
A SIMPLIFIED METHOD FORESTABLISHING THE CORRECTNESS OFARCHITECTURAL REFINEMENTSR. A. RIEMENSCHNEIDERAbstract. My colleagues and I developed an approach to proving correctnessof architectural re�nement hierarchies that depended upon treating architec-tural speci�cations as axiomatizations of �rst-order theories. This paper ex-plores the consequences of an alternative approach to formalizing the contentof speci�cations in logic. A speci�cation is treated as a depiction of a par-ticular relational structure, which is intended to be a mathematical model ofthe system being speci�ed. As a result, speci�cations now correspond to muchstronger (in fact, complete) theories. Although the criterion for re�nement cor-rectness | that the theory corresponding to the higher-level speci�cation canbe faithfully interpreted in the theory corresponding to the lower-level spec-i�cation | remains the same, the technique for proving correctness is quitedi�erent: proving that a mapping is a theory interpretation is more complex,though still largely a matter of calculation, but faithfulness is trivially guar-anteed. The net result is a substantial simpli�cation of correctness proofs, asa comparison of proofs of a simple re�nement pattern illustrates.1. Two Approachs to Establishing CorrectnessIn a previous paper [5], my colleagues and I presented an approach to provingcorrectness of architectural re�nement patterns. A correspondence between archi-tectural speci�cations, such as the high-level compiler speci�cation in Figure 1, andtheories in �rst-order logic was de�ned in terms of a mapping from speci�cationelements to axioms for the theories.1 For example, the presence of the data
owconnector that carries objects of type AST (i.e., abstract syntax trees) from theparser component to the analyzer/optimizer component in Figure 1 corresponds tothe axioms Channel(ast intermediate)8x0 [AST(x0)! Can Carry(ast intermediate; x0)]The theory that corresponds to a speci�cation is simply the set of all consequencesof the axioms obtained from the elements of the speci�cation, together with gen-eral axioms that constrain the meanings of the component, port, and connectorpredicates that appear in the speci�cation.This theory is rather weak, in the sense that it does not determine the truth valueof many sentences in the language. For example, it does not contain any explicit1Strictly speaking, the content of the informal data
ow diagram was formalized in a textualspeci�cation language. For the purposes of this paper, let us eliminate the middleman and pre-tend that diagrammatic representations are su�ciently precise to serve as formal architecturalspeci�cations. 1
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Figure 1. Data
ow Architecture for a Compiler\extremal axioms" to preclude the existence of additional objects not mentioned inthe speci�cation. Neither the sentence:9x09x19x2 [Out Port(x1; parser)^ In Port(x2; lexical analyzer) ^ Connects(x0; x1; x2)]which says that there is no data
ow channel from the parser to the lexical analyzer,nor its negation, is a consequence of the theory that corresponds to the architecturein Figure 1. Of course, that no such data
ow channel is shown means that thespeci�er intended that no such channel be implemented (or, more accurately, thatno such channel should be observable at this level of abstraction). Some of these\truth value gaps" can be eliminated by adding axioms, but perhaps not all: thetheory of an inductive datatype, such as AST, may well be essentially incomplete.Nonetheless, our theories are treated as if they were complete, in the sense thatour criterion for correct re�nement is that the higher-level theory must be faithfullyinterpretable in the lower-level theory.2 In other words, the lower-level theory mustnot add any detail that could have been expressed at the higher level, such as theexistence of additional unmentioned objects in the higher level ontology.But there is an alternative, perhaps more natural, logical interpretation of thedata
ow diagram in Figure 1. Any application of mathematics requires construc-tion of a mathematical model of some phenomena of interest. This mathematicalmodel must share relevant structure with the phenomena, so that conclusions de-rived from reasoning about the structure of the model are true of the structureof the phenomena being modeled as well. Examples are ubiquitous in computing.For example, one might attempt to derive truths about the behavior of a partic-ular parsing program running on a particular machine by reasoning about a �nite2Recall that an interpretation I of the langauge of theory � in the theory �0 is an interpretationof � in �0 i� for every sentence ' in the language of �,' 2 � =) I(') 2 �0If, in addition, for every sentence ' in the language of �,I(') 2 �0 =) ' 2 �then I is said to be faithful. See the Appendix of this paper for greater detail.



CORRECTNESS OF ARCHITECTURAL REFINEMENTS 3state automaton that mathematically models it. It seems very natural to supposethat this is exactly the function a system speci�cation, whether behavioral or ar-chitectural, is supposed to perform. In short, from this alternative perspective,architectural speci�cations are intended to be mathematical models of the systemsthey specify.Just as a �nite state automaton, which is formally de�ned as some sort of math-ematical structure, can be depicted as a collection of boxes and arrows, a systemarchitecture diagram can be construed as a depiction of a particular mathematicalstructure. Consider once again the data
ow diagram of Figure 1. The similaritytype of the structure that this diagram depicts is determined by its architecturalstyle. Since this is a data
ow diagram, the structure must provide the extensionsfor the various predicate parameters of the data
ow language | Channel, AST,Can Carry, and so on | and must also identify the particular individuals denotedby the individual parameters of the speci�cation, such as parser. (Note that thisstructure is not �nite. Most often, the number of components and connectors inspeci�cations will be �nite,3 but the datatypes are often in�nite.)In the \model-based" treatment of speci�cations, the logical theory that corre-sponds to the speci�cation is simply the theory of the structure that the speci�ca-tion depicts. This theory is, of course, complete, which is important because everystandard interpretation4 of a complete theory in a consistent theory is faithful. Theproof of this fact is easy: for any standard interpretation I of complete theory �in consistent theory �0 and any sentence ' of the language of �,' =2 � =) :' 2 � (� is complete)=) I(:') 2 �0 (I interprets � in �0)=) :I(') 2 �0 (St'd interp'ns preserve logic)=) I(') =2 �0 (�0 is consistent)and so, universally generalizing the contrapositive, I is faithful.In the \property-oriented" treatment of our previous paper, proving that thestandard interpretation associated with a candidate re�nement is a theory inter-pretation was easy. A standard interpretation maps derivations to derivations.5Therefore, if �nite axiomatizations of � and �0 are available, then it can be shownthat I interprets � in �0 by deriving the image of each axiom of � under I fromthe axioms of �0. But proving faithfulness is harder. A substantial model-theoreticresult served as the basis of the method we proposed. So the fact that faithfulnessis automatic on the new approach makes it look quite promising. Unfortunately,there is no simple, mechanical way to obtain axioms for the theory of a structurefrom a representation of that structure. Indeed, the theory of the structure corre-sponding to some speci�cations may very well have no recursive, much less �nite,axiomatization. Some other way of recognizing when a basis mapping from theparameters of the language of one structure to the language of another structure3However, it might sometimes be convenient to model a conceptually unbounded number ofcomponents or connectors by an in�nite number of components or connectors, just as a Turingmachine's in�nite tape is used to model conceptually unbounded memory4See the Appendix for the de�nition of standard interpretation.5Actually, the derivations that result can contain small \gaps" due to the introduction ofbounds on quanti�ers, but �lling these in is trivial.



4 R. A. RIEMENSCHNEIDERdetermines a standard interpretation of the theory of the former struture in thetheory of the latter structure is required.2. A Model-Theoretic Criterion for Theory InterpretationAny standard interpretation I of the language L in an L 0-theory �0 inducesa \dual" mapping I @ from L 0-structures to L-structures: roughly speaking, thedenotation of a predicate of L is determined by the extension of the L 0-formulathat interprets the predicate in the L 0-structure, and similarly for individual pa-rameters. More formally, given a model A0 = hjA0j;PA0 ; : : : ; aA0 ; : : : i of �0, theL-structure I @(A0) = hjI @(A0)j;PI @(A0); : : : ; aI @(A0); : : : i is determined as fol-lows:(1) let jI @(A0)j = fx0 2 jA0j : A0 � !I [x0]gwhere !I, the L 0-formula that bounds interpreted quanti�ers, de�nes thesubset of jA0j used to interpret jAj,(2) for every n-ary predicate parameter P of L, letPI @(A0) = fhx0; x1; : : : ; xn�1i 2 jI @(A0)jn :A0 � I(P(x0; x1; : : : ; xn�1)) [x0; x1; : : : ; xn�1]gand,(3) for every individual parameter a of L, let aI @(A0) be the x0 in jA0j suchthat A0 � I(x0 �= a) [x0]It is easy to show that if I is a standard interpretation of the language of thestructure A in the theory of the structure A0 and I @(A0) is isomorphic to A, thenI interprets the theory of A in the theory of A0.6 Let f be an isomophism from A6Recall that the theorem that provided the basis for establishing faithfulness of standard �rst-order theory interpretations on our original approach wasInterpretation I of the theory � in the theory �0 is faithful i�, for every modelA of �, there is a model A0 of �0 such that I @(A0) can be expanded to a modelof the description of A.or, equivalently,Interpretation I of the theory � in the theory �0 is faithful i�, for every modelA of �, there is a model A0 of �0 and a function from jAj into jA0j such that(A; a)a2jAj � (I @(A0); f(a))a2jAjwhere `�' denotes elementary equivalence.It follows that requiring I @(A0) to be isomorphic to A is not necessary for faithfulness. Butthis is simply an artifact of the limited expressive power of �rst-order logic; in !-order logic, alsoknown as higher-order logic and the theory of types, isomorphism is both necessary and su�cientfor faithfulness. On the approach advocated in this paper, formal logical derivations have beeneliminated | derivations are no longer used in proving correctness, and the question of whether aformula can be derived from the theory corresponding to a speci�cation has been replaced by thequestion of whether the structure corrseponding to that speci�cation is a model of that formula| and so there is no compelling meta-theoretical reason to restrict ourselves to �rst-order logic.It would even be tempting to replace the notion of interpreting one theory in another by that
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ow Channel to Variableto I @(A0). Then, for every L-formula ' and every assignment x of values in jAjto the free variables of ',A � ' [x] () I @(A0) � ' [f � x](De�nition of isomorphism)() A0 � I(') [f � x](Theorem of Appendix A)A fortori, I is a theory interpretation.This theorem suggests that I @ be viewed as an abstraction mapping that corre-sponds to standard interpretationI. It says that structureA0 is a correct re�nementof structure A, relative to an interpretation I of the language of A in the languageof A0, if I @(A0) | the result of abstracting away the features of A0 not expressiblein the language of A | is A (up to isomorphism).3. An ExampleTo enable direct comparison with the correctness proof sketch in our previouspaper, the same re�nement pattern, replacement of a single data
ow channel bywriting and reading of a variable, will be proven correct. This pattern is presentedgraphically in Figure 2.A re�nement pattern consists of a pair of schematic diagrams, diagrams in whichsome terms have been replaced by syntactic variables. The syntactic variables ofthis pattern are a, b, c, v, and T. A pair of structures hD;Mi matches this patterni�, for some assignment of values to the syntactic variables, the diagram above thedouble arrow depicts D and the diagram below the arrow depicts M. The patternof interpreting one structure in another ([4], pp. 212), except we exploit intuitions about what aspeci�cation says to motivate the necessity of faithful interpretation. By focussing on isomorphismrather than �nite isomorphism, the usual algebraic characterization of elementary equivalence [2],the dependence of this approach on a particular choice of logic is largely eliminated. However,the account below will be restricted to �rst-order theories of structures, to enable more directcomparison of the new approach and the original.



6 R. A. RIEMENSCHNEIDERis correct i�, for every pair of structures hD;Mi that matches the pattern, M isa correct re�nement of D. So, if a pair of structures matches a correct re�nementpattern, the second is a correct re�nement of the �rst.The class of structures depicted by the schematic diagram above the arrow canbe more formally de�ned as follows:jDj = fa; b; c; po; pig [ TProcedureD = fa; bgChannelD = fcgIn PortD = fhpi; bigOut PortD = fhpo; aigCan CarryD = fhc; ti : t 2 TgMight SupplyD = fhpo; ti : t 2 TgCan AcceptD = fhpi; ti : t 2 TgConnectsD = fhc; po; piigTD = TaD = abD = bcD = ca oportD = pob iportD = piwhere a, b, c, po, and pi are some �ve distinct objects, none of which is a memberof the set T .7 Similarly, the class of structures depicted by the schematic diagramthat gives the implementation of the data
ow in terms of shared memory is de�nedas follows: jMj = fa; b; v; kw; krg [ TProcedureM = fa; bgVariableM = fvgCallM = fhkw; ai; hkr; bigCan HoldM = fhv; ti : t 2 TgMight PutM = fhkw; ti : t 2 TgCan GetM = fhkr; ti : t 2 Tg7The names and types of the ports are not explicitly given by the graphical speci�cation; thenames are generated and the types are inferred, according to the principle that the type of a portis the type of the channel connected to it unless there is some explict indication to the contrary.



CORRECTNESS OF ARCHITECTURAL REFINEMENTS 7WritesM = fhkw; vigReadsM = fhkr; vigTM = TaM = abM = bvM = va callM = kwb callM = krwhere a, b, v, kw, and kr are some �ve distinct objects, none of which is a memberof the set T . Here, the names of the calls have been generated and the signaturesof the calls inferred from types and sorts of calls.Consider the basis mapping K from the parameters of the language of D toformulas in the language of M de�ned as follows:!K = x0 �= x0K (Procedure) = Procedure(x0)K (Channel) = Variable(x0)K (In Port) = Call(x0; x1) ^ 9x2 Can Get(x0; x2)K (Out Port) = Call(x0; x1) ^ 9x2Might Put(x0; x2)K (Can Carry) = Can Hold(x0; x1)K (Might Supply) = Might Put(x0; x1)K (Can Accept) = Can Get(x0; x1)K (Connects() = Writes(x1; x0) ^ Reads(x2; x0)K (T) = T(x0)K (a) = x0 �= aK (b) = x0 �= bK (c) = x0 �= vK (a oport) = x0 �= a callK (b iport) = x0 �= b callThe �rst eight clauses in the de�nition are determined by the general style mappingfor interpreting data
ow style in shared memory style. The last six clauses aredetermined by the identi�er mapping associated with this particular re�nementstep.8 If this basis mapping is extended to an interpretation of formulas in thelanguage of D in the standard way,9 an interpretation of the language of D in thetheory of M results.8See our previous paper [5] for a more detailed account of style and identi�er mappings.9See Appendix.



8 R. A. RIEMENSCHNEIDERNow the value of the abstraction map K @ at M can be calculated, using itsde�nition.10 jK @(M)j = fx0 2 jMj :M � !K [x0]g= fx0 2 jMj :M � x0 �= x0 [x0]g= jMjProcedureK @(M) = fx0 2 jMj :M �K (Procedure) [x0]g= fx0 2 jMj :M � Procedure(x0) [x0]g= fa; bgChannelK @(M) = fx0 2 jMj :M �K (Channel) [x0]g= fx0 2 jMj :M � Variable(x0) [x0]g= fvgIn PortK @(M) = fhx0; x1i 2 jMj2 :M � K (In Port) [x0; x1]g= fhx0; x1i 2 jMj2 :M � Call(x0; x1) ^ 9x2 Can Get(x0; x2) [x0; x1]g= fhkw; aigOut PortK @(M) = fhx0; x1i 2 jMj2 :M � K (Out Port) [x0; x1]g= fhx0; x1i 2 jMj2 :M � Call(x0; x1) ^ 9x2Might Put(x0; x2) [x0; x1]g= fhkr; bigCan CarryK @(M) = fhx0; x1i 2 jMj2 :M � K (Can Carry) [x0; x1]g= fhx0; x1i 2 jMj2 :M � Can Hold(x0; x1) [x0; x1]g= fhc; ti : t 2 TgMight SupplyK @(M) = fhx0; x1i 2 jMj2 :M � K (Might Supply) [x0; x1]g= fhx0; x1i 2 jMj2 :M � Might Put(x0; x1) [x0; x1]g= fhkw; ti : t 2 TgCan AcceptK @(M) = fhx0; x1i 2 jMj2 :M � K (Can Accept) [x0; x1]g= fhx0; x1i 2 jMj2 :M � Can Get(x0; x1) [x0; x1]g= fhkr; ti : t 2 Tg10Every parameter of the language of D is treated below, for the sake of completeness, but allcalculations are similar and there is no need to read them all unless you are so inclined.



CORRECTNESS OF ARCHITECTURAL REFINEMENTS 9ConnectsK @(M) = fhx0; x1; x2i 2 jMj3 :M � K (Connects) [x0; x1; x2]g= fhx0; x1; x2i 2 jMj3 :M �Writes(x1; x0) ^ Reads(x2; x0) [x0; x1; x2]g= fhc; kw; krigTK @(M) = fx0 2 jMj :M � K (T) [x0]g= fx0 2 jMj :M � T(x0) [x0]g= TaK @(M) = (�x0 2 jMj)M � K (a) [x0]= (�x0 2 jMj)M � x0 �= a [x0]= abK @(M) = (�x0 2 jMj)M � K (b) [x0]= (�x0 2 jMj)M � x0 �= b [x0]= bcK @(M) = (�x0 2 jMj)M � K (c) [x0]= (�x0 2 jMj)M � x0 �= v [x0]= va oportK @(M) = (�x0 2 jMj)M � K (a oport) [x0]= (�x0 2 jMj)M � x0 �= a call [x0]= kwb iportK @(M) = (�x0 2 jMj)M � K (b iport) [x0]= (�x0 2 jMj)M � x0 �= b call [x0]= krClearly, if h from jDj to jMj is de�ned byh(a) = ah(b) = bh(c) = vh(po) = kwh(pi) = krh(t) = t (for every t 2 T )then h is an isomorphism from D to K @(M), and so K is indeed an interpretationof the theory of D in the theory of M.Compare this proof and the correctness proof sketch in our previous paper. In



10 R. A. RIEMENSCHNEIDERthe latter, we had to show that, for any model of the data
ow theory, there was amodel of the shared memory theory with a certain desirable property, viz., that theimage of the shared memory model under the abstraction mapping is indistinguish-able from the data
ow model using the resources of the relevant logic: see Figure 3.Thus, a mapping from data
ow models to shared memory models | obtained by\inverting" the equations that de�ne the interpretation to obtain something likean inverse interpretation whose dual maps data
ow structures to shared memorystructures | had to be introduced. By reducing the class of structures that cor-respond to a speci�cation to a singleton, the necessity of �nding an appropriatemapping from data
ow structures to shared memory structures is eliminated: seeFigure 4. As a result, the correctness proof is reduced to straightforward calculation,requiring no creativity on the part of the prover. Correctness proof constructionis, therefore, much simpler and much more straightforward when using the newapproach in place of the old. 4. ConclusionsThe essential di�erence between the two techniques stems from regarding archi-tectural speci�cations as mathematical models of the systems being speci�ed, ratherthan comparatively weak descriptions of those systems. Since our justi�cation fordemanding that higher-level speci�cations be faithfully interpretable in lower-levelspeci�cations was that an architectural speci�cation should say everything that cantruly be said of the system's architecture at a given level of abstraction, it is naturalto demand that the logical analogues of these speci�cation be complete theories.So, this formalization of the connection between architectural speci�cations andlogic is arguably more natural for our purposes. This is one reason for regardingthe approach of this paper to be superior. Another, more practical and important,reason is that correctness proofs become much simpler, as the example shows.It should be noted that this is a relatively minor modi�cation the original ap-proach: speci�cations are stronger, proofs of correctness are simpler, but the basicidea of proving particular re�nement steps correct by using a library of pre-veri�edre�nement rules remain the same. Ordinary users of our architecture speci�cationtools see no di�erence between the two approaches | all the re�nement patternsthat they are used to using are still valid | but the burden for those who wishto extend the system by validating new re�nement patterns has been considerablylightened.It should also be noted that this new approach cannot be directly applied to allconceivable re�nement patterns. Some architectural descriptions cannot naturallybe thought of as specifying a single architectural structure. For example, thereare standard architectures, such as the X/Open Distributed Transaction Processing(DTP) architecture [9] that specify how various types of components are composed,but do not specify the number of components of each type. In such cases, it is muchmore natural to think of the standard as specifying a class of structures. Howeverthe new approach can be used to verify a set of simple, primitive re�nement patternsthat generate the re�nements in a multi-level formal representation of X/Open DTPin the Sadl language [6], as well as all the re�nement patterns of our previouspaper [5].
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14 R. A. RIEMENSCHNEIDERAppendix A. Brief Introduction to InterpretationsTwo di�erent sorts of de�nition of the term interpretation appear in the liter-ature. Logic textbooks [3, 4, 8] provide rather concrete de�nitions, explaining insome detail how mappings from the symbols of one theory to the expressions ofanother can be extended to mappings from sentences to sentences and exploringthe properties of those mappings. For more advanced purposes [1, pp. 470{471],more abstract de�nitions are often preferred. The main advantage of a more ab-stract approach is 
exibility. Many more mappings can count as interpretations ifan abstract approach is adoped. But 
exibility has a corresponding cost. Most im-portantly, if an interpretation is not de�ned inductively on formulas, then inductiveproofs of properties of the interpretation become much more complicated.For our applications, considerable 
exibility is occasionally required [7]. There-fore, our de�nition is maximally abstract: an interpretation I of the theory � inthe theory �0 is a (total) mapping from the sentences of the language L of � tothe sentences of the language L 0 of �0 such that, for every L-sentence ',' 2 � =) I(') 2 �0While it is desirable that interpretations preserve meaning, in some sense, thereis no formal requirement that they do so. However, an informal argument that,for every L -sentence ', I(') is semantically stronger than ' may be o�ered asevidence that the interpretation is \natural". An interpretation I of � in �0 isfaithful when, for every L-sentence ',I(') 2 �0 =) ' 2 �In many cases, interpretations will be de�ned in a way that allows straightforwardinductive proofs to be performed. Interpretations of theory � in theory �0 will oftenbe de�ned by giving a basis mapping I from the parameters f�;P; : : : ; a; : : : g11of L , the language of �, to formulas of L 0, the language of �0, that satis�es thefollowing three conditions:(i) x0 is the only free variable of I(�) | which will generally be called !Irather than I(�) | and �0 � 9x0 !I(ii) for every n-ary predicate P ofL , the free variables ofI(P) are x0; x1; : : : ; xn�1,and(iii) for every name a of L , x0 is the only free variable of I(a) and�0 � 9x1 8x0 [I(a)$ x0 �= x1]:These conditions can be restated as(i) the formula !I de�nes a non-empty set,(ii) for every n-ary predicate P ofL , the formulaI(P) de�nes an n-ary relationon the set de�ned by !I, and11� is a special parameter of the language L , the universe parameter , that does not actuallyoccur in L -formulas. This allows us to treat a structure as a mapping from the parameters of Lto appropriate denotations | so jAj is simply �A | and similarly allows us to treat the basis ofan interpretation as a mapping from the parameters of L to appropriate L 0 -formulas.



CORRECTNESS OF ARCHITECTURAL REFINEMENTS 15(iii) for every name a ofL , the formulaI(a) de�nes a member of the set de�nedby !I,which emphasizes the fact that they are syntactic analogues of the three de�ningconditions for an L -structure A,(i 0) the universe jAj of A is non-empty,(ii 0) for every n-ary predicate P of L , PA is an n-ary relation on jAj, and(iii 0) for every name a of L , aA is a member of jAj.The mapping I can be extended to a map from L -formulas to L 0-formulas ina straightforward fashion. If ' is an atomic L -formula | say, P(a; x), where P isa binary predicate, a is a name, and x is a variable | then I(') is9y [�I(a)�(x0=y) ^ �I(P)�(x0=y; x1=x)]where y is a fresh variable. If I(a) is an equation x0 �= a0, I(P(a; x)) will besimpli�ed to �I(P)�(x0=a0; x1=x)(Note that I(P(x0; x1; : : : ; xn�1)) is simply I(P) and that I(x0 �= a) is simplyI(a).) Now that I has been de�ned on all atomic formulas, it can be extended toall formulas as follows:(1) for any L-formula ', I(:') = :I(')(2) for any L-formulas ' and  ,I(' ^  ) = I(') ^I( )(3) for any L-formulas ' and  ,I(' _  ) = I(') _I( )(4) for any L-formulas ' and  ,I('!  ) = I(')! I( )(5) there is an L 0-formula !I, called the universe of the interpretation, suchthat for any variable x and any L-formula ',I(8x') = 8x [!I(x0=x)! I(')]and I(9x') = 9x [!I(x0=x) ^I(')]An interpretation that is de�ned on formulas as well as sentences and satis�esthese �ve conditions will be said to preserve logic. Preservation of logic is requiredif straightforward inductive proofs of properties of an interpretation are to be per-formed. Mappings de�ned by starting with a basis and extending it as describedabove will be called standard interpretations of L in L 0.A standard interpretation I of language L in language L 0 is an interpretationof L in L 0-theory �0 i� �0 � 9x0 !Iand, for every individual parameter a of L,�0 � 9x1 8x0 [I(x0 �= a)$ x0 �= x1]



16 R. A. RIEMENSCHNEIDEROf course, a standard interpretation I of L in L 0-theory �0 is an interpretationof scrL -theory � in �0 if, for every sentence ' of the language of �,' 2 � =) I(') 2 �0and it is faithful if, in addition, for every L-sentence ',I(') 2 �0 =) ' 2 �The main result about standard theory interpretations that is needed for thispaper is that they always preserve meaning, in a sense made precise by the followingtheorem.Theorem. For any standard interpretation I of language L in L 0-theory �0, anymodel A0 of �0, any formula ' of L, and any assignment x of values in jI @(A0)j tothe free variables of ', A0 � I(') [x] () I @(A0) � ' [x]Proof. It is immediate from the de�nition of I @ (see page 4) that the equivalenceholds for every atomic formula ' ofL. That it also holds for non-atomicL-formulasfollows easily by induction. For example, if ' is  ^ �, thenI @(A0) � ( ^ �) [x] () I @(A0) �  [x] and I @(A0) � � [x](De�nition of satisfaction)() A0 � I( ) [x] and A0 � I(�) [x](Induction hypothesis)() A0 � (I( ) ^I(�)) [x](De�nition of satisfaction)() A0 � I( ^ �) [x](De�nition of interpretation)Computer Science Laboratory, SRI International, Menlo Park, CA 94025E-mail address: rar@csl.sri.com


