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1 Introduction

A surge of research activity has been devoted lately to “in-
tegrating logic and functional programming.” As usual,
arguments ranging from matters of taste, pragmatic per-
formance, to deep theoretical concerns have been put
forth, some quietly, some forcefully. We, the authors, do
not wish to contribute to the debate. Rather than telling
the rest of the world how this ought to be done, or even
why it ought to be done at all, we shall abide by a more
peaceable mode of describing what we do, why we do it,
and how. By no means, however, do we wish to appear
“holier than thou!” Indeed, we think that some other pro-
posals have definite elegance, are of practical use, or even
achieve high performance. Rather, our answer came to
us naturally when we tried to define precisely what we

wanted, and realized that none of the proposals known
to us would answer all and only our needs. Thus, we
shall attempt to motivate our work by first laying out our
desiderata. Length limitations prevent us from giving a
full account of current prominent proposals, and a detailed
survey can be found in [5].

Section 2 introduces our specific motivation. In Sec-
tion 3 we illustrate some details, operational points of our
idea, by means of Le Fun example programs. The imple-
mentation realizing Le Fun’s modus operandi is detailed
in Section 4. For the reader avid to know the heart of
the matter, Section ?? explains Le Fun’s unification al-
gorithm, which accounts for dynamic function evaluation.
Section ?? gives a modification of Le Fun unification based
on combinator reduction which simplifies it drastically. Fi-
nally, a discussion putting our work in context closes the
main body of this document.

2 Motivation and Background

2.1 Desideratum

So what do we wish? Well, to start with, let us define
what we mean by functional programming and logic pro-
gramming. A better qualifier would be “functional and
relational” in the following sense.

• By functional, we understand a (1) directional, (2) de-

terministic, and (3) convergent flow of information.

• By relational, we understand a (1) multidirectional,
(2) non-deterministic, and (3) not necessarily conver-

gent flow of information.

That is, (1) functions expect input and return output,
whereas relations do not, (2) functions do not fail or back-
track, whereas relations do, and (3) functions must termi-
nate on all legal input, whereas relations may enumerate
infinitely many alternative instances of their arguments.

Now that we have defined our terminology, it seems
that functional programming is subsumed by relational
programming. In a pragmatic sense, this is untrue since
the specificity of functional programming allows the elim-
ination of rather heavy computational overhead. Impor-
tantly, we shall view functional programming as compu-
tation in evaluation mode (no information guessing is al-
lowed) and relational programming as computation in a
deduction mode (information guessing is allowed.) This
is an essential delineation since it explains why functional
programming can easily handle higher-order objects whose
guessing needed for relational programming is, if not im-
possible, at best computationally very difficult and expen-
sive.

Although it is often the case that application prob-
lems can be solved entirely in evaluation or deduction
mode, these do not constitute all programming applica-
tions. From our programming experience using a logic
or functional programming language, we have repeatedly
found ourselves in frustrating situations where parts of the
problem we had at hand were of a functional nature, and
others of a relational nature. Of course, we could always
fit those parts into the language, but at the cost of some
unnatural and often non-trivial thinking.

2.2 Overview of our Approach

We now introduce a relational and functional program-
ming language called Le Fun where first-order terms are
generalized by the inclusion of applicative expressions as
defined by Landin [?] (atoms, abstractions, and applica-
tions) augmented with logical variables. The purpose is to
allow interpreted functional expressions to participate as
bona fide arguments in logical expressions.

A unification algorithm generalized along these lines
must consider unificands for which success or failure can-
not be decided in a local context (e.g., function appli-
cations may not be ready for evaluation while expres-
sion components are still uninstantiated.) We propose to
handle such situations by delaying unification until the
operands are ready. That is, until further variable instan-
tiations make it possible to reduce unificands containing
applicative expressions. In essence, such a unification may
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be seen as a residual equation which will have to be ver-
ified, as opposed to solved, in order to confirm eventual
success—whence the name residuation. If verified, a resid-
uation is simply discarded; if failing, it triggers chronolog-
ical backtracking at the latest instantiation point which
allowed its evaluation.

Although primarily motivated as an experiment in in-
tegrating logic programming (Horn clause resolution) and
functional programming (as in the λ-calculus style of func-
tional evaluation), this residuation principle can also be
generalized beyond just unification (i.e., syntactic equal-
ity) to encompass any syntactical decisions which can be
made pending further instantiation. In particular, ground-
decidable predicates like arithmetic inequality, or syntactic
mutual exclusion can be implicitly handled by residuation.

A remarkable corollary of this is that such unclean
patches as Prolog’s is evaluation predicate are no longer
needed, yielding a truly more declarative operational se-
mantics. That is, the programmer can describe her prob-
lem as a combination of function definitions and Horn
clauses where the order in which conjuncts are verified
for a given query is truly completely independent of the
order in which they are specified. Thus, there is no
longer any need nor justification for explicit control an-
notations [?, ?, ?].

In fact, this asynchronicity, if taken seriously, gives
the implementor the opportunity to exploit implicit large-
grained parallelism, on top of the already abundant par-
allelism which can be automatically detected in Serial
Combinator reductions (through the use of graph reduc-
tion [?]), and Horn clause resolutions (through the use
of and-parallelism and or-parallelism.) This truly asyn-
chronous aspect of Le Fun is being investigated at M.I.T.
in a dataflow context [?], but is expected to be efficiently
realizable in more mundane concurrent computational en-
vironments. The key to exploiting this observation is de-
scribed in Section ??, where a greatly simplified Le Fun
unification algorithm is proposed.

3 Le Fun Examples

Exposing our ideas is better done by illustrating key points
of the residuation principle, giving very simple examples
focusing attention away from details.

3.1 Unifying Reducible Expressions

SLD-resolution on which pure Prolog is based is not a com-
plete deduction system for Horn logic because its depth-
first may diverge although finite solutions exist. In addi-
tion, Prolog implementations are also incomplete because
of built-in arithmetic. Of course, it is possible to manipu-
late numbers through a first-order axiomatization of arith-
metic. However, performance of a “real-life” programming
language forbids this. Thus, arithmetic is built into Pro-
log as a primitive system. Of course, this is done at the
expense of completeness since numbers are thus not syn-
thesized by unification. As a result, a goal literal involving
arithmetic variables may not be proven by Prolog, even if
those variables were to be provided by proving a subse-
quent goal. This is why arithmetic expressions cannot be
nested in literals other than the is predicate, a special one
whose operation will force evaluation of such expressions,
and whose success depends on its having no uninstantiated
variables in its second argument.

We give two simple examples on how this poses no prob-
lem to Le Fun.

3.1.1 Simple Case

Consider the set of Horn clauses:

q(X,Y,Z)

:- p(X,Y,Z,Z),

pick(X,Y).

p(X,Y,X+Y,X*Y).

p(X,Y,X+Y,(X*Y)-14).

pick(3,5).

pick(2,2).

pick(4,6).

and the following query:

?- q(A,B,C).

From the resolvent q(A, B, C), one step of resolution
yields as next goal to establish p(A, B, C, C). Now, trying
to prove the goal using the first of the two p assertions
is contingent on solving the equation A + B = A ∗ B.
Naturally, using Peano’s axioms to solve this is out of the
question. At this point, Prolog would fail, regardless of the
fact that the next goal in the resolvent, pick(A, B) may
provide instantiations for its variables which may verify
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that equation. Our solution is to stay open-minded and
proceed with the computation as in the case of success,
remembering however that eventual success of proving this
resolvent must insist that the equation be verified. As
it turns out in this case, the first choice for pick(A, B)
does not verify it, since 3 + 5 6= 3 ∗ 5. However, the next
choice instantiates both A and B to 2, and thus verifies
the equation, confirming that success is at hand.

To emphasize the fact that such an equation as A +
B = A ∗ B is a left-over granule of computation, we
call it a residual equation or equational residuation—E-

residuation, for short. We also coin the verb “to resid-

uate” to describe the action of leaving some computa-
tion for later. We shall soon see that there are other
kinds of residuations. Those variables whose instantia-
tion is awaited by some residuations are called residuation

variables (RV). Thus, an E-residuation may be seen as
an equational closure—by analogy to a lexical closure—
consisting of two functional expressions and a list of RV’s.

There is a special type of E-residuation which arises
from equations involving an uninstantiated variable on one
hand, and a not yet reducible functional expression on the
other hand (e.g., X = Y + 1). Clearly, these will never
cause failure of a proof, since they are equations in solved
form. Nevertheless, they may be reduced further pending
instantiations of their RV’s. Hence, these are called solved

residuations or S-residuations. Unless explicitly specified
otherwise, “E-residuation” will mean “equational residua-
tions which are not S-residuations.”

Going back to our example, if one were interested in
further solutions to the original query, one could force
backtracking at this point and thus, computation would
go back eventually before the point of residuation. The
alternative proof of the goal p(A, B, C, C) would then cre-
ate another residuation; namely, A + B = (A ∗ B) − 14.
Again, one can check that this equation will be eventually
verified by A = 4 and B = 6.

One may observe that a possible realization of the
residuation principle would be to accumulate all resid-
ual equations along a depth-first walk of the and/or
proof tree until a leaf is reached; then, instantiate all E-
residuations with the substitution at hand; and succeed
if and only if they are all verified. Clearly, this would
be far more expensive than using any relevant instantia-
tions as they materialize—especially if partial evaluation
is supported [?]. This is very reminiscent of the process of
asynchronous backpatching used in one-pass compilers to
resolve forward reference.

It is important to remark that, in order to be correct, a
sufficiently small grain of asynchronous propagation must
be necessarily larger than the unification operation on lit-
erals. Namely, it is obviously dangerous as well as a source
of inefficiency to propagate instantiations coming from the
partial unification of two Le Fun literals. However, such
“pipelining” may be possible under very specific consider-
ations. Such is an issue for further study.1

As a matter of experiment in our current prototype,
we enforce atomicity of the unification operation, and do
not support partial evaluation. That is, a verification of a
residuation is triggered only between unifications of literals
and when all its RV’s are instantiated to ground values.

3.1.2 Trickier Case

A consequence of the above remark is that since instanti-
ations of variables may be non-ground, i.e., may contain
variables, residuations mutate. To see this, consider the
following example:

q(Z)

:- p(X,Y,Z),

X = V-W,

Y = V+W,

pick(V,W).

p(A,B,A*B).

pick(9,3).

together with the query:

?- q(Ans).

The goal literal p(X, Y, Ans) creates the S-residuation
Ans = X ∗ Y . This S-residuation has RV’s X and Y .
Next, the literal X = V −W instantiates X and creates a
new S-residuation. But, since X is an RV to some residua-
tion, rather than proceeding as is, it makes better sense to
substitute X into that residuation and eliminate the new
S-residuation. This leaves us with the mutated residua-
tion Ans = (V −W ) ∗ Y . This mutation process has thus
altered the RV set of the first residuation from {X, Y } to
{V, W, Y }.

As computation proceeds, another S-residuation instan-
tiates Y , another RV, and thus triggers another mutation

1Thus, we have initiated a collaboration with Rishiyur Nikhil, of
the MIT Computer Science Laboratory, for a study of a Dataflow
model of residuation [?].
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of the original residuation into Ans = (V −W )∗ (V +W ),
leaving it with the new RV set {V, W}.

Finally, as pick(9, 3) instantiates V to 9 and W to 3, the
residuation is left with an empty RV set, triggering eval-
uation, and releasing the residuation, and yielding final
solution Ans = 72.

3.2 Residuating Ground-Decidable Goals

Equations are not the only computations which may be
residuated. As a matter of fact, any goal whose decision
is entailed by grounding its arguments is potentially resid-
uatable. In particular, inequations (6=) as well as com-

parisons (<, >) may as well residuate. These are called
I-residuations.

Consider, for example,

q(X,Y,Z)

:- p(X,Y,Z),

X < Y,

Y < Z,

pick(X,Y).

p(X,Y,X*Y).

pick(3,9).

with the query,

?- q(A,B,C).

Understanding this example is left as exercise.

3.3 Higher-Order Expressions

The last example illustrates how higher-order functional
expressions and automatic currying are handled implicitly.
Consider,

sq(X) = X*X.

twice(F,X) = F(F(X)).

valid_op(twice).

p(1).

pick(lambda(X,X)).

q(Val)

:- G = F(X),

Val = G(1),

valid_op(F),

pick(X),

p(sq(Val)).

with the query,

?- q(Ans).

The first goal literal G = F (X) creates an S-residuation
with the RV set {F, X}. Note that the “higher-order”
variable F poses no problem since no attempt is made
to solve. Proceeding, a new S-residuation is obtained as
Ans = F (X)(1). One step further, F is instantiated to
the twice function. Thus, this mutates the previous S-
residuation to Ans = twice(X)(1). Next, X becomes the
identity function, thus releasing the residuation and in-
stantiating Ans to 1. Finally, the equation sq(1) = 1 is
immediately verified, yielding success.

4 Le Fun Operational Semantics

4.1 General Principle

The general idea is that residuations can happen at differ-
ent levels, and that timely and efficient invocation of such
residuations can be accomplished through a careful run-
time accruement of backchaining information built into a
generalized resolution/unification algorithm. Hence, using
such run-time information, invoking a residuation should
happen automatically when enough information is avail-
able for such an invocation to be meaningful (e.g., a resid-
uated functional expression reduction should be invoked
as soon as all the free variables in that expression are
ground.) One undesired alternative, for obvious reasons,
is having to accumulate all residuations in a central repos-
itory and check them there periodically for progress po-
tential. The difference between these two alternatives is
reminiscent of the difference between interrupt servicing

and polling when a system is dealing with an external sig-
nal. The following is a description of the supported resid-
uations and the backchaining information that is deemed
necessary for their economical implementation.

At the resolvent level, and as part of a regular goal res-
olution, a unification can become residuated if a unificand
is a function application not ready for reduction. There-
fore, internal representation of function applications must
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remember the unifications pending on them. Also at the
resolvent level, the resolution of certain ground-decidable
predicates can be residuated if their operands are either
function applications not ready for reduction, or uninstan-
tiated variables. Therefore, both function applications
and uninstantiated variables should have the capability of
remembering the residuated ground-decidable predicates
pending on them.

Reduction of function applications should residuate if
free variables therein are still uninstantiated. Therefore,
uninstantiated variables should have the capability of re-
membering the residuated functional reductions pending
on them. A sufficient condition for the release of a residu-
ation is thus that its RV set become empty. It is however
not a necessary condition; e.g., if partial computation is
supported or, more generally, if function strictness infor-
mation is available.

For example, we note that, given a function application,
partial progress may be possible in reducing such expres-
sions even if all free variables in the expression are not
ground. For example, following Ershov [?], partial com-
putation may allow earlier failures in some computations
such as the E-residuation:

append([0], X) = append([1], Y )

However, the computational overhead needed to support
such eager evaluation with the potential of backtracking is
considerably more severe, since in worst cases trailing of
all partial reductions must be kept. Generally, in the case
where a function in not strict in one of its arguments (i.e.,
it does not insist that particular argument denote in order
for its application to denote) it is clear that a non-strict
RV need not be waited for in order for the computation
to proceed.

The above points lead us to the following observations.

• Computation fragments that may need to be delayed
and remembered (residuated) are (1) functional appli-
cations (S-residuations), (2) ground-decidable predi-
cate invocations (I-residuations), and (3) unification
operations (E-residuations.)

• Objects that may need to remember residuated
computations are: (1) functional applications, and
(2) uninstantiated variables.

• The backchaining information is always recorded at
unification time, or at the time certain built in pred-
icates are invoked; this is when it is realized whether

residuation will be necessary. The unification algo-
rithm will detail the issues related to the nature and
placement of that information.

• The backchaining information will be extracted and
used at unification time; this is when appropriate in-
stantiations will satisfy the criteria of releasing resid-
uations for more processing. The unification algo-
rithm will detail the actions taken as part of the
backchaining operation, and the ensuing release of
residuations for more processing. Failure of released
residuated computations (unifications or resolution of
ground-decidable predicates), simply calls the regu-
lar backtracking algorithm modulo a more sophisti-
cated treatment of the trailing of variable instantia-
tions augmented with trailing residuations needed to
be undone as part of the backtracking process.

4.2 Informal Syntax for Le Fun

We present here a minimal syntax for Le Fun. The idea
is not to give an exhaustive description of a “real-life”
syntax with all conveniences and sugaring to accommo-
date aesthetics, but rather to define just enough to fo-
cus the reader’s attention on the specific originality of
Le Fun’s syntax—namely, a generalization of applicative
expressions and first-order terms. Thus, the reader is as-
sumed to be familiar with Prolog’s syntax as well as with
basic sugaring of the λ-calculus. Therefore, many unspec-
ified details (e.g., pattern-directed conditionals for func-
tions, handling of functional recursion, etc.) are left to
the reader’s taste.

Le Fun’s terms are a combination of conventional first-
order terms and applicative expressions. More precisely, a
Le Fun term is one of the following:

1. Variables—represented as capitalized identifiers;

2. Identifiers—represented starting with a lower case let-
ter;

3. Abstractions—of the form λX.e, where X is a vari-
able, and e is a Le Fun term;

4. Applications—of the form e(e1, . . . , en), where e is a
Le Fun term, and the ei’s are Le Fun terms.

All classical conventions related to left-associativity, in-
fix notation, and currying of applications are assumed.
Those special applications of the form c(e1, . . . , en), where
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c is an identifier known to be a constructor symbol, and
the ei’s are Le Fun terms are called constructions.

A Le Fun program consists of a sequence of equations

and clauses. An equation is of the form f = e where f is an
identifier called an interpreted symbol, and e is a Le Fun
term. In the case where e is an abstraction of the form
λX1. . . . .λXn.e′, we may also write f(X1, . . . , Xn) = e′.
A clause is defined exactly as in Prolog, with the difference
that Le Fun terms are expected where first-order terms
are in Prolog—i.e., as predicate arguments. Such liter-
als which constitute Le Fun clauses will be called Le Fun
literals.

The lexical distinction between constuctor and inter-
preted symbols is simply that a constructor is any iden-
tifier which does not appear in a left-hand side of an
equation. For those, fixed arity is assumed. Hence, any
construction with root constructor of arity n must have
exactly n arguments. If it has more, the term is ill-
formed. If it has less, then the term is not a construc-
tion, but an abstraction. Indeed, if c is an n-ary con-
tructor, the term c(e1, . . . , ek) for k < n is in reality the
term λX1. . . . .Xn−k.c(e1, . . . , ek, X1, . . . , Xn−k), where
the Xj ’s do not occur free in any of the ei’s.
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Hascoët, L., and G. Kahn, Natural Semantics on the

Computer. Rapport de Recherche No 416, INRIA-
Sophia Antipolis. Valbonne, France. June, 1985.

[16] Cohen, E., Type Theory and Non-Determinism.
Doctoral Thesis Proposal, The University of Texas
at Austin (Computer Sciences). Austin, TX. Decem-
ber, 1986.



REFERENCES 7

[17] Constable, R.L., et al., Implementing Mathematics

with the Nuprl Development System. Prentice-Hall,
Englewood Cliffs, NJ. 1986.

[18] Coquand, Th., Une Théorie des Constructions.
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