
Abstract and Model Check while you Prove?To be presented at the eleventh International Conference onComputer-Aided Veri�cation (CAV99), Trento, Italy, Jul 7-10, 1999Hassen Sa��di and Natarajan ShankarComputer Science LaboratorySRI InternationalMenlo Park, CA 94025, USAfsaidi,shankarg@csl.sri.comAbstract. The construction of abstractions is essential for reducinglarge or in�nite state systems to small or �nite state systems. Booleanabstractions, where boolean variables replace concrete predicates, arean important class that subsume several abstraction schemes. We showhow boolean abstractions can be constructed simply, e�ciently, and pre-cisely for in�nite state systems while preserving properties in the full�-calculus. We also propose an automatic re�nement algorithm whichre�nes the abstraction until the property is veri�ed or a counterexampleis found. Our algorithm is implemented as a proof rule in the PVS veri�-cation system. With the abstraction proof rule, proof strategies combin-ing deductive proof construction, model checking, and abstraction canbe de�ned entirely within the PVS framework.1 IntroductionWhen verifying temporal properties of reactive systems, algorithmic methodsare used when the problem is decidable, and deductive methods are employed,otherwise. Algorithmic methods such as model checking are limited by the statespace explosion problem. State space reduction techniques such as symbolic rep-resentations, symmetry, and partial order reductions have yielded good resultsbut the state spaces that can be handled in this manner are still quite modest.Deductive methods using theorem proving continue to require a considerableamount of manual guidance. While it is clear that any way out of this impassemust rely on a combination of theorem proving and model checking, speci�cmethodologies are needed to make such a combination work with a reasonabledegree of automation. It is known that abstraction is a key methodology in com-bining deductive and algorithmic techniques. Abstraction can be used to reduceproblems to model-checkable form, where deductive tools are used to construct? This research was supported by the National Science Foundation under Grant Nos.CCR-9509931 and CCR-9712383, and by the Air Force O�ce of Scienti�c ResearchContract No. F49620-95-C0044. We thank our colleagues John Rushby and SamOwre for their helpful comments on earlier versions of this paper.

valid abstract descriptions or to justify that a given abstraction is valid. In thispaper, we propose a practical veri�cation methodology that is, based on a sim-ple, e�cient, and precise form of boolean abstraction generation that preservesproperties in the �-calculus. We extend the boolean abstraction scheme de�nedin [GS97] that uses predicates over concrete variables as abstract variables, toabstract assertions in the rich assertional language of PVS [OSRSC98]. The PVSlanguage admits the de�nition of a �xed point operator that is used to de�ne the�-calculus in PVS [RSS95]. With this de�nition of the �-calculus in PVS, modelchecking implemented as a PVS proof rule can be used as a decision procedure.Our conservative abstraction scheme is implemented as a proof rule thatabstracts any PVS formula over concrete state variables and produces a PVSformula over abstract state variables. Any assertion expressing a general or tem-poral property of a concrete PVS speci�cation is abstracted into a stronger as-sertion expressing a property over the corresponding abstract speci�cation. Theresulting abstract assertion is in a decidable logic, and decision procedures suchas model checking can be used to discharge it.Unlike previous work for the automatic abstraction of in�nite state systemsusing decision procedures [GS97,CU98,BLO98], our algorithm does not alwaysover-approximate the transition relation as is done to preserve only universallyquanti�ed path temporal formulas in logics such as 8CTL. Extensions of thepreservation results [DGG94,CGL94] to the more expressive logic CTL� are de-�ned using the notion of mixed abstraction which involves multiple next-staterelations. Our algorithm abstracts a �-calculus formula which is not tied to asingle transition system. Thus, no distinction is made between universal andexistential fragments. The integration of our abstraction algorithm as a PVSproof rule allows us to design powerful proof strategies combining abstract in-terpretation, model checking and proof checking. We also propose an automaticabstraction re�nement algorithm that is applied when model checking fails. Thisis done by automatically enriching the abstract state with new relevant predi-cates until the property is proved or a counterexample is found.The paper is organized as follows. In Section 2 we show how boolean ab-stractions can be de�ned in PVS. In Section 3, we present an e�cient abstrac-tion algorithm for the computation of the \most precise" abstraction of a givenboolean abstraction of a predicate over concrete state variables. In Section 4, wegeneralize this algorithm to abstract any PVS assertion, including �-calculus for-mulas over concrete state variables into assertions over abstract state variables.In Section 5, we present the re�nement algorithm.2 Boolean Abstractions in PVSPropositional �-calculus is an extension of propositional calculus that includespredicates de�ned by means of least and greatest �xed point operators, � and �,respectively. It is strictly more expressive than CTL� which includes both linearand branching time temporal logics such as LTL and CTL. In [RSS95] a detailed2

description of the encoding of the propositional �-calculus in PVS is presented.The least �xed point operator is de�ned as �(F) = Tfx j F (x) � xg, thepredicate that is the greatest lower bound of the pre-�xed points of a monotonepredicate transformer F . The temporal operators of CTL, such as AG, AF,EG, and EF, can be easily de�ned using their �xed-point characterizations.When the state space is �nite, the predicates can be coded in boolean formand model checking of �-calculus formulas can be done using binary decisiondiagrams (BDDs).As a simple example, we consider a simple protocol where two processes arecompeting to enter a critical section in mutual exclusion using a semaphore. ThePVS theory describing the protocol is given as follows.semaphore : THEORYBEGINIMPORTING MU@ctlopslocation : TYPE = {idle, wait, critical}state : TYPE = [# pc1,pc2:location , sem: int #]s,s1,s2 : VAR stateinit(s) : bool= pc1(s)=idle and pc2(s)=idle and sem(s)=1N(s1,s2) : bool = ...safe: THEOREMinit(s) IMPLIESAG(N, LAMBDA s: NOT (critical?(pc1(s)) ANDcritical?(pc2(s))))(s)END semaphoreThe state is given as a record consisting of two program counters and a semaphoresem. The expression N(s1,s2) is transition relation of the protocol. We are in-terested in proving that both processes have mutually exclusive access to thecritical section. The property safe is expressed as a CTL property using theusual operator AG, which is translated into a �-calculus property. When thestate type is �nite, the property can be veri�ed using model checking[RSS95].In this simple example, sem is of type integer and cannot be encoded with a�nite number of boolean variables and hence the property cannot be directlymodel checked. We propose to extend the capabilities of PVS with a booleanabstraction mechanism that can conservatively reduce a �-calculus property ofan in�nite state system to model checkable form. In this abstraction, certainpredicates at the concrete level (that might be used in guards, expressions, orproperties) can be replaced by abstract boolean variables. This gives us a gen-eral method for constructing abstractions by evaluating any predicate over thevariables of the program. Since the set of boolean variables is �nite, so is theset of abstract states. Boolean abstraction is de�ned using a set of predicatesof the form �(s : state) : '(s) over the concrete state type state. An ab-straction of the mutual exclusion protocol can be de�ned using two predicates3

�(s) : sem(s) � 0 and �(s) : sem(s) > 0. These predicates de�ne an abstractstate typeabs state : type = [# pc1; pc2 : location;B1;B2 : boolean#]where the state components pc1 and pc2 are of �nite type and therefore arenot abstracted, and the state component sem referenced by the two predicatesde�ning the abstraction is encoded with two boolean components B1 and B2corresponding to the two predicates. In this particular example, these two pred-icates happen to be exclusive, but boolean abstractions can be de�ned moregenerally with an arbitrary set of predicates over the concrete state type.3 E�cient Computation of Boolean AbstractionsAbstract interpretation [CC77] is the general framework for de�ning abstractionsusing Galois connections1. The domain of the abstraction function � consists ofsets of concrete states, represented by predicates, and ordered by implication.The range of the abstraction consists of boolean formulas constructed using theboolean variables B1; � � � ; Bk, ordered by implication. If X ranges over sets ofconcrete states and Y ranges over boolean formulas in B1; � � � ; Bk, then theabstraction and concretization function � and
 have the following properties:{ �(X) =^fY j X)
(Y)g,{
(Y) =_fX j �(X)) Y g.However, we use a simpler and precise concretization function
 which consistssimply in substituting each abstract variable Bi by its corresponding predicate'i, and each abstract state variable abs s by the corresponding concrete statevariable s. That is
(Y) = Y ['i(s)=Bi(abs s)]:We propose to apply boolean abstractions to any predicate (assertion ortransition relation) written in a rich assertional language.Abstraction of assertions. For any predicate P over the concrete variables,the abstraction �(P) of P can be computed as the conjunction of all booleanexpressions b satisfying the condition:P)
(b) (1)1 A Galois connection is a pair (�;
) de�ning a mapping between a concrete domainlattice }(Q) and an abstract domain lattice }(QA), where � and
 are two monotonicfunctions such that 8(P1; P2) 2 }(Q)� }(QA): �(P1) � P2 , P1 �
(P2).4

Note that there are 22k distinct boolean truth functions in k variables, andtesting all of these could become very expensive. This set is designated as theset of test points. An abstraction is precise with respect to the considered abstractlattice, if the set of test points is the entire set of the boolean expressions formingthe abstract lattice. Any over-approximation of the �(P) can be computed witha smaller set of test points for which the implication (1) must be valid. Forexample, in [GS97], the abstract lattice considered is the lattice of monomials2over the set of boolean variables. In this case, it is not necessary to prove (1) forall the monomials over the set fB1; � � � ; Bkg, but only for the atoms B1; � � � ; Bkand their negations. We can e�ciently compute �(P) for any predicate P bychoosing the abstract space as the whole boolean algebra over B or by choosinga sub-lattice of B and the corresponding test points, using the following fact:Theorem 1. Let B = fB1; � � � ; Bkg be a set of boolean variables, and let BAbe the boolean algebra de�ned by the structure < B;^;_;:; true; false >. LetDB be the subset of BA containing only literals3 and disjunctions of literals. Tocompute the most precise image by � of any set of concrete states P (given as apredicate), it is su�cient to consider as a set of test points, the set DB insteadof the whole set BA of boolean expressions. That is, testingP)
(b)for all boolean expressions in BA is equivalent to test this implication only for bin DB. That is, 22k tests can be reduced to at most only 3k � 1 tests.Proof. We consider the fact that each boolean expression b can be writtenin a conjunctive normal form d1 ^ � � � ^ dj , where each di is a disjunction ofliterals. Thus, the proof of the implication (1) for each element b can be �rstdecomposed to simpler proofs P)
(di). This implication can be proved foreach di by �rst testing one disjunct, that is a literal, or more than one disjunctif necessary. That is, only for disjunctions in DB .This theorem gives us an e�cient way of computing precise abstractions byreducing the set of proof obligations from 22K , the number of elements of BA,to only 3k � 1, the number of elements of the smaller set DB , and also gives usan order in which the proof obligations should be generated and proved. In fact,when the set of predicates f'1; � � � ; 'kg is properly chosen, the actual numberof tests is far fewer than 3k � 1. When a proof for any element bi of the set DBsucceeds or fails, then the number of tests will decrease due to the fact that formany elements bj of DB , the test is redundant due to subsumption. Figure 1(a)shows how the image by � of a set P (s) of concrete states is computed. Thevariable � is initialized to true. The variable fail consists of the set of elementsof DB that have not been proved to be in the abstraction of P . The set fail is2 Monomial are the expressions ^i2f1���kgbi where each bi is either Bi or :Bi.3 A literal is either a boolean variable Bi or its negation :Bi5

�+(P (s); C)Initialization� := TRUE;fail := ;;i := 1;Iterationwhile i < k doD := disjuncts(i; �);while D 6= ; dolet b = choose in D inremove b from DIf :(� ^ b 2 fail)ThenIf ` P (s) ^ C)
(b)Then � := � ^ bElse fail := fail [bElse skipodi := i+ 1odreturn �

�+(P (s1; s2); C)Initialization� := TRUE;fail := fFALSEg;i := 1; j := 1;Iterationwhile j < k doC := conjuncts(j; �);while i < k doD := disjuncts(i; �);while D 6= ; ^ C 6= ; dolet (b1; b2) = choose in C � D inIf :(� ^ (b1) b2) 2 fail)ThenIf ` P (s1; s2) ^ C ^
(b1))
(b2)Then � := � ^ (b1) b2)Else fail := fail [(b1) b2)Else skip:::return �(a) (b)Fig. 1. E�cient computation of �(P)initially just the singleton fFALSEg. It is assumed that there has already been aprior check to ensure that P (s)^C is not equivalent to FALSE. The constructionstarts by using disjunctions of length 1, i.e., the literals Bi and :Bi for b. Theliterals b for which the proof obligation P (s))
(b) succeeds, are added to �. Ateach iteration, when such a proof succeeds, it is possible to eliminate from thecurrent set of test points the elements for which the test is no longer necessary.This is done by the test � ^ b 2 fail . For instance, in the �rst iteration whenwe consider only literals, if the proof succeeds for Bi, it is not necessary totest :Bi. The test for :Bi can only fail, otherwise, both :Bi and Bi would beadded to �, and �(P) would be equivalent to FALSE. In the next iteration, thetest points that are disjunctions of two literals and not already subsumed by thedisjunctions in �, are considered. Once again, the successful test points are addedto �, i is incremented and the iteration is repeated for disjunctions of length i.The image � of a set of concrete states is computed incrementally and canbe interrupted at any moment, providing an over-approximation of the preciseimage. Furthermore, we use additional heuristics to avoid unnecessary tests. Forinstance, if the intersection of the set of free variables of P and those of
(Bi) isempty, it is not necessary to consider the boolean expressions constructed usingBi. 6

Abstraction of a Transition Relation. Transitions are expressed as generalassertions over a pair of concrete states (s1; s2). The abstraction of a pred-icate P (s1; s2) describing such a transition relation is de�ned as a predicateB(abs s1; abs s2) over the abstract pair (abs s1; abs s2). Figure 1(b) shows howa concrete predicate P (s1; s2) representing a transition relation is abstracted.The algorithm constructs a transition relation over the variables fB1; � � � ; B2kgby constraining the current and the next abstract states. This is done by consid-ering as set of test points the set of implications b1) b2, where b1 and b2 repre-sent formulas in the current and the next abstract state variables, respectively.Again, the abstraction of P is computed incrementally by �rst constraining thenext state, that is by enumerating the disjunctions b2. When all the proofs failfor a given choice of b1, the current state is constrained by considering a longerconjunction for b1. Consider for instance the expressions2 = s1with [sem := sem(s1) + 1]:This assertion over a pair of concrete state variables (s2; s2) of type state isabstracted with respect to the predicates �(s) : sem(s) � 0 and �(s) : sem(s) >0 to the following assertion over a pair of abstract state variables (abs s1; abs s2)of type abs state:(B1(abs s1)) (B1(abs s2) _ B2(abs s2)))^ (B2(abs s1)) B2(abs s2))^ (:B2(abs s1)) (:B2(abs s2) _ :B1(abs s2)) ^ (B1(abs s2) _B2(abs s2)))^ (:B1(abs s1)) B2(abs s2) ^ :B1(abs s2)):4 Abstract Interpretation as a Proof RuleOur abstraction algorithm computes the most precise over-approximation of anassertion over concrete states, using a validity checker for the generated asser-tions. We implemented this algorithm in the PVS veri�cation system as a prim-itive proof rule. Our goal is to approximate a PVS formula over concrete statevariables, that is a PVS boolean expression, by a formula over abstract statevariables. This generated theorem is stronger than the original one. However,it is expressed in a decidable theory that can be handled by model-checking,BDD simpli�cation, or the ground decision procedures available in PVS. To doso, we generalize the abstraction algorithm de�ned in [PH97] for the �-calculusto the PVS assertion language and we use our abstraction algorithm to ap-proximate assertions. This algorithm abstracts propositional �-calculus formu-las using over-approximation of predicates and under-approximation of negatedpredicates. Under-approximation of an assertion is de�ned as follows:��(P (s)) = _fb j
(b)) P (s)gWe use only the over-approximation algorithm relying on the following lemma.7

Lemma 1. Let ' a predicate de�ning a set of states. For all predicate '�+(:'(s)) , :��('(s)):We now formally de�ne the abstraction function [[]]� which approximates a PVSboolean expression f such that, [[f]]+ denotes an over approximation of f , and[[f]]� an under approximation of f . We also use a context c consisting of aPVS formula that is valid at the PVS subformula that is being approximated.The intuition behind using such a context expression is that when an expressione1 ^ e2 is being abstracted, one can assume that e1 is valid when abstracting e2and vice-versa. The context when omitted is just the boolean constant TRUE .[[f]]�c denotes the approximation of f under the context c.Approximation of PVS assertions. The abstraction function [[]] is de�ned re-cursively on the structure of the PVS assertion language as follows.propositions : [[e1 ^ e2]]�c �! [[e1]]�c^e2 ^ [[e2]]�c^e1[[:e]]�c �! :[[e]]��cquanti�ers : [[9(s) : e]]�c �! 9(abs s) : [[e]]�c[[8(s) : e]]�c �! 8(abs s) : [[e]]�c[[�(s) : e]]�c �! �(abs s) : [[e]]�c�xpoints : [[�=�(�(Q) : F(Q))]]�c �! �=�(�(abs Q) : [[F(Q)]]�c)atoms : [[e(s)]]+c �! �+(e(s); c)[[e(s1; s2)]]+c �! �+(e(s1; s2); c)[[e(s)]]�c �! ��(e(s); c)[[e(s1; s2)]]�c �! ��(e(s1; s2); c)[['i(s)]]�c �! Bi(abs s)constants : [[e]]�c �! e if free variables(e) = ;The following theorem establishes the fact that the abstraction provides, respec-tively, an over and under approximation of any PVS boolean expression.Theorem 2. Let f be a PVS assertion, [[]] an abstraction function. We have:` f)
([[f]]+) and `
([[f]]�)) fProof. The proof is established by induction on the structure of the assertionf . It is easy to show that by the de�nitions of �+ and ��, both implicationshold when f is an atom. The other cases can be deduced by monotonicity of thelogical connectives, and the �xed point operators.The soundness of the abstraction function is established by the followingtheorem. 8

Theorem 3 (preservation). Let [[]] be the abstraction function de�ned aboveas a boolean abstraction, and let f be any PVS boolean formula. Then` [[f]]� implies ` fTheorem 2 ensures that for an assertion f , the abstraction algorithm producesa stronger assertion
([[f]]�). Note that ` [[f]]� trivially implies `
([[f]]�),which then justi�es the preservation result of Theorem 3.The abstraction algorithm where a formula f is under-approximated is im-plemented as a PVS proof rule abstract. This atomic proof rule takes a goalgiven by a PVS formula (a �-calculus formula) and a set of state predicates, andtranslates this to a propositional formula (a propositional �-calculus formula)which is returned as a new goal. This goal can be discharged using any otherPVS proof command including BDD simpli�cation and model checking.We have de�ned a PVS proof strategy that carries out a sequence of inferencesteps that simplify goal formulas by rewriting all de�nitions, including constantde�nitions such as the temporal operators of the logic CTL in terms of the �and � operators, and applies the abstraction function on the resulting goal.8 (s : state) :init(s) �:�:� (Q : pred[state]) :(� (u : state) :(:� s ::(critical?(pc1(s))^critical?(pc2(s))))(u)_9 (v : state) :(Q(v) ^N(u; v)))(s)
8 (abs s : abs state) ::[[init(s)]]+_:�:� (abs Q : pred[abs state]) :(� (abs u : abs state) :(:� abs s ::(critical?(pc1(abs s))^critical?(pc2(abs s))))(abs u)_9 (abs v : abs state) :(abs Q(abs v) ^ [[N(u; v)]]+))(abs s)Fig. 2. An example of abstraction for a PVS assertionFigure 2 shows how the �-calculus formula corresponding to the theoremsafe presented in the PVS theory semaphore in Section 2 is approximated. Theproperty of mutual exclusion �(s) : :(critical?(pc1(s)) ^ critical?(pc2(s))) isexpressed as an invariance property. As expected for such properties, the initialstate and the transition relation are over-approximated. For instance, we have[[init(s)]]+ �! idle?(pc1(abs s)) ^ idle?(pc2(abs s)) ^ :B1(abs s) ^B2(abs s)We have tried other examples including a simple snoopy cache-coherenceprotocol with an arbitrary number of processes [Rus97] and a variant of thealternating-bit communication protocol called the bounded retransmission pro-tocol [HS96]. The main invariant of the cache coherence protocol is proved by an9

abstraction de�ned in terms of �ve predicates. The preservation of the invariantis then proved by abstraction and BDD-based propositional simpli�cation.The bounded retransmission protocol is veri�ed using an abstraction alsode�ned in terms of �ve predicates. The construction of the abstract descriptiontakes about 100 seconds in PVS. The resulting abstract assertion is dischargedusing model checking. In contrast, Havelund and Shankar's veri�cation [HS96] ofthis example required 57 invariants to justify the validity of a manually derivedabstraction.5 Re�ning an AbstractionThe abstraction proof rule is used in PVS to generate new goals that depend onlyon �nite state variables. Such goals can be discharged using a PVS proof rulesuch as the BDD simpli�er or the �-calculus simpli�er. However model check-ing on the new goal can fail because the abstraction is too coarse. It is thennecessary to re�ne the abstraction using a richer abstract domain. Since ourabstraction algorithm presented in Section 4 allows us to compute the most pre-cise abstraction with respect the predicates '1; � � � ; 'k, re�ning the abstractionrequires additional predicates. The re�nement algorithm takes as arguments theoriginal PVS assertion f , a new list of predicates 'k+1; � � � ; 'l, and a context ��computed previously. The context �� is a hash-table which associates to eachatom the BDD representing its abstraction, that is the BDD �, and the set failof BDDs. The re�nement algorithm descends through the structure of f andre�nes each sub-formula with the new predicates. The re�nement algorithm issimilar to the algorithm computing �+(P) of Figure 1. However the variables �and fail are initialized with their already computed values. This allows us totake advantage of the success or failure of already executed proofs. The new setof test points is de�ned as the disjunctions formed using the literals Bk+1; � � � ; Bland their negation. This set is augmented with the boolean expressions over theold variables B1; � � � ; Bk for which the proof previously failed. The algorithmreturns a more precise approximation of P .We implemented our abstraction and re�nement algorithms as a proof strat-egy de�ning a semi-decision procedure that abstracts an original PVS formulaand then applies model checking. If model checking fails, the abstraction is re-�ned until model checking succeeds. This strategy is expressed as follows in thePVS strategies language(TRY (THEN (abstract (phi1...phik)) (model-check))(skip)(REPEAT(LET ((� (new-list-of-predicates)))(THEN (refine �) (model-check)))))Our re�nement algorithm tries to eliminate as much of the nondeterminismcreated by the over-approximation of the transition relation as possible. Absence10

of nondeterminism can be easily detected by checking that when the abstractionof a transition �+(P (s1; s2); C) is computed, the index i will never reach a valuegreater than 1. For instance, the abstraction of the assertione(s1; s2) � s2 = s1with [sem := sem(s1) + 1]presented in Section 3 is nondeterministic since it contains the conjunct(B1(abs s1)) (B1(abs s2) _ B2(abs s2)):Re�ning such an abstraction involves translating the predicate characterizingthe next state, that is (B1(abs s2)_B2(abs s2)) into a disjunctive normal form.Then, for each disjunct, the pre-image is computed with respect the concreteassertion e(s1; s2). In this particular case, the pre-images for B1(abs s2) andB2(abs s2) are, respectively, 9(s2) : e(s; s2)^'1(s2) and 9(s2) : e(s; s2)^'2(s2).Their simpli�ed forms are respectively sem(s) < 0 and sem(s) = 0.6 ConclusionWe have presented a general abstraction/re�nement algorithm that preserves thefull �-calculus as the basis for an integration of abstract interpretation, modelchecking, and proof checking. We have implemented this boolean abstractionalgorithm as an extension to the PVS theorem prover. This allows us to de�nepowerful proof strategies combining deductive proof, induction, abstraction, andmodel checking within a single framework. It also allows our abstraction algo-rithm to be used in the framework of a richly expressive speci�cation languageencompassing �nite, in�nite-state, and parametric systems. The computation ofthe abstraction is completely automatic, and uses the PVS decision proceduresto test the generated implications.We are currently investigating cases where it is possible to detect whether aconstructed abstraction strongly preserves fragments of the �-calculus so thatabstract counterexamples yield concrete ones. This is done by �nding su�-cient conditions allowing us to use the various preservation results presentedin [LGS+95,DGG94].The new PVS version includes code generation capabilities, and as futurework, we plan to de�ne abstraction construction in the PVS speci�cation lan-guage, and to automatically extract the code implementing the abstraction op-eration. Such experiments are similar to the ones presented in [vHPPR98] where,for instance, the code implementing a BDD simpli�er is extracted automaticallyfrom its formal speci�cation. 11

References[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of in�nitestate systems compositionally and automatically. In Proceedings of the9th Conference on Computer-Aided Veri�cation, CAV'98, LNCS. SpringerVerlag, June 1998.[CC77] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice modelfor static analysis of programs by construction or approximation of �x-points. In 4th POPL, January 1977.[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and ab-straction. ACM Transactions on Programming Languages and Systems,16(5):1512{1542, September 1994.[CU98] Michael Colon and Thomas Uribe. Generating �nite-state abstractions ofreactive systems using decision procedures. In Proceedings of the 9th Con-ference on Computer-Aided Veri�cation, CAV'98, LNCS. Springer Verlag,June 1998.[DGG94] D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactivesystems: Abstractions preserving 8CTL*, 9CTL* and CTL*. In Ernst-Rudiger Olderog, editor, IFIP Conference PROCOMET'94, pages 561{581,1994.[GS97] S. Graf and H. Sa��di. Construction of abstract state graphs with PVS. InConference on Computer Aided Veri�cation CAV'97, LNCS 1254, SpringerVerlag, 1997.[HS96] Klaus Havelund and N. Shankar. Experiments in theorem proving andmodel checking for protocol veri�cation. In Formal Methods Europe FME'96, number 1051 in Lecture Notes in Computer Science, pages 662{681,Oxford, UK, March 1996. Springer-Verlag.[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Propertypreserving abstractions for the veri�cation of concurrent systems. FormalMethods in System Design, Vol 6, Iss 1, January 1995, 1995.[OSRSC98] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. ThePVS Speci�cation Language. Computer Science Laboratory, SRI Interna-tional, Menlo Park, CA, August 1998.[PH97] A. Pardo and G.D. Hachtel. Automatic abstraction techniques for propo-sitional �-calculus model checking. In Conference on Computer Aided Ver-i�cation CAV'97, LNCS 1254, Springer Verlag, 1997.[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model checkingwith automated proof checking. In Computer-Aided Veri�cation, CAV '95,number 939 in Lecture Notes in Computer Science, Li�ege, Belgium, 1995.Springer-Verlag.[Rus97] John Rushby. Speci�cation, proof checking, and model checking for pro-tocols and distributed systems with PVS. In FORTE/PSTV '97, Osaka,Japan, November 1997.[vHPPR98] Friedrich von Henke, Stephan Pfab, Holger Pfeifer, and Harald Rue�. Casestudies in meta-level theorem proving. In Jim Grundy and Malcolm Newey,editors, Theorem Proving in Higher Order Logics: 11th International Con-ference, TPHOLs '98, volume 1479 of Lecture Notes in Computer Science,pages 461{478, Canberra, Australia, September 1998. Springer-Verlag.12

