A SIMPLIFIED METHOD FOR
ESTABLISHING THE CORRECTNESS OF
ARCHITECTURAL REFINEMENTS

R. A. RIEMENSCHNEIDER

ABSTRACT. My colleagues and I developed an approach to proving correctness
of architectural refinement hierarchies that depended upon treating architec-
tural specifications as axiomatizations of first-order theories. This paper ex-
plores the consequences of an alternative approach to formalizing the content
of specifications in logic. A specification is treated as a depiction of a par-
ticular relational structure, which is intended to be a mathematical model of
the system being specified. As a result, specifications now correspond to much
stronger (in fact, complete) theories. Although the criterion for refinement cor-
rectness — that the theory corresponding to the higher-level specification can
be faithfully interpreted in the theory corresponding to the lower-level spec-
ification — remains the same, the technique for proving correctness is quite
different: proving that a mapping is a theory interpretation is more complex,
though still largely a matter of calculation, but faithfulness is trivially guar-
anteed. The net result is a substantial simplification of correctness proofs, as
a comparison of proofs of a simple refinement pattern illustrates.

1. Two APPROACHS TO ESTABLISHING CORRECTNESS

In a previous paper [5], my colleagues and I presented an approach to proving
correctness of architectural refinement patterns. A correspondence between archi-
tectural specifications, such as the high-level compiler specification in Figure 1, and
theories in first-order logic was defined in terms of a mapping from specification
elements to axioms for the theories.! For example, the presence of the dataflow
connector that carries objects of type AST (i.e., abstract syntax trees) from the
parser component to the analyzer/optimizer component in Figure 1 corresponds to
the axioms

Channel(ast-intermediate)
Vxg [AST (xo) — Can_Carry(ast.intermediate, xg)]

The theory that corresponds to a specification is simply the set of all consequences
of the axioms obtained from the elements of the specification, together with gen-
eral axioms that constrain the meanings of the component, port, and connector
predicates that appear in the specification.

This theory is rather weak, in the sense that it does not determine the truth value
of many sentences in the language. For example, it does not contain any explicit

IStrictly speaking, the content of the informal dataflow diagram was formalized in a textual
specification language. For the purposes of this paper, let us eliminate the middleman and pre-
tend that diagrammatic representations are sufficiently precise to serve as formal architectural
specifications.

2 R. A. RIEMENSCHNEIDER

@

ast_intermediate: AST

char: Character cod: Code
—_— lexical_analyzer code_generator
ast_final: AST
analyzer/
optimizer

FiGURE 1. Dataflow Architecture for a Compiler

tok: Token

bind: Bindings

“extremal axioms” to preclude the existence of additional objects not mentioned in
the specification. Neither the sentence

= IxgIxq Ixg [Out_Port(x;, parser)
A In_Port(x2, lexical_analyzer) A Connects(xg, X1, x2)]

which says that there is no dataflow channel from the parser to the lexical analyzer,
nor its negation, is a consequence of the theory that corresponds to the architecture
in Figure 1. Of course, that no such dataflow channel is shown means that the
specifier intended that no such channel be implemented (or, more accurately, that
no such channel should be observable at this level of abstraction). Some of these
“truth value gaps” can be eliminated by adding axioms, but perhaps not all: the
theory of an inductive datatype, such as AST, may well be essentially incomplete.
Nonetheless, our theories are treated as if they were complete, in the sense that
our criterion for correct refinement is that the higher-level theory must be faithfully
interpretable in the lower-level theory.2 In other words, the lower-level theory must
not add any detail that could have been expressed at the higher level, such as the
existence of additional unmentioned objects in the higher level ontology.

But there is an alternative, perhaps more natural, logical interpretation of the
dataflow diagram in Figure 1. Any application of mathematics requires construc-
tion of a mathematical model of some phenomena of interest. This mathematical
model must share relevant structure with the phenomena, so that conclusions de-
rived from reasoning about the structure of the model are true of the structure
of the phenomena being modeled as well. Examples are ubiquitous in computing.
For example, one might attempt to derive truths about the behavior of a partic-
ular parsing program running on a particular machine by reasoning about a finite

2Recall that an interpretation .# of the langauge of theory @ in the theory @’ is an interpretation
of ©® in @' iff for every sentence ¢ in the language of O,

peEO = Hp)co
If, in addition, for every sentence ¢ in the language of O,
Hp)e® = pco

then .# is said to be faithful. See the Appendix of this paper for greater detail.

CORRECTNESS OF ARCHITECTURAL REFINEMENTS 3

state automaton that mathematically models it. It seems very natural to suppose
that this is exactly the function a system specification, whether behavioral or ar-
chitectural, is supposed to perform. In short, from this alternative perspective,
architectural specifications are intended to be mathematical models of the systems
they specify.

Just as a finite state automaton, which is formally defined as some sort of math-
ematical structure, can be depicted as a collection of boxes and arrows, a system
architecture diagram can be construed as a depiction of a particular mathematical
structure. Consider once again the dataflow diagram of Figure 1. The similarity
type of the structure that this diagram depicts is determined by its architectural
style. Since this is a dataflow diagram, the structure must provide the extensions
for the various predicate parameters of the dataflow language — Channel, AST,
Can_Carry, and so on — and must also identify the particular individuals denoted
by the individual parameters of the specification, such as parser. (Note that this
structure is not finite. Most often, the number of components and connectors in
specifications will be finite,? but the datatypes are often infinite.)

In the “model-based” treatment of specifications, the logical theory that corre-
sponds to the specification is simply the theory of the structure that the specifica-
tion depicts. This theory is, of course, complete, which is important because every
standard interpretation® of a complete theory in a consistent theory is faithful. The
proof of this fact is easy: for any standard interpretation .# of complete theory &
in consistent theory ®' and any sentence ¢ of the language of ©,

pEO = -peod (@ is complete)
= Sp) el (£ interprets @ in @)
= -~Hp) o (St’d interp’ns preserve logic)
= Hy) ¢ 0o (@' is consistent)

and so, universally generalizing the contrapositive, .# is faithful.

In the “property-oriented” treatment of our previous paper, proving that the
standard interpretation associated with a candidate refinement is a theory inter-
pretation was easy. A standard interpretation maps derivations to derivations.®
Therefore, if finite axiomatizations of @ and @' are available, then it can be shown
that # interprets © in @' by deriving the image of each axiom of @ under .# from
the axioms of @'. But proving faithfulness is harder. A substantial model-theoretic
result served as the basis of the method we proposed. So the fact that faithfulness
is automatic on the new approach makes it look quite promising. Unfortunately,
there is no simple, mechanical way to obtain axioms for the theory of a structure
from a representation of that structure. Indeed, the theory of the structure corre-
sponding to some specifications may very well have no recursive, much less finite,
axiomatization. Some other way of recognizing when a basis mapping from the
parameters of the language of one structure to the language of another structure

3However, it might sometimes be convenient to model a conceptually unbounded number of
components or connectors by an infinite number of components or connectors, just as a Turing
machine’s infinite tape is used to model conceptually unbounded memory

4See the Appendix for the definition of standard interpretation.

5Actually, the derivations that result can contain small “gaps” due to the introduction of
bounds on quantifiers, but filling these in is trivial.

4 R. A. RIEMENSCHNEIDER

determines a standard interpretation of the theory of the former struture in the
theory of the latter structure is required.

2. A MODEL-THEORETIC CRITERION FOR THEORY INTERPRETATION

Any standard interpretation .# of the language . in an .#’-theory @' induces
a “dual” mapping #? from #'-structures to Zstructures: roughly speaking, the
denotation of a predicate of .# is determined by the extension of the #’-formula
that interprets the predicate in the #’-structure, and similarly for individual pa-
rameters. More formally, given a model ' = (|2, PY . a% .. .) of @, the
ZLstructure #2(A') = (|22 (A", pso@) L al) ..) is determined as fol-
lows:

(1) let
|72 A = {zo € |U]: A" E wy[z]}

where wy, the #'-formula that bounds interpreted quantifiers, defines the
subset of |2'| used to interpret ||,
(2) for every m-ary predicate parameter P of &, let

PJB(Q[I) _ {(.’Eg,.’El,... ,$n71> € |jﬁ(ml)|n .
Q[/ = j(P(X(],Xl, e 7Xn71)) [.’Eg,.’El, . ,ilin,l]}

and,

(3) for every individual parameter a of .&, let a?’ @) pe the z, in |2('| such
that

Q[I = j(XO = a) [.’Eg]

It is easy to show that if .#is a standard interpretation of the language of the
structure 2 in the theory of the structure 2’ and yf’(m') is isomorphic to 2, then
interprets the theory of 2 in the theory of A'.6 Let f be an isomophism from 2

6Recall that the theorem that provided the basis for establishing faithfulness of standard first-
order theory interpretations on our original approach was

Interpretation .# of the theory © in the theory ©’ is faithful iff, for every model
2 of ©, there is a model 2’ of © such that .#9 () can be expanded to a model
of the description of 2.

or, equivalently,

Interpretation .# of the theory © in the theory @' is faithful iff, for every model
A of O, there is a model 2’ of ©' and a function from |2/ into |2’| such that

_ o
(A a)aeia = (£7(A), f(a))aea
where ‘=’ denotes elementary equivalence.

It follows that requiring .#9(2') to be isomorphic to 2 is not necessary for faithfulness. But
this is simply an artifact of the limited expressive power of first-order logic; in w-order logic, also
known as higher-order logic and the theory of types, isomorphism is both necessary and sufficient
for faithfulness. On the approach advocated in this paper, formal logical derivations have been
eliminated — derivations are no longer used in proving correctness, and the question of whether a
formula can be derived from the theory corresponding to a specification has been replaced by the
question of whether the structure corrseponding to that specification is a model of that formula
— and so there is no compelling meta-theoretical reason to restrict ourselves to first-order logic.
It would even be tempting to replace the notion of interpreting one theory in another by that

CORRECTNESS OF ARCHITECTURAL REFINEMENTS 5

‘ = . = ‘

FIGURE 2. Refinement Pattern: Dataflow Channel to Variable

to #2(2A'). Then, for every Zformula ¢ and every assignment z of values in ||
to the free variables of ¢,

A pla] = S'A)Fp[foa]
(Definition of isomorphism)

= UA'E Hp)[foz]
(Theorem of Appendix A)

A fortori, .# is a theory interpretation.

This theorem suggests that #2 be viewed as an abstraction mapping that corre-
sponds to standard interpretation .. It says that structure 2’ is a correct refinement
of structure 2, relative to an interpretation .# of the language of 2 in the language
of A if JB(QI’) — the result of abstracting away the features of 2l not expressible
in the language of 2l — is 2 (up to isomorphism).

3. AN EXAMPLE

To enable direct comparison with the correctness proof sketch in our previous
paper, the same refinement pattern, replacement of a single dataflow channel by
writing and reading of a variable, will be proven correct. This pattern is presented
graphically in Figure 2.

A refinement pattern consists of a pair of schematic diagrams, diagrams in which
some terms have been replaced by syntactic variables. The syntactic variables of
this pattern are a, b, ¢, v, and T. A pair of structures (D, 9) matches this pattern
iff, for some assignment of values to the syntactic variables, the diagram above the
double arrow depicts © and the diagram below the arrow depicts 991. The pattern

of interpreting one structure in another ([4], pp. 212), except we exploit intuitions about what a
specification says to motivate the necessity of faithful interpretation. By focussing on isomorphism
rather than finite isomorphism, the usual algebraic characterization of elementary equivalence [2],
the dependence of this approach on a particular choice of logic is largely eliminated. However,
the account below will be restricted to first-order theories of structures, to enable more direct
comparison of the new approach and the original.

6 R. A. RIEMENSCHNEIDER

is correct iff, for every pair of structures (D,9) that matches the pattern, 91 is
a correct refinement of ©. So, if a pair of structures matches a correct refinement
pattern, the second is a correct refinement of the first.

The class of structures depicted by the schematic diagram above the arrow can
be more formally defined as follows:

D] = {a,b,¢,po,pi fUT
Procedure® = {a, b}
Channel® = {c}
In_Port® = {(p;, b)}

Out_Port® = {(p,,a)}
Can_Carry® = {(c,t) : t € T}
Might Supply® = {(po,t) : t € T}
Can_Accept® = {(p;,t) : t € T}
Connects® = {(c, po, pi)}

T =T

a’D =a

b° =5

c®=c

a_oportD = Do
b_iport® = p;

where a, b, ¢, p,, and p; are some five distinct objects, none of which is a member
of the set T.7 Similarly, the class of structures depicted by the schematic diagram
that gives the implementation of the dataflow in terms of shared memory is defined
as follows:

M| = {a,b,v,ky, k- UT

Procedure™ = {a, b}

Variable™ = {v}

Call™ = {(ky,a), (k,,b)}

Can_Hold™ = {(v,t) : t € T}
Might_Put™ = {(k,,t) : t € T}

Can_Get™ = {(k,,t) : t € T}

"The names and types of the ports are not explicitly given by the graphical specification; the

names are generated and the types are inferred, according to the principle that the type of a port
is the type of the channel connected to it unless there is some explict indication to the contrary.

CORRECTNESS OF ARCHITECTURAL REFINEMENTS 7

Writes™ = {(k,,v)}
Reads™ = {(k,,v)}
™=T
am =a
b™ =
Vm =v

acall™ =k,

b_cal™ = &,
where a, b, v, ky,, and k, are some five distinct objects, none of which is a member
of the set T'. Here, the names of the calls have been generated and the signatures
of the calls inferred from types and sorts of calls.

Consider the basis mapping J from the parameters of the language of © to
formulas in the language of 9 defined as follows:

Wor = X0 = Xo
(Procedure) = Procedure(xg)
2 (Channel) = Variable(xo)
J(In_Port) = Call(xg,x1) A Ixa Can_Get(xg, x2)
(Out_Port) = Call(xg,x1) A Ix2 Might_Put(xg, x2)
(Can_Carry) = Can_Hold(xg, x1)
J(Might_Supply) Mlght Put(xo,x1)
J(Can_Accept) = Can_Get(xg,x1)
(Connects() erteS(Xl,Xg) A Reads(xz,xq)
)
)
)
)
)
) =

H(T) = T(0)
Jd(@)=xp=a
H(b) =xo=b

H(c)=xg=v

J(a_oport) = xo = a_call
J(b_iport) = xq = b_call

The first eight clauses in the definition are determined by the general style mapping
for interpreting dataflow style in shared memory style. The last six clauses are
determined by the identifier mapping associated with this particular refinement
step.® If this basis mapping is extended to an interpretation of formulas in the
language of ® in the standard way,? an interpretation of the language of ® in the
theory of 90t results.

8See our previous paper [5] for a more detailed account of style and identifier mappings.
9See Appendix.

8 R. A. RIEMENSCHNEIDER

Now the value of the abstraction map A2 at 9 can be calculated, using its
definition.'°

AP (OM)| = {zo € M| : M E wp[z0]}
={zg € M| : ME x9 = xg [z0]}
= ||

Procedure”’ (™) = {zo € || : M E #(Procedure) [zo]}
= {zo € M| : P F Procedure(xo) [zo]}

= {a, b}

Channel” (™) — = {zo € M| : M E J#(Channel) [z]}
= {zp € || : M E Variable(xq) [zo]}
= {v}

In_Port” " (™) — {(zg. z1) € |M? : M E A (In_Port) [zo, z1]}
= {(zo,z1) € M :
M E Call(xp,x1) A Ixa Can_Get(xg, x2) [zo, z1]}

= {(kw,a)}

Out_Port” " (M = {{zo,21) € |M|*> : M E #(Out_Port) [zo,z1]}

= {(zo, 1) € |M*:
M E Call(xo,x1) A Ixa Might_Put(xg, x2) [zo, 1]}

= {(kr,b)}

Can_Carry‘Z/a() = {(zg, 1) € |M? : M E H#(Can_Carry) [0, z1]}
= {(zo, 1) € |M* : M E Can_Hold(xg, x1) [0, 1]}
(c,t) :t €T}

(zo, 1) € \93?\2 : M E K (Might_Supply) [z, 1]}
(zo,z1) € |DM? : M E Might_Put(xo,x1) [zo,z1]}
(kw,t) :t €T}

Might_SuppIy‘)ga m

(m)
() (zo, 1) € || : M & #(Can_Accept) [zo, 1]}

(zo, 1) € \93?\2 : M E Can_Get(xo,x1) [zo,Z1]}
(kp,t):teT}

a
Can_Accept” (M

{
{
{
{
{
{
{
{

10Every parameter of the language of ® is treated below, for the sake of completeness, but all
calculations are similar and there is no need to read them all unless you are so inclined.

CORRECTNESS OF ARCHITECTURAL REFINEMENTS 9

Connects™” ™) = {(zy, 21, 25) € |M|® : M E #(Connects) [zo, z1, z2]}
= {<$0,$1,$2) S |ED?|3 :
M E Writes(xl,x(]) A Reads(x2,x0) [mo, .’El,.’Ez]}
= {(C, kw; kT)}

TAON = £z € M| : M E A(T) [z0]}
={zg € M| : ME T(x0) [z0]}

A = (12 € [9M]) M E H(a) [zo]
= (1z0 € |M]) M E x¢ = a [z(]

b7 (M) = (125 € |9M|) M E #(b) [zo]
= (120 € |9M]) M E xo = b [z0]

HO (M) _ (1zg € |9M]) M E (c) [zo]
= (120 € |M]) ME xo = v [0]

AN = (12, € [9M]) M E #(a_oport) [zo]
= (1zg € |M]) M E x¢ = a_call [z¢]

b_iport™” (™) = (179 € |90|) M £ #(b_iport) [zo]
= (7130 € ‘m‘) I E xg = b_call [on]

Clearly, if h from |D| to |9 is defined by
(a)

h(b)

h(e)
h(po)

h(p:)
h(t)

>
nn
SN

r

v
kw
k
t

(for every t € T')

then h is an isomorphism from ® to J#?(9M), and so J¢is indeed an interpretation
of the theory of ® in the theory of M.
Compare this proof and the correctness proof sketch in our previous paper. In

10 R. A. RIEMENSCHNEIDER

the latter, we had to show that, for any model of the dataflow theory, there was a
model of the shared memory theory with a certain desirable property, viz., that the
image of the shared memory model under the abstraction mapping is indistinguish-
able from the dataflow model using the resources of the relevant logic: see Figure 3.
Thus, a mapping from dataflow models to shared memory models — obtained by
“inverting” the equations that define the interpretation to obtain something like
an inverse interpretation whose dual maps dataflow structures to shared memory
structures — had to be introduced. By reducing the class of structures that cor-
respond to a specification to a singleton, the necessity of finding an appropriate
mapping from dataflow structures to shared memory structures is eliminated: see
Figure 4. As aresult, the correctness proof is reduced to straightforward calculation,
requiring no creativity on the part of the prover. Correctness proof construction
is, therefore, much simpler and much more straightforward when using the new
approach in place of the old.

4. CONCLUSIONS

The essential difference between the two techniques stems from regarding archi-
tectural specifications as mathematical models of the systems being specified, rather
than comparatively weak descriptions of those systems. Since our justification for
demanding that higher-level specifications be faithfully interpretable in lower-level
specifications was that an architectural specification should say everything that can
truly be said of the system’s architecture at a given level of abstraction, it is natural
to demand that the logical analogues of these specification be complete theories.
So, this formalization of the connection between architectural specifications and
logic is arguably more natural for our purposes. This is one reason for regarding
the approach of this paper to be superior. Another, more practical and important,
reason is that correctness proofs become much simpler, as the example shows.

It should be noted that this is a relatively minor modification the original ap-
proach: specifications are stronger, proofs of correctness are simpler, but the basic
idea of proving particular refinement steps correct by using a library of pre-verified
refinement rules remain the same. Ordinary users of our architecture specification
tools see no difference between the two approaches — all the refinement patterns
that they are used to using are still valid — but the burden for those who wish
to extend the system by validating new refinement patterns has been considerably
lightened.

It should also be noted that this new approach cannot be directly applied to all
conceivable refinement patterns. Some architectural descriptions cannot naturally
be thought of as specifying a single architectural structure. For example, there
are standard architectures, such as the X/Open Distributed Transaction Processing
(DTP) architecture [9] that specify how various types of components are composed,
but do not specify the number of components of each type. In such cases, it is much
more natural to think of the standard as specifying a class of structures. However
the new approach can be used to verify a set of simple, primitive refinement patterns
that generate the refinements in a multi-level formal representation of X/Open DTP
in the SADL language [6], as well as all the refinement patterns of our previous

paper [5].

CORRECTNESS OF ARCHITECTURAL REFINEMENTS

11

Z-structures

-

models of 9\

(1) “Given any 2,... " (3) “... ,ﬂa(Ql’) ~ 2.7
st - - 7 f.
\ /
\
\
\
\ o
\
\
\ /
(2) “... find some ' such that ... ”
models of @'
&'-structures

FI1GURE 3. Original proof technique for faithfulness

12

R. A. RIEMENSCHNEIDER

Zstructures

(1) “Given this particular 2... " (3) “... show that #°(A') ~ 2.
o ~ ~ ~ ~ o
VL
(2) “... and this particular ', ... ”
Z'-structures

F1GURE 4. New proof technique for theory interpretation

CORRECTNESS OF ARCHITECTURAL REFINEMENTS 13

REFERENCES

. J. Baldwin, Definable second-order quantifiers, Model-theoretic logics, J. Barwise and
S. Feferman (eds.), Springer, 1985.

. H.-D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical logic, Springer, second edition,
1994.

. H. B. Enderton, A mathematical introduction to logic, Academic Press, 1972.

. W. Hodges, Model theory, Cambridge, 1993.

. M. Moriconi, X. Quan, and R. A. Riemenschneider, Correct architecture refinement, IEEE
transactions on software engineering, vol. 21 (1995), pp. 356-372. (Available on the web
at URL <http://www.csl.sri.com/sadl/sadl-intro.ps.gz>.)

. M. Moriconi and R. A. Riemenschneider, Introduction to SADL 1.0, SRI Computer Science
Laboratory Technical Report SRI-CSL-97-01, March 1997. (Available on the web at URL
<http://www.csl.sri.com/sadl/tse95.ps.gz>.)

. R. A. Riemenschneider, Correct transformation rules for incremental development of
architecture hierarchies, SRI Computer Science Laboratory Technical Report SRI-CSL-97-
77,77 1997. (Available on the web at URL <http://www.csl.sri.com/sadl/incremental.ps.gz>.)

. J. R. Shoenfield, Mathematical logic, Addison-Wesley, 1967.

. X/Open Company, Ltd., Distributed transaction processing: reference model, ver-
sion 2, X/Open, November 1993.

14 R. A. RIEMENSCHNEIDER

APPENDIX A. BRIEF INTRODUCTION TO INTERPRETATIONS

Two different sorts of definition of the term interpretation appear in the liter-
ature. Logic textbooks [3, 4, 8] provide rather concrete definitions, explaining in
some detail how mappings from the symbols of one theory to the expressions of
another can be extended to mappings from sentences to sentences and exploring
the properties of those mappings. For more advanced purposes [1, pp. 470-471],
more abstract definitions are often preferred. The main advantage of a more ab-
stract approach is flexibility. Many more mappings can count as interpretations if
an abstract approach is adoped. But flexibility has a corresponding cost. Most im-
portantly, if an interpretation is not defined inductively on formulas, then inductive
proofs of properties of the interpretation become much more complicated.

For our applications, considerable flexibility is occasionally required [7]. There-
fore, our definition is maximally abstract: an interpretation .# of the theory @ in
the theory @' is a (total) mapping from the sentences of the language £ of © to
the sentences of the language ¢’ of @' such that, for every #sentence ¢,

peO = Sy eb

While it is desirable that interpretations preserve meaning, in some sense, there
is no formal requirement that they do so. However, an informal argument that,
for every Z-sentence @, () is semantically stronger than ¢ may be offered as
evidence that the interpretation is “natural”. An interpretation .# of @ in @' is
faithful when, for every #-sentence ¢,

Hp)e® = peb

In many cases, interpretations will be defined in a way that allows straightforward
inductive proofs to be performed. Interpretations of theory @ in theory @' will often
be defined by giving a basis mapping ¢ from the parameters {OJ,P,... ,a,...}'!
of .Z, the language of @, to formulas of .#’, the language of @', that satisfies the
following three conditions:

(i) xo is the only free variable of .#(00) — which will generally be called wy
rather than #(0J) — and
O F Ixg wy

(ii) for every n-ary predicate P of #, the free variables of .#(P) are xq,x1, ... ,Xn_1,
and
(éé¢) for every name a of &£, xq is the only free variable of .#(a) and

@’ = Ele VXO [ﬂ(a) — Xg = Xl].

These conditions can be restated as

(i) the formula wy defines a non-empty set,
(ii) for every n-ary predicate P of &, the formula .#(P) defines an n-ary relation
on the set defined by wy, and

11 is a special parameter of the language .#, the universe parameter, that does not actually
occur in Z-formulas. This allows us to treat a structure as a mapping from the parameters of ¥
to appropriate denotations — so |2 is simply 0% — and similarly allows us to treat the basis of
an interpretation as a mapping from the parameters of .# to appropriate .#’ -formulas.

CORRECTNESS OF ARCHITECTURAL REFINEMENTS 15

(#4i) for every name a of #, the formula .#(a) defines a member of the set defined
by wg,
which emphasizes the fact that they are syntactic analogues of the three defining
conditions for an Z-structure 2,
(i') the universe || of 2 is non-empty,
(ii') for every n-ary predicate P of .#, P is an n-ary relation on ||, and
(iii') for every name a of &, a¥ is a member of |2|.

The mapping .# can be extended to a map from Z-formulas to .#’-formulas in
a straightforward fashion. If ¢ is an atomic #-formula — say, P(a, x), where P is
a binary predicate, a is a name, and x is a variable — then #(¢p) is

3y [(#@)) (x0/y) A (AP)) (x0/y, x1/x)]

where y is a fresh variable. If .#(a) is an equation xo = a’, #(P(a,x)) will be
simplified to

(A(P))(xo/a’, x1 /%)
(Note that #(P(xp,x1,... ,Xn—1)) is simply #(P) and that .#(xq = a) is simply
#(a).) Now that .# has been defined on all atomic formulas, it can be extended to
all formulas as follows:

(1) for any Zformula ¢,
HA—p) =~ Ayp)
(2) for any #formulas ¢ and 1,

Ao Np) = Ap) N AY)
(3) for any #formulas ¢ and 1,

Ao Vi) =He)V IY)
(4) for any #formulas ¢ and 1,

A —) = Hp) = A()

(5) there is an #'-formula wy, called the universe of the interpretation, such
that for any variable x and any Zformula ¢,

A(Vx @) = Vx [wa(xo/x) = Hp)]

and
A(Ex p) = Ix [wa(xo/x) A I(p)]

An interpretation that is defined on formulas as well as sentences and satisfies
these five conditions will be said to preserve logic. Preservation of logic is required
if straightforward inductive proofs of properties of an interpretation are to be per-
formed. Mappings defined by starting with a basis and extending it as described
above will be called standard interpretations of £ in .&'.

A standard interpretation £ of language ¢ in language ¢’ is an interpretation
of & in #'-theory @' iff

O E Ixgwy

and, for every individual parameter a of %,

@I '= 3X1 VXO [ﬂ(xo = a) > Xg = Xl]

16 R. A. RIEMENSCHNEIDER

Of course, a standard interpretation .# of % in #’'-theory @’ is an interpretation
of scrL-theory © in @' if, for every sentence ¢ of the language of @,

peEO = Hp) eb
and it is faithful if, in addition, for every #sentence ¢,
Hp)e® = peb

The main result about standard theory interpretations that is needed for this
paper is that they always preserve meaning, in a sense made precise by the following
theorem.

Theorem. For any standard interpretation .# of language .# in .#'-theory @', any
model 2 of @', any formula ¢ of .%, and any assignment z of values in |.#?(2')| to
the free variables of ¢,

Ak A 2] = I°A)Fpla]

Proof. 1t is immediate from the definition of .#? (see page 4) that the equivalence
holds for every atomic formula ¢ of . That it also holds for non-atomic #*formulas
follows easily by induction. For example, if ¢ is 9 A x, then

I EWAX)[e] = SOA)FYle] and SO) F x[2]
(Definition of satisfaction)

— A'E AY)[z] and A' E H(x) [z]
(Induction hypothesis)

= AE(IYP) A HX)) 2]
(Definition of satisfaction)
= A'E AP Ax)|z]
(Definition of interpretation)

COMPUTER SCIENCE LABORATORY, SRI INTERNATIONAL, MENLO PARK, CA 94025
E-mail address: rar@csl.sri.com

