
Model Cheking Guided Abstration andAnalysis?In proeedings of the The Seventh International Stati AnalysisSymposium (SAS2000), Santa Barbara, California.Hassen Sa��diSystem Design LaboratorySRI InternationalMenlo Park, CA 94025, USATel: (+1) (650) 859-3810Fax: (+1) (650) 859-2844saidi�sdl.sri.omAbstrat. The ombination of abstration and state exploration teh-niques is the most promising reipe for a suessful veri�ation of proper-ties of large or in�nite state systems. In this work, we present a general,yet e�etive, algorithm for omputing automatially boolean abstra-tions of in�nite state systems, using deision proedures. The advantageof our approah is that it is not limited to partiular onrete domains,but an handle di�erent kinds of in�nite state systems. Furthermore,our approah provides, through the use of model heking as a tool forthe exploration of the state-spae of the abstrat system, an automatiway of re�ning the abstration until the property of interest is veri�edor a ounterexample is exhibited. We illustrate our approah on someexamples and disuss its implementation.1 IntrodutionThe ombination of abstration and state exploration tehniques is probably themost promising reipe for a suessful veri�ation of properties of large or in�-nite state systems. It is now widely aepted that abstration tehniques are notonly useful, but even neessary for a suessful veri�ation [19, 6, 21, 13, 12, 9, 14℄in order to avoid the limiting fator of using model heking by reduing all thebehaviors of a program to a simpli�ed desription on whih the property of in-terest an be veri�ed using model heking. While the theoretial frameworks forde�ning property preserving abstrations suh as abstrat interpretation [8℄ havebeen widely studied in the literature, the automati onstrution of useful andaurate abstrations preserving useful properties is in an early stage of inves-tigation. Abstrat models are usually provided manually, and theorem provingis used to hek that the provided abstrat mapping preserves the properties.? This researh was supported by DARPA ontrat F30602-97-C-0040.

One the preservation property is established, the abstrat model is analyzedby model heking. Reently [14, 7, 1, 25, 11℄, novel tehniques based on abstratinterpretation have been proposed in the ontext of the veri�ation of temporalproperties where theorem proving is used to ompute automatially �nite ab-strations. These tehniques are quite e�etive, but require heavy use of theoremproving and deision proedures.The most general and yet simple and e�etive abstration sheme onsistsof onstruting boolean abstrations following the sheme introdued in [14℄.Boolean abstrations onsist in using prediates over onrete variables as booleanabstrat variables. In this abstration, ertain prediates at the onrete level(that might be used in guards, expressions, or properties) an be replaed byboolean variables at the abstrat level. An abstrat version of the in�nite-statetransition system is a transition system where the set fB1; � � � ; Bkg of abstratvariables is a set of boolean variables orresponding to prediates f'1; � � � ; 'kgover the onrete variables. An abstrat state in this transition system is there-fore a truth assignment to these boolean variables. Boolean abstrations havevery nie properties. In fat, any abstration mapping that maps an arbitrarysystem to a �nite state system an be expressed as a boolean abstration. Fur-thermore, the abstrat system an be represented symbolially using BinaryDeision Diagrams (Bdds) and therefore an be analyzed using symboli modelheking, allowing an eÆient exploration of abstrat systems with a large statespae. The tehniques we developed for the automati onstrution of booleanabstrations do not require a preservation hek, and ensure that the onstrutedabstration indeed preserves various temporal logis properties, inluding safetyproperties. Furthermore, boolean abstration is an eÆient and more powerfulalternative to stati analysis tehniques dediated to the automati generationof various properties suh as invariants like the ones presented in [3, 2, 24℄.The drawbak of using abstration followed by model heking as a veri�a-tion and analysis tehnology onsists in the fat that abstrations are approxi-mations of the original systems that indue false negative results. For instane, amodel heker may exhibit an error trae that orresponds to an exeution of theabstrat program that violates the desired properties. However, this error traemay not orrespond to an exeution trae in the onrete program. This situa-tion indiates that the abstration is too oarse, and that the results of modelheking the abstrat system are not onlusive. That is, too many details wereabstrated and the abstration needs to be re�ned. The ontribution of our workan be summarized as follows:- We propose an eÆient algorithm for the automati onstrution of booleanabstrations that requires fewer alls to deision proedures and subsumes theprevious and reent work [14, 7, 1, 11℄ in this topi.- In all the reent work on the automati onstrution of �nite abstrations,parallel programs are onsidered. However, eah omponent are abstrated sep-arately. In our work, the abstration of a omponent takes into aount its inter-ation with the environment, allowing the onstrution of more preise abstra-tions.

- We propose to use the error trae generated by model heking to automati-ally re�ne the abstration, even more. This methodology onsists in suessivelyre�ning a �rst abstration until the property is proved or a onrete error traeviolating the property is exhibited. The re�nement algorithm generates newprediates that will be used to enrih the abstrat state-spae.- The re�nement proedure may not always terminate. However, at any re�ne-ment step, the reahable states of the onstruted abstrat system representan invariant and a new more preise ontrol struture of the onrete systemthat an be exploited for further analysis. In [20℄, we use the newly generatedprediates to onstrut a more preise ontrol struture of parameterized sys-tems. Similar ideas are used in [18℄ for the generation of ontrol struture in thepartiular ase of synhronous linear systems.Our veri�ation methodology based on abstration followed by suessivemodel heking guided re�nement steps is implemented in a veri�ation environ-ment that ombines dedution and state-exploration tehniques. We suessfullyused our methodology to prove safety properties of several systems, inluding adata-link protool used by Philips Corporation in one of its ommerial prod-uts. The original proofs [15, 17, 16℄ of the protool required two to six monthsof work and were entirely done using theorem provers. A boolean abstrationof the protool an be automatially generated using the prediates appearingin the desription of the protool in about a hundred seonds with the help ofthe PVS theorem prover [23℄ and its new eÆient implementation of deisionproedures. The abstrat protool is then analyzed in a few seonds to hekthat all the safety properties hold.This paper is organized as follows: in Setion 2, we present the model inwhih systems are desribed, and give some basi de�nitions. In Setion 3, wede�ne boolean abstrations in the general framework of abstrat interpretationusing Galois onnetions. In Setion 4, we show how boolean abstrations anbe onstruted in an eÆient way using deision proedures and ompositionalreasoning. In Setion 5, we show how model heking is used to prove proper-ties on abstrat systems and how it an be used as a guide to the automatire�nement of already onstruted abstrations. In Setion 6, we desribe our re-�nement algorithms. Finally, in Setion 7, we desribe a tool implementing ourmethodology.2 PreliminariesWe onsider systems that are parallel ompositions of sequential proesses, whereeah proess is modeled as a transitions system.De�nition 1 (transition system).A transition system S is a tuple S = < V ; T = f�1; � � � ; �ng;L; Init >, where{ V is a set of system variables inluding a program ounter p.

{ T is a set of transitions.{ L is a set of ontrol loations, that is, the possible values of p.{ Init is a prediate haraterizing the set of initial states.Eah transition � is a guarded ommandli : guard �! v1 ::= e1; � � � ; vn ::= en goto ljwhere fv1; � � � ; vkg � V and fli; ljg � L. The boolean expression guard is theguard of the transition � . Eah variable vi is assigned with an expression ei ofa ompatible type. Loations li and lj are, respetively, the soure and targetloations of transition �i. A state of a system S is a valuation of the systemvariables of V . A system an be a parallel omposition of omponents desribedas transition systems. The system an be desribed as a single transition systemwhere the set of variables is the union of the set of variables of eah omponent,the set of transitions is the union of all the transitions of all omponents, theprogram ounter is a tuple formed by the program ounters of all omponents,and the initial state is the onjuntion of the initial states of eah omponent.Figure 1 shows the desription of the Bakery protool in our spei�ation lan-bakery : systembeginproess 1 : programy1 : var natbeginp1 Try 1: true ! y1 := y2+1 goto 2p1 In 2: y2 = 0 _ y1 � y2! SKIP goto 3p1 Out 3: true ! y1 := 0 goto 1end proess 1kproess 2 : programy2 : var natbeginp2 Try 1: true ! y2 := y1+1 goto 2p2 In 2: y1 = 0 _ y2 < y1! SKIP goto 3p2 Out 3: true ! y2 := 0 goto 1end proess 2initially : y1 = 0 ^ y2 = 0 ^ p2 = 1 ^ p1 = 1end bakery Fig. 1. Bakery transition system (version A)guage. The algorithm is alled the Bakery algorithm, sine it is based on the ideathat ustomers, as they enter a bakery, pik numbers that form an asending se-quene. Then a ustomer with a lower number has higher priority in aessingits ritial setion, whih in this ase is ontrol loation 3. Eah proess proess imodi�es its loal variable yi, and an read the other's variable.

We also reall the de�nitions of prediate transformers over transition sys-tems. The prediate transformers post and pre expressing, respetively, thestrongest postondition and preondition by a transition � of a prediate Pover the state variables of V are de�ned as follows:post[� ℄(P) = 9V 0:ation� (V 0;V) ^ P (V 0)pre[� ℄(P) = 9V 0:ation� (V ;V 0) ^ P (V 0)where ation� (V ;V 0) is de�ned as the relation between the urrent state andnext state, that is, the expressionp = li ^ guard ^ k̂i=1v0i = ei; p0 = ljDe�ning the transition relation of a system as a relational prediate for eahtransition is a more general alternative to the use of guarded ommands. Thesemantis of a transition system S is given by its omputational model KS =(Q; T ; R), where Q is the set of valuations of the program variables V , andR � Q � T � Q a transition relation. A set of states of a program an berepresented by its orresponding prediate over the state variables of V .3 Boolean AbstrationsBoolean abstration is a simple abstration sheme de�ned in [14℄ that on-sists of using prediates over onrete variables as boolean abstrat variables. Inan abstrat version of the in�nite-state transition system, the set fB1; � � � ; Bkgof abstrat variables is a set of boolean variables orresponding to prediatesf'1; � � � ; 'kg over the onrete variables. An abstrat state in this transitionsystem is therefore a truth assignment to these boolean variables. Sine the setof boolean variables is �nite, so is the set of abstrat states. Boolean abstrationsan easily be de�ned in the framework of abstrat interpretation using Galoisonnetions.De�nition 2 (Galois onnetion). A pair of monotoni funtions (�;) de�n-ing a mapping between a onrete domain lattie }(Q;�) and an abstrat domainlattie }(Qa;v), is a Galois onnetion if and only if8(P; P a) 2 }(Q)� }(Qa): �(P) v P a , P � (P a)Sets of states in }(Q) and }(Qa) are represented by their orresponding pred-iates. Thus, }(Q) and }(Qa) orrespond to latties of onrete and abstratprediates ordered by the logial impliation. A boolean abstration an be ex-pressed as a Galois onnetion as follows:- �(P) =^fBa j P) (Ba)g = P a, where Ba is any boolean expression over

the set fB1; � � � ; Bkg.- is de�ned as a substitution funtion. That is, (P a) = P a['1=B1; � � � ; 'k=Bk℄,where eah boolean variable Bi is substituted by its orresponding onrete pred-iate 'i.Thus, the abstration of a onrete set of states represented by a prediateP over onrete variables is de�ned as the smallest boolean formula P a over theabstrat variables Bi. That is, an overapproximation of P . In [25℄, we presentedan eÆient algorithm for omputing the most preise boolean abstration withrespet to a set of prediates, for systems where the transition relation is givenas a relational prediate. The algorithm onsists of an eÆient enumeration ofall boolean ombinations Ba to test the assertion P) (Ba). The algorithmabstrats systems where the transition relation is given as a prediate. Eahimpliation P) (Ba) is submitted to the deision proedure to test its validity.In [25℄, we proved that in order to ompute P a it is not neessary to onsiderall the possible Ba, that is 22k expressions, but at most 3k � 1. However, this isstill a high prie to pay for the onstrution of an abstrat system. Notie thatany approximation of P a is a valid abstration of P .bakery : systemB3 : var boolbeginproess 1 : programB1 : var boolbeginp1 Try 1 : true ! B1 := F; B3 := F goto 2p1 In 2 : B2 _ B3 ! SKIP goto 3p1 Out 3 : true ! B1 := T; B3 := T goto 1end proess 1kproess 2 : programB2 : var natbeginp2 Try 1 : true ! B2 := F; B3 := T goto 2p2 In 2 : B1 _ :B3 ! SKIP goto 3p2 Out 3 : true ! B2 := T;B3 := if B1then Telse if (:B1 _ :B3)then Felse ? goto 1end proess 2initially : B1 ^ B2 ^ B3 ^ p2 = 1 ^ p1 = 1end bakeryFig. 2. Abstrat version of Bakery transition system (version A)

Thus, in order to ompute for a onrete system S, an abstrat system Sa,it is suÆient to abstrat the initial state Init by omputing �(Init), and toabstrat eah transition � as follows:�a = �(�) = �(ation� (V ;V 0)) =^f(Ba; Ba0)j ` post[� ℄((Ba))) (Ba0)gthat is, the pair (Ba; Ba0) haraterizing the abstration of the set of possiblepredeessors by � and the abstration of the set of possible suessors by � . Inthis ase, the omplexity of the omputation of �a is (3k � 1) � (3k � 1) alls tothe deision proedure, (3k � 1) alls to test the suessors, and (3k� 1) alls totest the potential predeessors.The preservation of properties expressed in temporal logi is widely studiedin [21, 10, 5℄. Preservation results are established via equivalenes and preordersbetween the onrete and abstrat models. The following theorem establishesthe preservation of safety properties expressed in the logi CTL� via simulation.Theorem 1 (weak preservation). Let S be a onrete system, and let Sa bea boolean abstration of S using any set of prediates. We haveSa j= �(')) S j= 'for eah formula ' 2 8CTL�, that is, temporal formulas with universal quanti�-ation over paths, inluding safety properties suh as invariants.Proof. This result an be established by proving that Sa simulates S. This anbe done by proving that the following holds for eah transition � of S:8P: post[� ℄(P)) (post[�(�)℄(�(P)))that is, eah set of suessor states by an abstrat transition is an overapproxi-mation of the orresponding set of states of the onrete system.Intuitively, 8CTL� properties hold in all exeution paths. Sine Sa simulatesS, that is, all the exeutions of S are exeutions of Sa, then if a property holdsalong all exeution paths of Sa, it holds in all exeution paths of S. Theorem 1indiates that when a property is established in the abstrat system, its orre-sponding onrete property holds in the onrete system. However, nothing anbe onluded when the property does not hold in the abstrat system. Strongpreservation results an be applied in this ase under some onditions.Theorem 2 (strong preservation). Let S be a onrete system, and let Sa bea boolean abstration of S using any set of prediates that inludes all the literalsappearing in the guards of S and in the property '. If Sa is deterministi, wehave Sa j= �(') , S j= 'That is, Sa and S are equivalent.

Proof. By onstrution Sa simulates S. Thus, it is suÆient to prove now that Ssimulates Sa. To show this, it is suÆient to prove that for eah pair of abstratstates sa1 and sa2 , if sa2 is a suessor of sa1 by �a in the abstrat system, then, forevery pair s1 and s2 of states in the onretization of sa1 and sa2 , s2 is the suessorof s1 by � in the original system. Every onrete state s1 in the onretization ofsa1 satis�es the guard of � , and every suessor s2 of s1 is in the onretizationof sa2 . Thus, S simulates Sa.The strong preservation result allows us to avoid false negative results by map-ping abstrat error traes to onrete exeutions violating the property. However,the ondition for strong preservation requires that Sa be deterministi. This isusually not the ase. However, we will see later how we exploit Theorem 2 togenerate boolean abstrations to verify properties, and also to generate oun-terexamples when a formula is not a property of the onrete system. As wementioned earlier in the introdution, boolean abstration subsumes abstra-tions where the abstrat domain is �nite.Theorem 3 (generality). Let S be a system and let � be an abstration fun-tion where the abstrat domain is �nite. Then, � an be expressed as a booleanabstration.Proof. The proof is based on the fat that a �nite domain an be enoded by aset of boolean variables. Eah abstrat state is then a onjuntion of a subset ofthe set of boolean variables. The onretization of an abstrat state is a set ofonrete states that an be represented as a prediate.Figure 2 shows the abstration of the Bakery protool using prediates y1 = 0,y2 = 0, and y1 � y2 appearing in the guards. Notie that all the assignmentsare deterministi exept the assignment for the variable B3 in the transitionp2 Out.4 Automati Constrution of Boolean AbstrationsDeision proedures an be used for the automati onstrution of a booleanabstration of a onrete, in�nite state system desribed as a transition system.The abstration of a onrete system S = < V ; T = f�1; � � � ; �ng;L; Init > isan abstrat system Sa = < Va; T a = f�a1 ; � � � ; �ang;L; Inita > suh that{ Va is the set fB1; � � � ; Bk; pg.{ T a is a set of abstrat transitions.{ Inita is the abstrat initial state omputed as �(Init).The abstration algorithm onsists in omputing Inita and for eah onretetransition � li : guard �! v1 ::= e1; � � � ; vn ::= en goto lj

a orresponding abstrat transition �ali : guarda �! B1 ::= b1; � � � ; Bk ::= bk goto ljsuh that:- The abstrat guard guarda is omputed as �(guard). When using the literalsof the guards as abstrat boolean variables, �(guard) is an exat abstration,where eah literal of guard is substituted by its orresponding abstrat booleanvariable. - Eah assignment Bi := bi is de�ned as follows:Bi :=8<:T if post[� ℄(true)) (Bi) (1)F if post[� ℄(true)) :(Bi) (2)? otherwisethat is, for eah abstrat variable Bi, the strongest postondition by � of anyarbitrary state is in (Bi) or :(Bi), that is, in 'i or :'i. When neither ofthe above impliations is valid, the variable is nondeterministially assigned thevalue ?.- The variable p is not abstrated sine it is of a �nite type.When a variable is assigned the value ?, it is possible to ompute a morere�ned assignment by taking into aount the dependenies between the abstratvariables. Thus, the assignment Bi :=? an be rede�ned as follows:Bi := if bTithen Telse if bFithen Felse ?where bTi and bFi are de�ned as follows:bTi �_fBa j post[� ℄((Ba))) (Bi)gbFi �_fBa j post[� ℄((Ba))) :(Bi)gThat is, bT and bF are, respetively, the smallest boolean ombination over theabstrat variables fB1; � � � ; Bkg that de�nes the abstrat state from whih, ifthe transition � is exeuted, the variable Bi gets either the value T or F. Inthe worst ase, both bTi and bFi are equivalent to true. Thus, the variable Bi isassigned with the value ?.In [25℄, the omplexity of the abstration algorithm for a transition is 3k �1 � 3k � 1. In our ase, this is redued to at most 3k � 1 � 2 � k.Theorem 4 (omplexity). The omplexity of the abstration of a transition� using k prediates f'1; � � � ; 'kg requires heking the validity of 3k � 1 � 2 � kimpliations.

Proof. For eah abstrat variableBi assigned in the abstration of � , The booleanexpressions bTi and bFi are omputed. Thus 2 � k impliations have to be proved.For eah of the expressions bTi and bFi , all possible boolean expressions Ba overfB1; � � � ; Bkg have to be onsidered. There are 3k � 1 possible expressions as il-lustrated in the following Figure with k = 2. The elements of the set of possible1 B1 + B2B1 + B02B01 + B02B01 +B2 B1:B02 +B01:B2B01:B02 + B1:B2 0 B2B02B01:B2 B1:B2B01:B02 B1:B02B01 B1
Fig. 3. Boolean algebra for 2 boolean variables B1 and B2boolean expressions Ba are the elements of the boolean algebra de�ned by the kboolean variables, that is, 22k expressions. However, the expression Ba appearson the left hand side of an impliation. Thus, it is neessary to onsider onlyexpressions that are onjuntions of boolean variables. That is is only 3k�1 pos-sible expressions that an be tested inrementally by �rst testing eah booleanvariable Bi and its negation, and then testing onjuntions of the set of variablesfor whih both tests fail.The results in [25℄, shows that the enumeration of 3k � 1 expressions subsumesthe enumeration of the possible 22k expressions. However, the enumeration of thepossible Ba satisfying the above impliations an be done only for the expressionsBa suh that FV (post[� ℄((Ba))) \ FV ((Bi)) 6= ;where FV (P) is the set of free variables of the prediate P .5 Model Cheking Guided AnalysisOne an abstrat system is onstruted, model heking is used to explore itsstate-spae. We use both symboli and expliit-state model heking tehniques.Figure 4 shows the reahable abstrat states of the Bakery protool. It is easyto show that the protool does guarantee mutual exlusion for both proessessine there is no reahable state where both ontrol variables p1 and p2 havethe value 3.The advantage of model heking over other veri�ation tehniques is itsability to generate ounterexamples when a property is violated. The error traeis a sequene of states and transitions starting from the initial state of the system

1 1 B1 B2 B3

2 1 ~B1 B2 ~B3

p1_Try

1 2 B1 ~B2 B3

p2_Try3 1 ~B1 B2 ~B3

p1_In

2 2 ~B1 ~B2 B3

p2_Try

p1_Out

3 2 ~B1 ~B2 B3

p2_Try

2 2 ~B1 ~B2 ~B3

p1_Try

1 3 B1 ~B2 B3

p2_In

2 3 ~B1 ~B2 ~B3

p2_In

p2_Out

p1_In

p1_Out

p2_Out

p1_TryFig. 4. Abstrat state graph for the Bakery protoolleading to a state violating the property. Error traes of an abstrat system anbe mapped to exeutions of a onrete system sine eah abstrat transitionorresponds to a single onrete one with the same label.Figure 5 shows a more omplex version of the Bakery protool (known asBakery C) where the ritial setion orresponds to ontrol loation 7. Thisversion was proposed to avoid the long wait of one proess at loation 2 inthe previous version (known as Bakery A) before the proess enters its ritialsetion. The abstration of the protool with respet the guards y1 = 0, y2 = 0,y1 � y2, x1 = 0, and x2 = 0 is given in Figure 6. Figure 7 shows an errortrae from the initial abstrat state 0 to abstrat state 30 violating the mutualexlusion property, where for both proesses the program ounter has value 7.The simulation of the error trae on the onrete system indiates that it doesnot orrespond to an exeution of the onrete system. However, this does notrule out the possibility that the property is violated. In the next setion, we showhow model heking an guide the automati re�nement of an abstrat systemuntil the property is veri�ed or a ounterexample orresponding to a onreteexeution violating the property is generated.6 Automati Re�nement of AbstrationsUnlike urrent model heking tools, the error trae we generate is a tree in-diating the states where abstrat variables are nondeterministially assigned.In Figure 7, states 9 and 12 indiate loss of information on, respetively, theabstrat variables B1, B3, and B2. The onrete system is deterministi. Thus,

bakery : systembeginproess 1 : programy1; x1; t1 : var natbeginp1 init x1 1: true ! x1 := 1 : 2p1 init t 2: true ! t1 := y2+1 : 3p1 init y 3: true ! y1 := t1 : 4p1 init x0 4: true ! x1 := 0 : 5p1 Wait 5: x2 = 0 ! SKIP : 6p1 In 6: y2=0 _ y1 � y2! SKIP : 7p1 Out 7: true ! y1 := 0 : 1end proess 1kproess 2 : programy2; x2; t2 : var natbeginp2 init x1 1: true ! x2 := 1 : 2p2 init t 2: true ! t2 := y1+1 : 3p2 init y 3: true ! y2 := t2 : 4p2 init x0 4: true ! x2 := 0 : 5p2 Wait 5: x1 = 0 ! SKIP : 6p2 In 6: y1=0 _ y2 < y1! SKIP : 7p2 Out 7: true ! y2 := 0 : 1end proess 2initially : y1=0 ^ y2=0 ^ x1=0 ^ x2=0 ^ t1=0 ^ t2=0 ^ p1=1 ^ p2=1end bakery Fig. 5. Bakery transition system (version C)in an exeution of the onrete system, eah abstrat state s, suh as the ab-stration of s is state 9, has only one suessor by the transition p1 init y. Also,eah state s suh as the abstration of s is state 12, has only one suessor bythe transition p2 init y. However, if the error trae is a sequene and not a tree,that is all assignments in the sequene are deterministi, the following theoremallows us to onlude that the error trae orresponds to a sequene of onretetransitions violating the property. The theorem is a orollary of Theorem 2.Theorem 5. Let Let S be a onrete system, and let Sa be a boolean abstrationof S using any set of prediates that inludes all the literals appearing in theguards of S and in the property '. every sequene of transitions in Sa where allassignments are deterministi is a sequene of transitions of S. We all suh asequene a deterministi trae.

Our re�nement methodology onsists in omputing a new abstrat system withmore abstrat variables. This is done by enrihing the urrent abstrat state byadding additional prediates, and therefore additional abstrat boolean variables.bakery : systemB3 : var boolbeginproess 1 : programB1; B4 : var boolbeginp1 init x1 1: true ! B4 := F : 2p1 init t 2: true ! SKIP : 3p1 init y 3: true ! B1 :=?, B3 :=? : 4p1 init x0 4: true ! B4 := T : 5p1 Wait 5: B5 ! SKIP : 6p1 In 6: B2 _ B3! SKIP : 7p1 Out 7: true ! B1 := T, B3 := T : 1end proess 1kproess 2 : programB2; B5 : var boolbeginp2 init x1 1: true ! B5 := F : 2p2 init t 2: true ! SKIP : 3p2 init y 3: true ! B2 :=?,B3 := if B1 then T else ? : 4p2 init x0 4: true ! B5 := T : 5p2 Wait 5: B4 ! SKIP : 6p2 In 6: B1 _ :B3 ! SKIP : 7p2 Out 7: true ! B2 := T,B3 := if B1then Telse if :B1 _ :B3 then F else ? : 1end proess 2initially : B1 ^ B2 ^ B3 ^B4 ^B5 ^ p1=1 ^ p2=1end bakeryFig. 6. Abstrat version of Bakery transition system (version C)We use Theorem 5 in order to onstrut a new abstrat system that mayprodue more error traes that are deterministi. That is, by eliminating thenondeterminism in the urrent error traes. This is done by omputing the on-straints under whih the system may exeute one of the nondeterministi transi-tions. These onstraints are aptured as preonditions and omputed using the

prediate transformer pre. We use the following lemma, allowing an eÆientomputation of preonditions for assignments.Lemma 1. Let � be a transition. If guard(�) is equivalent to true, then8P: pre[� ℄(P) � :pre[� ℄(:P)This lemma indiates that when omputing a preondition for assignments, itis not neessary to ompute it for both the prediate and its negation. Let usonsider the ase of the Bakery protool. The error trae indiates that nonde-terminism is reated for transitions p1 init y and p2 init y at, respetively,states 9 and 12. The re�nement tehnique is applied to eah of these states byomputing the preonditions for eah boolean variable that is assigned the value? as follows:{ re�ning state 9: pre[p1 init y℄(y1 = 0) � t1 = 0pre[p1 init y℄(y1 � y2) � t1 � y2{ re�ning state 12: pre[p2 init y℄(y2 = 0) � t2 = 0Three new prediates t1 = 0, t2 = 0 and t1 � y2 orresponding to thenew abstrat variables B6, B7, and B8 are generated. Eah transition where avariable is not assigned with the value T or F is re�ned. The re�nement of thetransition p1 init y 3: true! B1 :=?, B3 :=? : 4where B1 and B3 orrespond to y1 = 0 and y1 � y2 is the transition3: true! B1 := if B6 then T else if :B6 _ :B8 then F else ?,B3 := if B6 then T else ? : 4The re�nement algorithm uses a re�ned way of omputing the values bTi andbFi bTi �_fBa j (Ra�) ^ post[� ℄((Ba))) (Bi)gbFi �_fBa j (Ra�) ^ post[� ℄((Ba))) :(Bi)gwhere Ra� is a boolean expression representing the set of reahable states of thealready onstruted abstrat system at the soure loation of � . For instane,Rap1 Try of Bakery A is equal to B1 _B2. The expression Ba is any expressionover the union of the new set of variables and set of the old one that satisfy theinvariant Ra� . Thus, eah re�nement step uses the results of model heking the

[29]
 6 7 B1 B2 B3 B4 B5

[30]
 7 7 B1 B2 B3 B4 B5

p1_In

[28]
 5 7 B1 B2 B3 B4 B5

p1_Wait

[21]
 5 6 B1 B2 B3 B4 B5

p2_In

[14]
 5 5 B1 B2 B3 B4 B5

p2_Wait

[13]
 5 4 B1 B2 B3 B4 ~B5

p2_init_x0

[12]
 5 3 B1 B2 B3 B4 ~B5

p2_init_y

[36]
 5 4 B1 ~B2 B3 B4 ~B5

p2_init_y

[11]
 5 2 B1 B2 B3 B4 ~B5

p2_init_t

[10]
 4 2 B1 B2 B3 ~B4 ~B5

p1_init_x0

[9]
 3 2 B1 B2 B3 ~B4 ~B5

p1_init_y

[167]
 4 2 ~B1 B2 ~B3 ~B4 ~B5

p1_init_y

[198]
 4 2 B1 B2 ~B3 ~B4 ~B5

p1_init_y

[179]
 4 2 ~B1 B2 B3 ~B4 ~B5

p1_init_y

[8]
 2 2 B1 B2 B3 ~B4 ~B5

p1_init_t

[0]
 1 1 B1 B2 B3 B4 B5

[7]
 1 2 B1 B2 B3 B4 ~B5

p2_init_x1

p1_init_x1

Fig. 7. Error trae for the Bakery Protoolonstruted abstrat system to generate new abstrat variables and to reduethe ost of the re�nement algorithm. Furthermore, the invariant Ra� refers tovariables written by the omponent where � belongs and to variables that aremodi�ed by other omponents that form its environment. The new generatedprediates are used as new abstrat boolean variables to ompute a re�ned ab-strat system. The new abstrat system is then analyzed and a new error traeindiates that mutual exlusion is violated. However, the trae is not determin-isti, and a new re�nement step is performed where two new prediates y1 � t2and t1 � t2 orresponding to the new boolean variables B9 and B10 are gener-ated. A new abstrat system is then generated and analyzed, and the propertyis proved to be a property of the abstrat system. Thus by Theorem 1, it is aproperty of the Bakery protool.In general, the an abstrat system obtained after re�nement is a more preisean aurate abstration of the orresponding original system.

Theorem 6 (re�nement simulation). Let Sa be an abstration of a systemS using a set of prediates f'1; � � � ; 'kg. Let Sar be a re�nement of Sa using theadditional prediates f'k+1; � � � ; 'jg. Then, Sa simulates Sar .Proof. The proof of the theorem an be established by proving that for eahabstrat prediate P a, the set of suessors of P a with respet to an abstrattransition �a is smaller that the set of suessors of P a with respet to theorresponding re�ned transition �ar of Sar . That is:8P a: post[�ar ℄(P a)) post[�a℄(P a)Thus, the onretization of the set of reahable states of the abstrat system is amore re�ned invariant of the onrete system. It is a more preise approximationof the reahable state of the onrete systems. Even when a property an notbe established after a number of suessive re�nement steps, one an use thisinvariant as a starting point for a more elaborate proof and analysis tehniqueusing for instane a theorem prover. It is in fat neessary for even very simplesystems and property to provide an invariant in order to be able to ahieve aorretness proof.7 Implementation and Analysis MethodologyWe have implemented the abstration/model heking/re�nement methodologyin a tool dediated to the veri�ation of in�nite state systems. Figure 8 showsthe arhiteture of the tool. Our tool is built on top of the PVS theorem prover.We explain the role of eah omponent of the tool and how the analysis proessis organized.Syntax: Systems an be desribed in a Simple Programming Language (SPL),lose to the one used in [22℄, but with the rih data types and expression de�-nition mehanism available in PVS. Our SPL language inludes ommon algo-rithmi onstrutions suh as single and multiple assignment statements, on-ditionals If-Then-Else, and loop statements. We also allow parallel ompositionby interleaving and synhronization by shared variables as in Unity [4℄. Systemsdesribed in SPL are translated automatially into guarded ommands with ex-pliit ontrol. Program variables an be of any type de�nable in PVS, and anbe assigned by any de�nable PVS expression of a ompatible type. It is possibleto import any de�ned PVS theory. The examples in this paper are presented inthe automatially generated LATEX format for guarded ommands.Internal representation: Pvs is implemented in LISP. Every objet manipulatedin Pvs suh as a theory, a theorem, or a proof is represented as an instane ofa prede�ned objet lass. We have de�ned for transition systems a representa-tion that is also a lass. An important aspet of suh a struture is that it is

High Level
Description

In SPL

Internal
Representation

Invariant
Data Base

Abstract
System

Abstract
State GraphTrace

Error

Static Analysis

SPL Compiler

System
Transition

Typechecking

Abstraction Predicates

Exploration Use

Add

Input System

Diagnostic

Refinement

State

LATEX

S1k � � � kSn

LATEX/ Graph

LATEX LATEX/ Graph

Graph RedutionFig. 8. Analysis methodologyindependent of the Pvs internal struture, and makes our implementation inde-pendent of the possible hanges in the Pvs internal representation. However, theexpression manipulated and the veri�ation ondition generated are representedas Pvs expressions and Pvs obligations. This is neessary for the automatiinteration with the deision proedures.Stati analysis: We use the tehniques developed in [24℄ to generate useful in-variants of the onrete system. Stati analysis onsists in a set of tehniquesfor the automati generation of suh invariants. These tehniques are based onpropagation of guards and assignments through program ontrol points. Thetehniques we use omputes invariants for eah omponent and are omposedusing a novel omposition rule presented in [24℄ to form invariants of the globalsystem. These invariants are used to weaken all the impliations that are gen-erated when an abstration is omputed. When used, the allow a more eÆientonstrution of abstrations. That is, one an deide with the help of these in-variants that a variable is not assigned the value ? but either T or F, and thus,allows to generate less impliations.Automati abstration: The abstration module takes a transition system andbuilds a �rst abstration using the prediates appearing in the guards and theproperty to verify, and then submits the abstrat system to our model heker.This module is also used for automati re�nement.

Model heking: The state-spae of the onstruted abstrat system an be ex-plored in two ways. In the symboli approah, the system is translated into aboolean funtion represented by a Bdd that represents the suessor funtion.The exploration onsists in applying the funtion reursively starting from theinitial abstrat state, represented also by a Bdd until a �x point is reahed.In the expliit approah, it onsists in translating the abstrat system into anexeutable form and then running it and by hashing the visited states. Both ap-proahes an be exploited to onstrut the orresponding abstrat state graph.The abstrat state graph an then be redued using simulation and bisimulationminimization algorithms as a way of performing additional abstrations.Experiments: We have used our analysis methodology to verify several ommu-niation protools suh as the alternating bit protool and a data link proto-ol. We also applied our methodology on several parametrized systems that areompositions of arbitrary numbers of idential proesses. Figure 7 shows ourexperiments with three versions of the Bakery protool. The versions Bakery Aand Bakery C were desribed previously and illustrated in Figures 1 and 5. Theversion Bakery B is obtained by removing the transitions init x0 and Init x1from the desription of Bakery C. Figure 7 shows the number of prediates usedin the ompute a �rst abstration, the re�nement steps used to reah a onlu-sive result, that is either the property is veri�ed, or to generate a deterministierror trae. It shows, the number of prediates omputed eah re�nement step.It shows the numbers of impliations generate and proved for eah abstra-tion/re�nement step, and the duration of eah step. It also shows a omparisonwith our previous work in [25℄ where transitions systems are given as relationalprediates, and where the numbers of impliations is muh higher as shown byTheorem 4. Notie that in general the omplexity of eah re�nement step isless than the omplexity of the omputation of the �rst abstration. The versionBakery B is shown to violate the mutual exlusion property, and a deterministierror trae is generated after two re�nements steps.#of initial #of re�nements #of new #of alls to the omparison timeprediates steps prediates deision with (s)proedure [25℄Bakery A 3 0 27 33 1:8Bakery B 3 2 72 100 5:13 32 178 3:34 134 366 15:5Bakery C 5 2 120 168 123 35 94 3:22 32 136 3:4Fig. 9. Experiments results for 3 versions of the Bakery protool

8 Conlusion and Future WorkWe presented a general, yet e�etive, methodology for the veri�ation of largesystems, based on abstration followed by model heking. The novelty of ourmethodology onsists of an eÆient algorithm for the automati onstrutionof boolean abstrations and an eÆient algorithm for automatially re�ning aoarse abstration when model heking the abstrat system fails. This method-ology also allows in many ases the generation of ounterexamples, that is exe-utions violating the property of interest. Our abstration algorithm an be usedto ompute abstration for any abstrat domain whih is a boolean algebra. Ourveri�ation tool represents the ore of a veri�ation and analysis tehnology forlarge software. The �rst step will be to translate soure ode into transitionsystems. For large programs, thousands of alls to the deision proedure areneessary. This an be done in few minutes or at most few hours.Referenes1. S. Bensalem, Y. Lakhneh, and S. Owre. Computing abstrations of in�nite statesystems ompositionally and automatially. In Proeedings of the 9th Confereneon Computer-Aided Veri�ation, CAV'98, LNCS. Springer Verlag, June 1998.2. S. Bensalem, Y. Lakhneh, and Hassen Sa��di. Powerful tehniques for the auto-mati generation of invariants. In Rajeev Alur and Thomas A. Henzinger, editors,Computer-Aided Veri�ation, CAV '96, number 1102 in Leture Notes in ComputerSiene, pages 323{335, New Brunswik, NJ, July/August 1996. Springer-Verlag.3. Nikolaj Bjorner, Ana Browne, and Zohar Manna. Automati Generation ofInvariants and Intermediate Assertions. Theoretial Computer Siene, 1997.4. K. Mani Chandy and Jayadev Misra. Parallel Program Design. Addison-Wesley,Reading, Massahusetts, 1988.5. Ching-Tsun Chou. Simple proof tehniques for property preservation via simula-tion. Information Proessing Letters, 60(3):129{134, 1996.6. E.M. Clarke, O. Grumberg, and D.E. Long. Model heking and abstration. ACMTransations on Programming Languages and Systems, 16(5):1512{1542, Septem-ber 1994.7. Mihael Colon and Thomas Uribe. Generating �nite-state abstrations of rea-tive systems using deision proedures. In Proeedings of the 9th Conferene onComputer-Aided Veri�ation, CAV'98, LNCS. Springer Verlag, June 1998.8. P. Cousot and R. Cousot. Abstrat interpretation: a uni�ed lattie model for statianalysis of programs by onstrution or approximation of �xpoints. In 4th POPL,January 1977.9. D. Dams. Abstrat interpretation and partition re�nement for model heking. PhDthesis, Tehnial University of Eindhoven, July 1996.10. D. Dams, O. Grumberg, and R. Gerth. Abstrat interpretation of reative systems:Abstrations preserving 8CTL*, 9CTL* and CTL*. In Ernst-Rudiger Olderog,editor, IFIP Conferene PROCOMET'94, pages 561{581, 1994.11. S. Das, D. L. Dill, and S. Park. Experiene with prediate abstration. LetureNotes in Computer Siene, 1633:160{??, 1999.

12. J. Dingel and Th. Filkorn. Model heking for in�nite state systems using data ab-stration, assumption-ommitment style reasoning and theorem proving. In Pro.of 7th CAV 95, Li�ege. LNCS 939, Springer Verlag, 1995.13. S. Graf. Charaterization of a sequentially onsistent memory and veri�ation ofa ahe memory by abstration. Distributed Computing, 1995.14. S. Graf and H. Sa��di. Constrution of abstrat state graphs with PVS. In Confer-ene on Computer Aided Veri�ation CAV'97, LNCS 1254, Springer Verlag, 1997.15. J.F. Groote and J. van de Pol. A bounded retransmission protool for large datapakets. Tehnial report, Department of Philosophy, Otober 1993.16. Klaus Havelund and N. Shankar. Experiments in theorem proving and modelheking for protool veri�ation. In Formal Methods Europe FME '96, number1051 in Leture Notes in Computer Siene, pages 662{681, Oxford, UK, Marh1996. Springer-Verlag.17. L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-heking a data linkprotool. Tehnial report, Department of Philosophy, Utreh University, TheNetherlands, Marh 1994.18. Bertrand Jeannet, Niolas Halbwahs, and Pasal Raymond. Dynami partitioningin analyses of numerial properties. In Agostino Cortesi and Gilberto Fil�e, editors,Stati Analysis, volume 1694 of Leture Notes in Computer Siene, pages 39{50.Springer, 1999.19. R.P. Kurshan. Computer-aided veri�ation of oordinating proesses, the automatatheoreti approah. Prineton Series in Computer Siene. Prineton UniversityPress, 1994.20. David Lesens and Hassen Sa��di. Automati veri�ation of parameterized networksof proesses by abstration. In Faron Moller, editor, 2nd International Workshopon Veri�ation of In�nite State Systems: In�nity '97, volume 9 of Eletroni Notesin Theoretial Computer Siene, Bologna, Italy, July 1997. Elsevier.21. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preservingabstrations for the veri�ation of onurrent systems. Formal Methods in SystemDesign, Vol 6, Iss 1, January 1995, 1995.22. Zohar Manna and Amir Pnueli. The Temporal Veri�ation of Reative Systems:Safety. Springer-Verlag, 1995.23. S. Owre, N. Shankar, and J. M. Rushby. A tutorial on spei�ation and veri�ationusing pvs. Tehnial report, Computer Siene Laboratory, SRI International,February 1993.24. H. Sa��di. Modular and inremental analysis of onurrent software systems. In14th IEEE International Conferene on Automated Software Engineering, pages92{101, Cooa Beah, FL, Otober 1999. IEEE Computer Soiety Press.25. Hassen Sa��di and Natarajan Shankar. Abstrat and model hek while you prove.In Computer-Aided Veri�ation, CAV '99, Trento, Italy, July 1999.

