
SDTP | A Multilevel-Se
ure Distributed Transa
tion Pro
essing SystemFred Gilham and David ShihSystem Design LaboratorySRI InternationalMenlo Park, CAgilham, shih�sdl.sri.
omO
tober 21, 1999Abstra
tIn this paper we des
ribe SDTP, a multilevel-se
ure distributed transa
tion-pro
essing system that was writtenlargely in Lisp, and two appli
ations built on top of the SDTP system. We also dis
uss the experien
e of buildingthe system.We feel the system is of interest be
ause� It is moderately large.� It attempts to implement and extend a signi�
ant published standard (the X/Open DTP standard).� It uses a wide variety of fa
ilities.� It illustrates some of the advantages of using Lisp.1 The SDTP Ar
hite
tureThe X/Open DTP standard for distributed transa
tion pro
essing
onsists of a proto
ol spe
i�
ation and a set ofservi
es that the
omponents of the system must make available to other system
omponents. SRI's DSA (DependableSystem Ar
hite
ture) group has used this standard as a testbed for applying our methods for verifying and extendingformal des
riptions of ar
hite
tures.Our most re
ent proje
t in this area involved extending the X/Open DTP standard to in
orporate multilevelse
urity properties. This paper des
ribes a prototype referen
e implementation that implements this extendedstandard, along with two appli
ations built using the SDTP system [5℄.1.1 X/Open DTPThe X/Open DTP standard [9, 11, 10, 12℄ is intended to standardize the intera
tions and
ommuni
ations between the
omponents of the 3-tiered
lient-server model for distributed transa
tion pro
essing. It allows multiple appli
ationprograms to share heterogeneous resour
es provided by multiple resour
e managers (i.e. database managers, printmanagers et
.) and allows their work to be
oordinated into global transa
tions.A version of the X/Open ar
hite
ture, shown in Figure 1,
onsists of three types of
omponents|one appli
ationprogram (AP), one transa
tion manager (TM), and one or more resour
e managers (RMs). The boxes indi
ate the
omponent interfa
es, and the lines indi
ate the
ommuni
ations between them. The label TX indi
ates a
omplex
onne
tion and proto
ol de�ning
ommuni
ation between any appli
ation module and any transa
tion manager.This
onne
tion
ontains
ommuni
ation
hannels between fun
tions that initialize and �nalize transa
tions. Com-muni
ation is always initiated by the appli
ation. A series of
alls ba
k and forth
ontinues until
ommuni
ation is
ompleted.Similar
omplex
onne
tions exist between the appli
ation and every resour
e (the AR
onne
tion) and betweenthe transa
tion manager and every resour
e manager (the XA
onne
tion). The XA
onne
tion provides
ommuni
a-tion for the well-known two-phase
ommit proto
ol that ensures the atomi
ity of transa
tions. Mu
h of this a
tivity
an be
on
urrent, and many transa
tions may take pla
e at on
e.1

RM
TM

AP

TXAR

XAFigure 1: X/Open DTP Referen
e Ar
hite
tureThe X/Open standard talks about these
onne
tions in terms of the servi
es (TX, AR, XA) that ea
h
omponentmust provide and the interfa
e fun
tions that implement these servi
es. The TX servi
e, also known as the Trans-a
tion Demar
ation servi
e, must be provided by the TM. The RM provides the AR servi
e, whi
h is the a
tualdata storage interfa
e to the RM. The AP makes use of the TX and AR servi
es. The XA servi
e
onsists of twosubservi
es, one provided by the TM and the other provided by the RMs. The former,
alled the AX subservi
e orAXS, allows RMs to dynami
ally register and unregister themselves. The latter,
alled the XA subservi
e or XAS,exports the pro
edures the TM uses to
oordinate the transa
tions. Both the TX and XA servi
es are fully spe
i�ed,albeit informally, while the implementation is allowed to use a
ustom set of fun
tions for the AR servi
e, allowingimplementations to build
ustom resour
e managers. Table 1 gives a
omplete listing of the TX and XA servi
es.1.2 The Transa
tion ModelThe X/Open DTP standard spe
i�es a two-phase
ommit model to maintain a set of desirable transa
tion pro
essingintegrity properties known as the ACID properties. ACID is an a
ronym
onsisting of the �rst letters of the properties.These properties areAtomi
ity The transa
tion is either exe
uted
ompletely or not at all.Consisten
y A
onsistent transa
tion must take the database from one
onsistent state to another.Isolation A transa
tion should appear to exe
uted in isolation from all other transa
tions, as if it were the onlytransa
tion being exe
uted by the system.Durability On
e a transa
tion has been
ommitted, the
hanges it makes to the database must persist in the fa
eof failures su
h as
rashes.The two-phase
ommit proto
ol is one method for maintaining the ACID properties in a distributed system. Inour implementation it
onsists of the following steps.� An appli
ation uses the TX:OPEN
all to inform the transa
tion manager (TM) that it wishes to
ommuni
atewith the resour
e managers (RMs) . A unique thread id (TID) gets generated (in our
ase, we use the TM todo it) and assigned to the appli
ation. The TID allows the RMs to
orrelate transa
tions with the
lients onbehalf of whi
h it is performing them.� The TM uses the AXS:OPEN
all.to tell the resour
e managers (RMs) that an appli
ation will be
onta
tingthem.� The appli
ation will do any ne
essary setup with the RMs. In our
ase, the appli
ation must authenti
ate itselfto the RMs. The
alls it uses are non-standard AR servi
e
alls.2

Name Des
riptionTX:BEGIN Start a new transa
tionTX:CLOSE Close the resour
e managersTX:COMMIT Complete a transa
tion normallyTX:INFO Query the TM about the status of a transa
tionTX:OPEN Open the resour
e managersTX:ROLLBACK Abort a transa
tionTX:SET-COMMIT-RETURN Wait for
ommit
ompletion or just for loggingTX:SET-TRANSACTION-CONTROL Indi
ate `
hained' transa
tionsTX:SET-TRANSACTION-TIMEOUT Set transa
tion time limitAXS:REG Let the RM register itself with the TMAXS:UNREG Let the RM unregister itselfXAS:CLOSE Tell RM not to listen for
onne
tions any moreXAS:COMMIT Tell RM to
ommit the transa
tionXAS:END Tell RM to end a transa
tionXAS:OPEN Inform RM that appli
ation is opening itXAS:PREPARE Ask RM if it
an
ommit the
urrent transa
tionXAS:ROLLBACK Tell RM to abort the transa
tionXAS:START Tell RM to start a transa
tion for a given appli
ationTable 1: TX and XA servi
es� The appli
ation uses the TX:BEGIN
all to tell the transa
tion manager it is starting a transa
tion.� The appli
ation
onta
ts the RMs using the TID generated by the TM, performing whatever operations
on-stitute the transa
tion. Again, it uses AR
alls to do this.� The appli
ation uses the TX:COMMIT
all to inform the TM that it has �nished the transa
tion (alternatively,it
an rollba
k the transa
tion using the TX:ROLLBACK
all if an error o

urs).� The TM makes a XAS:PREPARE
all to the RMs, asking them if they are prepared to
ommit the transa
tion(or, if the appli
ation has aborted the transa
tion, it informs the RMs using the XAS:ROLLBACK
all.� The RMs reply.� If all the RMs reply in the aÆrmative within a given time, then the TM uses the XAS:COMMIT
all to tellthe RMs to
ommit the transa
tion. If not, it uses the XAS:ROLLBACK
all to rollba
k the transa
tion.� The appli
ation
an
all TX:BEGIN to start a new transa
tion, or TX:CLOSE to shut down the RMs.1.3 Multilevel Se
urityA standard model of a multilevel se
urity (MLS) poli
y is the Bell-LaPadula model [4℄. Given a set of subje
ts ea
hwith an atta
hed
learan
e level, and a set of obje
ts ea
h with an atta
hed
lassi�
ation level, the model ensuresthat information does not
ow downward in a se
urity latti
e by imposing the following requirements:� The Simple Se
urity Property. A subje
t is allowed a read a

ess to an obje
t only if the subje
t's
learan
elevel is identi
al to or higher than the obje
t's
lassi�
ation level in the latti
e.� The * Property. A subje
t is allowed a write a

ess to an obje
t only if the subje
t's
learan
e level isidenti
al to or lower than the latter's
lassi�
ation level in the latti
e.The MLS poli
y regulates
ommuni
ation between the appli
ation and the resour
es. As su
h, it is primarily aproperty of the ar
hite
tural stru
ture. That is, it spe
i�es that an appli
ation should not be allowed to
onne
t toa resour
e manager that
ontains data for whi
h it is not
leared.3

XA

AP

TM

Single Level DBMs

Single Level DBMs

Single Level DBMs

Security

Security

Security

RM

RM

RM

AR

TX

Figure 2: X/Open DTP Extended with Multilevel Se
urity1.4 Se
ure DTPThe SDTP implementation is based on a spe
i�
ation generated by formalizing the X/Open DTP spe
i�
ation inSadl [6℄, the Ar
hite
ture Des
ription Language used by our group, and then adding the MLS properties to thespe
i�
ation. The resulting spe
i�
ation was re�ned using provably
orre
t transformations until an implementablespe
i�
ation was produ
ed. The implemented ar
hite
ture
an be seen in Figure 2.The re�nement pro
ess by whi
h this ar
hite
ture was produ
ed
an be des
ribed as starting with
ommuni
ation
hannels that enfor
e the multilevel se
urity poli
y, and then re�ning them into ordinary
ommuni
ation
hannels withthe se
urity poli
y enfor
ement implemented by a se
urity manager. Finally, the se
urity manager is distributed asse
urity wrappers around ea
h resour
e manager. The resour
e managers themselves are implemented as a
olle
tionof single-level database managers. The resulting spe
i�
ation preserves both the desired atomi
ity properties ofX/Open DTP and the se
urity properties mentioned above.2 SDTP System ComponentsOne goal of SDTP was a desire to be able to install it for our
lient and potentially other interested parties without theneed to pur
hase expensive equipment and software li
enses. For this reason, we tried to use freely available softwarewhenever possible. It turned out to be possible to build the system with all major software
omponents being in thepubli
 domain or having free redistribution li
enses. The following
omponents were important in building SDTP:� FreeBSD. We
hose the FreeBSD operating system be
ause we were experien
ed with it and had found itreliable in the past. It runs on inexpensive Intel-x86 hardware and has a wide variety of freely available software,in
luding database software and Lisp implementations, available through its `ports' pa
kaging system. In many
ases, a desired software pa
kage
an be installed by �nding the appropriate `ports' dire
tory and issuing a`make install'
ommand. We found it more stable and less of a moving target than Linux, another freelyavailable UNIX-like operating system.� CMU Common Lisp. The CMU version of Common Lisp [1℄ is a high-quality Lisp implementation that isin the publi
 domain. We have found its performan
e to be mostly
ompetitive with, and o

asionally better4

than,
ommer
ial implementations. Its
ompiler also provides informative optimization notes that guide theprogrammer in making de
larations that improve performan
e.� Common Lisp Bignum Fa
ility. To provide se
ure
ommuni
ations
hannels, we en
rypted the data obje
tsthat were sent over them. To do this, we had to implement key ex
hange and en
ryption. Common Lisp'sbignum fa
ility turned out to be extremely
onvenient for this purpose. For example, DiÆe-Hellman keyex
hange involved three fun
tions that were ea
h essentially one line of
ode (omitting de
larations), alongwith a `modpower' fun
tion ![8℄:;;; Modpower fun
tion from
lmath pa
kage by Gerald Roylan
e.(defun modpower (number exponent modulus)(de
lare (integer number exponent modulus))(do ((exp exponent (floor exp 2))(sqr number (mod (* sqr sqr) modulus))(ans 1))((zerop exp) ans)(de
lare (integer exp sqr ans))(if (oddp exp)(setq ans (mod (* ans sqr) modulus)))))(defun
ompute-se
ret-key (dh-modulus)(de
lare (integer dh-modulus))(random dh-modulus (make-random-state t)))(defun
ompute-publi
-key (base se
ret-key modulus)(de
lare (integer base se
ret-key modulus))(modpower base se
ret-key modulus))(defun
ompute-
ommon-key (remote-publi
-keylo
al-se
ret-keymodulus)(de
lare (integer remote-publi
-keylo
al-se
ret-keymodulus))(modpower remote-publi
-key lo
al-se
ret-key modulus))While resear
hing implementations we found a version written in the C programming language that took about90 lines. Mu
h of the C
ode involved pro
essing a set of arrays, whi
h in e�e
t implemented a bignum
apability. As a result, the
onne
tion between the C
ode and the algorithm being implemented was tenuous,while the Lisp
ode above is a dire
t implementation of the algorithm. The bignum fa
ility was also usefulin the a
tual en
ryption and de
ryption of data, allowing us to represent intermediate forms of the en
rypteddata as integers.� PostgreSQL. We used the PostgreSQL[7℄ relational database manager to provide data storage managementfor SDTP. The
hoi
e of PostgreSQL was based on the fa
t that we had previous experien
e with it, it waseasy to install and run, and it was li
ensed so as to allow us to distribute it
onveniently.PostgreSQL
omes with programmati
 interfa
es for several languages; unfortunately Lisp was not one of them.As a result we had to develop a Lisp interfa
e to PostgreSQL.There are at least two ways to implement su
h an interfa
e. One way is to talk dire
tly to the PostgreSQLba
kend over the network. This involved
reating pa
kets and sending them to the ba
kend. Sin
e at the timewe were not
ompletely sure how this worked, we de
ided to take the se
ond approa
h, whi
h involved writinga foreign-fun
tion interfa
e to the C version of the PosgreSQL
lient library.Like other Common Lisp implementations, CMU Common Lisp has a pa
kage that allows Lisp
ode to talkto
ode written in C. Interfa
ing to the PostgreSQL library involved writing a �le of interfa
e fun
tions using5

the CMUCL Foreign Fun
tion Interfa
e. It turned out to be easy to write the
ode. There were a few opaquedata stru
tures, some enumerations for status returns, and a series of fun
tions. The following is a sample ofthe
ode:;; Opaque data stru
tures.(def-alien-type postgres-
onne
tion system-area-pointer)(def-alien-type postgres-result system-area-pointer);; Status enumerations.(def-alien-type
onne
tion-status (enum nil:
onne
tion-ok:
onne
tion-bad))(def-alien-type exe
-status (enum nil(:empty-query 0):
ommand-ok:tuples-ok:
opy-out:
opy-in:bad-response:nonfatal-error:fatal-error));; Some of the a
tual library interfa
e fun
tions.(de
laim (inline PQsetdbLogin))(def-alien-routine "PQsetdbLogin" postgres-
onne
tion(pghost
-string)(pgport
-string)(pgoptions
-string)(pgtty
-string)(dbname
-string)(login
-string)(passwd
-string))(de
laim (inline PQexe
))(def-alien-routine "PQexe
" postgres-result(
onne
tion postgres-
onne
tion)(
ommand
-string))(de
laim (inline PQresultStatus))(def-alien-routine "PQresultStatus" exe
-status(result postgres-result))(de
laim (inline PQntuples))(def-alien-routine "PQntuples" int(result postgres-result))(de
laim (inline PQnfields))(def-alien-routine "PQnfields" int(result postgres-result));; et
.A
ouple of problems arose from using this method. The main problem was due to an intera
tion betweenFreeBSD's obje
t format and CMUCL. CMUCL is
urrently linked stati
ally under FreeBSD, whi
h means it6

annot use shared binary obje
ts. The PostgreSQL C library is built using shared obje
ts, for both its sharedand stati
 versions. (We think this is a bug but were unable to
onvin
e the maintainers to
hange it.) At anyrate, we were for
ed to
reate by hand a library using stati
 obje
ts.A similar problem involved the pro
ess of a
tually loading the library into the running Lisp. Sin
e CMUCLrunning under FreeBSD uses an old te
hnique of runtime linking, rather than the newer te
hnique of dynami
loading, the C
ode library
an be loaded only on
e per session; multiple loadings result in multiple de�nitionerrors.� Remote Pro
edure Call. SDTP is implemented as a set of
omponents and
ommuni
ation fa
ilities. Ourdesire was to try to re
e
t
urrent pra
ti
e in implementing a DTP system. Thus,
ommuni
ation between the
omponents is done using a Lisp-based Remote Pro
edure Call (RPC) me
hanism.The
omponents of SDTP employ a Lisp-based RPC me
hanism for all
ommuni
ation ex
ept the
ommuni
a-tion with the database managers (whi
h is done through the programmati
 interfa
e library dis
ussed above).The RPC me
hanism used is the Remote pa
kage provided by CMU Lisp. It is built on a lower-level so
ketbased pa
kage
alled the Wire pa
kage. The Remote pa
kage allows
alls like the following:(wire::remote-value rm-wire (xas:open tmid rmid flags))where rm-wire is a handle on the
ommuni
ation link over whi
h the
all is being made. This
all
auses the(xas:open tmid rmid flags)pro
edure
all to be evaluated in the remote Lisp pro
ess referen
ed by the rm-wire handle.The Remote pa
kage has several limitations. First, it is limited in the data obje
ts it
an a
tually send betweenthe
ommuni
ating pro
esses. It la
ks a fully general external data representation (XDR) me
hanism. On theother hand, it allows a remote Lisp pro
ess to refer to a lo
al data stru
ture by passing a token
alled a remoteobje
t. The remote pro
ess
an, without a
tually modifying the data obje
t, e�e
tively pass it ba
k as areturn value or pass it as a parameter to a
all-ba
k pro
edure it invokes in the lo
al pro
ess. Communi
ations
hannels
reated by the Remote pa
kage are bidire
tional; a remote Lisp pro
ess
an invoke pro
edures in thelo
al pro
ess as well as the other way around. If a pro
ess needs to a
tually send data obje
ts that are notsupported by the Remote pa
kage, it must
onvert them to a string format and send them as strings, whereuponthe remote pro
ess must
onvert them ba
k into data obje
ts. In pra
ti
e, limitations of data obje
t types didnot arise in this system.Another limitation was the fa
t that the Remote pa
kage provided no a

ess
ontrol. A pro
ess making remotepro
edure
alls
an invoke any pro
edure in the remote Lisp pro
ess, if it knows the pa
kage and pro
edurename. This
reates a se
urity hole; at the very least a mali
ious
lient
ould invoke a denial-of-servi
e atta
kby remotely
alling the (quit) pro
edure. It would be fairly straightforward to
reate a version of the Remotepa
kage that required ea
h pro
ess to register pro
edures that it would allow to be invoked remotely; su
h anextension was not made in this implementation but will probably be done in the future.� Graphi
al User Interfa
e Toolkit. At �rst, SDTP did not have a GUI. In the form we originally demon-strated, it had a graphi
al display to show the intera
tions between the
omponents (see Figure 3). To makethe demonstration appli
ation more usable, we de
ided to give it a GUI. All the GUI work in SDTP, in
ludingthe
omponent-intera
tion graph, was done using the Garnet [2℄ toolkit.The Garnet toolkit, besides being freely distributable, had good performan
e and a relatively small footprintin CMUCL. An x86 Lisp image with Garnet is about 18 MB, while the image without Garnet is about 14MB (CMUCL's images are
onsiderably larger than
urrent
ommer
ial versions). This
ompares to a size ofaround 28 MB for a CLOS-based toolkit su
h as XIT/CLUE [3℄.Originally we were
on
erned about the fa
t that Garnet did not use CLOS as its obje
t system; instead ituses KR, a relatively simple prototype-instan
e obje
t system with
onstraints. However, with experien
e we
ame to feel that KR's approa
h was a good mat
h for GUI development, and its (relatively) small size andlow overhead served us well when we installed the system on laptops and other resour
e-limited ma
hines. Atone point we had several Lisp pro
esses, in
luding a Garnet pro
ess, running on a 32 MB 200 MHz Pentium7

Figure 3: SDTP with Component Intera
tion Graphma
hine. Performan
e, while not sterling, was adequate. CMUCL uses the PCL version of CLOS. Experien
ewith the XIT toolkit showed that it
aused PCL to spend a lot of time doing runtime
ompilation, espe
iallywhen it loaded �les, while Garnet did little or no runtime
ompilation.Among Garnet's important features that we used heavily were obje
ts known as `intera
tors' that deal withvarious types of user input. Intera
tors
an be atta
hed to di�erent graphi
al obje
ts, thus almost
ompletelyde
oupling the look of the obje
t from the way the obje
t responds to user intera
tion. As a result of the useof intera
tor obje
ts, Garnet allows a programming style that minimizes the use of
allba
ks. Instead of anevent-driven model where the programmer writes pro
edures that are given
ontrol in response to user a
tions,the programmer
an use a more fun
tional approa
h. We ended up in e�e
t
alling the GUI as a fun
tion thatreturns the results of the user's a
tivity. The messy event handling and syn
hronization is kept neatly behindthe s
enes by the intera
tor me
hanism.Garnet provides two toolkits with di�erent appearan
es. We used both; for the
omponent-intera
tion graphwe used Garnet's native toolkit, while for the appli
ation GUIs we used the se
ond toolkit that provides aMotif-like appearan
e.3 Appli
ationsWe built two appli
ations on top of SDTP. The �rst is a demonstration appli
ation used to show that SDTP worksand has the desired se
urity properties. The se
ond is intended as the genesis of a real-world appli
ation that wouldserve as an intelligent post-pro
essor to a
omputer intrusion-dete
tion system. Figure 4 illustrates the GUI style ofboth appli
ations.3.1 Cooperating Law Enfor
ement DatabasesAs a test appli
ation we built a multilevel-se
ure law-enfor
ement-tra
king database, LET-DB. This was inspiredby an FBI system
alled \FOIMS" (Field OÆ
e Information Management System) though of
ourse it bears norelationship to the a
tual working of that system. 8

Figure 4: SDTP Appli
ation GUIOur intent in building this appli
ation was to demonstrate multilevel se
urity in a database system that wasboth distributed and repli
ated. For this reason we de
ided to distribute the information for state investigations andrepli
ate the federal information. The motivation for this was that ea
h state would tend to query and update itsown information the vast majority of the time and so it would be more eÆ
ient to keep that information on lo
alresour
e managers and allow remote queries; on the other hand, federal information would probably be queried bymany states and so it would be more eÆ
ient to repli
ate that information a
ross the resour
e managers belongingto the states.An example of a table that depended on multilevel se
urity was the agent table. This table
ontained a uniqueID number for ea
h agent as well as the agent's name. The ID number was needed at all se
urity levels, both to keeptra
k of agent workloads and to ensure that ea
h investigation had a valid agent assigned to it. However, the agent'sname was
onsidered top se
ret and so it was available only when the user making the query was authenti
ated atthe top se
ret se
urity level.Other examples of multilevel tables were the investigation tables themselves. Ea
h investigation was
lassi�ed ata parti
ular se
urity level; even the fa
t that an investigation was being
ondu
ted on a parti
ular individual mightitself be sensitive information. For this reason, investigations that might have, for example, important politi
alimpli
ations were
lassi�ed top se
ret, while investigations that had resulted in
ourt
ases would ordinarily bepubli
 knowledge and therefore un
lassi�ed.Our demonstration implementation
ontained resour
e managers for two states, ea
h of whi
h also
ontaineda repli
a of the federal portion of the database. The appli
ation was
apable of querying, updating, and addinginformation to the relevant tables.3.2 Intrusion Dete
tion Appli
ationThe se
ond appli
ation built on SDTP is the Intrusion Dete
tion Appli
ation. One of the authors of this paper,David Shih, was hired as a summer intern to write this appli
ation. He has
ompleted his �rst year as a ComputerS
ien
e major at the University of California at Berkeley. His most signi�
ant programming experien
e was his �rst-semester
omputer s
ien
e programming
ourse, taught using S
heme. Thus he, like the other author, was writinghis �rst major Lisp program.The Intrusion Dete
tion Appli
ation turned out to be larger and more
omplex than the Law Enfor
ement Tra
k-9

ing appli
ation. Like the LET-DB appli
ation, the IRDB (Intrusion Re
ording Database) also manages multilevelse
ure databases, this time
ontaining
omputer intrusion data. This appli
ation re
eives, from one or more se
uresour
es, CISL (Common Intrusion Spe
i�
ation Language) data. CISL is a proposed standard for representing andex
hanging
omputer intrusion data. A
omplete draft on CISL and its syntax
an be found athttp://gost.isi.edu/proje
ts/
risis/
idf/
isl_
urrent.txt.Conveniently, CISL uses an s-expression format for its external representation.In our
ase, the appli
ation re
eives CISL data des
ribing intrusion attempts against ma
hines lo
ated at variousmilitary installations. (For example, our
urrent demonstration pretends to re
eive data from two, Ellsworth AFBand NAB Coronado). The appli
ation
urrently reads CISL data,
lassi�es ea
h entry, and inserts the entry into theproper database. A user
an then query the database, retrieve CISL entries, and look through an entry in detail ina more user-friendly environment. Eventually the appli
ation will perform intelligent pattern-mat
hing a
ross thedatabase entries to
he
k for
lues that would suggest a serious brea
h attempt against the networkRepresented as s-expressions in a tree stru
ture, CISL atta
k entries express spe
i�
 information about intrusionattempts by des
ribing the verb/a
tion (in this
ase, Atta
k) with a sublayer of role and adverb entries. Thesedes
ribe the \players" involved and attributes of the verb, respe
tively. Beneath role entries are attribute entriesdes
ribing role attributes su
h as the owner or developer of that parti
ular player. All these entries|verb, role,adverb, and attribute|
ontain what are known as atomi
 entries. An atomi
 entry
ontains the a
tual values whi
hdes
ribe the entry within whi
h it is en
losed. So a sample generi
 stru
ture for a CISL entry
ould look somethinglike (Atta
k ; verb SID (semanti
 identifier)(World Redhat-5.1) ; atomi
 SID and value(Out
ome ; adverb SID(atomSID2 value2)(atomSID3 value3))(Observer ; role SID(atomSID4 value4)(atomSID5 value5)(Owner ; attribute SID(atomSID6 value6))))Currently, to store data, a bat
h-mode data-storage appli
ation simulates the remote data streams that we planto use. Sin
e the CISL data we read has no provision for
lassi�
ation of re
ords, the bat
h-mode program reads theinput and
lassi�es the data. To do this, it performs a tree sear
h for the atomi
 �eld
ontaining the IP of the targetedma
hine. From the IP, it determines the re
ord's se
urity
lassi�
ation and lo
ation. The intuition behind this isthat there may be sensitive information exposed by an intrusion attempt|su
h as an unaddressed vulnerability of a
lassi�ed ma
hine, or even the existen
e of said ma
hine|that users below a
ertain se
urity level should not havea

ess to. By
lassifying re
ords by target IPs, re
ords about these ma
hines
an be hidden away at the proper level.Eventually, however, instead of re
eiving data from a single mixed data stream and having the appli
ation organizethe data into di�erent
lassi�
ation levels, the appli
ation will re
eive information from pre-
lassi�ed data streams,allowing the appli
ation to simply tag the data with the se
urity level asso
iated with the stream from whi
h it wasre
eived, and insert it into the proper database.As mentioned above, input into IRDB
an be given only through a se
ure data stream
ontaining raw CISL data.The appli
ation then has to parse the CISL s-expressions into string entries that
an be stored into the PostgreSQLdatabase. Be
ause CISL was designed to be extensible, insertion of CISL s-expressions into a relational databasebe
omes a
hore be
ause there is no guaranteed uniformity between one CISL entry and the next. Atomi
 �elds andsub-rows that existed in one CISL
onstru
t may not exist in another. As a result, the appli
ation has to make surethat existing atomi
 �elds that were not reported in a CISL entry are �lled in with some kind of no-data identi�erand that role entries and adverb entries to the atta
k entry have a similar pro
edure applied to them and to theirattribute entries. These new \
ompleted" rows, whi
h now all
ontain the same number of entries, are then insertedinto their respe
tive tables.Consequently, be
ause of the layered makeup and the potentially large size of a CISL entry, it seemed moresensible to break up the large CISL entry into its verb, role and adverb entries and insert ea
h of those entries into10

its own separate table rather than
reate a table with more than 200
olumns. To maintain uniformity a
ross themultiple tables, the appli
ation tags ea
h subentry with a unique ID number. In dealing with the attribute entries,ea
h role entry that allows for attribute entries has
olumns in its table reserved for ea
h attribute. The appli
ationthen simply inserts attribute entries in their s-expression form as a whole into the
olumn within the role table towhi
h they belong. Sin
e all attribute entries do a
tually have the same number and type of �elds, it didn't seemne
essary to
reate sixteen extra tables just to store them. Instead, we use the pro
ess des
ribed above and employa kind of lazy pro
edure to format the attribute entry from s-expression to string when the user a
tually asks thata parti
ular attribute item be shown in detail after the query results are displayed during lookup.4 Experien
esBoth authors of the system were writing their �rst major Lisp program. One has more than �fteen years of program-ming experien
e in everything from assembly language and mi
ropro
essor BASIC to C; the other was writing his �rstmajor program in any language. Both programmers were pleased with Lisp as part of a development infrastru
ture.A major feature of our development experien
e was the intera
tive programming environment. We used the Ilispmode for Ema
s, whi
h gave
onvenient a

ess to the intera
tive features of Lisp.This took getting used to. One of us, used to the C bat
h-mode development environment, found himself
onstantly killing o� the Lisp pro
ess and restarting it every time he made a
hange. Eventually, it dawned on himthat it wasn't ne
essary to do this. It was a revelation when he modi�ed the text of a fun
tion and, using the Ilisp(
ompile-defun-and-go)
ommand, added it to the
urrently running system and saw the
hange take immediatee�e
t. This was espe
ially helpful be
ause, upon restarting the system, it often took a minute or so to get ba
k tothe point where the
hange
ould be tested.Another instan
e where the intera
tivity of Lisp was valuable was at the
onferen
e where the system was �rstdemonstrated. The demonstrator made a typo that
aught a bug in the appli
ation. This resulted in the appli
ationentering the Lisp debugger with a segmentation violation error. (This error indi
ates that the pro
ess has madean invalid memory a

ess, for example, to an area of memory that is not
urrently part of its valid address spa
e.)The demonstrator quit the debugger, getting ba
k to the Lisp toplevel, and then re-entered the main loop of theappli
ation and pi
ked up where he left o�. The total time
onsumed by the
rash was about ten se
onds, and itappeared that the person wat
hing the demo didn't a
tually know that the system had
rashed. This is in
ontrastto the
haos that would have resulted if an equivalent C program had gotten a segmentation violation.The
omponent-visualization grapher turned out to be an extremely e�e
tive part of the demo, helping peopleunderstand the intera
tions between the
omponents of the system. It gave a real-time view of what was going on inthe system and made it
lear how the multilevel se
urity aspe
ts operated. This grapher was written using Garnetand was easy to implement and test.We have already des
ribed the major enhan
ements and additions we made to the system|adding a GUI tothe original appli
ation and writing a se
ond appli
ation. As we mentioned above, the task of adding a GUI to a
ommand-line-oriented appli
ation was simpli�ed by the programming style allowed by the Garnet toolkit. Insteadof having to turn the program
ow inside out to
onform to the event-driven model of typi
al X-based GUI toolkits,we were able to use a fun
tional approa
h that retained the original program
ow. Below is part of the main loopof the appli
ation. The main
hange from the original text-based UI is the use of the
alls to the SG (SDTP-GUI)pa
kage instead of using text-based alternatives.(defun do-appli
ation ()(loop(let* ((user (if *resour
e-managers*(rm-data-user (
ar *resour
e-managers*))nil))(
ommand (sg:appli
ation-interfa
e user(if (minusp *
urrent-level*)""(level-number-to-name *
urrent-level*)))))(sg:toplevel-message "Please
hoose a menu item.")11

(
ase
ommand(:login(setup-tm-
onne
tion)(setup-rms)(login));; Logout and
lose GUI.(:quit(shutdown)(sg:for
e-quit)(return-from do-appli
ation nil))...et
...In general we found that the use of Lisp made programming the system a pleasant experien
e. We were able touse a wide variety of solutions to the various problems the system posed without fear that debugging new approa
heswould be a tedious, time-
onsuming pro
ess. Both developers learned new programming te
hniques as a result ofbuilding this system. Most important, our superiors and
lients were impressed with the results of what we produ
ed.Referen
es[1℄ CMU Common Lisp User's Manual. Te
hni
al Report CMU-CS-92-161, S
hool of Computer S
ien
e, CarnegieMellon University, July 1992.[2℄ Brad A. Meyers et. al. The Garnet Referen
e Manuals. Te
hni
al Report CMU-CS-90-117-R5, S
hool ofComputer S
ien
e, Carnagie Mellon University, De
ember 1994.[3℄ J�urgen Her
zeg, Hubertus Hohl, and Matthias Ressel. Xit | The X User Interfa
e Toolkit, Programming andReferen
e Manual. Resear
h Group drUId, Department of Computer S
ien
e, University of Stuttgart, February1995.[4℄ C.E. Landwehr. Formal Models for Computer Se
urity. ACM Computing Survey, 13(3):247{278, September1981.[5℄ M. Mori
oni, X. Qian, R. Riemens
hneider, and L. Gong. Se
ure software ar
hite
tures. In Pro
eedings of the1997 IEEE Symposium on Se
urity and Priva
y, Oakland, CA, May 1997.[6℄ Mark Mori
oni and R. A. Riemens
hneider. Introdu
tion to Sadl 1.0: A Language for Spe
ifying SoftwareAr
hite
ture Hierar
hies. Te
hni
al report, Computer S
ien
e Laboratory, SRI International, September 1996.[7℄ The PostgreSQL Development Team. PostgreSQL User's Guide, 1999.[8℄ Gerald Roylan
e. Some S
ienti�
 Subroutines in LISP. Te
hni
al Report AIM-774, Arti�
ial Intelligen
e Lab-oratory, Massa
husetts Institute of Te
hnology, September 1984.[9℄ X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI 1AX, U.K. Distributed Transa
tionPro
essing: The XA Spe
i�
ation, June 1991.[10℄ X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI 1AX, U.K. Distributed Transa
tionPro
essing: The Peer-to-Peer Spe
i�
ation, De
ember 1992.[11℄ X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI 1AX, U.K. Distributed Transa
tionPro
essing: The TX (Transa
tion Demar
ation) Spe
i�
ation, November 1992.[12℄ X/Open Company Ltd., Apex Plaza, Forbury Road, Reading, Berkshire RGI 1AX, U.K. Distributed Transa
tionPro
essing: Referen
e Model, Version 2, November 1993.12

