of the number of statements or fragmentsof statements on the line. The basic unit of program length is the \SLOC"|a single\Source Line Of Code." A variant is the \KLOC"|a thousand lines of code. An15

14 Chapter 3. Software Reliability= 18:53 ln 68= 18:53(4:22)= 78 CPU-hours.3.2 Discussion of Software ReliabilitySoftware reliability modeling is a serious scienti�c endeavor. It has been pursueddiligently by many of those with a real economic stake in the reliability of theirsoftware products|for example, the manufacturers of embedded systems (whererepair is often impossible), and those with enormously stringent reliability objectives(for example, the manufacturers of telephone switching equipment).The \Basic Execution Time Model" described here has been validated over manylarge projects [93] and has the virtue of relative simplicity compared with manyother models. A similar model, the \Logarithmic Poisson Model," has been lessintensively applied, but may be preferred in some circumstances. Both of thesemodels use execution-time as their time base. This is one of the primary reasons fortheir greater accuracy over earlier models, which used man-hours, or other human-oriented measures of time. That execution time should prove more satisfactory isnot surprising: the number of failures manifested should surely be most stronglydetermined by the amount of exercise the software has received. Converting from amachine-oriented view of time to a human-oriented view is often necessary for theapplication of the results obtained from the model; ways of doing this are describedby Musa et al. [93].There are several circumstances that can complicate the application of reliabilitymodels. Reliability is concerned with counting failures, and prediction is based oncollecting accurate failure data during the early stages of a project. These data maybe unreliable, and predications based upon them may be inaccurate, if any of thefollowing circumstances obtain:� There is ambiguity or uncertainty concerning what constitutes a failure,� There is a major shift in the operational pro�le between the data gathering(e.g., testing) phase and the operational phase, or� The software is undergoing continuous change or evolution.We note that these circumstances which cause di�culty in the application of relia-bility modeling, also characterize much AI-software development. We will return tothis issue in the second part of the report.

3.1. The Basic Execution Time Reliability Model 13of code|will lead to failure: particular circumstances may be needed to \trigger"the bug). For the purposes of estimation, we may assume that fault encountersare linearly related to the number of instructions executed (i.e., to the durationof execution and to processor speed), and that failures are linearly related to faultencounters. Since processor speed is generally given in object instructions per second,we will also assume that the number of object instructions Io in a compiled programis linearly related to the number of source lines Is. Thus, if Q is the code expansionratio (i.e., Io=Is), and Ro is the number of object instructions executed in unit time,then the number of source lines executed in unit time will be given by Rs = Ro=Q.Now each source line executed exposes !0=Is faults. Thus !0 �Rs=Is faults will beexposed in unit time. If each fault exposure leads to K failures, we see that theinitial failure intensity is given by �0 = K�!0�Rs=Is. Substituting the previouslyderived expressions for !0 and Rs, we obtain:�0 = D �K � RoQ : (3:14)In order to complete the estimation of �0, we need values for three new parameters:Ro, Q, and K. The �rst of these is provided by the computer manufacturer, whilethe second is a function of the programming language and compiler used. A tableof approximate expansion ratios is given by Jones [70, page 49]. The most di�cultvalue to estimate is the fault exposure ratio K. Experimental determinations of Kfor several large systems yield values ranging from 1:41 � 10�7 to 10:6 � 10�7|arange of 7.5 to 1, with an average of 4:2� 10�7 [93, page 122].As an example, of the application of these estimates, consider a 20,000 lineprogram entering the system test phase. Using D = 6:01 and B = 0:955 as before,and assuming a code expansion ratio Q of 4, a fault exposure ratio K of 4:2� 10�7failures per fault, and a 3 MIPS processor, we obtain:�0 = D �K � RoQ= 6:01103 � 4:2107 � 3� 1064= 1:893� 10�3 failures per CPU-sec,= 6:8 failures per CPU-hour.Given these estimates of the parameters �0 and �0, we may proceed to calculatehow long it will take to reduce the fault intensity to an acceptable level|say 0.1failures per CPU-hour. �t = �0�0 ln �P�F= 1266:8 ln 6:80:1

12 Chapter 3. Software ReliabilityDevelopment Phase Faults/K source linesCoding 99.50Unit test 19.70System test 6.01Operation 1.48Figure 3.1: Fault Density in Di�erent Phases of Software DevelopmentPrior to operational data becoming available, however, we can only attemptto predict values for the parameters of the model, using characteristics of the pro-gram itself, and the circumstances of its development. The total number of failurescan be predicted as the number of faults inherent in the program, divided by thefault-reduction factor: �0 = !0=B. Dozens of techniques have been proposed forestimating the number of faults in a program based on static characteristics of theprogram itself. These are generally related to some notion of \complexity" of pro-grams and are described in detail in the following chapter. For the purposes ofexposition, we will use the simplest (yet one of the best) such measures: the lengthof the program. There is quite good evidence that faults are linearly related to thelength of the source program. If we let Is denote the length of the program (mea-sured by lines of source code), and D the fault density (in faults per source line),then we have !0 = Is �D (3:12)and �0 = Is �DB : (3:13)Results from a large number of experiments to determine values of D are sum-marized in Figure 3.1 (taken from [93, page 118]). Experimental determinations ofthe fault-reduction factor range from 0.925 to 0.993, with an average of 0.955 (again,from [93, page 121]). Thus, an �a priori estimate for the number of failures to beexpected from a 20,000 line program entering the system test phase is given by�0 = Is �DB= 20� 6:010:955= 126 failures:The initial failure intensity �0 depends upon the number of faults in the program,the rate at which faults are encountered during execution, and the ratio betweenfault encounters and failures (not all fault encounters|i.e., execution of faulty pieces

3.1. The Basic Execution Time Reliability Model 11�(10) = 100 �1� e� 10100 10�= 100 �1� e�1�= 100(1� 0:368)= 63 failures:Additional formulae can be derived to give the incremental number of failures(��) or elapsed time (�t) to progress from a known present failure intensity (�P),to a desired future goal (�F):�� = �0�0 (�P � �F); and (3.10)�t = �0�0 ln �P�F : (3.11)Using the same example as before (90 faults, fault-reduction factor 0.9, initialfailure intensity 10 per CPU-hour), we can ask how many additional failures maybe expected between a present failure intensity of 3.68 per CPU-hour, and a desiredintensity of 0.000454 per CPU-hour:�� = �0�0 (�P � �F)= 10010 (3:68� 0:000454)= 10(3:68)= 37 failures:Similarly we may inquire how long this may be expected to take:�t = �0�0 ln �P�F= 10010 ln 3:680:000454= 10 ln 8106= 10(9)= 90 CPU-hours.The reliability model just developed is determined by two parameters: the initialfault intensity, �0, and the total number of failures expected in in�nite time, �0. Inorder to apply the model, we need values for these two parameters. If the programof interest has been in operation for a su�cient length of time that accurate failuredata are available, then we can estimate the values of the two parameters. Maximumlikelihood or other methods of statistical estimation may be used, and con�denceintervals may be used to characterize the accuracy of the estimates.

10 Chapter 3. Software Reliabilitywhere �0 = !0=B is the total expected number of failures, andGa(t) = 1� e�B R t0 za(x)dxis the cumulative distribution function of the time to remove a fault. Similarly�(t) = �0ga(t)where ga(t) is the probability density function associated with Ga(t).The consequent modi�cations to the important equations (3.4{3.6) are simple:merely replace !0 (the number of faults) by �0 (the total number of failures ex-pected). Thus we obtain �(t) = �0e��0�0 t; (3.7)�(t) = �0�1� e��0�0 t� ; and (3.8)�(�) = �0�1� ��0� : (3.9)As an example of the application of these formulae, consider a system containing90 faults and whose fault-reduction factor is 0.9. The system may be expected toexperience 100 failures. Suppose its initial failure intensity was 10 failures per CPU-hour and that it has now experienced 50 failures. Then the present failure intensityshould be given by �(�) = �0�1� ��0��(50) = 10�1� 50100�= 5 failures per CPU-hour.In addition we may ask what the failure intensity will be after 10 CPU-hours andhow many failures will have occurred by that time. For failure intensity we have:�(t) = �0e��0�0 t�(10) = 10e� 10100 10= 10e�1= 3:68 failures per CPU-hour,and for failures we have �(t) = �0 �1� e��0�0 t�

3.1. The Basic Execution Time Reliability Model 92. The number of faults in the program initially is a Poisson random variablewith mean !0.3. The hazard rate for all faults is the same for all faults, namely za(t).Under these additional assumptions, it can be shown that�(t) = !0Fa(t) (3:1)where Fa(t) is the per-fault failure probability, and�(t) = !0fa(t) (3:2)where fa(t) is the per-fault failure density.The �nal assumption in the derivation of the model is that the per-fault failuredensity has an exponential distribution. That is,fa(t) = �e��t: (3:3)(Note this implies that the per-fault hazard rate is constant, that is za(t) = �).Substituting (3.3) into (3.2), we obtain�(t) = !0�e��t:Letting �0 denote �(0), we obtain � = �0=!0 and hence�(t) = �0e� �0!0 t: (3:4)Similarly, from (3.1) we obtain�(t) = !0�1� e� �0!0 t� : (3:5)Some additional manipulation allows us to express failure intensity, �, as a functionof failures observed, �: �(�) = �0�1� �!0� : (3:6)The assumption that the fault responsible for each failure is identi�ed and re-moved immediately the failure occurs is clearly unrealistic. The model can be mod-i�ed to accommodate imperfect debugging by introducing a fault reduction factorB. This attempts to account for faults that cannot be located, faults found bycode-inspection prior to causing failure, and faults introduced during debugging, byassuming that, on average, each failure leads to the removal of B faults (0 � B � 1).(Conversely, each fault will lead to 1=B failures.) It can then be shown that�(t) = �0Ga(t)

8 Chapter 3. Software Reliabilityand reliability models are based on the mathematics of random or stochastic pro-cesses. Because failures generally provoke (attempted) repair, the number of faultsin a program generally changes over time, and so the probability distributions of thecomponents of a reliability model vary with time. That is to say, reliability modelsare based on nonhomogeneous random processes.A great many software reliability models have been developed. These are treatedsystematically in the �rst textbook to cover the �eld, which has just been pub-lished [93]. The most accurate and generally recommended model is the \BasicExecution Time Model." We outline the derivation of this model below.3.1 The Basic Execution Time Reliability ModelThe starting point for this derivation (and that of most other reliability models)is to model the software failure process as a NonHomogeneous Poisson Process(NHPP)|a particular type of Markov model.Let M(t) denote the number of failures experienced by time t. We make thefollowing assumptions:1. No failures are experienced by time 0, that is M(0) = 0,2. The process has independent increments, that is the value ofM(t+�t) dependsonly on the present value of M(t) and is independent of its history,3. The probability that a failure will occur during the half-open interval (t; t+�t]is �(t):�t+ o(�t), where �(t) is the failure intensity of the process.4. The probability that more than one failure will occur during the half-openinterval (t; t+ �t] is o(�t).If we let Pm(t) denote the probability that M(t) is equal to m, that is:Pm(t) = Prob[M(t) = m]then it can be shown that M(t) is distributed as a Poisson random variable. Thatis: Pm(t) = �(t)mm! e��(t)where �(t) = Z t0 �(x) dx:Next we make some further assumptions:1. Whenever a software failure occurs, the fault that caused it will be identi�edand removed instantaneously. (A more realistic assumption will be substitutedlater).

70.83 for 8 hours when employed by a hacker. To give an idea of the reliabilitiesdemanded of
ight-critical aircraft systems (in which software components are in-creasingly important), the FAA requires the probability of catastrophic failure to beless than 10�9 per 10-hour
ight for a life-critical civil air transport
ight controlsystem; the US Air Force requires the probability of mission failure to be less than10�7 per hour for military aircraft.From the basic notion of reliability, many di�erent measures can be developedto quantify the occurrence of failures in time. Some of the most important of thesemeasures, and their interrelationships are summarized below:Reliability, denoted by R(t), is the probability of failure-free operation up to timet.Failure Probability, denoted by F (t), is the probability that the software willfail prior to time t. Reliability and failure probability are related by R(t) =1� F (t):Failure Density, denoted by f(t), is the probability density for failure at time t.It is related to failure probability by f(t) = ddtF (t). The probability of failurein the half-open interval (t; t+ �t] is f(t):�t.Hazard Rate, denoted by z(t), is the conditional failure density at time t, giventhat no failure has occurred up to that time. That is, z(t) = f(t)=R(t).Reliability and hazard rate are related byR(t) = e�R t0 z(x) dx:An important special case occurs when the hazard rate is a constant �. Inthis case the failure density has an exponential distribution f(t) = �e��t, thefailure probability is given by F (t) = 1 � e��t and the reliability is given byR(t) = e��t.Mean Value Function, denoted by �(t), is the mean number of failures that haveoccurred by time t.Failure Intensity, denoted by �(t), is the number of failures occurring per unittime at time t. This is related to the mean value function by �(t) = ddt�(t).The number of failures expected to occur in the half-open interval (t; t+ �t] is�(t):�t.Failure intensity is the measure most commonly used in the quanti�cation ofsoftware reliability. 1 Because of the complexity of the factors in
uencing the oc-currence of a failure, the quantities associated with reliability are random variables,1Mean Time To Failure (MTTF), denoted by �, is not employed to the extent that it is inhardware reliability studies (probably because the models used in software reliability tend not to giverise to closed form expressions for MTTF). This measure is related to reliability by � = R10 R(x) dx.

Chapter 3Software ReliabilitySoftware reliability is concerned with quantifying how well software functions tomeet the needs of its customer. It is de�ned as the probability that the software willfunction without failure for a speci�ed period of time. \Failure" means that in someway the software has not functioned according to the customer's requirements. Thisbroad de�nition of failure ensures that the concept of reliability subsumes most prop-erties generally associated with quality|not only correctness, but also adequacy ofperformance, and user-friendliness. Reliability is a user-oriented view of softwarequality: it is concerned with how well the software actually works. Alternativenotions of software quality tend to be introspective, developer-oriented views thatassociate quality with the \complexity" or \structure" of the software. Fortunately,software reliability is not only one of the most important and immediate attributesof software quality, it is also the most readily quanti�ed and measured.Software reliability is a scienti�c �eld, and employs careful de�nition of terms.The two most important are \failure" and \fault." A software failure is a departureof the external behavior of the program from the user's requirements. The notionof requirements is discussed in 5.3.1. A software fault is a defect in a program that,when executed under certain conditions, causes a failure|that is, what is generallycalled a \bug." Failure occurrence is a�ected by two principal factors:� The number of faults in the software being executed|clearly, the more bugs,the more failures may be expected, and� The circumstances of its execution (sometimes called the \operational pro-�le"). Some circumstances may be more exacting than others and may leadto more failures.Software reliability is the probability of failure-free operation of a computer programfor a speci�ed time under speci�ed circumstances. Thus, for example, a text-editormay have a reliability of 0.97 for 8 hours when employed by a secretary|but only6

2.1. Software Quality Assurance 5Veri�cation is usually a manual process that examines descriptions of the soft-ware, while validation depends on testing the software in execution. The two pro-cesses are complementary: each is e�ective at detecting errors that the other willmiss, and they are therefore usually employed together. Procurements for mission-critical systems often specify that an independent group, unconnected to the devel-opment team, should undertake the V&V activity.

4 Chapter 2. Software Engineering and Software Quality AssuranceThere is considerable agreement that the early phases of the life-cycle are par-ticularly important to the successful outcome of the whole process: Brooks, forexample observes [23]\I believe the hard part of building software to be the speci�cation,design, and testing of this conceptual construct, not the labor of repre-senting it and testing the �delity of the representation. We still makesyntax errors, to be sure, but they are fuzz compared with the conceptualerrors in most systems.\The hardest single part of building a software system is deciding pre-cisely what to build. No other part of the work so cripples the resultingsystem if done wrong. No other part is more di�cult to rectify later."The more phases of the life-cycle that separate the commission and detectionof an error, the more expensive it is to correct. It is usually cheap and simple tocorrect a coding bug caught during unit test, and it is usually equally simple andcheap to insert a missed requirement that is caught during system requirementsreview. But it will be ruinously expensive to correct such a missed requirement if itis not detected until the system has been coded and is undergoing integration test.Software Quality Assurance comprises a collection of techniques and guidelines thatendeavor to ensure that all errors are caught, and caught early.2.1 Software Quality AssuranceSoftware Quality Assurance (SQA) is concerned with the problems of ensuring anddemonstrating that software (or, rather, software-intensive systems) will satisfy theneeds and requirements of those who procure them. These needs and requirementsmay cover not only how well the software works now, but how well documented itis, how easy to �x if it does go wrong, how adaptable it is to new requirements, andother attributes that in
uence how well it will continue to satisfy the user's needs inthe future. In the case of military procurements, a number of standards have beenestablished to govern the practice of various facets of software development: MIL-S-52779A for software program requirements, DOD-STD-1679A and DOD-STD-2167 for software development, DOD-STD-2168 for software quality evaluation, andDOD-STD-7935 for software documentation. Similar standards exist in the civiland international sectors.One important methodology in SQA is \Veri�cation and Validation" (V&V).Veri�cation is the process of determining whether each level of speci�cation, and the�nal code itself, fully and exclusively implements the requirements of its superiorspeci�cation. That is, all speci�cations and code must be traceable to a superiorspeci�cation. Validation is the process by which delivered code is directly shown tosatisfy the original user requirements.

Chapter 2Software Engineering andSoftware Quality AssuranceBefore describing speci�c quality metrics and methods, we need brie
y to reviewthe Software Engineering process, and some of the terms used in Software QualityAssurance.One of the key concepts in modern software engineering is the system life-cyclemodel. Its premise is that development and implementation are carried out in severaldistinguishable, sequential phases, each performing unique, well-de�ned tasks, andrequiring di�erent skills. One of the outputs of each phase is a document that servesas the basis for evaluating the outcome of the phase, and forms a guideline for thesubsequent phases. The life-cycle phases can be grouped into the following fourmajor classes:Speci�cation comprising problem de�nition, feasibility studies, system require-ments speci�cation, software requirements speci�cation, and preliminary de-sign.Development comprising detailed design, coding and unit testing, and the estab-lishment of operating procedures.Implementation comprising integration and test, acceptance tests, and user train-ing.Operation and maintenance.There have been many re�nements to this basic model: Royce'sWaterfallmodel [104],for example, recognized the existence of feedback between phases and recommendedthat such feedback should be con�ned to adjacent phases.3

2 Chapter 1. Introductionalgorithms, including protocols [32]. The use of Binary Decision Diagrams(BDDs) [24] has resulted in a signi�cant increase in speed and, when used incombination with other recent advances, allows massive systems to be checkedin reasonable amounts of time [26].The treatment of most other topics still seems adequate|obviously more recentreferences would be welcome (and I have added a few where I had them available),but I am unaware of any major breakthroughs that should be brought to the reader'sattention. The section on formal methods now seems dated, and recent work, asreported in the September 1990 special issue of IEEE Software, and [15] should beborne in mind. Naturally, I welcome suggestions and advice that will help me keepthis document useful in the '90s.1.2 AcknowledgmentsThis report comprises Part 1 of the report [105], which was sponsored the NationalAeronautics and Space Administration under contract NAS1 17067. The guidanceprovided by our technical monitors, Kathy Abbott and Wendell Ricks of NASALangley Research Center, was extremely valuable.

Chapter 1IntroductionThis report is concerned with the software quality and evaluation measures. Weconsider not only metrics that attempt to measure some aspect of software quality,but also methodologies and techniques (such as systematic testing) that attemptto improve some dimension of quality, without necessarily quantifying the extent ofthe improvement.It is now widely recognized that the cost of software vastly exceeds that of thehardware it runs on|software accounts for 80% of the total computer systems bud-get of the Department of Defense, for example. Furthermore, as much as 60% ofthe software budget may be spent on maintenance. Not only does software cost ahuge amount to develop and maintain, but vast economic or social assets may bedependent upon its functioning correctly. It is therefore essential to develop tech-niques for measuring, predicting, and controlling the costs of software developmentand the quality of the software produced.1.1 Developments Since 1988This report was originally written in early 1988 as part of a study on quality assur-ance techniques for AI software. The focus of the original study, and the passageof time, mean that some techniques and concerns are underrepresented here. Theareas where the present treatment is most de�cient seem to include the following.CASE tools: These have become much more popular and important over the lastfew years. The system called SREM can now be seen as an early exampleof a CASE tool and the section on that system (Section 5.3.1.1 on page 43),gives something of the
avor of these systems. However, modern CASE toolsdeserve greater attention than is provided here.Model Checking: Model-checking techniques have become increasingly e�ectiveand important for analyzing hardware circuits and properties of distributed1

ii Contents5.2.3 Mathematical Veri�cation : 355.2.3.1 Executable Assertions : : : : : : : : : : : : : : : : : 375.2.3.2 Veri�cation of Limited Properties : : : : : : : : : : 385.2.4 Fault-Tree Analysis : 395.3 Testing Requirements and Speci�cations : : : : : : : : : : : : : : : : 415.3.1 Requirements Engineering and Evaluation : : : : : : : : : : : 415.3.1.1 SREM : 435.3.2 Completeness and Consistency of Speci�cations : : : : : : : : 465.3.3 Mathematical Veri�cation of Speci�cations : : : : : : : : : : 465.3.4 Executable Speci�cations : 475.3.5 Testing of Speci�cations : 485.3.6 Rapid Prototyping : 485.4 Discussion of Testing : 49Bibliography 54

Contents1 Introduction 11.1 Developments Since 1988 : 11.2 Acknowledgments : 22 Software Engineering and Software Quality Assurance 32.1 Software Quality Assurance : 43 Software Reliability 63.1 The Basic Execution Time Reliability Model : : : : : : : : : : : : : 83.2 Discussion of Software Reliability : 144 Size, Complexity, and E�ort Metrics 154.1 Size Metrics : 154.2 Complexity Metrics : 174.2.1 Measures of Control Flow Complexity : : : : : : : : : : : : : 174.2.2 Measures of Data Complexity : : : : : : : : : : : : : : : : : : 184.3 Cost and E�ort Metrics : 194.4 Discussion of Software Metrics : 215 Testing 245.1 Dynamic Testing : 245.1.1 Random Test Selection : 255.1.2 Regression Testing : 265.1.3 Thorough Testing : 275.1.3.1 Structural Testing : : : : : : : : : : : : : : : : : : : 285.1.3.2 Functional Testing : : : : : : : : : : : : : : : : : : : 305.1.4 Symbolic Execution : 315.1.5 Automated Support for Systematic Testing Strategies : : : : 325.2 Static Testing : 335.2.1 Anomaly Detection : 335.2.2 Structured Walk-Throughs : : : : : : : : : : : : : : : : : : : 34i

AbstractThis report comprises chapters 2 to 5 of a report prepared for NASA on the applica-tion of software quality and assurance techniques to AI software [105]. The chaptersincluded here provide a review of software quality assurance techniques as appliedto conventional software. The techniques covered include software reliability andmetrics, static and dynamic testing, and formal speci�cation and veri�cation.

Measures and Techniques for Software QualityAssurance1John RushbyComputer Science LaboratorySRI International333 Ravenswood AvenueMenlo Park, CA 94025September 1991
1This work was performed for the National Aeronautics and Space Administration undercontract NAS1 17067.

