
To appear in the Proceedings of the 1997 IEEE Symposium on
Security and Privacy, May 4–7, 1997, Oakland, CA.

Secure Software Architectures�
Mark Moriconi, Xiaolei Qian, R. A. Riemenschneider, Li Gongy

Computer Science Laboratory
SRI International

Menlo Park, California 94025

Abstract

The computer industry is increasingly dependent on open
architectural standards for their competitive success. This
paper describes a new approach to secure system design
in which the various representations of the architecture of
a software system are described formally and the desired
security properties of the system are proven to hold at the
architectural level. The main ideas are illustrated by means
of the X/Open Distributed Transaction Processing reference
architecture, which is formalized and extended for secure ac-
cess control as defined by the Bell-LaPadula model. The ex-
tension allows vendors to develop individual components in-
dependently and with minimal concern about security. Two
important observations were gleaned on the implications of
incorporating security into software architectures.

Keywords: secure systems, software architecture, X/Open
DTP, formal methods, access control

1. Introduction

In recent years, there has been a growing demand for
vendor-neutral, open systems solutions. These solutions
take the form of “open software architectures” that represent
a family of systems. Open architectures are critical tools for
competitive success in the information technology industry
[12]. They enable vendors to substantially reduce time-
to-market and development costs, since they do not have to
provide an integrated solution in the context of a bewildering
array of graphical user interfaces, operating systems, and
connectivity schemes. Moreover, open architectures enable�This research was supported by the Advanced Research Projects
Agency under Rome Laboratory contracts F30602–93–C–0245 and
F30602–95-C–0277.yPresently at JavaSoft, 10201 N. De Anza Blvd., Cupertino, California
95014

consumers to have confidence that future purchases will
easily integrate with existing systems.

Several consortia have been created to develop open
software architectures. For example, the Object Manage-
ment Group (OMG), which consists of over 600 companies,
has developed a widely accepted architecture, called the
Common Object Request Broker (CORBA), that allows ap-
plications to communicate seamlessly in a heterogeneous,
distributed environment. Interoperation architectures also
have been developed by Sun Microsystems (Tooltalk), Xe-
rox PARC (ILU), Open Software Foundation (DCE), and
Microsoft (OLE), among others.

An example of an important open application architecture
is the X/Open Distributed Transaction Processing (DTP)
reference architecture. X/Open DTP is intended to stan-
dardize the interactions and communications between the
components of the 3-tiered client/server model. Figure 1
illustrates a representative 3-tiered model in which presen-
tation aspects are handled by “thin” clients, business logic
is incorporated in the transaction processing monitor (e.g.,
BEA’s TuxedoTM), and data/resource management is the re-
sponsibility of data servers (e.g., Oracle 7, IBM/DB2, and
Sybase 11).

The X/Open DTP reference architecture allows multiple
application programs to share heterogeneous resources pro-
vided by multiple resource managers, and allows their work
to be coordinated into global transactions. If the X/Open
DTP interfaces (APIs) are adhered to, the components of
a particular DTP system (namely, every application, trans-
action manager, resource manager, and resource) will be
portable, interchangeable, and interoperable.

Tremendous leverage can be gained by incorporating se-
curity directly into architectural standards. This opportunity
has been recognized, for example, by OMG in its attempts
to extend CORBA for secure object access and communi-
cation. An extension of X/Open DTP for secure transaction
processing would enable vendors to develop single- or mul-
tilevel products with little or no concern about the security of
the overall transaction processing system in which they will

c
 1997 IEEE 1



Oracle Oracle Sybase

Client 1 Client 2 Client 3

IBM

TP Query Database

Validate Transaction
Monitor

Figure 1. 3-Tiered Client-Server Architecture

be used. Furthermore, such an extension would allow users
and application vendors to concentrate on the selection of
components, knowing with confidence that the overall DTP
system will be secure.

The benefits of a secure architectural standard can be re-
alized only if there is high and justifiable confidence that any
instance of it satisfies the intended security property. An er-
roneous assumption that every instance of an X/Open DTP
architecture properly controls access to protected informa-
tion could have serious legal and business consequences. In
this paper, we propose a formal approach to secure architec-
tures that involves three steps:

1. Formalization of the system architecture in terms of
common architectural abstractions.

2. Refinement of the system architecture into specialized
architectures, each suitable for implementation under
different assumptions about the security of the system
components.1

3. Rigorous proof that every implementation that con-
forms to the system architecture, or one of its special-
izations, satisfies the intended security policy.

Our approach is made difficult by the dominance of infor-
mal architectures2 and security theories that are difficult to
connect to implementations. Fortunately, we can overcome
these difficulties by combining recent results from the soft-
ware research community [1, 2, 5, 9, 10] with well-known
results from the security community.

To illustrate our approach, we present excerpts from our
formalization of a secure version of the X/Open DTP stan-1Refinement also can be used to accomodate different computing and
networking environments, but that is not the focus of this paper.2The X/Open DTP standard consists of approximately 500 pages of
diagrams, C interfaces, and English explanations.

dard — called SDTP. It consists mostly of structural infor-
mation involving component interfaces and the connections
among them. It also contains causal dependencies between
certain interfaces and connections, but they are not required
to demonstrate secure access control. The access control
property was chosen because it is well understood and be-
cause it is important in the commercial and the military
sectors.

The development of a particular secure architecture
should take into account two important observations, both of
which are illustrated in the subsequent discussion of SDTP.

1. The interplay between architectural and security con-
cerns can dramatically affect the practicality of a solu-
tion. For example, the obvious way to add security to
X/Open DTP has the consequence that vendors must
build multilevel components — even though they are
not security experts and may want to target larger,
single-level markets.

2. Rather than modeling a system as a single architec-
ture, it should be modeled as multiple, but related,
architectures — each making different assumptions
about the security of the system components and the
protocols.

This paper is organized as follows. The next section dis-
cusses how our work differs from previous work in security.
Sections 3 and 4 describe the X/Open DTP standard and
how it can be formalized in terms of architectural abstrac-
tions. Section 5 presents three useful SDTP architectures
and proves that they satisfy an access control policy based
on the Bell-LaPadula model. Covert channels are not con-
sidered in this model. Section 6 proves that the three SDTP
architectures are related in a manner that preserves secure
access. In particular, we show that all three are “conser-
vative refinements” of a more general architectural model
of SDTP. The abstract model is suitable as a common ab-
straction, but it is not concrete enough to serve as a standard
architecture. The final section summarizes our results and
discusses future work.

2. Related Work in Security

There are two main challenges in developing secure (soft-
ware or hardware) systems. One is to obtain a thorough
understanding of the desired security properties and the rel-
evant (functional and non-functional) properties of the tar-
get system. This normally calls for a formal model of the
system together with security proofs, often given in some
mathematical or logical language. The second challenge is
to assure that the actual system implementation realizes the
more abstract formal model.

The research community has spent considerable effort
on the first of these challenges. The security properties

2



considered include non-interference, information-flow, and
composability, with system models built using traces, CSP,
and other formal languages [3, 6, 7, 8]. These behavioral
models are far removed from the actual systems, making
it extremely hard, if not impossible, to be convinced that
an implementation satisfies the security properties proven
about the model.

On the other hand, commercially-available systems, such
as OSF’s DCE 1.1, include a wide range of security func-
tionalities, such as authentication and access control. But
these architectures cannot be linked formally to a solid the-
ory of security and, given the overall complexity of these
architectures, it is difficult to distill whether or not they pro-
vide the desired security properties. The same observation
applies to uses of the “reference monitor” concept that was
popular in the 1980s. Systems designed around this concept
could not reliably be connected to implementations.

A middle ground between abstract mathematical model-
ing and system-level analysis can be seen in connection with
the Rampart system [15]. Rampart is a distributed system
for which an attempt was made to prove that it satisfies cer-
tain security and fault-tolerance properties. However, the
proof is with regard to an abstract algorithmic model, which
again suffers from the difficulty in relating it to the actual
implementation.

A successful effort to connect security requirements for a
secure gateway to its implementation is described in [13, 14].
A convincing, but not formal, argument is made that the con-
nection preserves security. The argument depends on the
use of architectural elements that are very similar to those
used in the implementation. Our architecture descriptions
[9, 10, 11] are more general in three important ways. First,
an architecture hierarchy can include both horizontal and
vertical decomposition (change in representation), whereas
the gateway development involves only horizontal. Second,
formal mappings between architectures are used to bridge
the gap in vertical hierarchies. Third, our architecture defi-
nition language makes it easy to define generic architectures.
These three capabilities are useful in defining practical ar-
chitecture standards, such as X/Open DTP, and are useful
in architecting any large system. By formalizing mappings
and correctness arguments, we can prove that lower levels
in a vertical hierarchy — ultimately, the implementation —
preserve security properties proved at higher levels.

3. The X/Open DTP Standard

Distributed transaction processing captures the core ac-
tivities in distributed information systems, namely the in-
teraction between applications and resources. Transactions
form the basis of such interaction, which are multiple appli-
cation programs running concurrently and accessing shared
data resources. Distributed transaction processing is ubiqui-

tous in military and commercial applications, many of which
have stringent security requirements.

The X/Open DTP standard architecture is described in a
series of publications of X/Open Ltd. [16, 17, 18, 19]. An ex-
ecutable prototype of the DTP standard appears in Luckham
et al. [5]. The standard describes a particular set of compo-
nent interfaces, and sequences of interactions between the
components. Components may be various application pro-
grams, resource managers (such as databases, file systems,
or mailers) and transaction managers. The purpose is to de-
fine a standard communication architecture through which
multiple application programs may share resources concur-
rently by organizing their activities into transactions which
appear to be atomic. Transactions, which may execute con-
currently, can contain many operations on resources. Atom-
icity means that after a transaction executes, either all or
none of its operations take effect.

The X/Open description is informal, consisting of En-
glish text together with interfaces given in the C program-
ming language. The important features of the standard are
(1) the interfaces, (2) the architecture (the ways of con-
necting components that satisfy the standard), and (3) the
protocols (calling sequences) for using the interfaces. The
calling sequences are described in terms of a single thread of
control and C function calls. Many different systems with
various applications and resources may satisfy this standard.
Those that do should be easier to combine, thus promoting
the goal of “open” systems.

A version of the X/Open architecture, shown in Figure 2,
consists of three types of components — one application
program (AP), one transaction manager (TM), and one or
more resource managers (RMs). The boxes indicate the
component interfaces, and the lines indicate the communi-
cation between them. The label TX indicates a complex
connection and protocol defining communication between
any application module and any transaction manager. The
TX connection contains connections between functions for
initiating and finalizing transactions. Communication is al-
ways initiated by the application. A series of calls back and
forth continues until communication is completed. Simi-
lar complex connections exist between the application and
every resource (the AR connection), and between the trans-
action manager and every resource manager (the XA con-
nection). The XA connection involves the well-known two-
phase commit protocol for ensuring atomicity. Much of this
activity can be concurrent, and many transactions may take
place at once.

4. Formal Model of X/Open DTP

We first show how to define the X/Open DTP interfaces,
components, and wiring using an architecture definition lan-

3



RM
TM

AP

TXAR

XA

Figure 2. X/Open DTP Reference Architecture

guage called SADL [11].3 Then, we describe how architec-
tures written in SADL can be translated systematically into
logic. All of the proofs in this paper can be fully formalized
in terms of the logical theories that result from the transla-
tion.

An interface is defined as a type so that it can be asso-
ciated with more than one component. For example, we
define the interface for transaction managers as follows.

tm: TYPE <=
MODULE
EXPORTING ALL
BEGIN
register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure
[rmid: INT, flags: INT

-> ret: INT]
begin: TX_Begin_Procedure
[ -> ret: INT]

close: TX_Close_Procedure
[ -> ret: INT]

commit: TX_Commit_Procedure
[ -> ret: INT]

information: TX_Info_Procedure
[info: TX_Info -> ret: INT]

open: TX_Open_Procedure
[ -> ret: INT]

rollback: TX_Rollback_Procedure
[ -> ret: INT]

END

This declaration says that every object of type tm is a mod-
ule containing a definition of the procedures register,
unregister, begin, and so on, used in the X/Open speci-
fication of the TX interface. For example, begin is declared
to be a TX Begin Procedure, which guarantees that it has
an appropriate “semantics” relative to its role in the proto-
col. TX Begin Procedure is declared elsewhere to be a
subtype of Procedure.

As an example of a more complex interface, consider the
definition of the application interfaces, which must allow
for an arbitrary number of resources.

ap: TYPE <=3SADL is an acronym for Structural Architecture Definition Language.

MODULE
[<< ap_in1(i): r_type(i)

|(i: NAT) i < n >>
-> << ap_out1(i): q_type(i)

|(i: NAT) i < n >>]

This declaration says that an object of type ap is a module
with n input ports (n is the number of resource managers
in the system being specified) and n output ports. The type
of the i-th input port, ap in1(i), is r type(i), where
r typehas been declared to be a function from non-negative
integers less than n to subtypes of the type ar resources

of data sent from the RMs to the AP. Similarly, the type
of the i-th output port, ap out1(i), is q type(i), where
q typehas been declared to be a function from non-negative
integers less than n to subtypes of the type ar requests of
data sent from the AP to the RMs.

The declaration of a resource manager, denoted by the
rm type, contains procedure calls, as in the tm declaration,
and ports, as in the ap declaration. Since an instance of
DTP can contain an arbitrary number of resources, the type
rms is used to denote the union of an arbitrary number of
resource managers.

To define a component, we simply declare an instance of
an interface type. The declarations

the_ap: ap
the_rms: rms
the_tm: tm

define the three components in X/Open DTP.
The interfaces of these components are wired together

by constraints associated with the AR, XA, and TX con-
nections. Here is a representative constraint on the TX
connection.

tx_1: ASSERTION =
Called_From(the_tm.begin, the_ap)

says that the procedure begin of the TX protocol declared
in the tm is called by the ap. The XA interface definition
consists of twelve assertions that are similar, except that
they are general so as to apply to all RMs. An example is

xa_1: ASSERTION =
(FORALL y: rm)

Called_From(the_tm.register, y)

The AR interface specification is more abstract, since it
is described in terms of a general dataflow connection which
need not be implemented as a procedure call. The assertion

ar_1: ASSERTION =
(FORALL i: NAT | i < n)
(EXISTS c: Channel[q_type(i)])

Connects(c, the_ap.ap_out1(i),
the_rms.rm_in1(i))

4



says that, for every RM index i, there is a dataflow channel
c which carries the appropriate subtype of ar requests

from the i-th output port of the ap to the input port of the
i-th RM in the collection of all RMs, the rms. A similar
assertion characterizes the flow from the RMs to the AP.

SADL specifications can be translated systematically into
logic, allowing us to regard architectures as logical theories.
As an illustration, consider the declaration

begin: TX_Begin_Procedure
[ -> ret: INT ]

that appears in the tm type. It is translated into8x [ TM(x)!9y TX Begin Procedure(y; x) ]8x8y [ TM(x)^ TX Begin Procedure(y; x)!9z Return Parameter(z; y) ]8x8y8z8w
[ TM(x)^ TX Begin Procedure(y; x)^ Return Parameter(z; y)^ Integer(w)!May Hold Value On Return(z; w) ]

This says that every transaction manager has a begin proce-
dure, that every begin procedure has a return parameter, and
that the value of a begin procedure’s return parameter can
be an integer.

Among the assertions that define the TX interface is

Called_From(the_tm.begin, the_ap)

which can be translated to8x [ TX Begin Procedure(x; the tm)!9y [ Call Site(y; x)^ Location(y; the ap) ] ]

This says that every TX begin procedure is called from a
site located in the application.

Translation to logic is essential for complicated argu-
ments, such as the relative correctness proofs of Section 6,
and when fully formalized arguments are required. But of-
ten, simpler results can be directly established by reasoning
in terms of SADL specifications. The next section, which
proves the security of alternative DTP architectures, illus-
trates this kind of rigorous informal reasoning.

5. Secure DTP Architectures

Suppose that we want to enforce the multilevel security
(MLS) policy in the DTP architecture. A standard model
of the MLS policy is the Bell-LaPadula model [4]. Given a
set of subjects each with an attached clearance level, and a
set of objects each with an attached classification level, the
model ensures that information does not flow downward in
a security lattice by imposing the following requirements.

� The Simple Security Property. A subject is allowed
a read access to an object only if the former’s clear-
ance level is identical to or higher than the latter’s
classification level in the lattice.� The �-Property. A subject is allowed a write access
to an object only if the former’s clearance level is
identical to or lower than the latter’s classification
level in the lattice.

In terms of the DTP, a subject might be a user invoking an
application or a transaction manager, and an object could be
any data item in a resource. We say a component in DTP
is MLS, if input and output of that component are properly
labeled with security levels, and the component enforces the
MLS policy internally. Similarly, the DTP architecture is
MLS, if it enforces the MLS policy.4

Notice that the MLS policy regulates the communica-
tion between the applications and the resources, which is
application-specific and not part of the DTP standard. It is
not obvious how the MLS policy can be enforced while still
maintaining plug-and-play.

A naive approach is illustrated in Figure 3, where each
(non-MLS) application or resource is wrapped by an MLS
wrapper, which together enforce the MLS policy at the in-
terface. This approach suffers from at least three problems.� High-assurance technology does not yet exist that al-

lows a non-MLS component (application or resource)
to be wrapped to enforce the MLS policy, especially
when the component contains untrusted code.� Even if an MLS wrapper technology did exist, the
enforcement of the MLS policy by a wrapper is likely
dependent on the application-specific interface of the
underlying component, which destroys the plug-and-
play benefit of a standard architecture.� The alternative is to require that vendors provide MLS
components, which would have significant draw-
backs: reduced time-to-market, stiff performance
penalties, and increased development costs.

Given the fact that most of the COTS and legacy compo-
nents available today are not MLS, our strategy is therefore
to develop not one but several secure DTP standards, each
geared toward a particular configuration of applications and
resources. In the remainder of this section, we consider
three possible configurations.

The simplest configuration is when the application and
all the resources are single-level and are at the same level,
as shown in Figure 4. The DTP standard does not need any
extension to enforce the MAC policy, since there cannot4We concern ourselves only with the two properties of the Bell-
LaPadula model, not with issues such as object reuse or covert channels.

5



AP

TM
RM

Figure 3. Secure DTP with MLS Wrappers

be any downward (or cross-level) information flow in the
security lattice.

AP

TM
RM

Figure 4. Secure DTP with Same-Level AP and
RMs

A second possible configuration is when the application
and all the resources are single-level but perhaps at different
levels, as shown in Figure 5. To enforce the MAC policy,
the AP and the RMs cannot directly communicate with each
other. Instead, communication has to be filtered by an MLS
filter, which regulates every access by the AP to the RMs
to ensure the simple security property and the �-property of
the Bell-LaPadula model. The TM is required to be MLS
since it interacts with components at different levels.

AP

MLS Filter

RM

MLS
TM

Figure 5. Secure DTP with Single-Level AP
and RMs

For this scenario, the DTP standard needs to be extended
as follows. The begin and register procedure calls in the TM
interface are extended with a label parameter to indicate the
level of the RM or AP caller.

tm: TYPE <=
MODULE
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT,

flags: INT,
lb: LABEL

-> ret: INT]
begin: TX_Begin_Procedure

[lb: LABEL -> ret: INT]
...

END

The security of the resulting DTP architecture with re-
spect to the MLS policy can be shown as follows. Suppose
that the AP is low and a particular RM r is high. Let us
consider the simple security property of the Bell-LaPadula
model. The only way that AP can read data in r is through
either the TM or the filter. Since communication is secure,
any data from r to the TM/filter will be properly labeled
high. Since the TM/filter is MLS, it cannot pass high data to
the low AP, meaning that AP cannot read data from r. Sim-
ilarly we can argue that the �-property of the Bell-LaPadula
model holds.

The most complicated configuration, shown in Figure 6,
is when the application and the resources are multilevel, in
contrast to the wrapped components in Figure 3. The AP and
the RMs can directly communicate with each other, since
they are capable of handling data at different levels. Again,
the TM should be MLS as well. Conceptually every mul-
tilevel connection can be viewed as consisting of multiple
single-level connections, one for each level.

TM
MLS

MLS AP

MLS
RM

Figure 6. Secure DTP with Multilevel AP and
RMs

The DTP standard needs to be extended as follows. Ev-
ery AP and RM interface is extended with a label-range
parameter to indicate the range of levels of the AP and RM
respectively. Like before, the register and begin procedure

6



calls in the TM interface are extended with a label parameter
to indicate the level of the RM or AP caller. In addition,
there is a constraint requiring that there is a register proce-
dure call for every level in every RM’s range. A similar
constraint is needed for the begin procedure call.

rm: TYPE <=
MODULE
EXPORTING ALL
BEGIN
low: LABEL
high: LABEL
label_order: ASSERTION =
low <= high

...
END

tm: TYPE <=
MODULE
EXPORTING ALL
BEGIN
register(lb: LABEL):
AX_Register_Procedure
[id: X_Id, rmid: INT,

flags: INT
-> ret: INT]

...
END

the_tm: tm

rms_label: ASSERTION =
(FORALL x: rm)(FORALL y: LABEL)
[x.low <= y AND y <= x.high

=> Called_From
(the_tm.register(y), x)]

It is straightforward to prove the security of this archi-
tecture. Since every connection is single-level, and every
component is MLS, a component cannot send data through
a connection if the level of the data is different from that
of the connection. Since communication is secure, any data
received via a connection will have the same level as that
of the connection. Given that every component properly
enforces the two properties of the Bell-LaPadula model, so
does the resulting architecture.

6. Relating the SDTP Architectures

We can relate the four SDTP architectures by defining a
general model for SDTP and then proving that each of the
four SDTP architectures are correct specializations of it.

6.1. Correctness Criterion

The traditional interpretation of relative correctness is
not strong enough for our purposes because it only requires
that the concrete architecture extend the abstract architec-
ture. Hence, a low-level architecture can introduce proper-
ties that contradict the higher-level architecture, which can

lead to a violation of security properties in the reference
architecture. For example, consider the proof in Section 5
that the SDTP architecture in Figure 5 is secure. The proof
critically depends on the fact that the only way that AP and
RMs communicate is through either the MLS TM or the
MLS filter. The low-level architecture can extend this by
including a new non-MLS flow from AP to an RM. This
extended low-level architecture by definition “implements”
the high-level architecture, but the extension clearly violates
multilevel security requirements.

We have developed a new correctness criterion for archi-
tectures in which a concrete architecture implements exactly
the abstract architecture, no more and no less [10]. In other
words, a security hole that does not exist, with respect to
a given security policy, in the abstract architecture will not
come into existence in any concrete architecture. To use
our earlier example, under our new correctness criteria, it is
possible to ensure that no new data flow can be introduced
in the low-level architecture. That is, if flow from B toC exists in the low-level architecture, then this flow must
already exist in the high-level architecture, either as a direct
or indirect flow. This flow thus implies that the high-level
design is not secure and should be modified. Conversely, if
we can prove that the high-level architecture is secure, then
we can rest assured that the mapped low-level architecture
is also secure.

To formalize this notion, we first need to make explicit
an important completeness assumption about architectures.
In particular, we assume that an architecture contains all
components, interfaces, and connections intended to be true
of the architecture at its level of detail. If a fact is not explicit
in the architecture, or deducible from it, we assume that it
is not intended to be true of the architecture. In general,
an architecture (whether static or dynamic) can contain an
unbounded number of facts.

Formally, we need to prove that two architectures, rep-
resented as theories, are correct with respect to an inter-
pretation mapping between them and the completeness as-
sumption. Let � and �0 be theories associated with an
abstract and a concrete architecture, respectively. Let I be
an interpretation mapping from the language of� to the lan-
guage of �0. For every sentence F , mapping I is a theory
interpretation providedif F 2 � then I(F ) 2 �0
This is the usual definition of correctness.

Since a given architecture is assumed to be complete with
respect to its level of detail, we additionally require that the
concrete architecture add no new facts about the abstract
architecture. To prove this, we must additionally show thatif F 62 � then I(F ) 62 �0
in which case, I is a faithful interpretation. This says that, if

7



a sentence is not in the abstract theory, its image cannot be in
the concrete theory. (Observe that �0 is a conservative ex-
tension of � provided the identity map faithfully interprets� in �0.) Theory �0 can contain sentences not in I [�] —
i.e., new facts about the architecture not included in � —
but these facts must not have any consequences expressible
in the language of�.

6.2. The General Model

Let the AP, TM, and RMs be represented as functional
components with labeled input and output ports connected
by secure channels. More specifically, we require that� Data have associated security levels, which are collec-

tions of authentication data and credentials that char-
acterize the data’s security standing. Thus, a datum
can be thought of as a value together with a security
label that determines its level.� The ports where the data is supplied and received have
associated clearance levels.� The channels that carry data also have associated
clearance levels.

The connections in the general model that represent the AR,
XA, and TX interfaces are subject to three constraints.

1. An input port can receive data only if its clearance
level dominates the data’s security level.

2. An output port can supply data only if its clearance
level is dominated by the data’s security level.

3. A channel can carry data only if its clearance level
dominates the data’s security level.

If these constraints are satisfied, we may refer to ports as
secure ports and to channels as secure channels.

6.3. Example Proof Relating Two Architectures

It can be proven that the four SDTP architectures cor-
rectly implement the general model. In this section, we
focus on the most complicated proof, which involves Fig-
ure 4. Specifically, we prove that a combination of writing
and reading data that is mediated by the MLS filter correctly
implements secure dataflow.

This requires showing that a mapping I from the language
of secure dataflow to the language of mediated reading and
writing is a faithful interpretation of the theory of secure
dataflow,�, in the theory of mediated reading and writing,�0. The interesting predicates in the language of secure
dataflow are

� Secure Channel(x), which means that x is a secure
channel,� Connects(x; y; z), which means that secure channel x
connects secure output port y to z,� Can Carry(x; y), which means that secure channel x
can carry datum y (i.e., that the datum contains an
appropriate type value and has a security level no
higher than the clearance level of the channel),� Clearance Level(x; y), which means that either the se-
curity label x is greater than or equal to the clearance
level of y, when y is either an output port or chan-
nel, or the security label x is less than or equal to the
clearance level of y, when y is either an input port,
and� Security Level(x; y), which means that either the se-
curity label x is less than or equal to the security level
of the datum y,

together with a lattice ordering � of security labels.

The predicates of interest in the language of MLS-
mediated reading and writing are� MLS Filter(x), which means that x is an MLS filter,� Secure Write(x; y), which means that x is a call site

that performs a secure write to y,� Secure Read(x; y), which means that x is a call site
that performs a secure read of y,� Filter Passes(x; y), which means that MLS filter x can
pass datum y (i.e., that the datum contains an appropri-
ate type value and has a security level no higher than
the clearance level of the secure read and no lower
than the clearance level of the secure write),� Clearance Level(x; y), which has the same meaning
as in the secure dataflow language, and� Security Level(x; y), which which also has the same
meaning as in the secure dataflow language,

together with a lattice ordering of security labels which is
also called �.

8



The relevant part of I can be defined as follows:I(Secure Channel(x))= MLS Filter(I(x))I(Connects(x; y; z))= Secure Write(I(y); I(x))^ Secure Read(I(z); I(x))I(Can Carry(x; y))= Filter Passes(I(x); I(y))I(Clearance Level(x; y))= Clearance Level(I(x); I(y))I(Security Level(x; y))= Security Level(I(x); I(y))I(x � y) = (I(x) � I(y))
together with clauses that map each abstract level secure
channel to a concrete level mediated read and write combi-
nation.

Note that I naturally determines a mapping I 0 from struc-
tures of the concrete language to structures of the abstract
language. Given a structure M0 of the concrete language,I 0(M0) is defined as follows. The universe of I 0(M0) is the
same as jM0j, the universe of M0. If I maps atomic formulaP (x1; x2; : : : ; xn) to concrete formulaA, then the extension
of P in I 0(M0) is the set of n-tuples from the universe of M0
that satisfy A. That is, the extension of P in I 0(M0) isfhm1;m2; : : : ;mni 2 jM0jn:

M0 j= A[x1=m1; x2=m2; : : : ; xn=mn]g
Showing that I is a theory interpretation is simply a

matter of formally deriving the concrete level interpretation
of each abstract level axiom from the concrete level axioms.
For example, the image of the security constraint8x8y8z8w

[ Secure Channel(x)^ Clearance Level(x; y)^ Datum(z)^ Security Level(z;w)^ Can Carry(x; z)! z � y ]

must be derived from the axioms describing the properties
of the filter. This is straightforward.

To show that I is faithful, we will describe a mappingJ from models of abstract level theory � to models of the
concrete level theory�0 such that, for every model M of�,I 0(J(M)) is isomorphic to M. The faithfulness of I follows,
by the model-theoretic result cited in [10].

As the definition of I suggests, the only difficulty in
“inverting” the interpretation is handling the equation for
Connects. But is it easy to see that letting the extension of
Secure Read in J(M) befhm1;m2i 2 jMj2: for some m3 in jMj,

M j= Connects(x1; x2; x3)[x1=m2; x2=m3; x3=m1]g

and letting the extension of Secure Write in J(M) befhm1; m2i 2 jMj2: for some m3 in jMj,
M j= Connects(x1; x2; x3)[x1=m2; x2=m1; x3=m3]g

will yield the required structure.

7. Discussion

We have combined results from the software and se-
curity research communities to form a new methodology
for the construction of secure architectures. The method
involves the formalization of a system architecture with se-
curity mechanisms embedded directly in the architecture.
More specifically, the mechanisms are intended to provide
secure access control as defined by the Bell-LaPadula model
(the simple security property and the �–property). A proof
about the security of a system implementation is performed
by reasoning about its architecture. If an architecture is
secure, every valid instance of it is secure. Architecture in-
stantiation is equivalent semantically to theory instantiation.

An important contribution of our work is the modeling
of a system in terms of multiple secure architectures that
are related by formal mappings. The architectures may rep-
resent both horizontal and vertical decompositions. Proper
application of our modeling technique enables vendors to de-
velop single- or multilevel products with little or no knowl-
edge about the overall application. Similarly, customers
can select single- or multilevel components, knowing with
confidence that the security of the overall system will be
intact. An example of this was seen in the SDTP develop-
ment, where the classification of a component had a radical
effect on the SDTP architecture. Our modeling technique
also offers benefits to the system architect, who can initially
develop a simple, abstract system architecture that is easy to
reason about but is too restrictive for implementation pur-
poses. We saw this in the abstract SDTP architecture, which
requires that all components provide multilevel access con-
trol. The gap between it and the three more concrete system
architectures, which are less restrictive with respect to secu-
rity, was bridged by refinement mappings that were shown
to preserve the security property of the abstract architecture.

It is important to mention that our approach to architec-
ture modeling is application independent. In this paper, we
concentrated on the X/Open DTP reference architecture to
maximize the commercial relevance of our work. How-
ever, our approach is not tied to any particular application
and should apply equally well in the development of other
secure architectures.

Future work includes the development of standard refine-
ment rules for implementing secure architectures in execu-
tion environments containing existing or emerging security
standards. It also includes an extension of SADL to model

9



behavior-related security properties using the RAPIDE archi-
tecture prototyping language. This would make it possible,
for example, to reason about covert channels in terms of a
system architecture.

References

[1] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style
in architectural design environments. In Proceedings of
SIGSOFT’94: Foundations of Software Engineering. ACM
Press, December 1994.

[2] D. Garlan and D. Perry. Introduction to the special issue
on software architecture. IEEE Transactions on Software
Engineering, 21(4), April 1995.

[3] J. Goguen and J. Meseguer. Security Polices and Security
Models. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 11–20, Oakland, California, April 1982.

[4] C. Landwehr. Formal Models for Computer Security. ACM
Computing Survey, 13(3):247–278, September 1981.

[5] D. Luckham, L. Augustin, J. Kenney, J. Vera, D. Bryan, and
W. Mann. Specification and analysis of system architecture
using Rapide. IEEE Transactions on Software Engineering,
21(4):336–355, April 1995.

[6] D. McCullough. A Hookup Theorem for Multilevel Security.
IEEE Transactions on Software Engineering, 16(6):563–
568, June 1990.

[7] J. McLean. The Specification and Modeling of Computer
Security. IEEE Computer, 23(1):9–16, January 1990.

[8] J. McLean. A General Theory of Composition for Trace Sets
Closed Under Selective Interleaving Functions. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pages
79–93, Oakland, California, May 1994.

[9] M. Moriconi and X. Qian. Correctness and composition
of software architectures. In Proceedings of ACM SIG-
SOFT’94: Symposium on Foundations of Software Engi-
neering, pages 164–174, New Orleans, Louisiana, December
1994.

[10] M. Moriconi, X. Qian, and R. Riemenschneider. Correct
architecture refinement. IEEE Transactions on Software En-
gineering, 21(4):356–372, April 1995.

[11] M. Moriconi and R. A. Riemenschneider. Introduction to
SADL 1.0: a language for specifying software architecture
hierarchies. Technical report, Computer Science Laboratory,
SRI International, 1996.

[12] C. Morris and C. Ferguson. How architecture wins technol-
ogy wars. Harvard Business Review, pages 86–96, March–
April 1993.

[13] R. B. Neely and J. W. Freeman. Structuring systems for
formal verification. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 2–13, Oakland, CA, April
1985.

[14] R. B. Neely, J. W. Freeman, and M. D. Krenzin. Achieving
understandable results in a formal design verification. In
Proceedings of the Computer Security Foundations Work-
shop II, pages 115–124, Franconia, NH, June 1989.

[15] M. Reiter. Secure Agreement Protocols: Reliable and
Atomic Group Multicast in Rampart. In Proceedings of the
2nd ACM Conference on Computer and Communications
Security, pages 68–80, Fairfax, Virginia, November 1994.

[16] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading,
Berkshire RGI 1AX, U.K. Distributed Transaction Process-
ing: The XA Specification, June 1991.

[17] X/Open Company Ltd., Apex Plaza, Forbury Road, Read-
ing, Berkshire RGI 1AX, U.K. Distributed Transaction Pro-
cessing: The TX (Transaction Demarcation) Specification,
November 1992.

[18] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading,
Berkshire RGI 1AX, U.K. Distributed Transaction Process-
ing: The Peer-to-Peer Specification, December 1992.

[19] X/Open Company Ltd., Apex Plaza, Forbury Road, Reading,
Berkshire RGI 1AX, U.K. Distributed Transaction Process-
ing: Reference Model, Version 2, November 1993.

10


