Abstract and Model Check while you Prove*

To be presented at the eleventh International Conference on
Computer-Aided Verification (CAV99), Trento, Italy, Jul 7-10, 1999

Hassen Saidi and Natarajan Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA 94025, USA
{saidi,shankar }@csl.sri.com

Abstract. The construction of abstractions is essential for reducing
large or infinite state systems to small or finite state systems. Boolean
abstractions, where boolean variables replace concrete predicates, are
an important class that subsume several abstraction schemes. We show
how boolean abstractions can be constructed simply, efficiently, and pre-
cisely for infinite state systems while preserving properties in the full
p-calculus. We also propose an automatic refinement algorithm which
refines the abstraction until the property is verified or a counterexample
is found. Our algorithm is implemented as a proof rule in the PVS verifi-
cation system. With the abstraction proof rule, proof strategies combin-
ing deductive proof construction, model checking, and abstraction can
be defined entirely within the PVS framework.

1 Introduction

When verifying temporal properties of reactive systems, algorithmic methods
are used when the problem is decidable, and deductive methods are employed,
otherwise. Algorithmic methods such as model checking are limited by the state
space explosion problem. State space reduction techniques such as symbolic rep-
resentations, symmetry, and partial order reductions have yielded good results
but the state spaces that can be handled in this manner are still quite modest.
Deductive methods using theorem proving continue to require a considerable
amount of manual guidance. While it is clear that any way out of this impasse
must rely on a combination of theorem proving and model checking, specific
methodologies are needed to make such a combination work with a reasonable
degree of automation. It is known that abstraction is a key methodology in com-
bining deductive and algorithmic techniques. Abstraction can be used to reduce
problems to model-checkable form, where deductive tools are used to construct

* This research was supported by the National Science Foundation under Grant Nos.
CCR-9509931 and CCR-9712383, and by the Air Force Office of Scientific Research
Contract No. F49620-95-C0044. We thank our colleagues John Rushby and Sam
Owre for their helpful comments on earlier versions of this paper.

valid abstract descriptions or to justify that a given abstraction is valid. In this
paper, we propose a practical verification methodology that is, based on a sim-
ple, efficient, and precise form of boolean abstraction generation that preserves
properties in the p-calculus. We extend the boolean abstraction scheme defined
in [GS97] that uses predicates over concrete variables as abstract variables, to
abstract assertions in the rich assertional language of PVS [OSRSC98]. The PVS
language admits the definition of a fixed point operator that is used to define the
p-calculus in PVS [RSS95]. With this definition of the u-calculus in PVS, model
checking implemented as a PVS proof rule can be used as a decision procedure.

Our conservative abstraction scheme is implemented as a proof rule that
abstracts any PVS formula over concrete state variables and produces a PVS
formula over abstract state variables. Any assertion expressing a general or tem-
poral property of a concrete PVS specification is abstracted into a stronger as-
sertion expressing a property over the corresponding abstract specification. The
resulting abstract assertion is in a decidable logic, and decision procedures such
as model checking can be used to discharge it.

Unlike previous work for the automatic abstraction of infinite state systems
using decision procedures [GS97,CU98 BLO98], our algorithm does not always
over-approximate the transition relation as is done to preserve only universally
quantified path temporal formulas in logics such as YVCTL. Extensions of the
preservation results [DGG94,CGL94] to the more expressive logic CTL* are de-
fined using the notion of mixed abstraction which involves multiple next-state
relations. Our algorithm abstracts a p-calculus formula which is not tied to a
single transition system. Thus, no distinction is made between universal and
existential fragments. The integration of our abstraction algorithm as a PVS
proof rule allows us to design powerful proof strategies combining abstract in-
terpretation, model checking and proof checking. We also propose an automatic
abstraction refinement algorithm that is applied when model checking fails. This
is done by automatically enriching the abstract state with new relevant predi-
cates until the property is proved or a counterexample is found.

The paper is organized as follows. In Section 2 we show how boolean ab-
stractions can be defined in PVS. In Section 3, we present an efficient abstrac-
tion algorithm for the computation of the “most precise” abstraction of a given
boolean abstraction of a predicate over concrete state variables. In Section 4, we
generalize this algorithm to abstract any PVS assertion, including p-calculus for-
mulas over concrete state variables into assertions over abstract state variables.
In Section 5, we present the refinement algorithm.

2 Boolean Abstractions in PVS

Propositional p-calculus is an extension of propositional calculus that includes
predicates defined by means of least and greatest fixed point operators, u and v,
respectively. It is strictly more expressive than CTL* which includes both linear
and branching time temporal logics such as LTL and CTL. In [RSS95] a detailed

description of the encoding of the propositional p-calculus in PVS is presented.
The least fixed point operator is defined as u(F) = ([{z | F(z) C =z}, the
predicate that is the greatest lower bound of the pre-fixed points of a monotone
predicate transformer F. The temporal operators of CTL, such as AG, AF,
EG, and EF, can be easily defined using their fixed-point characterizations.
When the state space is finite, the predicates can be coded in boolean form
and model checking of p-calculus formulas can be done using binary decision
diagrams (BDDs).

As a simple example, we consider a simple protocol where two processes are
competing to enter a critical section in mutual exclusion using a semaphore. The
PVS theory describing the protocol is given as follows.

semaphore : THEORY
BEGIN

IMPORTING MUQctlops

location : TYPE = {idle, wait, critical}

state : TYPE = [# pcl,pc2:location , sem: int #]
s,s1l,s2 : VAR state

init(s) : bool= pcl(s)=idle and pc2(s)=idle and sem(s)=1
N(s1,s2) : bool = ...

safe: THEOREM
init(s) IMPLIES
AG(N, LAMBDA s: NOT (critical?(pci(s)) AND
critical?(pc2(s)))) (s)
END semaphore

The state is given as a record consisting of two program counters and a semaphore
sem. The expression N(s1,s2) is transition relation of the protocol. We are in-
terested in proving that both processes have mutually exclusive access to the
critical section. The property safe is expressed as a CTL property using the
usual operator AG, which is translated into a p-calculus property. When the
state type is finite, the property can be verified using model checking[RSS95].
In this simple example, sem is of type integer and cannot be encoded with a
finite number of boolean variables and hence the property cannot be directly
model checked. We propose to extend the capabilities of PVS with a boolean
abstraction mechanism that can conservatively reduce a p-calculus property of
an infinite state system to model checkable form. In this abstraction, certain
predicates at the concrete level (that might be used in guards, expressions, or
properties) can be replaced by abstract boolean variables. This gives us a gen-
eral method for constructing abstractions by evaluating any predicate over the
variables of the program. Since the set of boolean variables is finite, so is the
set of abstract states. Boolean abstraction is defined using a set of predicates
of the form A(s : state) : ¢(s) over the concrete state type state. An ab-
straction of the mutual exclusion protocol can be defined using two predicates

A(s) : sem(s) < 0 and A(s) : sem(s) > 0. These predicates define an abstract
state type

abs_state : TYPE = [# pcl,pc2: location, B1,B2: boolean#|

where the state components pcl and pc2 are of finite type and therefore are
not abstracted, and the state component sem referenced by the two predicates
defining the abstraction is encoded with two boolean components B1 and B2
corresponding to the two predicates. In this particular example, these two pred-
icates happen to be exclusive, but boolean abstractions can be defined more
generally with an arbitrary set of predicates over the concrete state type.

3 Efficient Computation of Boolean Abstractions

Abstract interpretation [CC77] is the general framework for defining abstractions
using Galois connections!. The domain of the abstraction function a consists of
sets of concrete states, represented by predicates, and ordered by implication.
The range of the abstraction consists of boolean formulas constructed using the
boolean variables By, -, By, ordered by implication. If X ranges over sets of
concrete states and Y ranges over boolean formulas in By, ---, By, then the
abstraction and concretization function « and v have the following properties:

—a(X) =AY | X 57"},

(V) = \V{X [a(X) =Y}

However, we use a simpler and precise concretization function v which consists
simply in substituting each abstract variable B; by its corresponding predicate
i, and each abstract state variable abs_s by the corresponding concrete state
variable s. That is

YY) = Ypi(s)/ Bi(abs_s)].

We propose to apply boolean abstractions to any predicate (assertion or
transition relation) written in a rich assertional language.

Abstraction of assertions. For any predicate P over the concrete variables,
the abstraction «(P) of P can be computed as the conjunction of all boolean
expressions b satisfying the condition:

P = ~(b) (1)

! A Galois connection is a pair («,~) defining a mapping between a concrete domain
lattice p(Q) and an abstract domain lattice p(Q*), where o and + are two monotonic
functions such that V(Pi, P2) € p(Q) x p(Q?). a(P) C P, < Pi Cy(P).

Note that there are 22" distinct boolean truth functions in k variables, and
testing all of these could become very expensive. This set is designated as the
set of test points. An abstraction is precise with respect to the considered abstract
lattice, if the set of test points is the entire set of the boolean expressions forming
the abstract lattice. Any over-approximation of the «(P) can be computed with
a smaller set of test points for which the implication (1) must be valid. For
example, in [GS97], the abstract lattice considered is the lattice of monomials?
over the set of boolean variables. In this case, it is not necessary to prove (1) for
all the monomials over the set {Bj,---, By}, but only for the atoms By, - -, By
and their negations. We can efficiently compute «(P) for any predicate P by
choosing the abstract space as the whole boolean algebra over B or by choosing
a sub-lattice of B and the corresponding test points, using the following fact:

Theorem 1. Let B = {B;,---, By} be a set of boolean variables, and let Ba
be the boolean algebra defined by the structure < B,A\,V,—,true, false >. Let
Dg be the subset of Ba containing only literals® and disjunctions of literals. To
compute the most precise image by a of any set of concrete states P (given as a
predicate), it is sufficient to consider as a set of test points, the set Dp instead
of the whole set B4 of boolean expressions. That is, testing

P = ~(b)

for all boolean expressions in B4 is equivalent to test this implication only for b
in Dp. That is, 22" tests can be reduced to at most only 3¥ — 1 tests.

Proof. We consider the fact that each boolean expression b can be written
in a conjunctive normal form d; A --- A d;, where each d; is a disjunction of
literals. Thus, the proof of the implication (1) for each element b can be first
decomposed to simpler proofs P = 7(d;). This implication can be proved for
each d; by first testing one disjunct, that is a literal, or more than one disjunct
if necessary. That is, only for disjunctions in Dpg. [

This theorem gives us an efficient way of computing precise abstractions by
reducing the set of proof obligations from 22K, the number of elements of B4,
to only 3¥ — 1, the number of elements of the smaller set Dp, and also gives us
an order in which the proof obligations should be generated and proved. In fact,
when the set of predicates {¢1,- -, @k} is properly chosen, the actual number
of tests is far fewer than 3 — 1. When a proof for any element b; of the set Dg
succeeds or fails, then the number of tests will decrease due to the fact that for
many elements b; of Dg, the test is redundant due to subsumption. Figure 1(a)
shows how the image by a of a set P(s) of concrete states is computed. The
variable « is initialized to true. The variable fail consists of the set of elements
of Dp that have not been proved to be in the abstraction of P. The set fail is

2 Monomial are the expressions /\ b; where each b; is either B; or —B;.

i€{l.k}
3 A literal is either a boolean variable B; or its negation —B;

a+(P(s),0) a+(P(s1,52),0)

Initialization Initialization
a:=TRUE; a:=TRUE;
fail := 0; fail .= {FALSE}Y;
=1 1:=1; j:=1;
Iteration Iteration
while ¢ < k do while j < k do
D := disjuncts(i,); C := conjuncts(j, a);
while D # () do while ¢ < k do
let b= choosesin D in D := disjuncts(i, a);
remove b from D while D#D A C# 0 do
If —(aAbE€ fail) let (b1,b2) = choose_in C x D in
Then If —(aA (b1 = b2) € fail)
If FP(s)ANC = 7(b) Then
Then a:=a Ab If + P(s1,82) AC Av(b1) = v(b2)
Else fail := fail Ub Then a:=aA (b1 = b2)
Else skip Else fail := fail U (b1 = b2)
od Else skip
t:=14+1
od return «
return «

(a) (b)

Fig. 1. Efficient computation of a(P)

initially just the singleton { FALSE}. It is assumed that there has already been a
prior check to ensure that P(s)AC is not equivalent to FALSE. The construction
starts by using disjunctions of length 1, i.e., the literals B; and —B; for b. The
literals b for which the proof obligation P(s) = v(b) succeeds, are added to a. At
each iteration, when such a proof succeeds, it is possible to eliminate from the
current set of test points the elements for which the test is no longer necessary.
This is done by the test a A b € fail. For instance, in the first iteration when
we consider only literals, if the proof succeeds for Bj;, it is not necessary to
test —B;. The test for = B; can only fail, otherwise, both =B; and B; would be
added to «, and a(P) would be equivalent to FALSE. In the next iteration, the
test points that are disjunctions of two literals and not already subsumed by the
disjunctions in «, are considered. Once again, the successful test points are added
to a, i is incremented and the iteration is repeated for disjunctions of length i.
The image a of a set of concrete states is computed incrementally and can
be interrupted at any moment, providing an over-approximation of the precise
image. Furthermore, we use additional heuristics to avoid unnecessary tests. For
instance, if the intersection of the set of free variables of P and those of v(B;) is
empty, it is not necessary to consider the boolean expressions constructed using
B;.

Abstraction of a Transition Relation. Transitions are expressed as general
assertions over a pair of concrete states (si,s2). The abstraction of a pred-
icate P(s1,s2) describing such a traunsition relation is defined as a predicate
B(abs_s1,abs_s2) over the abstract pair (abs_si,abs_s2). Figure 1(b) shows how
a concrete predicate P(s1,s2) representing a transition relation is abstracted.
The algorithm constructs a transition relation over the variables {Bj,-- -, Boy}
by constraining the current and the next abstract states. This is done by consid-
ering as set of test points the set of implications b; = by, where b; and b, repre-
sent formulas in the current and the next abstract state variables, respectively.
Again, the abstraction of P is computed incrementally by first constraining the
next state, that is by enumerating the disjunctions by. When all the proofs fail
for a given choice of by, the current state is constrained by considering a longer
conjunction for b;. Consider for instance the expression

S9 = sy WITH [sem := sem(s;) + 1].

This assertion over a pair of concrete state variables (s2,s2) of type state is
abstracted with respect to the predicates A(s) : semn(s) < 0 and A(s) : sem(s) >
0 to the following assertion over a pair of abstract state variables (abs_s1, abs_sa)
of type abs_state:

(By(abs_s1) = (B (abs_s2) V By(abs_s2)))
A (Bs(abs_s1) = Ba(abs_s2))
A (=Ba(abs-s1) = (mBa(abs_s2) V =By (abs_s2)) A (By(abs_s2) V Ba(abs_s3)))
A (=B (abs_s1) = By(abs_sa) A = Bj(abs_s2)).

4 Abstract Interpretation as a Proof Rule

Our abstraction algorithm computes the most precise over-approximation of an
assertion over concrete states, using a validity checker for the generated asser-
tions. We implemented this algorithm in the PVS verification system as a prim-
itive proof rule. Our goal is to approximate a PVS formula over concrete state
variables, that is a PVS boolean expression, by a formula over abstract state
variables. This generated theorem is stronger than the original one. However,
it is expressed in a decidable theory that can be handled by model-checking,
BDD simplification, or the ground decision procedures available in PVS. To do
so, we generalize the abstraction algorithm defined in [PH97] for the p-calculus
to the PVS assertion language and we use our abstraction algorithm to ap-
proximate assertions. This algorithm abstracts propositional p-calculus formu-
las using over-approximation of predicates and under-approximation of negated
predicates. Under-approximation of an assertion is defined as follows:

a(P(s)) = \/{b]7(b) = P(s)}

We use only the over-approximation algorithm relying on the following lemma.

Lemma 1. Let ¢ a predicate defining a set of states. For all predicate
ay(-p(s)) & —a_(p(s)).

We now formally define the abstraction function [|7 which approximates a PVS
boolean expression f such that, [f | denotes an over approximation of f, and
[f1 an wunder approximation of f. We also use a context ¢ consisting of a
PVS formula that is valid at the PVS subformula that is being approximated.
The intuition behind using such a context expression is that when an expression
e1 N\ eo is being abstracted, one can assume that e; is valid when abstracting es
and vice-versa. The context when omitted is just the boolean constant TRUE.
[£ 17 denotes the approximation of f under the context c.

Approzimation of PVS assertions. The abstraction function [] is defined re-
cursively on the structure of the PVS assertion language as follows.

propositions : [ey A es]? — [[61]]er2 A [[62]]5/\61
[-el? — [e].”

quantifiers : [3(s) : €] — J(abs_s) : [e]?
IV(s) : €] — V(abs_s) : [e]?
[A(s) :e]? — Aabs_s) : [e]?

fizpoints = [u/v(\Q) : F(@Q)]7 — p/v(MabsQ) : [F(Q)]7)

atoms : Te(s)1F — ay(e(s),c)
le(s1, s2)]. — ay(e(s1, 82),¢)
[e(s)]; —sa(e(s),0)
le(s1,82)], — a_(e(s1,$2),¢)
[ei (o)l — Bi(abs.s)
constants : [e’ — e if free variables(e) =)

The following theorem establishes the fact that the abstraction provides, respec-
tively, an over and under approximation of any PVS boolean expression.

Theorem 2. Let f be a PVS assertion, [| an abstraction function. We have:
Ff=a 1) and EA([f])=f

Proof. The proof is established by induction on the structure of the assertion
f- It is easy to show that by the definitions of «; and a_, both implications
hold when f is an atom. The other cases can be deduced by monotonicity of the
logical connectives, and the fixed point operators. [

The soundness of the abstraction function is established by the following
theorem.

Theorem 3 (preservation). Let [] be the abstraction function defined above
as a boolean abstraction, and let f be any PVS boolean formula. Then

FIf] implies F f

Theorem 2 ensures that for an assertion f, the abstraction algorithm produces
a stronger assertion y([f]). Note that = [f] trivially implies - ([f])
which then justifies the preservation result of Theorem 3.

3

The abstraction algorithm where a formula f is under-approximated is im-
plemented as a PVS proof rule abstract. This atomic proof rule takes a goal
given by a PVS formula (a p-calculus formula) and a set of state predicates, and
translates this to a propositional formula (a propositional u-calculus formula)
which is returned as a new goal. This goal can be discharged using any other
PVS proof command including BDD simplification and model checking.

We have defined a PVS proof strategy that carries out a sequence of inference
steps that simplify goal formulas by rewriting all definitions, including constant
definitions such as the temporal operators of the logic CTL in terms of the p
and v operators, and applies the abstraction function on the resulting goal.

V (s: state): V (abs_s : abs_state) :
init(s) D —[init(s)] TV
—p.A (Q : pred[state]) : —p.A (abs_@ : pred[abs_state]) :
(A (u: state) : (X (abs_u : abs_state) :
(=X s: (=X abs_s :
=(critical?(pcl(s))A =(critical?(pcl(abs_s))A
critical? (pc2(s)))) critical?(pc2(abs_s))))
(u)Vv (abs_u)V
3 (v state) : 3 (abs_v : abs_state) :
(Q(v) A N(u, 1)) (s) (abs_Q(abs_v) A [N (u,)] *)) (abs_s)

Fig. 2. An example of abstraction for a PVS assertion

Figure 2 shows how the p-calculus formula corresponding to the theorem
safe presented in the PVS theory semaphore in Section 2 is approximated. The
property of mutual exclusion A(s) : —(critical?(pcl(s)) A critical?(pc2(s))) is
expressed as an invariance property. As expected for such properties, the initial
state and the transition relation are over-approximated. For instance, we have

[init(s)]* — idle?(pcl(abs_s)) A idle?(pc2(abs_s)) A =By (abs_s) A By (abs_s)

We have tried other examples including a simple snoopy cache-coherence
protocol with an arbitrary number of processes [Rus97] and a variant of the
alternating-bit communication protocol called the bounded retransmission pro-
tocol [HS96]. The main invariant of the cache coherence protocol is proved by an

abstraction defined in terms of five predicates. The preservation of the invariant
is then proved by abstraction and BDD-based propositional simplification.

The bounded retransmission protocol is verified using an abstraction also
defined in terms of five predicates. The construction of the abstract description
takes about 100 seconds in PVS. The resulting abstract assertion is discharged
using model checking. In contrast, Havelund and Shankar’s verification [HS96] of
this example required 57 invariants to justify the validity of a manually derived
abstraction.

5 Refining an Abstraction

The abstraction proof rule is used in PVS to generate new goals that depend only
on finite state variables. Such goals can be discharged using a PVS proof rule
such as the BDD simplifier or the p-calculus simplifier. However model check-
ing on the new goal can fail because the abstraction is too coarse. It is then
necessary to refine the abstraction using a richer abstract domain. Since our
abstraction algorithm presented in Section 4 allows us to compute the most pre-

cise abstraction with respect the predicates @1, - -, g, refining the abstraction
requires additional predicates. The refinement algorithm takes as arguments the
original PVS assertion f, a new list of predicates pgy1,-- -, ¢, and a context I,

computed previously. The context I, is a hash-table which associates to each
atom the BDD representing its abstraction, that is the BDD «, and the set fail
of BDDs. The refinement algorithm descends through the structure of f and
refines each sub-formula with the new predicates. The refinement algorithm is
similar to the algorithm computing a (P) of Figure 1. However the variables a
and fail are initialized with their already computed values. This allows us to
take advantage of the success or failure of already executed proofs. The new set
of test points is defined as the disjunctions formed using the literals By, -+, B;
and their negation. This set is augmented with the boolean expressions over the
old variables By, ---, By for which the proof previously failed. The algorithm
returns a more precise approximation of P.

We implemented our abstraction and refinement algorithms as a proof strat-
egy defining a semi-decision procedure that abstracts an original PVS formula
and then applies model checking. If model checking fails, the abstraction is re-
fined until model checking succeeds. This strategy is expressed as follows in the
PVS strategies language

(TRY (THEN (abstract (phii...phi)) (model-check))
(skip)
(REPEAT
(LET ((® (new-list-of-predicates)))
(THEN (refine ®) (model-check)))))

Our refinement algorithm tries to eliminate as much of the nondeterminism
created by the over-approximation of the transition relation as possible. Absence

10

of nondeterminism can be easily detected by checking that when the abstraction
of a transition a4 (P(s1,s2), C) is computed, the index i will never reach a value

greater than 1. For instance, the abstraction of the assertion
e(s1,82) = $9 = s WITH [sem := sem(s;) + 1]
presented in Section 3 is nondeterministic since it contains the conjunct

(By(abs_s1) = (By(abs_s2) V Ba(abs_s3)).

Refining such an abstraction involves translating the predicate characterizing
the next state, that is (B (abs_s2) V Ba(abs_s2)) into a disjunctive normal form.
Then, for each disjunct, the pre-image is computed with respect the concrete
assertion e(sy, s2). In this particular case, the pre-images for Bj(abs_s2) and
Bs(abs_sy) are, respectively, A(s2) : e(s, s2) A1 (s2) and I(s2) : e(s, $2) Apa(s2).
Their simplified forms are respectively sem(s) < 0 and sem(s) = 0.

6 Conclusion

We have presented a general abstraction/refinement algorithm that preserves the
full p-calculus as the basis for an integration of abstract interpretation, model
checking, and proof checking. We have implemented this boolean abstraction
algorithm as an extension to the PVS theorem prover. This allows us to define
powerful proof strategies combining deductive proof, induction, abstraction, and
model checking within a single framework. It also allows our abstraction algo-
rithm to be used in the framework of a richly expressive specification language
encompassing finite, infinite-state, and parametric systems. The computation of
the abstraction is completely automatic, and uses the PVS decision procedures
to test the generated implications.

We are currently investigating cases where it is possible to detect whether a
constructed abstraction strongly preserves fragments of the p-calculus so that
abstract counterexamples yield concrete ones. This is done by finding suffi-

cient conditions allowing us to use the various preservation results presented
in [LGST95,DGGY4].

The new PVS version includes code generation capabilities, and as future
work, we plan to define abstraction construction in the PVS specification lan-
guage, and to automatically extract the code implementing the abstraction op-
eration. Such experiments are similar to the ones presented in [VHPPR98] where,
for instance, the code implementing a BDD simplifier is extracted automatically
from its formal specification.

11

References

[BLO9S]

[CC77]

[CGLY4]

[CU9S]

[DGGY4]

[GS97]

[HS96]

[LGST95]

S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite
state systems compositionally and automatically. In Proceedings of the
9th Conference on Computer-Aided Verification, CAV’98, LNCS. Springer
Verlag, June 1998.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In 4th POPL, January 1977.

E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, September 1994.

Michael Colon and Thomas Uribe. Generating finite-state abstractions of
reactive systems using decision procedures. In Proceedings of the 9th Con-
ference on Computer-Aided Verification, CAV’98, LNCS. Springer Verlag,
June 1998.

D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive
systems: Abstractions preserving VCTL*, JCTL* and CTL*. In Ernst-
Rudiger Olderog, editor, IFIP Conference PROCOMET"94, pages 561 581,
1994.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Conference on Computer Aided Verification CAV’97, LNCS 1254, Springer
Verlag, 1997.

Klaus Havelund and N. Shankar. Experiments in theorem proving and
model checking for protocol verification. In Formal Methods Europe FME
’96, number 1051 in Lecture Notes in Computer Science, pages 662 681,
Oxford, UK, March 1996. Springer-Verlag.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, Vol 6, Iss 1, January 1995, 1995.

[OSRSC98] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. The

[PHO7]

[RSS95]

[Rus97]

PVS Specification Language. Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, August 1998.

A. Pardo and G.D. Hachtel. Automatic abstraction techniques for propo-
sitional p-calculus model checking. In Conference on Computer Aided Ver-
ification CAV’97, LNCS 1254, Springer Verlag, 1997.

S. Rajan, N. Shankar, and M.K. Srivas. An integration of model checking
with automated proof checking. In Computer-Aided Verification, CAV 95,
number 939 in Lecture Notes in Computer Science, Liege, Belgium, 1995.
Springer-Verlag.

John Rushby. Specification, proof checking, and model checking for pro-
tocols and distributed systems with PVS. In FORTE/PSTV 97, Osaka,
Japan, November 1997.

[VHPPRO8] Friedrich von Henke, Stephan Pfab, Holger Pfeifer, and Harald RueB. Case

studies in meta-level theorem proving. In Jim Grundy and Malcolm Newey,
editors, Theorem Proving in Higher Order Logics: 11th International Con-
ference, TPHOLs 98, volume 1479 of Lecture Notes in Computer Science,
pages 461-478, Canberra, Australia, September 1998. Springer-Verlag.

12

