
SDTP | A Multilevel-Seure Distributed Transation Proessing SystemFred Gilham and David ShihSystem Design LaboratorySRI InternationalMenlo Park, CAgilham, shih�sdl.sri.omOtober 21, 1999AbstratIn this paper we desribe SDTP, a multilevel-seure distributed transation-proessing system that was writtenlargely in Lisp, and two appliations built on top of the SDTP system. We also disuss the experiene of buildingthe system.We feel the system is of interest beause� It is moderately large.� It attempts to implement and extend a signi�ant published standard (the X/Open DTP standard).� It uses a wide variety of failities.� It illustrates some of the advantages of using Lisp.1 The SDTP ArhitetureThe X/Open DTP standard for distributed transation proessing onsists of a protool spei�ation and a set ofservies that the omponents of the system must make available to other system omponents. SRI's DSA (DependableSystem Arhiteture) group has used this standard as a testbed for applying our methods for verifying and extendingformal desriptions of arhitetures.Our most reent projet in this area involved extending the X/Open DTP standard to inorporate multilevelseurity properties. This paper desribes a prototype referene implementation that implements this extendedstandard, along with two appliations built using the SDTP system [5℄.1.1 X/Open DTPThe X/Open DTP standard [9, 11, 10, 12℄ is intended to standardize the interations and ommuniations between theomponents of the 3-tiered lient-server model for distributed transation proessing. It allows multiple appliationprograms to share heterogeneous resoures provided by multiple resoure managers (i.e. database managers, printmanagers et.) and allows their work to be oordinated into global transations.A version of the X/Open arhiteture, shown in Figure 1, onsists of three types of omponents|one appliationprogram (AP), one transation manager (TM), and one or more resoure managers (RMs). The boxes indiate theomponent interfaes, and the lines indiate the ommuniations between them. The label TX indiates a omplexonnetion and protool de�ning ommuniation between any appliation module and any transation manager.This onnetion ontains ommuniation hannels between funtions that initialize and �nalize transations. Com-muniation is always initiated by the appliation. A series of alls bak and forth ontinues until ommuniation isompleted.Similar omplex onnetions exist between the appliation and every resoure (the AR onnetion) and betweenthe transation manager and every resoure manager (the XA onnetion). The XA onnetion provides ommunia-tion for the well-known two-phase ommit protool that ensures the atomiity of transations. Muh of this ativityan be onurrent, and many transations may take plae at one.1

RM
TM

AP

TXAR

XAFigure 1: X/Open DTP Referene ArhitetureThe X/Open standard talks about these onnetions in terms of the servies (TX, AR, XA) that eah omponentmust provide and the interfae funtions that implement these servies. The TX servie, also known as the Trans-ation Demaration servie, must be provided by the TM. The RM provides the AR servie, whih is the atualdata storage interfae to the RM. The AP makes use of the TX and AR servies. The XA servie onsists of twosubservies, one provided by the TM and the other provided by the RMs. The former, alled the AX subservie orAXS, allows RMs to dynamially register and unregister themselves. The latter, alled the XA subservie or XAS,exports the proedures the TM uses to oordinate the transations. Both the TX and XA servies are fully spei�ed,albeit informally, while the implementation is allowed to use a ustom set of funtions for the AR servie, allowingimplementations to build ustom resoure managers. Table 1 gives a omplete listing of the TX and XA servies.1.2 The Transation ModelThe X/Open DTP standard spei�es a two-phase ommit model to maintain a set of desirable transation proessingintegrity properties known as the ACID properties. ACID is an aronym onsisting of the �rst letters of the properties.These properties areAtomiity The transation is either exeuted ompletely or not at all.Consisteny A onsistent transation must take the database from one onsistent state to another.Isolation A transation should appear to exeuted in isolation from all other transations, as if it were the onlytransation being exeuted by the system.Durability One a transation has been ommitted, the hanges it makes to the database must persist in the faeof failures suh as rashes.The two-phase ommit protool is one method for maintaining the ACID properties in a distributed system. Inour implementation it onsists of the following steps.� An appliation uses the TX:OPEN all to inform the transation manager (TM) that it wishes to ommuniatewith the resoure managers (RMs) . A unique thread id (TID) gets generated (in our ase, we use the TM todo it) and assigned to the appliation. The TID allows the RMs to orrelate transations with the lients onbehalf of whih it is performing them.� The TM uses the AXS:OPEN all.to tell the resoure managers (RMs) that an appliation will be ontatingthem.� The appliation will do any neessary setup with the RMs. In our ase, the appliation must authentiate itselfto the RMs. The alls it uses are non-standard AR servie alls.2

Name DesriptionTX:BEGIN Start a new transationTX:CLOSE Close the resoure managersTX:COMMIT Complete a transation normallyTX:INFO Query the TM about the status of a transationTX:OPEN Open the resoure managersTX:ROLLBACK Abort a transationTX:SET-COMMIT-RETURN Wait for ommit ompletion or just for loggingTX:SET-TRANSACTION-CONTROL Indiate `hained' transationsTX:SET-TRANSACTION-TIMEOUT Set transation time limitAXS:REG Let the RM register itself with the TMAXS:UNREG Let the RM unregister itselfXAS:CLOSE Tell RM not to listen for onnetions any moreXAS:COMMIT Tell RM to ommit the transationXAS:END Tell RM to end a transationXAS:OPEN Inform RM that appliation is opening itXAS:PREPARE Ask RM if it an ommit the urrent transationXAS:ROLLBACK Tell RM to abort the transationXAS:START Tell RM to start a transation for a given appliationTable 1: TX and XA servies� The appliation uses the TX:BEGIN all to tell the transation manager it is starting a transation.� The appliation ontats the RMs using the TID generated by the TM, performing whatever operations on-stitute the transation. Again, it uses AR alls to do this.� The appliation uses the TX:COMMIT all to inform the TM that it has �nished the transation (alternatively,it an rollbak the transation using the TX:ROLLBACK all if an error ours).� The TM makes a XAS:PREPARE all to the RMs, asking them if they are prepared to ommit the transation(or, if the appliation has aborted the transation, it informs the RMs using the XAS:ROLLBACK all.� The RMs reply.� If all the RMs reply in the aÆrmative within a given time, then the TM uses the XAS:COMMIT all to tellthe RMs to ommit the transation. If not, it uses the XAS:ROLLBACK all to rollbak the transation.� The appliation an all TX:BEGIN to start a new transation, or TX:CLOSE to shut down the RMs.1.3 Multilevel SeurityA standard model of a multilevel seurity (MLS) poliy is the Bell-LaPadula model [4℄. Given a set of subjets eahwith an attahed learane level, and a set of objets eah with an attahed lassi�ation level, the model ensuresthat information does not ow downward in a seurity lattie by imposing the following requirements:� The Simple Seurity Property. A subjet is allowed a read aess to an objet only if the subjet's learanelevel is idential to or higher than the objet's lassi�ation level in the lattie.� The * Property. A subjet is allowed a write aess to an objet only if the subjet's learane level isidential to or lower than the latter's lassi�ation level in the lattie.The MLS poliy regulates ommuniation between the appliation and the resoures. As suh, it is primarily aproperty of the arhitetural struture. That is, it spei�es that an appliation should not be allowed to onnet toa resoure manager that ontains data for whih it is not leared.3

XA

AP

TM

Single Level DBMs

Single Level DBMs

Single Level DBMs

Security

Security

Security

RM

RM

RM

AR

TX

Figure 2: X/Open DTP Extended with Multilevel Seurity1.4 Seure DTPThe SDTP implementation is based on a spei�ation generated by formalizing the X/Open DTP spei�ation inSadl [6℄, the Arhiteture Desription Language used by our group, and then adding the MLS properties to thespei�ation. The resulting spei�ation was re�ned using provably orret transformations until an implementablespei�ation was produed. The implemented arhiteture an be seen in Figure 2.The re�nement proess by whih this arhiteture was produed an be desribed as starting with ommuniationhannels that enfore the multilevel seurity poliy, and then re�ning them into ordinary ommuniation hannels withthe seurity poliy enforement implemented by a seurity manager. Finally, the seurity manager is distributed asseurity wrappers around eah resoure manager. The resoure managers themselves are implemented as a olletionof single-level database managers. The resulting spei�ation preserves both the desired atomiity properties ofX/Open DTP and the seurity properties mentioned above.2 SDTP System ComponentsOne goal of SDTP was a desire to be able to install it for our lient and potentially other interested parties without theneed to purhase expensive equipment and software lienses. For this reason, we tried to use freely available softwarewhenever possible. It turned out to be possible to build the system with all major software omponents being in thepubli domain or having free redistribution lienses. The following omponents were important in building SDTP:� FreeBSD. We hose the FreeBSD operating system beause we were experiened with it and had found itreliable in the past. It runs on inexpensive Intel-x86 hardware and has a wide variety of freely available software,inluding database software and Lisp implementations, available through its `ports' pakaging system. In manyases, a desired software pakage an be installed by �nding the appropriate `ports' diretory and issuing a`make install' ommand. We found it more stable and less of a moving target than Linux, another freelyavailable UNIX-like operating system.� CMU Common Lisp. The CMU version of Common Lisp [1℄ is a high-quality Lisp implementation that isin the publi domain. We have found its performane to be mostly ompetitive with, and oasionally better4

than, ommerial implementations. Its ompiler also provides informative optimization notes that guide theprogrammer in making delarations that improve performane.� Common Lisp Bignum Faility. To provide seure ommuniations hannels, we enrypted the data objetsthat were sent over them. To do this, we had to implement key exhange and enryption. Common Lisp'sbignum faility turned out to be extremely onvenient for this purpose. For example, DiÆe-Hellman keyexhange involved three funtions that were eah essentially one line of ode (omitting delarations), alongwith a `modpower' funtion ![8℄:;;; Modpower funtion from lmath pakage by Gerald Roylane.(defun modpower (number exponent modulus)(delare (integer number exponent modulus))(do ((exp exponent (floor exp 2))(sqr number (mod (* sqr sqr) modulus))(ans 1))((zerop exp) ans)(delare (integer exp sqr ans))(if (oddp exp)(setq ans (mod (* ans sqr) modulus)))))(defun ompute-seret-key (dh-modulus)(delare (integer dh-modulus))(random dh-modulus (make-random-state t)))(defun ompute-publi-key (base seret-key modulus)(delare (integer base seret-key modulus))(modpower base seret-key modulus))(defun ompute-ommon-key (remote-publi-keyloal-seret-keymodulus)(delare (integer remote-publi-keyloal-seret-keymodulus))(modpower remote-publi-key loal-seret-key modulus))While researhing implementations we found a version written in the C programming language that took about90 lines. Muh of the C ode involved proessing a set of arrays, whih in e�et implemented a bignumapability. As a result, the onnetion between the C ode and the algorithm being implemented was tenuous,while the Lisp ode above is a diret implementation of the algorithm. The bignum faility was also usefulin the atual enryption and deryption of data, allowing us to represent intermediate forms of the enrypteddata as integers.� PostgreSQL. We used the PostgreSQL[7℄ relational database manager to provide data storage managementfor SDTP. The hoie of PostgreSQL was based on the fat that we had previous experiene with it, it waseasy to install and run, and it was liensed so as to allow us to distribute it onveniently.PostgreSQL omes with programmati interfaes for several languages; unfortunately Lisp was not one of them.As a result we had to develop a Lisp interfae to PostgreSQL.There are at least two ways to implement suh an interfae. One way is to talk diretly to the PostgreSQLbakend over the network. This involved reating pakets and sending them to the bakend. Sine at the timewe were not ompletely sure how this worked, we deided to take the seond approah, whih involved writinga foreign-funtion interfae to the C version of the PosgreSQL lient library.Like other Common Lisp implementations, CMU Common Lisp has a pakage that allows Lisp ode to talkto ode written in C. Interfaing to the PostgreSQL library involved writing a �le of interfae funtions using5

the CMUCL Foreign Funtion Interfae. It turned out to be easy to write the ode. There were a few opaquedata strutures, some enumerations for status returns, and a series of funtions. The following is a sample ofthe ode:;; Opaque data strutures.(def-alien-type postgres-onnetion system-area-pointer)(def-alien-type postgres-result system-area-pointer);; Status enumerations.(def-alien-type onnetion-status (enum nil:onnetion-ok:onnetion-bad))(def-alien-type exe-status (enum nil(:empty-query 0):ommand-ok:tuples-ok:opy-out:opy-in:bad-response:nonfatal-error:fatal-error));; Some of the atual library interfae funtions.(delaim (inline PQsetdbLogin))(def-alien-routine "PQsetdbLogin" postgres-onnetion(pghost -string)(pgport -string)(pgoptions -string)(pgtty -string)(dbname -string)(login -string)(passwd -string))(delaim (inline PQexe))(def-alien-routine "PQexe" postgres-result(onnetion postgres-onnetion)(ommand -string))(delaim (inline PQresultStatus))(def-alien-routine "PQresultStatus" exe-status(result postgres-result))(delaim (inline PQntuples))(def-alien-routine "PQntuples" int(result postgres-result))(delaim (inline PQnfields))(def-alien-routine "PQnfields" int(result postgres-result));; et.A ouple of problems arose from using this method. The main problem was due to an interation betweenFreeBSD's objet format and CMUCL. CMUCL is urrently linked statially under FreeBSD, whih means it6

annot use shared binary objets. The PostgreSQL C library is built using shared objets, for both its sharedand stati versions. (We think this is a bug but were unable to onvine the maintainers to hange it.) At anyrate, we were fored to reate by hand a library using stati objets.A similar problem involved the proess of atually loading the library into the running Lisp. Sine CMUCLrunning under FreeBSD uses an old tehnique of runtime linking, rather than the newer tehnique of dynamiloading, the C ode library an be loaded only one per session; multiple loadings result in multiple de�nitionerrors.� Remote Proedure Call. SDTP is implemented as a set of omponents and ommuniation failities. Ourdesire was to try to reet urrent pratie in implementing a DTP system. Thus, ommuniation between theomponents is done using a Lisp-based Remote Proedure Call (RPC) mehanism.The omponents of SDTP employ a Lisp-based RPC mehanism for all ommuniation exept the ommunia-tion with the database managers (whih is done through the programmati interfae library disussed above).The RPC mehanism used is the Remote pakage provided by CMU Lisp. It is built on a lower-level soketbased pakage alled the Wire pakage. The Remote pakage allows alls like the following:(wire::remote-value rm-wire (xas:open tmid rmid flags))where rm-wire is a handle on the ommuniation link over whih the all is being made. This all auses the(xas:open tmid rmid flags)proedure all to be evaluated in the remote Lisp proess referened by the rm-wire handle.The Remote pakage has several limitations. First, it is limited in the data objets it an atually send betweenthe ommuniating proesses. It laks a fully general external data representation (XDR) mehanism. On theother hand, it allows a remote Lisp proess to refer to a loal data struture by passing a token alled a remoteobjet. The remote proess an, without atually modifying the data objet, e�etively pass it bak as areturn value or pass it as a parameter to a all-bak proedure it invokes in the loal proess. Communiationshannels reated by the Remote pakage are bidiretional; a remote Lisp proess an invoke proedures in theloal proess as well as the other way around. If a proess needs to atually send data objets that are notsupported by the Remote pakage, it must onvert them to a string format and send them as strings, whereuponthe remote proess must onvert them bak into data objets. In pratie, limitations of data objet types didnot arise in this system.Another limitation was the fat that the Remote pakage provided no aess ontrol. A proess making remoteproedure alls an invoke any proedure in the remote Lisp proess, if it knows the pakage and proedurename. This reates a seurity hole; at the very least a maliious lient ould invoke a denial-of-servie attakby remotely alling the (quit) proedure. It would be fairly straightforward to reate a version of the Remotepakage that required eah proess to register proedures that it would allow to be invoked remotely; suh anextension was not made in this implementation but will probably be done in the future.� Graphial User Interfae Toolkit. At �rst, SDTP did not have a GUI. In the form we originally demon-strated, it had a graphial display to show the interations between the omponents (see Figure 3). To makethe demonstration appliation more usable, we deided to give it a GUI. All the GUI work in SDTP, inludingthe omponent-interation graph, was done using the Garnet [2℄ toolkit.The Garnet toolkit, besides being freely distributable, had good performane and a relatively small footprintin CMUCL. An x86 Lisp image with Garnet is about 18 MB, while the image without Garnet is about 14MB (CMUCL's images are onsiderably larger than urrent ommerial versions). This ompares to a size ofaround 28 MB for a CLOS-based toolkit suh as XIT/CLUE [3℄.Originally we were onerned about the fat that Garnet did not use CLOS as its objet system; instead ituses KR, a relatively simple prototype-instane objet system with onstraints. However, with experiene weame to feel that KR's approah was a good math for GUI development, and its (relatively) small size andlow overhead served us well when we installed the system on laptops and other resoure-limited mahines. Atone point we had several Lisp proesses, inluding a Garnet proess, running on a 32 MB 200 MHz Pentium7

Figure 3: SDTP with Component Interation Graphmahine. Performane, while not sterling, was adequate. CMUCL uses the PCL version of CLOS. Experienewith the XIT toolkit showed that it aused PCL to spend a lot of time doing runtime ompilation, espeiallywhen it loaded �les, while Garnet did little or no runtime ompilation.Among Garnet's important features that we used heavily were objets known as `interators' that deal withvarious types of user input. Interators an be attahed to di�erent graphial objets, thus almost ompletelydeoupling the look of the objet from the way the objet responds to user interation. As a result of the useof interator objets, Garnet allows a programming style that minimizes the use of allbaks. Instead of anevent-driven model where the programmer writes proedures that are given ontrol in response to user ations,the programmer an use a more funtional approah. We ended up in e�et alling the GUI as a funtion thatreturns the results of the user's ativity. The messy event handling and synhronization is kept neatly behindthe senes by the interator mehanism.Garnet provides two toolkits with di�erent appearanes. We used both; for the omponent-interation graphwe used Garnet's native toolkit, while for the appliation GUIs we used the seond toolkit that provides aMotif-like appearane.3 AppliationsWe built two appliations on top of SDTP. The �rst is a demonstration appliation used to show that SDTP worksand has the desired seurity properties. The seond is intended as the genesis of a real-world appliation that wouldserve as an intelligent post-proessor to a omputer intrusion-detetion system. Figure 4 illustrates the GUI style ofboth appliations.3.1 Cooperating Law Enforement DatabasesAs a test appliation we built a multilevel-seure law-enforement-traking database, LET-DB. This was inspiredby an FBI system alled \FOIMS" (Field OÆe Information Management System) though of ourse it bears norelationship to the atual working of that system. 8

Figure 4: SDTP Appliation GUIOur intent in building this appliation was to demonstrate multilevel seurity in a database system that wasboth distributed and repliated. For this reason we deided to distribute the information for state investigations andrepliate the federal information. The motivation for this was that eah state would tend to query and update itsown information the vast majority of the time and so it would be more eÆient to keep that information on loalresoure managers and allow remote queries; on the other hand, federal information would probably be queried bymany states and so it would be more eÆient to repliate that information aross the resoure managers belongingto the states.An example of a table that depended on multilevel seurity was the agent table. This table ontained a uniqueID number for eah agent as well as the agent's name. The ID number was needed at all seurity levels, both to keeptrak of agent workloads and to ensure that eah investigation had a valid agent assigned to it. However, the agent'sname was onsidered top seret and so it was available only when the user making the query was authentiated atthe top seret seurity level.Other examples of multilevel tables were the investigation tables themselves. Eah investigation was lassi�ed ata partiular seurity level; even the fat that an investigation was being onduted on a partiular individual mightitself be sensitive information. For this reason, investigations that might have, for example, important politialimpliations were lassi�ed top seret, while investigations that had resulted in ourt ases would ordinarily bepubli knowledge and therefore unlassi�ed.Our demonstration implementation ontained resoure managers for two states, eah of whih also ontaineda replia of the federal portion of the database. The appliation was apable of querying, updating, and addinginformation to the relevant tables.3.2 Intrusion Detetion AppliationThe seond appliation built on SDTP is the Intrusion Detetion Appliation. One of the authors of this paper,David Shih, was hired as a summer intern to write this appliation. He has ompleted his �rst year as a ComputerSiene major at the University of California at Berkeley. His most signi�ant programming experiene was his �rst-semester omputer siene programming ourse, taught using Sheme. Thus he, like the other author, was writinghis �rst major Lisp program.The Intrusion Detetion Appliation turned out to be larger and more omplex than the Law Enforement Trak-9

ing appliation. Like the LET-DB appliation, the IRDB (Intrusion Reording Database) also manages multilevelseure databases, this time ontaining omputer intrusion data. This appliation reeives, from one or more seuresoures, CISL (Common Intrusion Spei�ation Language) data. CISL is a proposed standard for representing andexhanging omputer intrusion data. A omplete draft on CISL and its syntax an be found athttp://gost.isi.edu/projets/risis/idf/isl_urrent.txt.Conveniently, CISL uses an s-expression format for its external representation.In our ase, the appliation reeives CISL data desribing intrusion attempts against mahines loated at variousmilitary installations. (For example, our urrent demonstration pretends to reeive data from two, Ellsworth AFBand NAB Coronado). The appliation urrently reads CISL data, lassi�es eah entry, and inserts the entry into theproper database. A user an then query the database, retrieve CISL entries, and look through an entry in detail ina more user-friendly environment. Eventually the appliation will perform intelligent pattern-mathing aross thedatabase entries to hek for lues that would suggest a serious breah attempt against the networkRepresented as s-expressions in a tree struture, CISL attak entries express spei� information about intrusionattempts by desribing the verb/ation (in this ase, Attak) with a sublayer of role and adverb entries. Thesedesribe the \players" involved and attributes of the verb, respetively. Beneath role entries are attribute entriesdesribing role attributes suh as the owner or developer of that partiular player. All these entries|verb, role,adverb, and attribute|ontain what are known as atomi entries. An atomi entry ontains the atual values whihdesribe the entry within whih it is enlosed. So a sample generi struture for a CISL entry ould look somethinglike (Attak ; verb SID (semanti identifier)(World Redhat-5.1) ; atomi SID and value(Outome ; adverb SID(atomSID2 value2)(atomSID3 value3))(Observer ; role SID(atomSID4 value4)(atomSID5 value5)(Owner ; attribute SID(atomSID6 value6))))Currently, to store data, a bath-mode data-storage appliation simulates the remote data streams that we planto use. Sine the CISL data we read has no provision for lassi�ation of reords, the bath-mode program reads theinput and lassi�es the data. To do this, it performs a tree searh for the atomi �eld ontaining the IP of the targetedmahine. From the IP, it determines the reord's seurity lassi�ation and loation. The intuition behind this isthat there may be sensitive information exposed by an intrusion attempt|suh as an unaddressed vulnerability of alassi�ed mahine, or even the existene of said mahine|that users below a ertain seurity level should not haveaess to. By lassifying reords by target IPs, reords about these mahines an be hidden away at the proper level.Eventually, however, instead of reeiving data from a single mixed data stream and having the appliation organizethe data into di�erent lassi�ation levels, the appliation will reeive information from pre-lassi�ed data streams,allowing the appliation to simply tag the data with the seurity level assoiated with the stream from whih it wasreeived, and insert it into the proper database.As mentioned above, input into IRDB an be given only through a seure data stream ontaining raw CISL data.The appliation then has to parse the CISL s-expressions into string entries that an be stored into the PostgreSQLdatabase. Beause CISL was designed to be extensible, insertion of CISL s-expressions into a relational databasebeomes a hore beause there is no guaranteed uniformity between one CISL entry and the next. Atomi �elds andsub-rows that existed in one CISL onstrut may not exist in another. As a result, the appliation has to make surethat existing atomi �elds that were not reported in a CISL entry are �lled in with some kind of no-data identi�erand that role entries and adverb entries to the attak entry have a similar proedure applied to them and to theirattribute entries. These new \ompleted" rows, whih now all ontain the same number of entries, are then insertedinto their respetive tables.Consequently, beause of the layered makeup and the potentially large size of a CISL entry, it seemed moresensible to break up the large CISL entry into its verb, role and adverb entries and insert eah of those entries into10

its own separate table rather than reate a table with more than 200 olumns. To maintain uniformity aross themultiple tables, the appliation tags eah subentry with a unique ID number. In dealing with the attribute entries,eah role entry that allows for attribute entries has olumns in its table reserved for eah attribute. The appliationthen simply inserts attribute entries in their s-expression form as a whole into the olumn within the role table towhih they belong. Sine all attribute entries do atually have the same number and type of �elds, it didn't seemneessary to reate sixteen extra tables just to store them. Instead, we use the proess desribed above and employa kind of lazy proedure to format the attribute entry from s-expression to string when the user atually asks thata partiular attribute item be shown in detail after the query results are displayed during lookup.4 ExperienesBoth authors of the system were writing their �rst major Lisp program. One has more than �fteen years of program-ming experiene in everything from assembly language and miroproessor BASIC to C; the other was writing his �rstmajor program in any language. Both programmers were pleased with Lisp as part of a development infrastruture.A major feature of our development experiene was the interative programming environment. We used the Ilispmode for Emas, whih gave onvenient aess to the interative features of Lisp.This took getting used to. One of us, used to the C bath-mode development environment, found himselfonstantly killing o� the Lisp proess and restarting it every time he made a hange. Eventually, it dawned on himthat it wasn't neessary to do this. It was a revelation when he modi�ed the text of a funtion and, using the Ilisp(ompile-defun-and-go) ommand, added it to the urrently running system and saw the hange take immediatee�et. This was espeially helpful beause, upon restarting the system, it often took a minute or so to get bak tothe point where the hange ould be tested.Another instane where the interativity of Lisp was valuable was at the onferene where the system was �rstdemonstrated. The demonstrator made a typo that aught a bug in the appliation. This resulted in the appliationentering the Lisp debugger with a segmentation violation error. (This error indiates that the proess has madean invalid memory aess, for example, to an area of memory that is not urrently part of its valid address spae.)The demonstrator quit the debugger, getting bak to the Lisp toplevel, and then re-entered the main loop of theappliation and piked up where he left o�. The total time onsumed by the rash was about ten seonds, and itappeared that the person wathing the demo didn't atually know that the system had rashed. This is in ontrastto the haos that would have resulted if an equivalent C program had gotten a segmentation violation.The omponent-visualization grapher turned out to be an extremely e�etive part of the demo, helping peopleunderstand the interations between the omponents of the system. It gave a real-time view of what was going on inthe system and made it lear how the multilevel seurity aspets operated. This grapher was written using Garnetand was easy to implement and test.We have already desribed the major enhanements and additions we made to the system|adding a GUI tothe original appliation and writing a seond appliation. As we mentioned above, the task of adding a GUI to aommand-line-oriented appliation was simpli�ed by the programming style allowed by the Garnet toolkit. Insteadof having to turn the program ow inside out to onform to the event-driven model of typial X-based GUI toolkits,we were able to use a funtional approah that retained the original program ow. Below is part of the main loopof the appliation. The main hange from the original text-based UI is the use of the alls to the SG (SDTP-GUI)pakage instead of using text-based alternatives.(defun do-appliation ()(loop(let* ((user (if *resoure-managers*(rm-data-user (ar *resoure-managers*))nil))(ommand (sg:appliation-interfae user(if (minusp *urrent-level*)""(level-number-to-name *urrent-level*)))))(sg:toplevel-message "Please hoose a menu item.")11

(ase ommand(:login(setup-tm-onnetion)(setup-rms)(login));; Logout and lose GUI.(:quit(shutdown)(sg:fore-quit)(return-from do-appliation nil))...et...In general we found that the use of Lisp made programming the system a pleasant experiene. We were able touse a wide variety of solutions to the various problems the system posed without fear that debugging new approaheswould be a tedious, time-onsuming proess. Both developers learned new programming tehniques as a result ofbuilding this system. Most important, our superiors and lients were impressed with the results of what we produed.Referenes[1℄ CMU Common Lisp User's Manual. Tehnial Report CMU-CS-92-161, Shool of Computer Siene, CarnegieMellon University, July 1992.[2℄ Brad A. Meyers et. al. The Garnet Referene Manuals. Tehnial Report CMU-CS-90-117-R5, Shool ofComputer Siene, Carnagie Mellon University, Deember 1994.[3℄ J�urgen Herzeg, Hubertus Hohl, and Matthias Ressel. Xit | The X User Interfae Toolkit, Programming andReferene Manual. Researh Group drUId, Department of Computer Siene, University of Stuttgart, February1995.[4℄ C.E. Landwehr. Formal Models for Computer Seurity. ACM Computing Survey, 13(3):247{278, September1981.[5℄ M. Morioni, X. Qian, R. Riemenshneider, and L. Gong. Seure software arhitetures. In Proeedings of the1997 IEEE Symposium on Seurity and Privay, Oakland, CA, May 1997.[6℄ Mark Morioni and R. A. Riemenshneider. Introdution to Sadl 1.0: A Language for Speifying SoftwareArhiteture Hierarhies. Tehnial report, Computer Siene Laboratory, SRI International, September 1996.[7℄ The PostgreSQL Development Team. PostgreSQL User's Guide, 1999.[8℄ Gerald Roylane. Some Sienti� Subroutines in LISP. Tehnial Report AIM-774, Arti�ial Intelligene Lab-oratory, Massahusetts Institute of Tehnology, September 1984.[9℄ X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI 1AX, U.K. Distributed TransationProessing: The XA Spei�ation, June 1991.[10℄ X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI 1AX, U.K. Distributed TransationProessing: The Peer-to-Peer Spei�ation, Deember 1992.[11℄ X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI 1AX, U.K. Distributed TransationProessing: The TX (Transation Demaration) Spei�ation, November 1992.[12℄ X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI 1AX, U.K. Distributed TransationProessing: Referene Model, Version 2, November 1993.12

