
High-�delity Distributed Simulation of Local Area Networks�Livio RicciulliComputer Science LaboratorySRI InternationalMenlo Park, California, 94025AbstractThe Adaptable Network COntrol and Reporting Sys-tem (ANCORS) project merges technology from net-work management, active networking, and distributedsimulation in a uni�ed paradigm to assist in the as-sessment, control, and design of computer networks.After motivating our approach to network engineer-ing, we describe an initial ANCORS prototype system.In particular, we describe a high-�delity model of aUnix-based networking protocol stack, and character-ize and compare two di�erent distributed simulationsynchronization mechanisms that were used to simu-late an Ethernet-based Local Area Network.1 IntroductionThe Internet will become increasingly dynamic.Changes in the Internet will a�ect both its controlmechanisms and the nature of information exchanged.New trends in network design [12, 7, 4, 13, 11, 1] seekto render network protocols more exible and extensi-ble, and to thus improve their overall usefulness. Con-�guration changes can be as dynamic as interpretingand executing a few prede�ned instructions as a net-work packet is received, causing new protocols to beloaded on demand, or modifying, deleting, or addingmore permanent objects that implement application-speci�c network services. In addition to changing howdata is transmitted, the introduction of new technolo-gies as they become available may change the natureof network tra�c. The Internet phone and the increas-ing interest of cellular phone companies in accessingservices on the Internet are examples of future tech-nologies that may greatly a�ect Internet tra�c.The current state of the art in network engineering,monitoring, and control must improve dramatically. Itis becoming increasingly apparent that e�ective man-agement of large, ever-changing networks depends onsophisticated monitoring to help understand the waya network changes. As new interdependencies arise in* This work was supported by DARPA contract numberDABT63-97-C0040.

sharing resources beyond the domain level, monitoringcapabilities, like application-speci�c protocols, shouldbe able to change over time, should adapt to new con-ditions as they develop, and should be scalable.In addition to sophisticated and adaptable mon-itoring, future networks would greatly bene�t fromsimulation services so that network engineers can ex-periment with new network technologies without com-promising network operations. Current network engi-neering tools can scale only to small and relativelysimple networks and are not inter-operable. Tools willbe required to scale far beyond current capabilitiesand will need to promote inter-operability and modelreuse. In addition to evaluating performance metricsto compare one design with another, network engi-neering tools should implement a development envi-ronment for validating new designs.Hardware design tools have reached a very highlevel of sophistication and can assist hardware design-ers in all phases of design and development. Such toolscan support a wide spectrum of levels of abstraction,from high-level purely behavioral speci�cations, to in-creasingly �ner detailed structural layouts, all the waydown to the actual design of the transistors on thesilicon. Simulation is used throughout all phases ofthis design process, and it is the main mechanism thatguides design choices. As for hardware, network de-sign should also be carried out in an environment thatcan o�er a variable degree of abstraction and that cano�er simulation as a pivoting technology to guide de-velopment. We argue that, because of the organic na-ture of current networks and their fast evolution pace,design should be carried out in the real network it-self. Future networks will need tools that can adapttheir functionality and scope, and that can grow andchange with the network itself. To generate resultsthat accurately predict network behavior and perfor-mance, simulation and analysis must be closely tied tothe actual, rather than on arti�cially generated, net-work tra�c conditions. To that end, the tools shouldrun on the network itself, taking the actual observable

tra�c conditions into consideration. Before commit-ting network-wide changes such as the alteration ofthe network routing algorithm, an operator may wantto conduct simulation experiments that can predictthe behavior of the network under the new algorithmwithout a�ecting network reliability. That is, analysisand design tools should be available to a wide rangeof network operators, who could act independently orin collaboration with one another.ANCORS leverages network management and in-troduces simulation as an additional network service.Integrating distributed simulation with network man-agement has four main advantages: (1) it naturallysupports reuse of both simulation software and net-work models, (2) the simulated models can use realnetwork data produced by the monitoring agents, thusimproving �delity, (3) the consumers of the data (thesimulation models) are placed close to the origin ofthe data to reduce overhead, and (4) the monitoringand control capabilities of network management canbe reused to monitor and control the simulations.We have primarily focused on implementing (1) aprototype of a root ANCORS agent that dynamicallyaccepts and instantiates simulations and/or monitor-ing processes, and (2) a representative example of de-ployable engineering service that can be used to con-duct very accurate, end-to-end quantitative networkexperimentation.In the following sections, we will discuss some ofthe key design ideas and implementation details of ourprototype network engineering system and will pro-vide experimental results that characterize its perfor-mance. In the process of describing the designs, wewill emphasize a novel, scalable, and e�cient synchro-nization technique used to coordinate the distributedsimulation of virtual LANs.2 ANCORS AgentThe current prototype of an ANCORS agent ac-cepts commands to download a binary-compatible ex-ecutable from a remote location. The binary exe-cutable is speci�ed as a URL; the ANCORS agent,after downloading the code with an HTTP GET com-mand, strips the HTML header from the received codeand loads it as a dynamic library. As shown in Fig-ure 1, the download command can either (1) triggerthe ANCORS agent to duplicate itself by using a forksystem call to run the downloaded code (as well toaccept further commands), or (2) simply add a threadto an existing process. In either case, the downloadedcode is essentially a shared library initially accessedthrough a universally prede�ned entry point (init()).This initial con�guration function can simply transfer

ANCORS
Agent

Load_process <URL1>

Fork

New Process

Load_thread <URL2>

HTTP
Server

GET <URL1>

GET <URL2>

New
threadFigure 1: ANCORS agents can spawn a new processor a thread within a processcontrol to the downloaded code for execution, or it can�rst gather runtime con�guration data in a mannerspeci�c to each instance 2 and then explicitly started.In this �rst prototype we have assumed that the con-�guration and monitoring functions are embedded in-side the deployed code itself. These functions returnHTML code that is fed to the network manager togather some user-de�ned runtime parameters or fordisplaying usage data. The network engineer con�g-ures and monitors the downloaded code with HTMLforms that are then pushed back through a CGI scriptto the created service. Each operation returns HTMLforms that in turn may call other functions, thus allow-ing a hierarchical organization of HTML pages. Fu-ture extensions to our management system will allowthe incorporation of existing NM software based onSNMP and Java 3 and the creation of new decentral-ized management solutions based on the concept ofdelegation (perhaps using Java as the delegation lan-guage).The ANCORS agent o�ers a set of built-in primi-tives to the downloaded services that, in addition tostandard native system functionality (I/O, memorymanagement, networking), provide (1) multithread-ing (nonpreemptive), (2) LAN multicast emulation,and (3) global time synchronization. These supportservices were designed to facilitate distributed simula-tion network engineering applications, as well as someforms of sophisticated network monitoring.2For example, it could use a MIME-encapsulated documentto specify con�guration and monitoring operations to be per-formed by the management system.3All product and company names mentioned in this paperare the trademarks of their respective holders.

TCP

Loopback
Interface

IP

UDPARP ICMP

File System

TTY

Memory
Management

Scheduler

Software
Timers

Hardware
Timer

Ethernet
Interface Graphics

Device
management

Disk

Unix API

TCP

Loopback
Interface

IP

UDPARP ICMP

Standard
I/O

Malloc &
Free

CSIM

Software
Timers

Virtual
Ethernet

Device
management

Unix API

ifconfig

Route

Unchanged Developed
Integrated from
existing codeFigure 2: Linux transformation3 Virtual Networking Using ANCORSTo date we have produced a representative exampleof an engineering network service that emulates a Unixkernel. The service was obtained by modifying a Linuxoperating system to allow its execution in user mode.As shown in Figure 2, the modi�cations of theoperating system replaced all lower-level, hardware-dependent procedures and interfaces with user-levelcounterparts. We deleted the �le system support andincorporated all necessary con�guration procedures(like ifcon�g and route) as additional system calls.Memory management and standard I/O were com-pletely deleted and replaced by user-level functions(malloc, free, and printf) contained in the standardc library. The scheduling and the software timerswere completely replaced and implemented on top ofthe nonpreemptive threading o�ered by the simulationpackage (CSIM [10]).The resulting service executes in a virtual timescale,o�ers the identical networking behavior of a real Linuxkernel, and can therefore be used as a vehicle to in-

stantiate high-�delity distributed simulations of vir-tual networks. One of the model's con�guration func-tions accepts di�erent timing con�gurations to ap-proximate the protocol stack timing behavior of fourdi�erent kernels (SunOS 4.13, SunOS 5.5, Linux 2.02,and BSD 2.2). To date we have made some gross ap-proximations for SunOS 4.13, Linux 2.02, and BSD2.2 but we have re�ned the models for SunOS 5.5 toyield very accurate timing estimates to be used in the�rst set of experiments documented in this paper inSection 5.The virtual kernel o�ers the network applicationprogramming interface (API) of the real Linux coun-terpart and therefore can be used to reproduce a widerange of loading conditions. ANCORS's ability toadd and delete threads can be used in this appli-cation to dynamically change loading conditions (byadding or deleting user-de�ned loading threads) orby injecting user-de�ned monitoring probes into thekernel so that speci�c parameters can be observed.For the time being, we have implemented some sim-ple load models borrowed from classic queuing theory.As shown in Figure 3, the user-de�nable loads may beproduced by either closely mimicking real load condi-tions recorded by network monitoring services or bylinking some real applications to the virtual kernel togenerate application-speci�c loads (for example, orig-inating from a real-time video stream).The virtual kernels communicate with each otherthrough TCP, and automatically con�gure themselvesto participate in emulated multicast sessions that par-allel the behavior of virtual Ethernet segments. Ini-tially, all real hosts are aware of all other real hoststhat may share the same virtual Ethernet segment.Each virtual Ethernet segment network address as-signed to a virtual host is transformed through a hashfunction into a port number. When the virtual ker-nel initializes its virtual interfaces, the multicast em-ulation initialization procedure tries to connect to allknown peers that may share a virtual Ethernet seg-ment, using the port associated with each virtual in-terface. Thus, if two or more virtual hosts share avirtual network address, and therefore use the sameport, they establish a TCP connection used to tunnelvirtual Ethernet packets. When a virtual host sendsa simulation packet pertaining to a particular virtualEthernet segment, it sends it to all virtual hosts thathave connected to the associated port.The deployment of a virtual network is achievedby downloading and con�guring several virtual ker-nels through ANCORS agents. All these operationscan be performed either through a standard HTML

Virtual Kernel

Measured
Load

Analytical
Model

Ethernet Interface1
Ip Network Broadcast

Hash
Function

Port #

Virtual TCP/UDP API

Application
Load

TCP/IP

User-defined
Monitoring

Deployable virtual host

TCP UDP

IP

ICMP

Ethernet Interface 2
Ip Network Broadcast

Hash
Function

Port #

Ethernet Interface n
Ip Network Broadcast

Hash
Function

Port #

Measured Load

User-defined
Threads

Application

Figure 3: Deployable virtual hostbrowser or by using a script. We have so far instanti-ated several virtual networks running on a network ofworkstations including Sun SPARCstation 20s, Ultra-SPARCs, and Intel-based machines running BSD andLinux operating systems.4 SynchronizationA practical distributed network engineering toolshould allow varying degrees of modeling re�nementand be able to trade o� speed, level of abstraction,and estimation accuracy in a exible way. Tradi-tionally, simulation techniques have been able to of-fer good exibility for modeling systems at di�erentlevels of abstraction but have not been able to copewell with high-�delity simulation of large systems in ascalable way. Traditional distributed simulation tech-niques can o�er mechanisms to e�ectively serialize theevent ordering of distributed nodes, thus increasingsimulation power by employing more computing re-sources. Although these techniques are very usefulfor performing analytical experiments in a distributedway, they can impose high levels of overhead to keepthe distributed nodes synchronized.We are developing a novel technique to trade o� theaccuracy of simulated time with the speed and scal-ability of distributed simulation while retaining theexibility of being able to o�er an arbitrary level ofabstraction for modeling the target system. We havederived some of the ideas from the theory of Lam-port's virtual time [6], and therefore we have namedour technique Lamport Synchronization (LS). LS dis-tributed simulation is based on the idea of decouplingthe simulation into a behavioral component that em-

ulates the semantic behavior of the modeled system(i.e., preserve the causal relationship among the dis-tributed events according to the semantics of the sys-tem being modeled) and a timing component that es-timates the virtual time in which the executed behav-ior could have been executed. We have successfullyapplied these ideas to the e�cient distributed simu-lation of a massively parallel architecture [8, 9] and,as we will see in the following sections, we have alsorecently applied our techniques to simulate EthernetLANs within the scope of the ANCORS project.In addition to LS, for comparison purposes we havealso implemented a distributed simulation synchro-nization algorithm derived from the algorithms pro-posed by Chandy and Misra (CM)[2]. We have notyet implemented a synchronization scheme based onTime-warp [5, 3] but we plan to do so in the nearfuture. In the following sections we will describe indetail and compare the two synchronization mecha-nisms implemented so far (LS and CM) when appliedto the distributed simulation of local area networks,using ANCORS.4.1 Common AssumptionsBoth the CM and the LS synchronization protocolsuse TCP to transmit messages between the logical pro-cesses (LPs) to guarantee that messages are reliablydelivered in program order.We model contention by broadcasting virtual Eth-ernet packets not only to the destination node but toall other nodes sharing the same Ethernet segment.A more e�cient solution would be to centralize themodeling of the Ethernet in a single host, thus reduc-

ing the ratio of the number of real messages sent foreach virtual message from n to two4 (where n is thenumber of hosts sharing the same Ethernet segment).We plan to experiment with this solution in the nearfuture even though we realize that careful mappingshould be used to avoid creating a bottleneck in thehost modeling the Ethernet.Another common design methodology was to en-capsulate the simulation synchronization mechanismsinto the software module that implements the virtualEthernet without involving either the application orthe particular protocol stack used. Although this re-quirement heavily penalizes the CM mechanism, itpermits reuse of the synchronization codes with dif-ferent applications and/or protocols in a exible andmodular way.4.2 LS MechanismEach logical process (LP) has two separate clocks|a local clock TL and a global clock that measuresglobal simulated time (Tg) (the estimation of whatwould be the physical time if the simulated systemwas real). In the LS scheme, Tg does not order the ex-ecution of the simulation, but it is derived simply toobtain a performance measurement. We start from aninterleaving of distributed events that is guaranteedto be legal by the simulated system synchronizationsemantics, and we derive a Tg estimate in which theobserved execution could have been carried out. Wealways execute all local simulation mechanisms withrespect to TL and perform all global operations withrespect to Tg. Events executing with respect to TLtypically enforce the behavioral correctness of the dis-tributed system, while events executed with respectto Tg tend to be executed purely for measurementpurposes. The separation of the TL and Tg clocksis only a logical one and does not need two separateevent lists because scheduling Tg events can be piggy-backed on the scheduling of the TL events. For exam-ple, for scheduling an event with respect to Tg to timeT one would execute while(Tg < T)hold(x) where xis a reasonable amount of TL time during which Tgmay change. Tg in general is explicitly adjusted dur-ing the execution of the simulation by modeling thesynchronization interactions of a distributed systemas a series of requests, acquisitions, and releases ofglobal resources (i.e., the Ethernet segment). Once theresource becomes available the execution is resumedwith Tg adjusted to an appropriate value. For an in-depth description of the LS technique applied to thedistributed simulation of parallel computers see [8, 9].The LS distributed simulation technique applied to4In the LS case from n+1 to 3

Application

Protocol Stack

Virtual Ethernet

Va Va

Application

Protocol Stack

Virtual Ethernet

T0

T1

T2

T3

T4

T5

Negative Aknowledgment
may indicate a collision

Packet send time=T1+T3-T2

Packet receive time=T5

Figure 4: LS scheme timing measurement. The proto-col stack latency is measured locally while the Ether-net timing is measured at the destination. If a collisionis detected, a negative acknowledgment will cause thesource to back o� and try again.simulating LANs is best described with a simple ex-ample. In Figure 4 two virtual nodes Va and Vb thatshare an Ethernet segment are executing on two dif-ferent physical processors. In this example, node Vasends a message to Vb. After Va accounts for theprotocol stack overhead, the message is time-stampedwith Tg (time T1 in Figure 4). When the messagereaches Vb, the timestamp is updated by adding thelatencies of the network being simulated. In particu-lar, in this case Vb would add the transmission latencyof the Ethernet and its receiving latency calculated atthe moment the message is received (time T3 � T2 inFigure 4).Depending on whether or not a collision has beendetected, Vb then sends back a positive or negativeacknowledgment to the originator. If positive, theacknowledgment bears a timestamp that reects thetime the message sending should have completed inVa's time reference (T1 + T3 � T2). The timestamp ofthe acknowledgment is then used by Va for adjustingthe estimate of Tg. If the acknowledgment is nega-tive (Vb detected a collision), Va triggers the stan-dard Ethernet back-o� and retry mechanism. On thereceiving end, if the message sent by Va did not trig-ger a collision, the application receives the message atTg T5 and the timestamp is discarded.4.3 Chandy and MisraIn this scheme, all LPs keep only one clock thatorders both local and global events in a synchronousway. With this well-known synchronization scheme,each distributed node waits for receipt of a message

from each of the other hosts that could possibly senda message to compute the latest time at which it is safeto send a message. Deadlock is avoided by broadcast-ing null messages that advance time arti�cially whennecessary.In our experiments each host waits for messagestransmitted by all other hosts that are connected onthe same virtual Ethernet segment and sends messageson the virtual Ethernet only if the clock plus the Eth-ernet latency is less than the timestamp of the latestmessage received.Each time an LP receives on all the input queues,it broadcasts a null message to all other LPs bearing atimestamp with the local time plus the local estimateof lookahead time. If the LP is wanting to transmit,the lookahead time is set to the timestamp of the nextmessage to be sent out; otherwise, the lookahead timeis set to the transmission latency of the smallest pos-sible Ethernet packet (60 bytes). Our lookahead es-timate is not very sophisticated because we did notwant to specialize this technique to a particular ap-plication. A more intelligent use of lookahead wouldlook into the protocol stack or, even better, use in-formation embedded in the application for increasingthe lookahead time and consequently improve perfor-mance.4.4 Qualitative ComparisonBecause of the nondeterminism introduced by theruntime behavior of the physical hosts, in the LSscheme di�erent scheduling behaviors might be ob-served for the same simulated application. The ap-plications, if correct, for each run, will always producethe same results but might arrive at those results indi�erent ways following di�erent scheduling behaviors.This critical aspect about the LS scheme might inspireskepticism. We try to show why we think this nonde-terminism is an acceptable attribute of LS and can insome cases be desirable.As detailed in Section 5.2, we have observed thatthe execution of a real distributed system exhibits non-deterministic behavior because of runtime system in-terferences. We therefore believe that it is not prac-tical to introduce performance overhead in the sim-ulation of a distributed system execution to make itsbehavior totally deterministic when in reality this doesnot happen. Furthermore, the inaccuracies introducedby a nondeterministic scheduling behavior in our judg-ment can be very small compared to other kinds ofinaccuracies introduced by simulation. (Abstractingthe behavior of certain components of the design andadopting inaccurate timing estimates for componentsthat have never been built are examples of more im-

portant sources of inaccuracies introduced by simula-tion.)Some metrics greatly depend on the scheduling be-havior of an application (false sharing is a good ex-ample), a deterministic sequential simulation (or anequivalent distributed one) is the only alternative ifone wants to obtain very accurate measurements. TheCM scheme o�ers a deterministic scheduling behav-ior at the expense of higher synchronization cost andcan be used in those cases in which repeatability ofthe results needs to be enforced at a very �ne grainlevel. Another hidden cost that is unique to the CMscheme and that may become more and more relevantin the context of Web-based simulations is that if oneof the LPs goes down, the simulation stops even if theLP is not semantically necessary for the simulation toproceed. In other nonconservative distributed simu-lation approaches the simulation would make forwardprogress even in the case of failures of some LPs.5 Quantitative ComparisonUsing ANCORS we have performed several dis-tributed simulations aimed at evaluating the per-formance and scalability of the two synchronizationschemes we have implemented (LS and CM) and com-paring the timing accuracy of our models with the realsystem being modeled.The experiments consist in simulating an Ether-net segment shared by four virtual hosts. The virtualhosts establish virtual TCP connections and exchangevariable-length messages. The four virtual hosts canbe spawned on four physical hosts or on a single host.Three of the four virtual hosts continuously send shortmessages 5 to the fourth host and block on the re-ception of a message of length derived from an expo-nential distribution with variable mean and standarddeviation. This kind of simulation tries to emulatethe dynamics of a small LAN in which a server is be-ing queried by three clients for read-only data (like inHTTP).5.1 E�ciencyWe have compared the e�ciency of both the LSand CM schemes for synchronizing the simulation ofour high-�delity virtual LAN. Table 1 summarizes themeasurements we obtained. For both synchronizationschemes we report the slowdown of the distributedsimulation. The slowdown is calculated by dividingthe physical time needed by the simulation by the sim-ulated global time. Table 1 also reports the slowdownsfor simulations running on four workstations 6 or run-5Messages with mean length of 10 bytes and standard devi-ation of 10 bytes6Sun Microsystems UltraSPARCs

Table 1: Simulation E�ciencySimulation E�ciencyPacket 1 Workstation 4 WorkstationSize Slowdown Slowdown SpeedupC&M LS C&M LS C&M LS10 5993 1830 2774 641 2.16 2.851024 3989 523 1426 177 2.8 2.962048 3921 401 1375 128 2.85 3.124096 3884 307 1295 98 3.0 3.138192 3844 262 1265 86 3.04 3.0316,384 3834 237 1257 81 3.05 2.9232,768 3836 225 1247 78 3.07 2.8865,536 3838 219 1243 77 3.09 2.82131,072 3828 216 1214 78 3.15 2.76ning on a single workstation. In the single workstationexperiments, the messages between the LPs (whichare separate Unix processes) are exchanged using theloop-back device, thus eliminating any overhead dueto the Ethernet; in this case the bottleneck is the hostprocessing power. Because of the lack of lookaheadinformation, the CM simulations are much slower andthe slowdown is quite constant. The LS scheme ismuch faster and becomes more e�cient as the packetsize increases (this is because the simulation packetsare at most 60 bytes long and as the real system sat-urates the Ethernet it is slowed down with respect tothe simulation). The speedup is calculated by dividingthe slowdown of 1 workstation by the slowdown of the4 workstations. It is quite good for both simulationschemes, thus suggesting that this kind of high-�delitysimulation is a good candidate for parallelization.5.2 AccuracyTable 2 compares the estimation of the overallthroughput obtained with our high-�delity simula-tions using the LS and CM schemes with the through-put of the real system being modeled. In addition wereport the standard deviation of the throughput esti-mates that were obtained over multiple experiments.Both the CM and the LS schemes give fairly goodestimates of the overall throughput, with the CM re-quiring some adjustments in the timing model. CM of-fers a deterministic behavior and thus a zero standarddeviation of the measurements. Notice that in boththe real system and in the LS simulations the stan-dard deviation is considerable and it does not seemto be related to the packet size. In both the real sys-tem and the LS simulations the standard deviation isabout 10%, thus suggesting that a deterministic sim-ulation may give an erroneous picture of the system'sdynamics. The LS scheme, on the other hand, seemsto o�er the same degree of variability with respectto the real execution, thus o�ering more simulation

Table 2: Simulation AccuracySimulation AccuracyPacket Real C&M LSSize B/s S.D. B/s S.D. B/s S.D.10 13041 235 41385 0 14566 10551024 275397 2856 371477 0 299509 62802048 326715 8188 379014 0 328191 71554096 355251 2858 389770 0 346504 62888192 364256 3315 394557 0 355683 591916,384 364299 4468 397555 0 354758 524732,768 360321 2661 400154 0 361155 412265,536 357389 2721 401124 0 363721 3377131,072 349829 7860 402827 0 365064 645�delity. We plan to conduct more experiments mod-eling more complex topologies and being executed onmore heterogeneous environments to better character-ize the variability of the LS simulations as they arecompared to the variability of the system being mod-eled.6 ConclusionAs the Internet will become more dynamic both inits control mechanisms (protocols) and in the user re-quirements, new, e�cient, and user-friendly networkengineering tools will be required to go far beyond cur-rent capabilities. ANCORS o�ers a new paradigm fordesigning, deploying, and monitoring networks thatintegrates simulation as an additional component ofnetwork management. In this paper we have out-lined an initial ANCORS prototype consisting of mul-tiple distributed agents capable of deploying networkengineering applications in a exible and machine-independent way and a high-�delity model of a Unixnetwork protocol stack. We have used this initial AN-CORS prototype to experiment with two synchroniza-tion protocols for the distributed simulation of a high-�delity LAN. In comparing the two protocols we haveboth qualitatively and quantitatively described thetwo approaches and have concluded that the LS imple-mentation, given our methodological assumptions, ismore e�cient. In the near future, using both simula-tion synchronization protocols, we plan to experimentwith more complex network loads and larger and moreinteresting topologies. In particular, we plan to ex-plore both simulation techniques and network designissues in the presence of self-similar tra�c.AcknowledgmentsI would like to thank Nachum Shacham, PhillipPorras, Jos�e Meseguer, Patrick Lincoln and ChrisDodd, all with SRI International, and Caveh Jalaliwith Sun Microsystems for the helpful discussions andsigni�cant technical advice that contributed to themaking of this paper.

References[1] D. Scott Alexander, Marianne Shaw, Scott M. Nettles, andJonathan M. Smith. Active bridging. Proceedings of theACM SIGCOMM'97 Conference, Cannes, France, Septem-ber 1997.[2] K. M. Chandy and J. Misra. Asynchronous distributedsimulation via a sequence of parallel computations. Com-munications of the ACM, April 1981.[3] R. M. Fujimoto. Optimistic approaches to parallel discreteevent driven simulation. Trans. Society for Computer Sim-ulation, June 1990.[4] U. Manber J. Hartman, L. Peterson, and T. Proebsting.Liquid software: A new paradigm for networked systems.Technical Report 96-11, University of Arizona, 1996.[5] D. Je�erson. Virtual time. ACM Trans. ProgrammingLanguages and Systems, July 1985.[6] L. Lamport. Time, clocks, and the ordering of events indistributed systems. Communications of the ACM, July1978.[7] U. Legedza, D. J. Wetherall, and J. V. Guttag. Improvingthe performance of distributed applications using activenetworks. Submitted to IEEE INFOCOM'98, 1998.[8] L. Ricciulli. A technique for the distributed simulation ofparallel computers. In MASCOTS '95, January 1995.[9] L. Ricciulli, J. Meseguer, and P. Lincoln. Distributed sim-ulation of parallel executions. In 29th Annual SimulationSymposium, pages 15{24, 1996.[10] H. Schwetman. Csim: A c-based, process-oriented simula-tion language. Technical report, MCC, 1989.[11] Jonathan Smith, David Farber, Carl A. Gunter, Scott Net-tle, Mark Segal, William D. Sincoskie, David Feldmeier,and Scott Alexander. Switchware: Towards a 21st centurynetwork infrastructure. http://www.cis.upenn.edu/ switch-ware/papers/sware.ps, 1997.[12] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse.Ants: A toolkit for building and dynamically deployingnetwork protocols. Submitted to IEEES OPENARCH'98,1998.[13] Y. Yemini and S. da Silva. Towards programmable net-works. IFIP/IEEE International Workshop on DistributedSystems: Operations and Management, L'Aquila, Italy,October 1996.

