Model Checking Guided Abstraction and

Analysis*
In proceedings of the The Seventh International Static Analysis
Symposium (SAS2000), Santa Barbara, California.

Hassen Saidi

System Design Laboratory
SRI International
Menlo Park, CA 94025, USA
Tel: (+1) (650) 859-3810
Fax: (+1) (650) 859-2844
saidi@sdl.sri.com

Abstract. The combination of abstraction and state exploration tech-
niques is the most promising recipe for a successful verification of proper-
ties of large or infinite state systems. In this work, we present a general,
yet effective, algorithm for computing automatically boolean abstrac-
tions of infinite state systems, using decision procedures. The advantage
of our approach is that it is not limited to particular concrete domains,
but can handle different kinds of infinite state systems. Furthermore,
our approach provides, through the use of model checking as a tool for
the exploration of the state-space of the abstract system, an automatic
way of refining the abstraction until the property of interest is verified
or a counterexample is exhibited. We illustrate our approach on some
examples and discuss its implementation.

1 Introduction

The combination of abstraction and state exploration techniques is probably the
most promising recipe for a successful verification of properties of large or infi-
nite state systems. It is now widely accepted that abstraction techniques are not
only useful, but even necessary for a successful verification [19,6,21,13,12,9, 14]
in order to avoid the limiting factor of using model checking by reducing all the
behaviors of a program to a simplified description on which the property of in-
terest can be verified using model checking. While the theoretical frameworks for
defining property preserving abstractions such as abstract interpretation [8] have
been widely studied in the literature, the automatic construction of useful and
accurate abstractions preserving useful properties is in an early stage of inves-
tigation. Abstract models are usually provided manually, and theorem proving
is used to check that the provided abstract mapping preserves the properties.

* This research was supported by DARPA contract F30602-97-C-0040.

Once the preservation property is established, the abstract model is analyzed
by model checking. Recently [14,7,1,25, 11], novel techniques based on abstract
interpretation have been proposed in the context of the verification of temporal
properties where theorem proving is used to compute automatically finite ab-
stractions. These techniques are quite effective, but require heavy use of theorem
proving and decision procedures.

The most general and yet simple and effective abstraction scheme consists
of constructing boolean abstractions following the scheme introduced in [14].
Boolean abstractions consist in using predicates over concrete variables as boolean
abstract variables. In this abstraction, certain predicates at the concrete level
(that might be used in guards, expressions, or properties) can be replaced by
boolean variables at the abstract level. An abstract version of the infinite-state
transition system is a transition system where the set {By,---, By} of abstract
variables is a set of boolean variables corresponding to predicates {1, -, v}
over the concrete variables. An abstract state in this transition system is there-
fore a truth assignment to these boolean variables. Boolean abstractions have
very nice properties. In fact, any abstraction mapping that maps an arbitrary
system to a finite state system can be expressed as a boolean abstraction. Fur-
thermore, the abstract system can be represented symbolically using Binary
Decision Diagrams (BpDs) and therefore can be analyzed using symbolic model
checking, allowing an efficient exploration of abstract systems with a large state
space. The techniques we developed for the automatic construction of boolean
abstractions do not require a preservation check, and ensure that the constructed
abstraction indeed preserves various temporal logics properties, including safety
properties. Furthermore, boolean abstraction is an efficient and more powerful
alternative to static analysis techniques dedicated to the automatic generation
of various properties such as invariants like the ones presented in [3,2, 24].

The drawback of using abstraction followed by model checking as a verifica-
tion and analysis technology consists in the fact that abstractions are approxi-
mations of the original systems that induce false negative results. For instance, a
model checker may exhibit an error trace that corresponds to an execution of the
abstract program that violates the desired properties. However, this error trace
may not correspond to an execution trace in the concrete program. This situa-
tion indicates that the abstraction is too coarse, and that the results of model
checking the abstract system are not conclusive. That is, too many details were
abstracted and the abstraction needs to be refined. The contribution of our work
can be summarized as follows:

- We propose an efficient algorithm for the automatic construction of boolean
abstractions that requires fewer calls to decision procedures and subsumes the
previous and recent work [14,7,1,11] in this topic.

- In all the recent work on the automatic construction of finite abstractions,
parallel programs are considered. However, each component are abstracted sep-
arately. In our work, the abstraction of a component takes into account its inter-
action with the environment, allowing the construction of more precise abstrac-
tions.

- We propose to use the error trace generated by model checking to automati-
cally refine the abstraction, even more. This methodology consists in successively
refining a first abstraction until the property is proved or a concrete error trace
violating the property is exhibited. The refinement algorithm generates new
predicates that will be used to enrich the abstract state-space.

- The refinement procedure may not always terminate. However, at any refine-
ment step, the reachable states of the constructed abstract system represent
an invariant and a new more precise control structure of the concrete system
that can be exploited for further analysis. In [20], we use the newly generated
predicates to construct a more precise control structure of parameterized sys-
tems. Similar ideas are used in [18] for the generation of control structure in the

particular case of synchronous linear systems.

Our verification methodology based on abstraction followed by successive
model checking guided refinement steps is implemented in a verification environ-
ment that combines deduction and state-exploration techniques. We successfully
used our methodology to prove safety properties of several systems, including a
data-link protocol used by Philips Corporation in one of its commercial prod-
ucts. The original proofs [15,17,16] of the protocol required two to six months
of work and were entirely done using theorem provers. A boolean abstraction
of the protocol can be automatically generated using the predicates appearing
in the description of the protocol in about a hundred seconds with the help of
the PVS theorem prover [23] and its new efficient implementation of decision
procedures. The abstract protocol is then analyzed in a few seconds to check
that all the safety properties hold.

This paper is organized as follows: in Section 2, we present the model in
which systems are described, and give some basic definitions. In Section 3, we
define boolean abstractions in the general framework of abstract interpretation
using Galois connections. In Section 4, we show how boolean abstractions can
be constructed in an efficient way using decision procedures and compositional
reasoning. In Section 5, we show how model checking is used to prove proper-
ties on abstract systems and how it can be used as a guide to the automatic
refinement of already constructed abstractions. In Section 6, we describe our re-
finement algorithms. Finally, in Section 7, we describe a tool implementing our
methodology.

2 Preliminaries

We consider systems that are parallel compositions of sequential processes, where
each process is modeled as a transitions system.

Definition 1 (transition system).
A transition system S is a tuple S = <V, T = {7, -+, }, L, Init >, where

— V is a set of system variables including a program counter pc.

— T is a set of transitions.
— L is a set of control locations, that is, the possible values of pc.
— Init is a predicate characterizing the set of initial states.

Each transition 7 is a guarded command
li: guard — vy i=e1,---,v, 1=¢, gotol;

where {vq,---,v} CV and {l;,l;} C L. The boolean expression guard is the
guard of the transition 7. Each variable v; is assigned with an expression e; of
a compatible type. Locations [; and [; are, respectively, the source and target
locations of transition 7;. A state of a system S is a valuation of the system
variables of V. A system can be a parallel composition of components described
as transition systems. The system can be described as a single transition system
where the set of variables is the union of the set of variables of each component,
the set of transitions is the union of all the transitions of all components, the
program counter is a tuple formed by the program counters of all components,
and the initial state is the conjunction of the initial states of each component.
Figure 1 shows the description of the Bakery protocol in our specification lan-

bakery : SYSTEM
BEGIN
process_1 : PROGRAM
yl: VAR nat

BEGIN

pl_Try 1: TRUE — yl:=y2+1 GoTo 2
plIn 2:92=0V yl<y2 > SKIP GOTO
pl_Out 3: TRUE —yl:=0 GoTo 1

END process_1

process_2 : PROGRAM
Y2 : VAR nat

BEGIN

p2_Try 1: TRUE — y2:=yl+l GoTO 2
p2In 2:y1=0V y2<yl » SKIP GOTO
p2_Out 3: TRUE — y2:=0 GoTo 1

END process_2
INITIALLY @ yl=0 A y2=0 A pc2=1 A pcl =1
END bakery

Fig. 1. Bakery transition system (version A)

guage. The algorithm is called the Bakery algorithm, since it is based on the idea
that customers, as they enter a bakery, pick numbers that form an ascending se-
quence. Then a customer with a lower number has higher priority in accessing
its critical section, which in this case is control location 3. Each process process_i
modifies its local variable yi, and can read the other’s variable.

We also recall the definitions of predicate transformers over transition sys-
tems. The predicate transformers post and pre expressing, respectively, the
strongest postcondition and precondition by a transition 7 of a predicate P
over the state variables of V are defined as follows:

post[T](P) = 3V'.action.(V', V) A P(V')
pre[t](P) = 3V'.action.(V,V') A P(V')

where action,(V,V') is defined as the relation between the current state and
next state, that is, the expression

pc =1; \ guard A v; =e;, pc = l;

=

i=1

Defining the transition relation of a system as a relational predicate for each
transition is a more general alternative to the use of guarded commands. The
semantics of a transition system S is given by its computational model Kg =
(Q,T,R), where @ is the set of valuations of the program variables V, and
R C @ x T x @ a transition relation. A set of states of a program can be
represented by its corresponding predicate over the state variables of V.

3 Boolean Abstractions

Boolean abstraction is a simple abstraction scheme defined in [14] that con-
sists of using predicates over concrete variables as boolean abstract variables. In
an abstract version of the infinite-state transition system, the set {Bi,---, By}
of abstract variables is a set of boolean variables corresponding to predicates
{¢1,- -+, @K} over the concrete variables. An abstract state in this transition
system is therefore a truth assignment to these boolean variables. Since the set
of boolean variables is finite, so is the set of abstract states. Boolean abstractions
can easily be defined in the framework of abstract interpretation using Galois
connections.

Definition 2 (Galois connection). A pair of monotonic functions («,) defin-
ing a mapping between a concrete domain lattice p(Q, C) and an abstract domain
lattice p(Q*,C), is a Galois connection if and only if

V(P P?) € p(Q) x p(Q"). a(P)C P" & P Cy(P")

Sets of states in p(Q) and E(Q*) are represented by their corresponding pred-
icates. Thus, p(Q) and p(Q®) correspond to lattices of concrete and abstract
predicates ordered by the logical implication. A boolean abstraction can be ex-
pressed as a Galois connection as follows:

-a(P) = /\{B“ | P = ~(B")} = P®, where B® is any boolean expression over

the set {By, -+, Bi}.

- 7y is defined as a substitution function. That is, v(P®*) = P%[p1/B1, -, px/Bi],
where each boolean variable B; is substituted by its corresponding concrete pred-
icate ;.

Thus, the abstraction of a concrete set of states represented by a predicate
P over concrete variables is defined as the smallest boolean formula P® over the
abstract variables B;. That is, an overapproximation of P. In [25], we presented
an efficient algorithm for computing the most precise boolean abstraction with
respect to a set of predicates, for systems where the transition relation is given
as a relational predicate. The algorithm consists of an efficient enumeration of
all boolean combinations B® to test the assertion P = ~(B"). The algorithm
abstracts systems where the transition relation is given as a predicate. Each
implication P = ~(B®) is submitted to the decision procedure to test its validity.
In [25], we proved that in order to compute P? it is not necessary to consider
all the possible B?, that is 22" expressions, but at most 3* — 1. However, this is
still a high price to pay for the construction of an abstract system. Notice that
any approximation of P® is a valid abstraction of P.

bakery : SYSTEM
B3 : VAR bool
BEGIN
process_1 : PROGRAM
B1: VAR bool

BEGIN

pl.Try 1: TRUE — Bl1:=F, B3:=F GoOTO 2
plIn 2:B2V B3— SKIP GOTO 3
pl1_Out 3 : TRUE — Bl1:=T, B3:=T goTto 1

END process_1

process_2 : PROGRAM
B2 : VAR nat

BEGIN
p2_Try 1: TRUE — B2:=F, B3:=T GOTO 2
p2In 2:B1 VvV -B3—» SKIP GOTO 3
p2_Out 3 : TRUE — B2 :=T,
B3:=if Bl
then T
else if (-B1V -B3)
then F
else 7

GoTo 1
END process_2
INITIALLY : B1 A B2 A B3 A pc2=1 A pcl=1
END bakery

Fig. 2. Abstract version of Bakery transition system (version A)

Thus, in order to compute for a concrete system S, an abstract system S,
it is sufficient to abstract the initial state Init by computing a(Init), and to
abstract each transition 7 as follows:

7% = a(r) = alaction.(V,V')) = /\{(B“7B“I)| F post[r](~v(B%)) = 'y(B“,)}

that is, the pair (B“,B“') characterizing the abstraction of the set of possible
predecessors by 7 and the abstraction of the set of possible successors by 7. In
this case, the complexity of the computation of 7@ is (3% — 1) * (3% — 1) calls to
the decision procedure, (3F — 1) calls to test the successors, and (3% — 1) calls to
test the potential predecessors.

The preservation of properties expressed in temporal logic is widely studied
in [21, 10, 5]. Preservation results are established via equivalences and preorders
between the concrete and abstract models. The following theorem establishes
the preservation of safety properties expressed in the logic CT L* via simulation.

Theorem 1 (weak preservation). Let S be a concrete system, and let S® be
a boolean abstraction of S using any set of predicates. We have

S'Falp) = Sko

for each formula ¢ € VCTL*, that is, temporal formulas with universal quantifi-
cation over paths, including safety properties such as invariants.

Proof. This result can be established by proving that S* simulates S. This can
be done by proving that the following holds for each transition 7 of S:

VP. post[](P) = (post[a(r)]|(a(P)))

that is, each set of successor states by an abstract transition is an overapproxi-
mation of the corresponding set of states of the concrete system.

Intuitively, VCT L* properties hold in all execution paths. Since S® simulates
S, that is, all the executions of S are executions of S, then if a property holds
along all execution paths of S?, it holds in all execution paths of S. Theorem 1
indicates that when a property is established in the abstract system, its corre-
sponding concrete property holds in the concrete system. However, nothing can
be concluded when the property does not hold in the abstract system. Strong
preservation results can be applied in this case under some conditions.

Theorem 2 (strong preservation). Let S be a concrete system, and let S® be
a boolean abstraction of S using any set of predicates that includes all the literals
appearing in the gquards of S and in the property . If S® is deterministic, we
have

Skaly) © Sk

That is, S® and S are equivalent.

Proof. By construction S® simulates S. Thus, it is sufficient to prove now that S
simulates S®. To show this, it is sufficient to prove that for each pair of abstract
states s{ and s§, if s§ is a successor of s{ by 7¢ in the abstract system, then, for
every pair s; and sy of states in the concretization of s{ and s§, s» is the successor
of s1 by 7 in the original system. Every concrete state s; in the concretization of
s{ satisfies the guard of 7, and every successor s2 of s; is in the concretization
of s3. Thus, S simulates S°.

The strong preservation result allows us to avoid false negative results by map-
ping abstract error traces to concrete executions violating the property. However,
the condition for strong preservation requires that S* be deterministic. This is
usually not the case. However, we will see later how we exploit Theorem 2 to
generate boolean abstractions to verify properties, and also to generate coun-
terexamples when a formula is not a property of the concrete system. As we
mentioned earlier in the introduction, boolean abstraction subsumes abstrac-
tions where the abstract domain is finite.

Theorem 3 (generality). Let S be a system and let a be an abstraction func-
tion where the abstract domain is finite. Then, o can be expressed as a boolean
abstraction.

Proof. The proof is based on the fact that a finite domain can be encoded by a
set of boolean variables. Each abstract state is then a conjunction of a subset of
the set of boolean variables. The concretization of an abstract state is a set of
concrete states that can be represented as a predicate.

Figure 2 shows the abstraction of the Bakery protocol using predicates y1 = 0,
y2 = 0, and y1 < y2 appearing in the guards. Notice that all the assignments
are deterministic except the assignment for the variable B3 in the transition
p2_Out.

4 Automatic Construction of Boolean Abstractions

Decision procedures can be used for the automatic construction of a boolean
abstraction of a concrete, infinite state system described as a transition system.
The abstraction of a concrete system S = <V, T = {n, -+, T}, L, Init > is
an abstract system S = < V* T = {rf,---, 7%}, L, Init® > such that

— V@ is the set {By,---, By, pc}.

— T is a set of abstract transitions.
— Init® is the abstract initial state computed as a(Init).

The abstraction algorithm consists in computing Init® and for each concrete
transition 7

li: guard — vy i=ey, -, v, =€, gotol;

a corresponding abstract transition 7°
li : guard® — By u=by,---,B :=b, gotol;

such that:

- The abstract guard guard® is computed as a(guard). When using the literals
of the guards as abstract boolean variables, a(guard) is an exact abstraction,
where each literal of guard is substituted by its corresponding abstract boolean
variable. - Each assignment B; := b; is defined as follows:

T if post[7](true) = v(B;) (1)
B;:={ Fif post[T](true) = —y(B;) (2)
? otherwise

that is, for each abstract variable B;, the strongest postcondition by 7 of any
arbitrary state is in y(B;) or =y(B;), that is, in ¢; or —¢;. When neither of
the above implications is valid, the variable is nondeterministically assigned the
value 7.

- The variable pe is not abstracted since it is of a finite type.

When a variable is assigned the value 7, it is possible to compute a more
refined assignment by taking into account the dependencies between the abstract
variables. Thus, the assignment B; :=7 can be redefined as follows:

then T

else if bf
then F
else 7

where b;r and bzF are defined as follows:
bF = \/{B* | post[r](v(B)) = 7(Bi)}

bf = \/{B" | post[r](v(B")) = —v(Bi)}

That is, bT and b¥ are, respectively, the smallest boolean combination over the
abstract variables {Bj,---, B} that defines the abstract state from which, if
the transition 7 is executed, the variable B; gets either the value T or F. In
the worst case, both b¥ and bF are equivalent to true. Thus, the variable B; is
assigned with the value 7.

In [25], the complexity of the abstraction algorithm for a transition is 3% —
1% 3% — 1. In our case, this is reduced to at most 3* — 1% 2 k.

Theorem 4 (complexity). The complezity of the abstraction of a transition
7 using k predicates {p1,---,or} requires checking the validity of 3 — 1% 2 x k
implications.

Proof. For each abstract variable B; assigned in the abstraction of 7, The boolean
expressions bl and bF are computed. Thus 2 % k implications have to be proved.
For each of the expressions bT and b¥, all possible boolean expressions B® over
{By, -, By} have to be considered. There are 3* — 1 possible expressions as il-
lustrated in the following Figure with £ = 2. The elements of the set of possible

Fig. 3. Boolean algebra for 2 boolean variables B; and B>

boolean expressions B* are the elements of the boolean algebra defined by the k
boolean variables, that is, 22" expressions. However, the expression B* appears
on the left hand side of an implication. Thus, it is necessary to consider only
expressions that are conjunctions of boolean variables. That is is only 3¥ —1 pos-
sible expressions that can be tested incrementally by first testing each boolean
variable B; and its negation, and then testing conjunctions of the set of variables
for which both tests fail.

The results in [25], shows that the enumeration of 3¥ — 1 expressions subsumes
the enumeration of the possible 92" expressions. However, the enumeration of the
possible B* satisfying the above implications can be done only for the expressions
B? such that

FV (post[r](v(B*))) N FV (v(Bi)) # 0

where FV (P) is the set of free variables of the predicate P.

5 Model Checking Guided Analysis

Once an abstract system is constructed, model checking is used to explore its
state-space. We use both symbolic and explicit-state model checking techniques.
Figure 4 shows the reachable abstract states of the Bakery protocol. It is easy
to show that the protocol does guarantee mutual exclusion for both processes
since there is no reachable state where both control variables pcl and pc2 have
the value 3.

The advantage of model checking over other verification techniques is its
ability to generate counterexamples when a property is violated. The error trace
is a sequence of states and transitions starting from the initial state of the system

11B1B2B3

22-B1-B2B3 l

32~B1~B2B3

p2_Try

p2_Out

p2_Out

Fig. 4. Abstract state graph for the Bakery protocol

leading to a state violating the property. Error traces of an abstract system can
be mapped to executions of a concrete system since each abstract transition
corresponds to a single concrete one with the same label.

Figure 5 shows a more complex version of the Bakery protocol (known as
Bakery_C) where the critical section corresponds to control location 7. This
version was proposed to avoid the long wait of one process at location 2 in
the previous version (known as Bakery_A) before the process enters its critical
section. The abstraction of the protocol with respect the guards y1 = 0, y2 = 0,
yl < 92, 21 = 0, and 2 = 0 is given in Figure 6. Figure 7 shows an error
trace from the initial abstract state 0 to abstract state 30 violating the mutual
exclusion property, where for both processes the program counter has value 7.
The simulation of the error trace on the concrete system indicates that it does
not correspond to an execution of the concrete system. However, this does not
rule out the possibility that the property is violated. In the next section, we show
how model checking can guide the automatic refinement of an abstract system
until the property is verified or a counterexample corresponding to a concrete
execution violating the property is generated.

6 Automatic Refinement of Abstractions

Unlike current model checking tools, the error trace we generate is a tree in-
dicating the states where abstract variables are nondeterministically assigned.
In Figure 7, states 9 and 12 indicate loss of information on, respectively, the
abstract variables By, B3, and Bs. The concrete system is deterministic. Thus,

bakery : SYSTEM
BEGIN

process_1 : PROGRAM
yl, z1, t1: VAR nat

BEGIN
pl_init_x1 1: TRUE —zl:=1 12
pl_init_t 2: TRUE —tl:=y241:3
pl_init_y 3: TRUE —yl:=t1 :4
pl_init_x0 4: TRUE —zl:=0 15
pl_Wait 5 z2=0 — SKIP 16
pl_In 6: y2=0 Vv yl1 <y2 —> SKIP 27
pl_Out 7: TRUE — yl:=0 11
END process_1

l
process_2 : PROGRAM
y2, x2, t2: VAR nat
BEGIN
p2_init_x1 1: TRUE - z2:=1 12
p2_init_t 2: TRUE = t2:=yl+1:3
p2_init_y 3: TRUE —y2:=t2 :4
p2_init_x0 4: TRUE — x2:=0 15
p2_-Wait 5 z1=0 — SKIP 16
p2_In 6: yl=0 V y2 <yl —» SKIP 17
p2_Out 7: TRUE —y2:=0 01

END process_2
INITIALLY : yl=0 A y2=0 A z1=0 Az2=0 At1l=0 At2=0 Apcl=1 A pc2=1
END bakery

Fig. 5. Bakery transition system (version C)

in an execution of the concrete system, each abstract state s, such as the ab-
straction of s is state 9, has only one successor by the transition p1_init_y. Also,
each state s such as the abstraction of s is state 12, has only one successor by
the transition p2_init_y. However, if the error trace is a sequence and not a tree,
that is all assignments in the sequence are deterministic, the following theorem
allows us to conclude that the error trace corresponds to a sequence of concrete
transitions violating the property. The theorem is a corollary of Theorem 2.

Theorem 5. Let Let S be a concrete system, and let S® be a boolean abstraction
of S using any set of predicates that includes all the literals appearing in the
guards of S and in the property ¢. every sequence of transitions in S* where all
assignments are deterministic is a sequence of transitions of S. We call such a
sequence a deterministic trace.

Our refinement methodology consists in computing a new abstract system with
more abstract variables. This is done by enriching the current abstract state by
adding additional predicates, and therefore additional abstract boolean variables.

bakery : SYSTEM

B3 : VAR bool

BEGIN

process_1 : PROGRAM
B1, B4: VAR bool

BEGIN
pl_init_x1 1: TRUE — B4:=F 12
pl_init_t 2: TRUE — SKIP 13
pl_init_y 3: TRUE — B1:=7, B3:=7 :4
pl_init_x0 4: TRUE — B4:=T 15
pl_Wait 5: B5 — SKIP 16
pl_In 6: B2 V B3 - SKIP 27
pl_Out 7: TRUE — B1:=T B3:=T:1
END process_1
l

process_2 : PROGRAM
B2, B5: VAR bool
BEGIN
p2_init_x1 1: TRUE — B5:=F 12
p2_init_t 2: TRUE — SKIP
p2_init_y 3: TRUE — B2 :=7,

B3 :=if Bl then T else ? 4
p2_init_x0 4: TRUE — B5:=T i)
p2_Wait 5: B4 — SKIP 16
p2_In 6: Bl v -B3 - SKIP 7
p2_Out 7: TRUE — B2 :=T,

B3 :=if Bl

then T

else if ~B1V —B3 then F else 7 : 1
END process_2

INITIALLY : B1 A B2 AN B3 AB4 ANB5 A pcl=1 A pc2=1
END bakery

Fig. 6. Abstract version of Bakery transition system (version C)

We use Theorem 5 in order to construct a new abstract system that may
produce more error traces that are deterministic. That is, by eliminating the
nondeterminism in the current error traces. This is done by computing the con-
straints under which the system may execute one of the nondeterministic transi-
tions. These constraints are captured as preconditions and computed using the

predicate transformer pre. We use the following lemma, allowing an efficient
computation of preconditions for assignments.

Lemma 1. Let 7 be a transition. If guard(t) is equivalent to true, then

VP. pre[r](P) = -pre[r](—=P)

This lemma indicates that when computing a precondition for assignments, it
is not necessary to compute it for both the predicate and its negation. Let us
consider the case of the Bakery protocol. The error trace indicates that nonde-
terminism is created for transitions p1l_init_y and p2_init_y at, respectively,
states 9 and 12. The refinement technique is applied to each of these states by
computing the preconditions for each boolean variable that is assigned the value
? as follows:

— refining state 9:
pre[pliinit_y](y1 =0) = t1=0

pre[pl_init_y](yl < y2) = t1 < y2
— refining state 12:

pre[p2.init_y](y2=0) = t2=0

Three new predicates t1 = 0, t2 = 0 and t1 < y2 corresponding to the
new abstract variables B6, B7, and B8 are generated. Each transition where a
variable is not assigned with the value T or F is refined. The refinement of the
transition p1l_init_y

3: TRUE — B1:=7 B3:=7:4
where B1 and B3 correspond to y1 = 0 and y1 < g2 is the transition

3: TRUE — Bl :=if B6 then T else if -B6V —~B8 then F else 7,
B3 :=if B6 then T else ? 24

The refinement algorithm uses a refined way of computing the values b¥ and
bF

k3

b = \/{B" | 7(R}) A post([r](v(B)) = 7(Bi)}
bf = \/{B" [7(R%) A post[r](v(B")) = ~v(Bi)}

where R¢ is a boolean expression representing the set of reachable states of the
already constructed abstract system at the source location of 7. For instance,
Rp1_1ey of Bakery_ A is equal to By V By. The expression B® is any expression
over the union of the new set of variables and set of the old one that satisfy the

invariant R?. Thus, each refinement step uses the results of model checking the

[0
1 Bl B2 B3 B4 BS

M
1.2 Bl B2 B3 B4

-B5

8
2 Bl B2 B3

~B4 ~BS

&)
2 Bl B2 B3 ~B4 -BS

pLinit y pL_init y plinit.y pLinit.y

[167) [198] = [179]
4 2 -B1 B2 ~B3 ~B4 -BS 4.2 Bl B2 ~B3 -B4 ~BS 4 2 -B1 B2 B3 B4 -BS

[10]
4.2 Bl B2 B3

(11
2 Bl B2 B3 B4 -BS

~B4 ~BS

[12)
3 Bl B2 B3 B4 —BS

p2_init_y
a

p2_init_y

[13)

[36]
4 Bl B2 B3 B4 -BS 4 Bl -B2 B3 B4 -85

(14
5 Bl B2 B3 B4 BS

[28]
7 Bl B2 B3 B4 BS

[29]
6_7 Bl B2 B3 B4 BS

Fig. 7. Error trace for the Bakery Protocol

constructed abstract system to generate new abstract variables and to reduce
the cost of the refinement algorithm. Furthermore, the invariant R¢ refers to
variables written by the component where 7 belongs and to variables that are
modified by other components that form its environment. The new generated
predicates are used as new abstract boolean variables to compute a refined ab-
stract system. The new abstract system is then analyzed and a new error trace
indicates that mutual exclusion is violated. However, the trace is not determin-
istic, and a new refinement step is performed where two new predicates y1 < ¢2
and t1 < t2 corresponding to the new boolean variables B9 and B10 are gener-
ated. A new abstract system is then generated and analyzed, and the property
is proved to be a property of the abstract system. Thus by Theorem 1, it is a
property of the Bakery protocol.

In general, the an abstract system obtained after refinement is a more precise
an accurate abstraction of the corresponding original system.

Theorem 6 (refinement simulation). Let S® be an abstraction of a system
S using a set of predicates {@1,- -, pr}. Let S® be a refinement of S® using the
additional predicates {¢r41,---,¢;}. Then, S® simulates SZ.

Proof. The proof of the theorem can be established by proving that for each
abstract predicate P®, the set of successors of P® with respect to an abstract
transition 7% is smaller that the set of successors of P® with respect to the
corresponding refined transition 7 of S;'. That is:

YP®. post[t!|(P*) = post[T*|(P")

Thus, the concretization of the set of reachable states of the abstract system is a
more refined invariant of the concrete system. It is a more precise approximation
of the reachable state of the concrete systems. Even when a property can not
be established after a number of successive refinement steps, one can use this
invariant as a starting point for a more elaborate proof and analysis technique
using for instance a theorem prover. It is in fact necessary for even very simple
systems and property to provide an invariant in order to be able to achieve a
correctness proof.

7 Implementation and Analysis Methodology

We have implemented the abstraction/model checking/refinement methodology
in a tool dedicated to the verification of infinite state systems. Figure 8 shows
the architecture of the tool. Our tool is built on top of the PVS theorem prover.
We explain the role of each component of the tool and how the analysis process
is organized.

Syntaz: Systems can be described in a Simple Programming Language (SPL),
close to the one used in [22], but with the rich data types and expression defi-
nition mechanism available in PVS. Our SPL language includes common algo-
rithmic constructions such as single and multiple assignment statements, con-
ditionals If-Then-Else, and loop statements. We also allow parallel composition
by interleaving and synchronization by shared variables as in Unity [4]. Systems
described in SPL are translated automatically into guarded commands with ex-
plicit control. Program variables can be of any type definable in PVS, and can
be assigned by any definable PVS expression of a compatible type. It is possible
to import any defined PVS theory. The examples in this paper are presented in
the automatically generated I TEX format for guarded commands.

Internal representation: Pvs is implemented in LISP. Every object manipulated
in Pvs such as a theory, a theorem, or a proof is represented as an instance of
a predefined object class. We have defined for transition systems a representa-
tion that is also a class. An important aspect of such a structure is that it is

IATEX IATEX/ Graph

4\ SPL Compiler
High Level Transition
Input Sysem —=>1 Description System
InSA Sill - lISn
Typechecking
Abstraction Predicates
Refinement Abstract Interna
System Representation
State
Exploration Use Static Analysis
Error Abstract Add Invariant
Trace State Graph DataBase
Graph Reduction\L l/

Diagnostic IATEX/ Graph IATEX

Fig. 8. Analysis methodology

independent of the Pvs internal structure, and makes our implementation inde-
pendent of the possible changes in the Pvs internal representation. However, the
expression manipulated and the verification condition generated are represented
as Pvs expressions and Pvs obligations. This is necessary for the automatic
interaction with the decision procedures.

Static analysis: We use the techniques developed in [24] to generate useful in-
variants of the concrete system. Static analysis consists in a set of techniques
for the automatic generation of such invariants. These techniques are based on
propagation of guards and assignments through program control points. The
techniques we use computes invariants for each component and are composed
using a novel composition rule presented in [24] to form invariants of the global
system. These invariants are used to weaken all the implications that are gen-
erated when an abstraction is computed. When used, the allow a more efficient
construction of abstractions. That is, one can decide with the help of these in-
variants that a variable is not assigned the value ? but either T or F, and thus,
allows to generate less implications.

Automatic abstraction: The abstraction module takes a transition system and
builds a first abstraction using the predicates appearing in the guards and the
property to verify, and then submits the abstract system to our model checker.
This module is also used for automatic refinement.

Model checking: The state-space of the constructed abstract system can be ex-
plored in two ways. In the symbolic approach, the system is translated into a
boolean function represented by a BDD that represents the successor function.
The exploration consists in applying the function recursively starting from the
initial abstract state, represented also by a BDD until a fix point is reached.
In the explicit approach, it consists in translating the abstract system into an
executable form and then running it and by hashing the visited states. Both ap-
proaches can be exploited to construct the corresponding abstract state graph.
The abstract state graph can then be reduced using simulation and bisimulation
minimization algorithms as a way of performing additional abstractions.

Ezperiments: We have used our analysis methodology to verify several commu-
nication protocols such as the alternating bit protocol and a data link proto-
col. We also applied our methodology on several parametrized systems that are
compositions of arbitrary numbers of identical processes. Figure 7 shows our
experiments with three versions of the Bakery protocol. The versions Bakery_A
and Bakery_C were described previously and illustrated in Figures 1 and 5. The
version Bakery_B is obtained by removing the transitions init_x0 and Init_x1
from the description of Bakery_C. Figure 7 shows the number of predicates used
in the compute a first abstraction, the refinement steps used to reach a conclu-
sive result, that is either the property is verified, or to generate a deterministic
error trace. It shows, the number of predicates computed each refinement step.
It shows the numbers of implications generate and proved for each abstrac-
tion/refinement step, and the duration of each step. It also shows a comparison
with our previous work in [25] where transitions systems are given as relational
predicates, and where the numbers of implications is much higher as shown by
Theorem 4. Notice that in general the complexity of each refinement step is
less than the complexity of the computation of the first abstraction. The version
Bakery_B is shown to violate the mutual exclusion property, and a deterministic
error trace is generated after two refinements steps.

#tof initial|#of refinements| #of new |#of calls to the|comparison |time

predicates steps predicates decision with (s)

procedure [25]

Bakery_A 3 0 _ 27 33 1.8
Bakery_B 3 2 - 72 100 5.1
3 32 178 3.3

4 134 366 15.5

Bakery C 5 2 _ 120 168 12
3 35 94 3.2

2 32 136 3.4

Fig. 9. Experiments results for 3 versions of the Bakery protocol

8 Conclusion and Future Work

We presented a general, yet effective, methodology for the verification of large
systems, based on abstraction followed by model checking. The novelty of our
methodology consists of an efficient algorithm for the automatic construction
of boolean abstractions and an efficient algorithm for automatically refining a
coarse abstraction when model checking the abstract system fails. This method-
ology also allows in many cases the generation of counterexamples, that is exe-
cutions violating the property of interest. Our abstraction algorithm can be used
to compute abstraction for any abstract domain which is a boolean algebra. Our
verification tool represents the core of a verification and analysis technology for
large software. The first step will be to translate source code into transition
systems. For large programs, thousands of calls to the decision procedure are
necessary. This can be done in few minutes or at most few hours.

References

1. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite state
systems compositionally and automatically. In Proceedings of the 9th Conference
on Computer-Aided Verification, CAV’98, LNCS. Springer Verlag, June 1998.

2. S. Bensalem, Y. Lakhnech, and Hassen Saidi. Powerful techniques for the auto-
matic generation of invariants. In Rajeev Alur and Thomas A. Henzinger, editors,
Computer-Aided Verification, CAV ’96, number 1102 in Lecture Notes in Computer
Science, pages 323 335, New Brunswick, NJ, July/August 1996. Springer-Verlag.

3. Nikolaj Bjorner, Anca Browne, and Zohar Manna. Automatic Generation of
Invariants and Intermediate Assertions. Theoretical Computer Science, 1997.

4. K. Mani Chandy and Jayadev Misra. Parallel Program Design. Addison-Wesley,
Reading, Massachusetts, 1988.

5. Ching-Tsun Chou. Simple proof techniques for property preservation via simula-
tion. Information Processing Letters, 60(3):129 134, 1996.

6. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512 1542, Septem-
ber 1994.

7. Michael Colon and Thomas Uribe. Generating finite-state abstractions of reac-
tive systems using decision procedures. In Proceedings of the 9th Conference on
Computer-Aided Verification, CAV’98, LNCS. Springer Verlag, June 1998.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
January 1977.

9. D. Dams. Abstract interpretation and partition refinement for model checking. PhD
thesis, Technical University of Eindhoven, July 1996.

10. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems:
Abstractions preserving VCTL* JCTL* and CTL*. In Ernst-Rudiger Olderog,
editor, IFIP Conference PROCOMET"94, pages 561 581, 1994.

11. S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. Lecture
Notes in Computer Science, 1633:160 77, 1999.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Dingel and Th. Filkorn. Model checking for infinite state systems using data ab-
straction, assumption-commitment style reasoning and theorem proving. In Proc.
of Tth CAV 95, Liége. LNCS 939, Springer Verlag, 1995.

S. Graf. Characterization of a sequentially consistent memory and verification of
a cache memory by abstraction. Distributed Computing, 1995.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Confer-
ence on Computer Aided Verification CAV’97, LNCS 1254, Springer Verlag, 1997.
J.F. Groote and J. van de Pol. A bounded retransmission protocol for large data
packets. Technical report, Department of Philosophy, October 1993.

Klaus Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods Europe FME 96, number
1051 in Lecture Notes in Computer Science, pages 662-681, Oxford, UK, March
1996. Springer-Verlag.

L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link
protocol. Technical report, Department of Philosophy, Utrech University, The
Netherlands, March 1994.

Bertrand Jeannet, Nicolas Halbwachs, and Pascal Raymond. Dynamic partitioning
in analyses of numerical properties. In Agostino Cortesi and Gilberto Filé, editors,
Static Analysis, volume 1694 of Lecture Notes in Computer Science, pages 39 50.
Springer, 1999.

R.P. Kurshan. Computer-aided verification of coordinating processes, the automata
theoretic approach. Princeton Series in Computer Science. Princeton University
Press, 1994.

David Lesens and Hassen Saidi. Automatic verification of parameterized networks
of processes by abstraction. In Faron Moller, editor, 2nd International Workshop
on Verification of Infinite State Systems: Infinity ’97, volume 9 of Electronic Notes
in Theoretical Computer Science, Bologna, Italy, July 1997. Elsevier.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, Vol 6, Iss 1, January 1995, 1995.

Zohar Manna and Amir Pnueli. The Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

S. Owre, N. Shankar, and J. M. Rushby. A tutorial on specification and verification
using pvs. Technical report, Computer Science Laboratory, SRI International,
February 1993.

H. Saidi. Modular and incremental analysis of concurrent software systems. In
14th IEEE International Conference on Automated Software Engineering, pages
92-101, Cocoa Beach, FL, October 1999. IEEE Computer Society Press.

Hassen Saidi and Natarajan Shankar. Abstract and model check while you prove.
In Computer-Aided Verification, CAV ’99, Trento, Italy, July 1999.

