Steps Towards Mechanizing Program Transformations

Using PVS *

Natarajan Shankar

Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA
shankar@csl.sri.com
URL: http://www.csl.sri.com/ “shankar/shankar.html
Phone: +1 (415) 859-5272 Fax: +1 (415) 859-2844

Abstract

PVS is a highly automated framework for specification and verification. We show
how the language and deduction features of PVS can be used to formalize, mech-
anize, and apply some useful program transformation techniques. We examine two
such examples in detail. The first is a fusion theorem due to Bird where the com-
position of a catamorphism (a recursive operation on the structure of a datatype)
and an anamorphism (an operation that constructs instances of the datatype) is
fused to eliminate the intermediate data structure. The second example is Wand’s
continuation-based transformation technique for deriving tail-recursive functions
from non-tail-recursive ones. These examples illustrate the utility of the language
and inference features of PVS in capturing these transformations in a simple, gen-
eral, and useful form.

1 Introduction

Correctness-preserving program transformations [15] often capture deep algo-
rithmic insight and therefore pose interesting challenges for mechanization.
The mechanization of program transformations has typically been carried out

* This paper is a sequel to a paper entitled Computer-Aided Computing [19] that appeared in the pro-
ceedings of the 3rd International Conference on the Mathematics of Program Construction held at Kloster
Irsee, Germany, during July 1995. The author is grateful to the programme committee of that conference,
especially Bernhard Moller, for the invitation to participate in a thoroughly stimulating meeting. This re-
search has been supported by NSF Grant CCR-930044 and ARPA under contract PR8556. Some of the work
reported here was inspired by Richard Bird’s talk at the conference and the related paper [1]. The feedback
from the 1995 Dagstuhl workshop on induction theorem proving was also valuable. Healfdene Goguen, Bern-
hard Moller, Sam Owre, Harald Ruess, John Rushby, and Mandayam Srivas supplied valuable comments
on draft versions of this paper. Sam Owre has been, and continues to be, instrumental in the design and
implementation of PVS. Many others at SRI and elsewhere have contributed to PVS in important ways.

Preprint submitted to Elsevier Science 11 March 1996

using special-purpose tools such as the KIDS system [21]. This paper examines
the utility of the general-purpose verification system PVS [14,19], for mecha-
nizing program transformation. The main challenge is that program transfor-
mations are normally expressed and applied in metatheoretic, i.e., syntactic,
form and are therefore not easily formalized in a formal specification logic. We
observe that the specification language and inference mechanisms of PVS are
quite effective for the task of formalizing and verifying program transforma-
tions, but are not without certain drawbacks.

Richard Bird [1] makes a persuasive argument that functional programming
can be used to elegantly derive reasonably efficient analogues of imperative
algorithms. In that paper he presents a fusion theorem showing that the com-
position of a catamorphism (a function that is defined by structural recursion
on a recursive datatype) and an anamorphism (a function that recursively
constructs an instance of the recursive datatype) can be simplified to a sin-
gle function where the intermediate data structure has been eliminated. This
transformation is closely related to deforestation [22]. We show how various
features of PVS can be exploited in order to give an elegant formalization of
an instance of the fusion theorem for the specific recursive datatype of bi-
nary trees. In particular, we show that the technical difficulty engendered in
defining anamorphisms can be easily handled using subtyping and dependent
typing as implemented in PVS. Note that the general fusion theorem for ar-
bitrary positive recursive datatypes cannot be proved within PVS since it is
a metatheorem. We also apply this transformation to derive an applicative
quicksort algorithm from a treesort specification, and demonstrate that this
algorithm returns an ordered permutation of its input.

Wand’s continuation-based program transformation strategy is a powerful
technique for transforming non-tail-recursive definitions into tail-recursive
form [23]. In fact, a number of otherwise difficult induction arguments can
be seen as simple instances of continuation-based transformations. We show
how such transformations can be easily mechanized using parametric theories
and the higher-order logic of PVS.

In general, the insights and techniques underlying such transformations are
also useful in other domains such as hardware verification. ! The results in this
paper constitute preliminary steps towards mechanizing program transforma-
tion techniques using the general-purpose verification system PVS. Dold [8]
has already verified a divide-and-conquer scheme using PVS and has instan-
tiated it to synthesize a binary search algorithm for arrays. Ruess [18] has
carried out a similar development using the type theory of LEGO [11]. Nei-
ther of these efforts achieves the level of mechanization claimed below. Most of
the theorems in this paper are proved by a single PVS proof step that invokes
a strategy for measure induction. This strategy was defined during the course

' Rajan [17] describes the use of PVS in verifying hardware-oriented transforma-
tions on control data flow graphs.

of this work and is a straightforward combination of existing strategies. It
should be emphasized that the proofs presented in this paper are among the
more elementary proofs that have been checked using PVS. The main point of
this paper is not that these are hard proofs but that these highly interesting
theorems can be formalized, proved, and used with negligible effort because
of the combination of language constructs and deductive apparatus present in
PVS. Even so, several challenges remain as fodder for future research.

2 A Brief Introduction to PVS

PVS (Prototype Verification System) is intended as an environment for con-
structing clear and precise specifications and for developing readable proofs
that have been mechanically verified [14,19]. While many of the individual
ideas in the system pre-date PVS, what is new in PVS is the coherent real-
ization of these ideas in a single system. The key elements of the PVS design
are captured by the combination of features listed below.

An expressive language with powerful deductive capabilities. The
PVS specification language is based on classical, simply typed, higher-order
logic with base types such as the Booleans bool and the natural numbers nat,
and type constructors for functions [A -> B], records [# a : A, b : B #],
and tuples [A, B, C]. The PVS type system also admits predicate subtypes,
eg,{ i : nat | i > 0} isthe subtype of positive numbers. The PVS type
system includes dependent function, record, and tuple types, e.g., [# size
nat, elems : [below[size] -> nat] #] is a dependent record where the
type of the elems component depends on the value of the size component.
It is also possible to define recursive abstract datatypes such as lists and trees
as discussed in Section 3 below. The PVS typechecker checks for simple type
correctness and generates proof obligations (called TCCs for type correctness
conditions) corresponding to predicate subtypes. Typechecking is undecidable
for PVS to the extent that it involves discharging such proof obligations. PVS
also has parametric theories, so that it is possible to capture, say, the notion
of sorting with respect to arbitrary array sizes, types, and ordering relations.
Constraints on the theory parameters can be stated by means of assumptions
within the theory. When an instance of a theory is imported with concrete
parameters, there are proof obligations for the corresponding instances of the
parameter assumptions. A theory is a list of declarations of constants (with or
without definitions) and theorems. A constant or function definition has the
form

constant : type = definition

Powerful decision procedures with user interaction. PVS proofs are
constructed interactively. The primitive inference steps for constructing proofs
are quite powerful. They make extensive use of efficient decision procedures
for equality and linear arithmetic [20]. They also exploit the tight integration
between rewriting, the decision procedures, and the use of type information.
PVS also uses BDD-based propositional simplification so that it can combine
the capability of simplifying very large propositional expressions with equality,
arithmetic, induction, and rewriting.

Higher-level inference steps can be defined by means of strategies (akin to LCF
tactics [9]) written in a simple strategy language. Typical strategies include
heuristic instantiation of quantifiers, propositional and arithmetic simplifica-
tion, and induction and rewriting. The PVS proof checker tries to strike a
careful balance between an automatic theorem prover and a low-level proof
checker. Through the use of BDD-based simplification, simple PVS proof
strategies can be defined for efficiently and automatically verifying simple
processor designs and N-bit arithmetic circuits [6].

A useful strategy for well-founded induction (specifically, measure induction)
was defined during the course of this work. This strategy is defined in terms
of the existing measure-induct and induct-and-simplify strategies. It in-
troduces the measure induction scheme instantiated with a suitable induction
predicate, then simplifies the result to yield an induction goal. The strategy
then expands the definitions of specified recursive functions and uses the case
structure of these definitions to guide the remaining simplification steps.

Model checking with theorem proving. The details of this are not
relevant to this paper. See [16,19] for more details.

A variety of examples have been verified using PVS [7]. The most substan-
tial use of PVS has been in the verification of the microcode for selected
instructions of a commercial-scale microprocessor called AAMPS5 designed by
Rockwell-Collins [12].

3 Abstract Datatypes in PVS

Like many other specification and programming language, PVS has a con-
struct for defining (possibly) recursive abstract datatypes corresponding to
data structures that are freely generated by a collection of constructor oper-
ations. The 1ist datatype is a simple example.? For example, the abstract
datatype of lists is generated by the constructors null and cons. Similarly,
the abstract datatype of stacks is generated by the constructors empty and

2 The abstract datatype mechanism of PVS is partly inspired by the shell principle
used in the Boyer-Moore theorem prover [3]. Similar mechanisms exist in a number
of other specification and programming languages [5,10,13].

push. An unordered list or a bag is an example of a data structure that is not
freely generated since two different sequences of insertions of elements into
a bag can yield equivalent bags. The datatype of queues is freely generated
by emptyqueue and enqueue, but it cannot be directly defined by the PVS
abstract datatype mechanism since it is not recursive, i.e., the accessors top
and dequeue are not inverses of the constructors.

The abstract datatype of lists of a given element type is declared in PVS as
shown below.

list [T: TYPE]: DATATYPE
BEGIN
null: null?

cons (car: T, cdr:list):cons?

END list

Here 1ist is declared as a type that is parametric in the type T. The two
constructors null and cons are introduced. The constructor null takes no
arguments. The predicate null? holds for exactly those elements of the 1ist
datatype that are identical to null. The constructor cons takes two argu-
ments where the first is of the type T and the second is a list. The recognizer
predicate cons? holds for exactly those elements of the 1ist type that are
constructed using cons, namely, those that are not identical to null. There
are two accessors corresponding to the two arguments of cons. The accessors
car and cdr can be applied only to lists satisfying the cons? predicate so that
car(cons(x, 1)) is x and cdr(cons(x, 1)) is 1.

The PVS typechecker generates several theories corresponding to the decla-
ration of the 1ist abstract datatype. These generated theories are described
in greater detail below for the case of the binary tree datatype. These theo-
ries can of course be generated by hand, but the datatype mechanism has the
advantage that many of the datatype simplifications are built into the PVS
inference mechanisms.

A binary tree is treated below as a recursive data structure that in the base
case is an empty leaf node, and in the recursive case consists of a value com-
ponent, and left and right subtrees that are themselves binary trees. The
declaration for the binary trees datatype is similar to that for lists above. The
two constructors leaf and node have corresponding recognizers leaf? and
node?. The leaf constructor does not have any accessors. The node construc-
tor has three arguments: the value at the node, the left subtree, and the right
subtree. The accessor functions corresponding to these three arguments are
val, left, and right, respectively.

binary_tree[T : TYPE] : DATATYPE
BEGIN

leaf : leaf?

node(val : T, left : binary_tree, right : binary_tree) : node?
END binary_tree

When the above datatype declaration is typechecked, the theories
binary_tree_adt, binary_tree map and binary tree_reduce are generated.
The initial portion of the binary_tree_adt theory is displayed below, and the
remaining parts are discussed later.

binary_tree_adt[T: TYPE]: THEORY
BEGIN

binary_tree: TYPE

leaf?, node?: [binary_tree -> boolean]

leaf: (leaf?)

node: [T, binary_tree, binary_tree -> (node?)]
val: [(node?) -> T]

left: [(node?) -> binary_tree]

right: [(node?) -> binary_tree]

END binary_tree_adt

Note that the binary_tree_adt theory is parametric in the value type T. The
first declaration above declares binary_tree as a type. The two recognizer
predicates on binary trees leaf? and node? are then declared. The subtypes
corresponding to these predicates are written as (leaf?) and (node?), respec-
tively. The three accessors on value (i.e., non-leaf) nodes are then declared.
Each of these accessors takes as its domain the subset of binary trees that are
constructed by means of the node constructor. This means that an expression
of the form val(leaf) is not type correct, i.e., typechecking this expression
yields an unprovable TCC proof obligation of the form node?(leaf).

Several axioms are generated in the binary tree_adt theory. There is an
extensionality axiom corresponding to each constructor that for the case of
nodes asserts that any two value nodes that agree on all the accessors are equal.
Each accessor-constructor pair generates an axiom indicating the effect of
applying the accessor to an expression constructed using the constructor. The
axiom asserting that the recognizers leaf? and node? hold of disjoint subsets
of the type of binary trees, is not generated since its size is quadratic in the
number of recognizers. However, this property is built into the proof checker
simplifications and is also implicit in the semantics of the CASES construct
used below.

The theory binary_tree_adt also contains an induction scheme and a few
recursion schemes. The induction scheme for binary trees is shown below.

binary_tree_induction: AXIOM
(FORALL (p: [binary_tree -> boolean]):
p(leaf)
AND
(FORALL (nodel_var: T), (node2_var: binary_tree),
(node3_var: binary_tree):
p(node2_var) AND p(node3_var)
IMPLIES p(node(nodel_var, node2_var, node3_var)))
IMPLIES (FORALL (binary_tree_var: binary_tree):
p(binary_tree_var)))

In other words, to prove a property of all binary trees, it is sufficient to prove
in the base case that the property holds of the binary tree leaf, and that
in the induction case, the property holds of a binary tree node(v, A, B)
assuming (the induction hypotheses) that it holds of the subtrees A and B.
The PVS proof checker commands can automatically locate such induction
schemes and hence they rarely need to be explicitly invoked.

As a consequence of induction, we can demonstrate the existence and unique-
ness of functions defined by recursion over binary trees. It is, however, conve-
nient to have an operation that can be used to explicitly define such recursive
functions. Such a “recursion operator” can be parametric in the range type of
the function being defined. A generic recursion operator reduce is defined in
the theory binary_tree_reduce. The idea is that we want to define a function
f by the following recursion over binary trees:

f(leaf)=a
f(node(v, A, B)) = g(v, f(A), f(B))
We define such an f by taking a and g as arguments to the function reduce.

The definition of reduce uses the CASES construct to define a pattern-matching
case split over a datatype value which in this case is a binary tree.

reduce (leaf?_fun: range, node?_fun: [[T, range, range] -> rangel):
[binary_tree[T] -> range] =
LAMBDA (binary_tree_var: binary_tree[T]):
CASES binary_tree_var OF
leaf: leaf?_fun,
node (nodel_var, node2_var, node3_var):
node?_fun(nodel_var,
reduce(leaf?_fun, node?_fun) (node2_var),
reduce(leaf?_fun, node?_fun) (node3_var))
ENDCASES

Following the terminology of Lambert Meertens, Bird refers to datatype re-
cursion operators such as reduce, as catamorphisms. The typechecker also
generates functions every and map corresponding for binary trees. The former

checks that a given predicate on the parameter type T holds of each val com-
ponent in a binary tree, and the latter maps a function on T over each node
in a binary tree.

Ordered binary trees are defined in the theory obt which takes the value type
T as a parameter, but also takes a second parameter <= which is constrained
(by a subtype restriction) to be a total order (i.e., linear, reflexive, transitive).
In theory obt the natural number instance reduce_nat of the reduce function
can be used to define the size of a binary tree, i.e., the number of nodes in
it, which is then used to provide the termination measure for the ordered?
predicate. The every predicate is used to define the ordered? predicate which
recursively checks that each subtree is ordered and that the values in the left
subtree are no greater than the value at the node, which in turn must be no
greater than the values in the right subtree.

obt [T : TYPE, <= : (total_order?[T])] : THEORY
BEGIN

IMPORTING binary_treel[T]

A, B, C: VAR binary_tree

X, y, z: VAR T

pp: VAR pred[T]

i, j, k: VAR nat

size(A) : nat =
reduce_nat (0, (LAMBDA x, i, j: i + j + 1)) (A)

ordered?(A) : RECURSIVE bool =
(IF node?(A)

THEN (every((LAMBDA y: y<=val(A)), left(A)) AND
every ((LAMBDA y: val(A)<=y), right(A)) AND
ordered?(left(A)) AND ordered?(right(A)))

ELSE TRUE ENDIF)

MEASURE size
END obt

4 Bird’s Fusion Transformation

Bird [1] starts with the example of an applicative quicksort function which he
shows can be obtained as a fusion of the composition of:

(i) amktree function (an anamorphism) which constructs an ordered binary
tree from a given list, and

(ii) a flatten function (a catamorphism) which flattens the ordered binary
tree into an ordered list.

Catamorphisms over binary trees are already captured by the reduce opera-
tion shown earlier. Bird defines anamorphisms in terms of the unfold func-
tion presented below. This definition is not straightforward. In defining this

function, Bird writes that “the recursion is not well-defined unless f is ‘well-
founded’ in a suitable sense that we will not make precise.” The PVS definition
below does make this notion of well-foundedness precise through the use of
subtyping and dependent typing. The subtype smaller(x) of the type S con-
tains all and only those y in S such that size(y) < size(x), where < is the
usual ordering on natural numbers.® Given a predicate p over the type S, we
write (p) for the subtype containing all the elements x of S such that p(x)
holds. The dependent function type well fnd(p) contains functions whose
domain is (p) and that map an x in (p) to an element of the 3-tuple [T,
smaller(x), smaller(x)].

unfold [T, S: TYPE, size : [S -> nat]] : THEORY

BEGIN
IMPORTING binary_treel[T]

p : VAR PRED[S]
X, y, z : VAR S
a : VART

smaller(x) : TYPE = { y | size(y) < size(x)}

well_fnd(p) : TYPE =
[x : (p) -> [T, smaller(x), smaller(x)]]

unfold(p, (£f: well_fnd(p))) (x)
RECURSIVE binary_tree =
(IF p(x)
THEN (LET (a, y, z) = f(x)
IN node(a,
unfold(p, f)(y),
unfold(p, £)(z)))
ELSE leaf ENDIF)
MEASURE size(x)

END unfold

The curried recursive function unfold takes as arguments a predicate p and
a function f in well_fnd(p). It returns a function which when applied to an
x satisfying p, computes the triple (a, y, z) using f(x), and then returns
the node constructed from the value a, the left subtree unfold(p, f) (y),
and the right subtree unfold(p, f)(z). In the base case when p(x) is false,
unfold returns the leaf node leaf. When typechecked, the theory generates
two termination TCC proof obligations that are automatically proved by the
default TCC proof strategy.

3 The specification of unfold can easily be modified to use any well-founded or-
dering instead of the less-than relation on natural numbers.

The fusion theorem is stated and proved in the theory fusion below. The
fusion theory is parametric in the binary tree value type T, the domain type
S of the unfold operation, and the range type Range of the reduce operation.
The parameter size serves the same role here as in the unfold theory. We
have already seen that reduce(c, g)(A) is defined to return ¢ when A is
leaf, and g(a, reduce(c, g)(B), reduce(c, g)(C)) when A is of the form
node(a, B, C). The fusion theorem asserts that the composition of reduce
and unfold, namely, reduce(c, g)(unfold(p, f)(x)) which involves two
recursive passes can be reduced to a single recursion given by the definition of
fun below. As with unfold, there are two termination TCC proof obligations
associated with fun that are easily discharged by the default proof strategy.

fusion [T, S, Range: TYPE, size : [S -> nat]] : THEORY

BEGIN

IMPORTING unfold[T, S, sizel

p : VAR PRED[S]

X, y, z : VAR S

c : VAR Range

g: VAR [T, Range, Range -> Rangel

a: VAR T

fun(p, (f : well_fnd(p)), c, g)(x)
RECURSIVE Range =
(IF p(x)
THEN (LET (a, y, z) = £(x)
IN g(a, fun(p, f, c, g)(y),
fun(p, £, c, g)(=2)))
ELSE c ENDIF)
MEASURE size(x)

END fusion

The fusion theorem stated below states the equivalence between the com-
position of reduce with unfold and the fused version fun. The PVS proof
of fusion proceeds by a straightforward measure induction on the measure
size(x) and is in fact proved by a single command that invokes the measure
induction strategy. Due to space restrictions, we do not outline the details of
this and other proofs in the paper.

fusion: THEOREM
(FORALL (p, (f: well_fnd(p)), c, g, x):
reduce(c, g) (unfold(p, £)(x))
= fun(p, £, c, g)(x))

The next step in the development is that of applying the fusion theorem
to derive quicksort as a fusion of flatten and mktree, where the latter
constructs an ordered binary tree from a given list of elements, and the former
constructs a list by an in-order traversal of the resulting tree. The rest of the

10

development of this example is carried out in the theory treesort partially
displayed below. This theory takes a parameter list that is identical to that of
ordered binary tree theory obt. The theory imports the fusion theory with
the PVS datatype 1ist[T] as the actual parameter for both S and Range.
The flatten operation is defined as a catamorphism.

treesort [T: TYPE, <= : (total_order?[T])]: THEORY
BEGIN
IMPORTING fusion[T, list[T], 1ist[T], length[T]], obt[T, <=]
A, B, C : VAR binary_treel[T]
X, ¥, z : VAR 1list[T]
a, b, c : VAR T
P, q : VAR PRED[T]

flatten(A) : list[T] =

reduce (null[T],
(LAMBDA a, x, y: append(x, cons(a, y))))(A)

END treesort

A few more preliminary definitions and lemmas are needed. The curried pred-
icate below(a) (b) asserts that b is below a in the ordering <=, and similarly,
above(a) (b) asserts that a is above b. The PVS prelude which contains a
number of basic theories already defines the filter operation to return a list
of those elements in a given list that satisfy a given predicate. The lemmas
length_append, length filter, and filter_length are self-evident.

below(a) (b): bool (b <= a)

above(a) (b): bool NOT (b <= a)

length_append: LEMMA length(append(x, y)) = length(x) + length(y)

length_filter: LEMMA
(FORALL (p: PRED[T]): length(filter(x, p)) <= length(x))

filter_length: LEMMA
length(filter(x, below(a)))
= length(x) - length(filter(x, above(a)))

The definition of mktree is given as an anamorphism and is defined using
unfold. The function unjoin constructs the triple consisting of the first ele-
ment of the input list, the list of elements below it in the rest of the input list,
and the list of elements above it.

11

unjoin: well_fnd(cons?[T]) =
(LAMBDA (x: (comns?[T])):
(LET a = car(x),
y = cdr(x)
IN
(a, filter(y, below(a)), filter(y, above(a)))))

mktree(x) : binary_tree[T] =
unfold(cons?, unjoin) (x)

The quicksort operation can also be directly defined by means of the recur-
sion shown below. This is of course essentially the same definition one would
obtain by applying the fusion theorem. This fact is proved by the theorem
quicksort_by_fusion. The PVS proof of this theorem consists of a step in
which the fusion theorem is used to rephrase the right-hand side in terms of
fun, and a second in which the measure induction strategy is used to prove
the resulting equality. This results in three trivial subgoals that are proved by
applying the lemma length filter.

quicksort(x): RECURSIVE 1ist[T] =
(CASES x OF
null : null,
cons(a, y) : append(quicksort(filter(y, below(a))),
cons(a, quicksort(filter(y, above(a)))))
ENDCASES)
MEASURE length(x)

quicksort_by_fusion: THEOREM
quicksort(x) = flatten(mktree(x))

As one can see, the progress up to this point has been pretty smooth in the
sense that it has been easy to capture the letter and spirit of Bird’s definitions
and the proofs have been essentially trivial given the automation available
in PVS. However, the story takes a somewhat disappointing turn when one
tries to show that quicksort returns an ordered permutation of its input by
using its “specification”, namely, flatten(mktree(x)). Bird loosely sketches
an algebraic argument along such lines. We did not try to flesh out Bird’s
argument but instead proceeded along conventional lines. These proofs were
not as straightforward as one might hope. The lemmas filter _every and
every_filter are proved in a single step.

filter_every: LEMMA every(p, filter(x, p))

every_filter: LEMMA every(p, x) IMPLIES every(p, filter(x, q))

The lemmas every mktree and every mktree_implies are also essentially
trivial and proved in about five steps apiece. The assertion that mktree always
constructs an ordered binary tree is stated as ordered? mktree below. This

12

proof takes up about a dozen steps: the bulk of the work is completed by the
measure induction strategy with the assistance of every_mktree, but the part
involving the right branch of the mktree requires the explicit use of the lemma
every mktree_implies and the linearity of the ordering relation <= given by
the type constraint on it.

every_mktree: LEMMA
every(p, x) IMPLIES
every(p, unfold(cons?, unjoin) (x))

every_mktree_implies: LEMMA
(FORALL (p, q : PRED[TI]):
(FORALL a: p(a) IMPLIES q(a)) AND
every(p, x)
IMPLIES every(q, unfold(cons?, unjoin) (x)))

ordered?_mktree: LEMMA ordered? (mktree(x))

It remains to show that the result of quicksort is ordered by showing that
flatten maps an ordered binary tree to an ordered list. This theorem is
stated as ordered? flatten below. It is proved in a single step using the
standard PVS induction strategy and the lemmas ordered?_append and
every_flatten. The lemma ordered?_append took up the most effort since it
makes a fairly strong assertion of equivalence, and requires a nested induction.
The verification of this proof had to be carried out at a fairly manual level
and required about fifty interactions.

ordered?_append: LEMMA
ordered? (append(x, cons(a, y))) =
(ordered?(x) AND
ordered?(y) AND
every((LAMBDA b: b <= a), x) AND
every ((LAMBDA b: a <= b), y))

The lemmas every_flatten and every_append were easily proved in a single
step each. Observe that it would have been slightly easier to directly prove
the orderedness property of quicksort since the lemma ordered?_append is
the key result needed for this proof.

4 Healfdene Goguen has been able to simplify this argument by using a definition
of ordered? that is closer to the corresponding definition over binary trees. This
definition checks that the first element in a list lies below all the remaining elements,
rather than just the second element as done above, and thus avoids the awkwardness
of checking whether a second element exists.

13

every_append: LEMMA
every(p, append(x, y)) = (every(p, x) AND every(p, y))

every_flatten: LEMMA
checkall(p, A) = every(p, flatten(A))

ordered?_flatten: LEMMA ordered?(flatten(A)) = ordered?(A)

The property that quicksort returns a permutation of its input list is stated
as count_quicksort below and proved directly of the quicksort function it-
self. It asserts that the number of occurrences of any element a in the input and
output lists agree. This proof is straightforward and uses the measure induc-
tion strategy and the lemmas length_append, count_filter, count_append,
filter_length, and length filter. These lemmas are proved trivially.

count(a, x): RECURSIVE nat =
(CASES x OF
null: O,
cons(b, y):
IF a = b THEN 1 + count(a, y) ELSE count(a, y) ENDIF
ENDCASES)
MEASURE length(x)

count_filter: LEMMA
count(a, filter(x, p)) =
(IF p(a) THEN count(a, x) ELSE O ENDIF)

count_append: LEMMA
count (a, append(x, y))

count(a, x) + count(a, y)

count_quicksort: THEOREM
count(a, quicksort(x))

count(a, x)

The main observation here is that the transformation steps were easily for-
malized and mechanically verified in PVS, but the correctness proof required
a large number of lemmas. Though these lemmas were proved trivially, the
overall effort involved was surprisingly large. This seems to suggest that the
source of the transformation, flatten(mktree (x)), is not as close to the spec-
ification of sorting as one might hope. Even so, the fusion transformation is a
significant one since it frequently is the case that a good specification can be
obtained by composing two operations using an intermediate data structure.
As a simple example, consider the case of checking if a given variable has
a free occurrence in a term by constructing the intermediate data structure
consisting of the list of free variables in the term and then applying a list
membership test.

14

5 Continuation-Based Program Transformation

Transforming non-tail-recursive functions to tail-recursive (iterative) form is
one of the basic forms of program transformation. Wand [23] describes a pow-
erful technique for such transformations where the non-tail-recursive part of
the program is captured as a continuation, and the pattern of these continua-
tions is used to convert the continuation into a data structure. This is perhaps
one of the most ubiquitously used optimizations in algorithm design. We show
how Wand’s technique can be formalized using PVS. Consider the example of
the list reverse operation. This is defined in the PVS prelude library as shown
below, where 1 is a variable ranging over 1ist [T].

reverse(l): RECURSIVE 1ist[T] =
CASES 1 OF
null: 1,
cons(x, y): append(reverse(y), cons(x, null))
ENDCASES
MEASURE length

This definition is not tail-recursive because the recursive call to reverse is
surrounded by the template append (..., cons(x, null)). By viewing this
part as a continuation and adding it as an extra argument, we can convert
reverse into a tail-recursive operation with an extra continuation argument.

revc(l, f): RECURSIVE list[T] =
CASES 1 OF
null: £(1),
cons(x, y):
revc(y, (LAMBDA u: f(append(u, cons(x, null)))))
ENDCASES
MEASURE length

It is easy to confirm that revc(1l, f) = f(reverse(l)), and hence if id is
the identity operation on lists, then reverse (1) can be computed by revc (1,
id). It is also easy to observe that the continuations have the pattern

(LAMBDA u: f(append(... append(u, cons(x_n, null)),
., cons(x_1, null)))).

By the associativity of append and by its definition, this is just (LAMBDA u:
f (append(u, cons(x,, ..., cons(x;, null))))). This continuation can
be easily reconstructed from the list cons(x,,, ..., cons(x;, null)). Hence
revc can be transformed to the following definition of reva where the contin-
uation has been replaced by an accumulator.

15

reva(l, w): RECURSIVE 1list[T] =
CASES 1 OF
null: w
cons(x, y):
reva(y, cons(x, w))
ENDCASES
MEASURE length

The relation between revc and reva is
reva(l, w) = revc(l, (LAMBDA u: append(u, w))),

so that reverse(1) = reva(l, null). As shown by Wand, the sequence of
steps shown above for the case of the reverse function can be generalized. We
present the PVS mechanization of this generalization below. The theory wand
shown below takes nine theory parameters. The parameters dom and rng are
the domain and range types of the recursive function being transformed. This
function is also supplied as the parameter F. The definition of F involves the use
of the parameter p as the branching condition for the recursion, the parameter
a in the base case, and the parameters d, b, and ¢ in the recursion step. The
parameter b is the continuation-builder, ¢ is the recursion destructor, and d is
the recursion parameter. The parameter m supplies the well-founded measure
for the recursion. The measure yields a natural number but this can easily be
generalized to an arbitrary type equipped with a well-founded relation.

wand [dom, rng: TYPE, hfunction domain, range

a: [dom -> rngl, hbase case function
d: [dom-> rng], hrecursion parameter
b: [rng, rng -> rngl, Ycontinuation builder
c: [dom -> dom], %recursion destructor
p: PRED[dom], %branch predicate
m: [dom -> nat], %termination measure
F : [dom -> rng]] htail-recursive function

: THEORY

BEGIN

ASSUMING

ENDASSUMING

END wand

There are three important assumptions on the theory parameters for wand. The
first assumption assoc asserts the associativity of the continuation-builder b.
The second assumption wf asserts that the destructor ¢ must decrease the
measure on any x where predicate p is false. The final assumption F_def asserts
that F is given by the non-tail-recursive definition using the parameters p, a,
b, ¢, and d.

16

u, v, w: VAR rng
assoc: ASSUMPTION b(b(u, v), w) = b(u, b(v, w))

X, y, z: VAR dom
wf : ASSUMPTION NOT p(x) IMPLIES m(c(x)) < m(x)
F_def: ASSUMPTION

F(x) =
(IF p(x) THEN a(x) ELSE b(F(c(x)), d(x)) ENDIF)

The continuation-passing variant of F is defined as FC. The main invariant
relating F and FC is proved as FFC. The theorem FFC can be proved in a single
step using the measure induction strategy.

f: VAR [rng -> rng]

FC(x, f) : RECURSIVE rng =
(IF p(x)
THEN f(a(x))
ELSE FC(c(x), (LAMBDA u: f(b(u, d(x)))))
ENDIF)
MEASURE m(x)

FFC: LEMMA FC(x, f) = £(F(x))

The accumulator version of F is given by the function FA. The main invariant
relating FC and FA is proved as FAFC. This theorem is also proved in a single
measure induction step.

FA(x, u): RECURSIVE rng =
(IF p(x)
THEN b(a(x), u)
ELSE FA(c(x), b(d(x), u)) ENDIF)
MEASURE m(x)

FAFC: LEMMA FA(x, u) = FC(x, (LAMBDA w: b(w, u)))

Finally, we can apply this transformation to the non-tail-recursive reverse
function to obtain the tail-recursive accumulator version. This step is carried
out in the theory reverse shown below.5 The first declaration in this theory
introduces a conversion so that a list operation that is defined only on the
domain (cons?) (namely on conses) is converted to an operation on all lists
where the value null is returned on null. The next declaration imports and
renames (as reverse_wand) the theory wand with 1ist[T] for dom, 1ist[T]

5 PVS allows considerable leeway in the overloading of names so that we can have
both a theory and a function named reverse.

17

for rng, the list identity operation id[1ist [T]] for a, the expression (LAMBDA
(x: (cons?[T])): cons(car(x), null))®, append for b, cdr for ¢, null
for p, 1length for m, and reverse for F. This declaration generates three TCCs
corresponding to the instances of each of the three assumptions in the theory
wand. The associativity assumption on append is already proved in the prelude,
and is, in any case, an easy induction. The remaining two TCCs are proved
automatically by the default TCC strategy. It is easy then to prove that the
function FA in the theory reverse_wand can be used to compute reverse as
shown in tail reverse.

reverse [T : TYPE]: THEORY
BEGIN
CONVERSION extend[list[T], (cons?[T]), 1list[T], null[T]]

reverse_wand: THEQORY =
wand [1ist[T], list[T], id[1list[T]1],
(LAMBDA (x: (cons?[T])): cons(car(x), null)),
append[T], cdr[T],
null?[T], length[T], reversel[T]]
u, x, y, z: VAR list[T]

tail_reverse: LEMMA FA(x, u) = append(reverse(x), u)

END reverse

5.1 Transforming Binary Recursive Schemes

Wand [23] presents several extensions of the above transformation of linear
recursive definitions to other nonlinear forms of recursion. We round off our
presentation of continuation-based transformation in PVS by illustrating how
binary tree recursion schemes can be similarly transformed into iterative form.
The theory binary below has some of the same parameters as wand. As with
wand, dom and rng are the domain and range of the recursive function, F is
the recursive function to be transformed, a is the function used in defining the
base case, b is the continuation builder, p is the branching conditional for the
recursion, and m is the termination measure. The main difference from wand
is that the destructor ¢ has been replaced by a pair of destructors 1 (for left)
and r (for right), and the recursion parameter d has been eliminated.

6 The domain subtyping (cons?[T]) of the lambda-abstraction is needed to make
it type-correct to invoke car(x). The conversion extend is then automatically in-
troduced to extend this operation to null lists as well.

18

binary [dom, rng: TYPE, %#function domain, range

a: [dom -> rngl, hbase case function
b: [rng, rng -> rngl, %continuation builder
1: [dom -> dom], %recursion destructor
r: [dom -> dom], %recursion destructor
p: PRED[dom], %branch predicate
m: [dom -> nat], %termination measure
F : [dom -> rng]] Jhnon-tail-recursive function

: THEORY

BEGIN

ASSUMING

ENDASSUMING

END binary

There are now six assumptions on the parameters. The first assumption asserts
the associativity of the continuation builder b.

u, v, w: VAR rng

assoc: ASSUMPTION b(b(u, v), w) = b(u, b(v, w))

The assumptions wfl and wfr assert that the measure m decreases with the
destructors 1 and r on any x where p(x) is false. The fourth assumption
states that the measure always returns a positive natural number, and the
fifth assumption states that when p(x) is false, the measure m(x) exceeds the
sum of the measures m(1(x)) and m(r(x)).

X, y, z: VAR dom

wfl : ASSUMPTION NOT p(x) IMPLIES m(1(x)) < m(x)
wfr : ASSUMPTION NOT p(x) IMPLIES m(r(x)) < m(x)
mpos: ASSUMPTION m(x) > O

m_left_right: ASSUMPTION
NOT p(x) IMPLIES m(x) > m(1(x)) + m(r(x))

The sixth assumption introduces the binary recursion scheme characterizing
the parameter F.

F_def: ASSUMPTION
F(x) =
(IF p(x) THEN a(x) ELSE b(F(1(x)), F(r(x))) ENDIF)

The transformation of F to the continuation-passing variant is captured by the
function FC where there is now an additional contination argument f, and the

19

result of the left recursive call is now part of the continuation argument given
to the right recursive call. Lemma FFC captures the main invariant relating
F and FC. It requires an additional constraint relating the contination argu-
ment f with the contination-builder b. The proof of FFC employs the measure
induction proof strategy.

f: VAR [rng -> rng]

FC(x, f) : RECURSIVE rng =
(IF p(x)
THEN f(a(x))
ELSE FC(r(x), (LAMBDA u: b(FC(1(x), f), u)))
ENDIF)
MEASURE m(x)

FFC: LEMMA
(FORALL u, v: f(b(u, v)) = b(f(u), v))
IMPLIES FC(x, f) = f(F(x))

In the next transformation step, the continuation argument f in FC is replaced
by an accumulator argument v in FA. The definition of FA is straightforward.
The main invariant relating FC and FA is stated as FAFC. The proof of this
invariant is also by a single measure induction step.

FA(x, v): RECURSIVE rng =
(IF p(x)
THEN b(v, a(x))
ELSE FA(r(x), FA(1(x), v)) ENDIF)
MEASURE m(x)

FAFC: LEMMA FA(x, v) = FC(x, (LAMBDA w: b(v, w)))

The accumulator passing version FA of F is still not tail-recursive. Wand [23]
presents a further transformation to reduce FA to tail-recursive form. This
“familiar” transformation is that of introducing a stack to save the right re-
cursive calls. The resulting iterative definition is given by FI which takes an
additional stack argument Y. Observe that in the case corresponding to the
base case of FA, there is a further recursive call to FI where the stack argument
Y is popped. Note that the termination argument for FI is nontrivial and the
measure used is the sum of the m(x) and the m(y) for each element y in Y.

20

X, Y: VAR list[dom]

mlist(X): RECURSIVE nat =
(IF cons?(X)
THEN m(car(X)) + mlist(cdr(X))
ELSE 0 ENDIF)
MEASURE length(X)

FI(x, v, Y): RECURSIVE rng =
(IF p(x)
THEN (IF cons?(Y)
THEN FI(car(Y), b(v, a(x)), cdr(Y))
ELSE b(v, a(x))
ENDIF)
ELSE FI(1(x), v, cons(r(x), Y))
ENDIF)
MEASURE (m(x) + mlist(Y))

The invariant relating FA and FI essentially asserts that when the stack Y is
empty, FA and FI coincide. The PVS proof of this lemma is the first nontrivial
proof in the mechanization of these transformations. This proof could not be
carried out automatically in a single command since the quantifier instantia-
tion heuristics used by PVS were not powerful enough, and also several of the
lemmas had to be invoked by hand. This proof required about forty interactive
steps. The reader is invited to try out this proof as an exercise.

The main conclusion is that continuation-based transformations are extremely
powerful and yet easily verified using PVS. Many examples that pose serious
challenges for induction theorem provers [3,4] are often just straightforward in-
stances of such continuation-based transformations. We have formalized these
transformations in a schematic manner so that individual instances of these
transformations can be easily obtained by means of suitable parameter instan-
tiations rather than through the use of clever induction heuristics.

Wand makes heavy use of mutual recursion in writing his programs. PVS
does not admit mutually recursive definitions. Mutual recursion is useful in
an informal development, but is quite unwieldy for a formal approach since it
can be hard to establish the termination of mutually recursive functions, and
their correctness arguments typically involve simultaneous induction. ”

Wand [23] shows how continuation-based transformations can be applied to
nontrivial examples by deriving the alpha-beta form of minimax search from
a naive minimax search algorithm. We did not retrace Wand’s development
steps but instead verified the correspondence between naive minimax search
and alpha-beta search in PVS. This specification makes aggressive use of sub-
typing and dependent typing to constrain the 3 argument to be at least «,

" The SPIKE theorem prover is based on first-order term-rewriting and successfully
mechanizes mutual recursion and simultaneous induction [2].

21

and the search result to lie in the subrange between o and 3. The proof was
only moderately difficult. It involved a fair amount of case analysis but the
potentially laborious aspects of the proof were handled by the decision proce-
dures.

6 Conclusions

We have studied the verification of two specific forms of program transforma-
tion using PVS. The first is a fusion theorem due to Bird [1] that can be used
to eliminate the intermediate data structure in the composition of two recur-
sive functions in order to obtain a more efficient algorithm. We showed how
an applicative quicksort could be derived in this way from the composition of
a tree flattening function with a function that constructs an ordered binary
tree from a list. The mechanical proofs needed to justify the transformation
were essentially trivial, but the functional correctness of the resulting quick-
sort remained a moderately serious challenge regardless of whether the source
or the target of the transformation was used.

The second class of transformations (due to Wand [23]) involves the use of ex-
plicit continuation arguments to transform non-tail-recursive definitions into
tail-recursive form. The mechanical proofs of these transformations were also
mostly trivial. It should also be noted that the manual effort needed to con-
struct and debug these specifications and proofs is quite small: all lemmas, the-
orems, and proof obligations used in this paper were established in about two
or three days. The correspondence between minimax and alpha-beta search
was established in about a day.

The main conclusion of this paper is that although general-purpose verification
systems like PVS are not customized for program transformation, they are al-
ready quite effective at formalizing and verifying the mathematics underlying
these transformations. Both the Bird and the Wand transformations could be
captured at a useful level of abstraction through the use of the parametric
theories. The continuation-based transformations also exploited the assump-
tions on parameters in order to state the associativity and well-foundedness
assumptions. Through the use of predicate subtyping and dependent typing
in PVS, we were able to overcome Bird’s “problem” with well-foundedness
in defining anamorphisms. A versatile proof strategy for measure induction
was developed during the course of this work and it played a crucial role in
automating all but a few of the proofs.

Conversely, program transformation should be based on general-purpose ver-
ification tools, since the mathematical tools needed are much the same as
those used in other forms of verification. We have shown how some impor-
tant transformations can be formalized using the specification tools available
in PVS such as parameterized theories, higher-order logic, predicate subtyp-
ing, dependent typing, and that these transformations can be mechanized

22

using equational, propositional, and quantificational reasoning combined with
arithmetic decision procedures and induction strategies. It will be interesting
to see whether other transformational strategies [15] can also be successfully
formalized.

References

[1] Richard S. Bird. Functional algorithm design. In Bernhard Moller, editor,
Mathematics of Program Construction 95, number 947 in Lecture Notes in
Computer Science, pages 2 17. Springer Verlag, 1995.

[2] Adel Bouhoula. SPIKE: a system for sufficient completeness and parameterized
inductive proofs (system description). In A. Bundy, editor, Automated
Deduction — CADE-12, number 814 in Lecture Notes in Computer Science,
pages 836—840. Springer Verlag, 1994.

[3] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New
York, NY, 1979.

[4] Alan Bundy, Frank van Harmalen, Jane Hesketh, and Alan Smaill. Experiments
with proof plans for induction. Journal of Automated Reasoning, 7(3):303-324,
September 1991.

[5] R. L. Constable, et al. Implementing Mathematics with the Nuprl. Prentice-
Hall, New Jersey, 1986.

[6] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem proving
for hardware verification. In Ramayya Kumar and Thomas Kropf, editors,
Theorem Provers in Circuit Design (TPCD ’94), volume 910 of Lecture Notes in
Computer Science, pages 203—222, Bad Herrenalb, Germany, September 1994.
Springer Verlag.

[7] David Cyrluk, Patrick Lincoln, Steven Miller, Paliath Narendran, Sam Owre,
Sreeranga Ragan, John Rushby, Natarajan Shankar, Jens Ulrik Skakkebaek,
Mandayam Srivas, and Friedrich von Henke. Seven papers on mechanized
formal verification. Technical Report SRI-CSL-95-3, Computer Science
Laboratory, SRI International, Menlo Park, CA; January 1995.

[8] Axel Dold. Representing, verifying and applying software development steps
using the PVS system. In V. S. Alagar and Maurice Nivat, editors, Algebraic
Methodology and Software Technology, AMAST’95, number 936 in Lecture
Notes in Computer Science, pages 431-445, Montreal, Canada, July 1995.
Springer-Verlag.

[9] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1979.

[10] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge University Press,
Cambridge, UK, 1993.

23

[11] Z. Luo and R. Pollack. The LEGO proof development system: A user’s manual.
Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992.

[12] Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5
microprocessor: A case study in the industrial use of formal methods. In WIFT
'95: Workshop on Industrial-Strength Formal Specification Techniques, pages
2-16, Boca Raton, FL, 1995. IEEE Computer Society.

[13] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[14] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions
on Software Engineering, 21(2):107-125, February 1995.

[15] Helmut A. Partsch. Specification and Transformation of Programs: A Formal
Approach to Software Development. Springer Verlag, 1990.

[16] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking
with automated proof checking. In Pierre Wolper, editor, Computer-Aided
Verification, CAV ’95, volume 939 of Lecture Notes in Computer Science, pages
84-97, Liege, Belgium, June 1995. Springer-Verlag.

[17] Sreeranga P. Rajan. Correctness of transformations in high level synthesis. In
Steven D. Johnson, editor, CHDL ’95: 12th Conference on Computer Hardware
Description Languages and their Applications, pages 597-603, Chiba, Japan,
August 1995. Proceedings published in a single volume jointly with ASP-DAC
95, CHDL ’95, and VLSI ’95, IEEE Catalog no. 95TH8102.

[18] Harald Rue. Towards high-level deductive program synthesis based on type
theory. In The Tenth Knowledge-Based Software Engineering Conference, pages
174-183. IEEE Computer Society Press, November 1995.

[19] N. Shankar. Computer-aided computing. In Bernhard Moller, editor,
Mathematics of Program Construction 95, number 947 in Lecture Notes in
Computer Science, pages 50-66. Springer-Verlag, 1995.

[20] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1-12, January 1984.

[21] Douglas R. Smith. KIDS: a semiautomatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024 1043, September 1990.

[22] Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231-248, 1990.

[23] Mitchell Wand. Continuation-based program transformation strategies.
Journal of the ACM, 27(1):164-180, January 1980.

24

