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omAbstra
t. The 
ombination of abstra
tion and state exploration te
h-niques is the most promising re
ipe for a su

essful veri�
ation of proper-ties of large or in�nite state systems. In this work, we present a general,yet e�e
tive, algorithm for 
omputing automati
ally boolean abstra
-tions of in�nite state systems, using de
ision pro
edures. The advantageof our approa
h is that it is not limited to parti
ular 
on
rete domains,but 
an handle di�erent kinds of in�nite state systems. Furthermore,our approa
h provides, through the use of model 
he
king as a tool forthe exploration of the state-spa
e of the abstra
t system, an automati
way of re�ning the abstra
tion until the property of interest is veri�edor a 
ounterexample is exhibited. We illustrate our approa
h on someexamples and dis
uss its implementation.1 Introdu
tionThe 
ombination of abstra
tion and state exploration te
hniques is probably themost promising re
ipe for a su

essful veri�
ation of properties of large or in�-nite state systems. It is now widely a

epted that abstra
tion te
hniques are notonly useful, but even ne
essary for a su

essful veri�
ation [19, 6, 21, 13, 12, 9, 14℄in order to avoid the limiting fa
tor of using model 
he
king by redu
ing all thebehaviors of a program to a simpli�ed des
ription on whi
h the property of in-terest 
an be veri�ed using model 
he
king. While the theoreti
al frameworks forde�ning property preserving abstra
tions su
h as abstra
t interpretation [8℄ havebeen widely studied in the literature, the automati
 
onstru
tion of useful anda

urate abstra
tions preserving useful properties is in an early stage of inves-tigation. Abstra
t models are usually provided manually, and theorem provingis used to 
he
k that the provided abstra
t mapping preserves the properties.? This resear
h was supported by DARPA 
ontra
t F30602-97-C-0040.



On
e the preservation property is established, the abstra
t model is analyzedby model 
he
king. Re
ently [14, 7, 1, 25, 11℄, novel te
hniques based on abstra
tinterpretation have been proposed in the 
ontext of the veri�
ation of temporalproperties where theorem proving is used to 
ompute automati
ally �nite ab-stra
tions. These te
hniques are quite e�e
tive, but require heavy use of theoremproving and de
ision pro
edures.The most general and yet simple and e�e
tive abstra
tion s
heme 
onsistsof 
onstru
ting boolean abstra
tions following the s
heme introdu
ed in [14℄.Boolean abstra
tions 
onsist in using predi
ates over 
on
rete variables as booleanabstra
t variables. In this abstra
tion, 
ertain predi
ates at the 
on
rete level(that might be used in guards, expressions, or properties) 
an be repla
ed byboolean variables at the abstra
t level. An abstra
t version of the in�nite-statetransition system is a transition system where the set fB1; � � � ; Bkg of abstra
tvariables is a set of boolean variables 
orresponding to predi
ates f'1; � � � ; 'kgover the 
on
rete variables. An abstra
t state in this transition system is there-fore a truth assignment to these boolean variables. Boolean abstra
tions havevery ni
e properties. In fa
t, any abstra
tion mapping that maps an arbitrarysystem to a �nite state system 
an be expressed as a boolean abstra
tion. Fur-thermore, the abstra
t system 
an be represented symboli
ally using BinaryDe
ision Diagrams (Bdds) and therefore 
an be analyzed using symboli
 model
he
king, allowing an eÆ
ient exploration of abstra
t systems with a large statespa
e. The te
hniques we developed for the automati
 
onstru
tion of booleanabstra
tions do not require a preservation 
he
k, and ensure that the 
onstru
tedabstra
tion indeed preserves various temporal logi
s properties, in
luding safetyproperties. Furthermore, boolean abstra
tion is an eÆ
ient and more powerfulalternative to stati
 analysis te
hniques dedi
ated to the automati
 generationof various properties su
h as invariants like the ones presented in [3, 2, 24℄.The drawba
k of using abstra
tion followed by model 
he
king as a veri�
a-tion and analysis te
hnology 
onsists in the fa
t that abstra
tions are approxi-mations of the original systems that indu
e false negative results. For instan
e, amodel 
he
ker may exhibit an error tra
e that 
orresponds to an exe
ution of theabstra
t program that violates the desired properties. However, this error tra
emay not 
orrespond to an exe
ution tra
e in the 
on
rete program. This situa-tion indi
ates that the abstra
tion is too 
oarse, and that the results of model
he
king the abstra
t system are not 
on
lusive. That is, too many details wereabstra
ted and the abstra
tion needs to be re�ned. The 
ontribution of our work
an be summarized as follows:- We propose an eÆ
ient algorithm for the automati
 
onstru
tion of booleanabstra
tions that requires fewer 
alls to de
ision pro
edures and subsumes theprevious and re
ent work [14, 7, 1, 11℄ in this topi
.- In all the re
ent work on the automati
 
onstru
tion of �nite abstra
tions,parallel programs are 
onsidered. However, ea
h 
omponent are abstra
ted sep-arately. In our work, the abstra
tion of a 
omponent takes into a

ount its inter-a
tion with the environment, allowing the 
onstru
tion of more pre
ise abstra
-tions.



- We propose to use the error tra
e generated by model 
he
king to automati-
ally re�ne the abstra
tion, even more. This methodology 
onsists in su

essivelyre�ning a �rst abstra
tion until the property is proved or a 
on
rete error tra
eviolating the property is exhibited. The re�nement algorithm generates newpredi
ates that will be used to enri
h the abstra
t state-spa
e.- The re�nement pro
edure may not always terminate. However, at any re�ne-ment step, the rea
hable states of the 
onstru
ted abstra
t system representan invariant and a new more pre
ise 
ontrol stru
ture of the 
on
rete systemthat 
an be exploited for further analysis. In [20℄, we use the newly generatedpredi
ates to 
onstru
t a more pre
ise 
ontrol stru
ture of parameterized sys-tems. Similar ideas are used in [18℄ for the generation of 
ontrol stru
ture in theparti
ular 
ase of syn
hronous linear systems.Our veri�
ation methodology based on abstra
tion followed by su

essivemodel 
he
king guided re�nement steps is implemented in a veri�
ation environ-ment that 
ombines dedu
tion and state-exploration te
hniques. We su

essfullyused our methodology to prove safety properties of several systems, in
luding adata-link proto
ol used by Philips Corporation in one of its 
ommer
ial prod-u
ts. The original proofs [15, 17, 16℄ of the proto
ol required two to six monthsof work and were entirely done using theorem provers. A boolean abstra
tionof the proto
ol 
an be automati
ally generated using the predi
ates appearingin the des
ription of the proto
ol in about a hundred se
onds with the help ofthe PVS theorem prover [23℄ and its new eÆ
ient implementation of de
isionpro
edures. The abstra
t proto
ol is then analyzed in a few se
onds to 
he
kthat all the safety properties hold.This paper is organized as follows: in Se
tion 2, we present the model inwhi
h systems are des
ribed, and give some basi
 de�nitions. In Se
tion 3, wede�ne boolean abstra
tions in the general framework of abstra
t interpretationusing Galois 
onne
tions. In Se
tion 4, we show how boolean abstra
tions 
anbe 
onstru
ted in an eÆ
ient way using de
ision pro
edures and 
ompositionalreasoning. In Se
tion 5, we show how model 
he
king is used to prove proper-ties on abstra
t systems and how it 
an be used as a guide to the automati
re�nement of already 
onstru
ted abstra
tions. In Se
tion 6, we des
ribe our re-�nement algorithms. Finally, in Se
tion 7, we des
ribe a tool implementing ourmethodology.2 PreliminariesWe 
onsider systems that are parallel 
ompositions of sequential pro
esses, whereea
h pro
ess is modeled as a transitions system.De�nition 1 (transition system).A transition system S is a tuple S = < V ; T = f�1; � � � ; �ng;L; Init >, where{ V is a set of system variables in
luding a program 
ounter p
.



{ T is a set of transitions.{ L is a set of 
ontrol lo
ations, that is, the possible values of p
.{ Init is a predi
ate 
hara
terizing the set of initial states.Ea
h transition � is a guarded 
ommandli : guard �! v1 ::= e1; � � � ; vn ::= en goto ljwhere fv1; � � � ; vkg � V and fli; ljg � L. The boolean expression guard is theguard of the transition � . Ea
h variable vi is assigned with an expression ei ofa 
ompatible type. Lo
ations li and lj are, respe
tively, the sour
e and targetlo
ations of transition �i. A state of a system S is a valuation of the systemvariables of V . A system 
an be a parallel 
omposition of 
omponents des
ribedas transition systems. The system 
an be des
ribed as a single transition systemwhere the set of variables is the union of the set of variables of ea
h 
omponent,the set of transitions is the union of all the transitions of all 
omponents, theprogram 
ounter is a tuple formed by the program 
ounters of all 
omponents,and the initial state is the 
onjun
tion of the initial states of ea
h 
omponent.Figure 1 shows the des
ription of the Bakery proto
ol in our spe
i�
ation lan-bakery : systembeginpro
ess 1 : programy1 : var natbeginp1 Try 1: true ! y1 := y2+1 goto 2p1 In 2: y2 = 0 _ y1 � y2! SKIP goto 3p1 Out 3: true ! y1 := 0 goto 1end pro
ess 1kpro
ess 2 : programy2 : var natbeginp2 Try 1: true ! y2 := y1+1 goto 2p2 In 2: y1 = 0 _ y2 < y1! SKIP goto 3p2 Out 3: true ! y2 := 0 goto 1end pro
ess 2initially : y1 = 0 ^ y2 = 0 ^ p
2 = 1 ^ p
1 = 1end bakery Fig. 1. Bakery transition system (version A)guage. The algorithm is 
alled the Bakery algorithm, sin
e it is based on the ideathat 
ustomers, as they enter a bakery, pi
k numbers that form an as
ending se-quen
e. Then a 
ustomer with a lower number has higher priority in a

essingits 
riti
al se
tion, whi
h in this 
ase is 
ontrol lo
ation 3. Ea
h pro
ess pro
ess imodi�es its lo
al variable yi, and 
an read the other's variable.



We also re
all the de�nitions of predi
ate transformers over transition sys-tems. The predi
ate transformers post and pre expressing, respe
tively, thestrongest post
ondition and pre
ondition by a transition � of a predi
ate Pover the state variables of V are de�ned as follows:post[� ℄(P ) = 9V 0:a
tion� (V 0;V) ^ P (V 0)pre[� ℄(P ) = 9V 0:a
tion� (V ;V 0) ^ P (V 0)where a
tion� (V ;V 0) is de�ned as the relation between the 
urrent state andnext state, that is, the expressionp
 = li ^ guard ^ k̂i=1v0i = ei; p
0 = ljDe�ning the transition relation of a system as a relational predi
ate for ea
htransition is a more general alternative to the use of guarded 
ommands. Thesemanti
s of a transition system S is given by its 
omputational model KS =(Q; T ; R), where Q is the set of valuations of the program variables V , andR � Q � T � Q a transition relation. A set of states of a program 
an berepresented by its 
orresponding predi
ate over the state variables of V .3 Boolean Abstra
tionsBoolean abstra
tion is a simple abstra
tion s
heme de�ned in [14℄ that 
on-sists of using predi
ates over 
on
rete variables as boolean abstra
t variables. Inan abstra
t version of the in�nite-state transition system, the set fB1; � � � ; Bkgof abstra
t variables is a set of boolean variables 
orresponding to predi
atesf'1; � � � ; 'kg over the 
on
rete variables. An abstra
t state in this transitionsystem is therefore a truth assignment to these boolean variables. Sin
e the setof boolean variables is �nite, so is the set of abstra
t states. Boolean abstra
tions
an easily be de�ned in the framework of abstra
t interpretation using Galois
onne
tions.De�nition 2 (Galois 
onne
tion). A pair of monotoni
 fun
tions (�; 
) de�n-ing a mapping between a 
on
rete domain latti
e }(Q;�) and an abstra
t domainlatti
e }(Qa;v), is a Galois 
onne
tion if and only if8(P; P a) 2 }(Q)� }(Qa): �(P ) v P a , P � 
(P a)Sets of states in }(Q) and }(Qa) are represented by their 
orresponding pred-i
ates. Thus, }(Q) and }(Qa) 
orrespond to latti
es of 
on
rete and abstra
tpredi
ates ordered by the logi
al impli
ation. A boolean abstra
tion 
an be ex-pressed as a Galois 
onne
tion as follows:- �(P ) =^fBa j P ) 
(Ba)g = P a, where Ba is any boolean expression over



the set fB1; � � � ; Bkg.- 
 is de�ned as a substitution fun
tion. That is, 
(P a) = P a['1=B1; � � � ; 'k=Bk℄,where ea
h boolean variable Bi is substituted by its 
orresponding 
on
rete pred-i
ate 'i.Thus, the abstra
tion of a 
on
rete set of states represented by a predi
ateP over 
on
rete variables is de�ned as the smallest boolean formula P a over theabstra
t variables Bi. That is, an overapproximation of P . In [25℄, we presentedan eÆ
ient algorithm for 
omputing the most pre
ise boolean abstra
tion withrespe
t to a set of predi
ates, for systems where the transition relation is givenas a relational predi
ate. The algorithm 
onsists of an eÆ
ient enumeration ofall boolean 
ombinations Ba to test the assertion P ) 
(Ba). The algorithmabstra
ts systems where the transition relation is given as a predi
ate. Ea
himpli
ation P ) 
(Ba) is submitted to the de
ision pro
edure to test its validity.In [25℄, we proved that in order to 
ompute P a it is not ne
essary to 
onsiderall the possible Ba, that is 22k expressions, but at most 3k � 1. However, this isstill a high pri
e to pay for the 
onstru
tion of an abstra
t system. Noti
e thatany approximation of P a is a valid abstra
tion of P .bakery : systemB3 : var boolbeginpro
ess 1 : programB1 : var boolbeginp1 Try 1 : true ! B1 := F; B3 := F goto 2p1 In 2 : B2 _ B3 ! SKIP goto 3p1 Out 3 : true ! B1 := T; B3 := T goto 1end pro
ess 1kpro
ess 2 : programB2 : var natbeginp2 Try 1 : true ! B2 := F; B3 := T goto 2p2 In 2 : B1 _ :B3 ! SKIP goto 3p2 Out 3 : true ! B2 := T;B3 := if B1then Telse if (:B1 _ :B3)then Felse ? goto 1end pro
ess 2initially : B1 ^ B2 ^ B3 ^ p
2 = 1 ^ p
1 = 1end bakeryFig. 2. Abstra
t version of Bakery transition system (version A)



Thus, in order to 
ompute for a 
on
rete system S, an abstra
t system Sa,it is suÆ
ient to abstra
t the initial state Init by 
omputing �(Init), and toabstra
t ea
h transition � as follows:�a = �(�) = �(a
tion� (V ;V 0)) =^f(Ba; Ba0)j ` post[� ℄(
(Ba))) 
(Ba0)gthat is, the pair (Ba; Ba0) 
hara
terizing the abstra
tion of the set of possibleprede
essors by � and the abstra
tion of the set of possible su

essors by � . Inthis 
ase, the 
omplexity of the 
omputation of �a is (3k � 1) � (3k � 1) 
alls tothe de
ision pro
edure, (3k � 1) 
alls to test the su

essors, and (3k� 1) 
alls totest the potential prede
essors.The preservation of properties expressed in temporal logi
 is widely studiedin [21, 10, 5℄. Preservation results are established via equivalen
es and preordersbetween the 
on
rete and abstra
t models. The following theorem establishesthe preservation of safety properties expressed in the logi
 CTL� via simulation.Theorem 1 (weak preservation). Let S be a 
on
rete system, and let Sa bea boolean abstra
tion of S using any set of predi
ates. We haveSa j= �(') ) S j= 'for ea
h formula ' 2 8CTL�, that is, temporal formulas with universal quanti�-
ation over paths, in
luding safety properties su
h as invariants.Proof. This result 
an be established by proving that Sa simulates S. This 
anbe done by proving that the following holds for ea
h transition � of S:8P: post[� ℄(P ) ) 
(post[�(�)℄(�(P )))that is, ea
h set of su

essor states by an abstra
t transition is an overapproxi-mation of the 
orresponding set of states of the 
on
rete system.Intuitively, 8CTL� properties hold in all exe
ution paths. Sin
e Sa simulatesS, that is, all the exe
utions of S are exe
utions of Sa, then if a property holdsalong all exe
ution paths of Sa, it holds in all exe
ution paths of S. Theorem 1indi
ates that when a property is established in the abstra
t system, its 
orre-sponding 
on
rete property holds in the 
on
rete system. However, nothing 
anbe 
on
luded when the property does not hold in the abstra
t system. Strongpreservation results 
an be applied in this 
ase under some 
onditions.Theorem 2 (strong preservation). Let S be a 
on
rete system, and let Sa bea boolean abstra
tion of S using any set of predi
ates that in
ludes all the literalsappearing in the guards of S and in the property '. If Sa is deterministi
, wehave Sa j= �(') , S j= 'That is, Sa and S are equivalent.



Proof. By 
onstru
tion Sa simulates S. Thus, it is suÆ
ient to prove now that Ssimulates Sa. To show this, it is suÆ
ient to prove that for ea
h pair of abstra
tstates sa1 and sa2 , if sa2 is a su

essor of sa1 by �a in the abstra
t system, then, forevery pair s1 and s2 of states in the 
on
retization of sa1 and sa2 , s2 is the su

essorof s1 by � in the original system. Every 
on
rete state s1 in the 
on
retization ofsa1 satis�es the guard of � , and every su

essor s2 of s1 is in the 
on
retizationof sa2 . Thus, S simulates Sa.The strong preservation result allows us to avoid false negative results by map-ping abstra
t error tra
es to 
on
rete exe
utions violating the property. However,the 
ondition for strong preservation requires that Sa be deterministi
. This isusually not the 
ase. However, we will see later how we exploit Theorem 2 togenerate boolean abstra
tions to verify properties, and also to generate 
oun-terexamples when a formula is not a property of the 
on
rete system. As wementioned earlier in the introdu
tion, boolean abstra
tion subsumes abstra
-tions where the abstra
t domain is �nite.Theorem 3 (generality). Let S be a system and let � be an abstra
tion fun
-tion where the abstra
t domain is �nite. Then, � 
an be expressed as a booleanabstra
tion.Proof. The proof is based on the fa
t that a �nite domain 
an be en
oded by aset of boolean variables. Ea
h abstra
t state is then a 
onjun
tion of a subset ofthe set of boolean variables. The 
on
retization of an abstra
t state is a set of
on
rete states that 
an be represented as a predi
ate.Figure 2 shows the abstra
tion of the Bakery proto
ol using predi
ates y1 = 0,y2 = 0, and y1 � y2 appearing in the guards. Noti
e that all the assignmentsare deterministi
 ex
ept the assignment for the variable B3 in the transitionp2 Out.4 Automati
 Constru
tion of Boolean Abstra
tionsDe
ision pro
edures 
an be used for the automati
 
onstru
tion of a booleanabstra
tion of a 
on
rete, in�nite state system des
ribed as a transition system.The abstra
tion of a 
on
rete system S = < V ; T = f�1; � � � ; �ng;L; Init > isan abstra
t system Sa = < Va; T a = f�a1 ; � � � ; �ang;L; Inita > su
h that{ Va is the set fB1; � � � ; Bk; p
g.{ T a is a set of abstra
t transitions.{ Inita is the abstra
t initial state 
omputed as �(Init).The abstra
tion algorithm 
onsists in 
omputing Inita and for ea
h 
on
retetransition � li : guard �! v1 ::= e1; � � � ; vn ::= en goto lj



a 
orresponding abstra
t transition �ali : guarda �! B1 ::= b1; � � � ; Bk ::= bk goto ljsu
h that:- The abstra
t guard guarda is 
omputed as �(guard). When using the literalsof the guards as abstra
t boolean variables, �(guard) is an exa
t abstra
tion,where ea
h literal of guard is substituted by its 
orresponding abstra
t booleanvariable. - Ea
h assignment Bi := bi is de�ned as follows:Bi :=8<:T if post[� ℄(true)) 
(Bi) (1)F if post[� ℄(true)) :
(Bi) (2)? otherwisethat is, for ea
h abstra
t variable Bi, the strongest post
ondition by � of anyarbitrary state is in 
(Bi) or :
(Bi), that is, in 'i or :'i. When neither ofthe above impli
ations is valid, the variable is nondeterministi
ally assigned thevalue ?.- The variable p
 is not abstra
ted sin
e it is of a �nite type.When a variable is assigned the value ?, it is possible to 
ompute a morere�ned assignment by taking into a

ount the dependen
ies between the abstra
tvariables. Thus, the assignment Bi :=? 
an be rede�ned as follows:Bi := if bTithen Telse if bFithen Felse ?where bTi and bFi are de�ned as follows:bTi �_fBa j post[� ℄(
(Ba))) 
(Bi)gbFi �_fBa j post[� ℄(
(Ba))) :
(Bi)gThat is, bT and bF are, respe
tively, the smallest boolean 
ombination over theabstra
t variables fB1; � � � ; Bkg that de�nes the abstra
t state from whi
h, ifthe transition � is exe
uted, the variable Bi gets either the value T or F. Inthe worst 
ase, both bTi and bFi are equivalent to true. Thus, the variable Bi isassigned with the value ?.In [25℄, the 
omplexity of the abstra
tion algorithm for a transition is 3k �1 � 3k � 1. In our 
ase, this is redu
ed to at most 3k � 1 � 2 � k.Theorem 4 (
omplexity). The 
omplexity of the abstra
tion of a transition� using k predi
ates f'1; � � � ; 'kg requires 
he
king the validity of 3k � 1 � 2 � kimpli
ations.



Proof. For ea
h abstra
t variableBi assigned in the abstra
tion of � , The booleanexpressions bTi and bFi are 
omputed. Thus 2 � k impli
ations have to be proved.For ea
h of the expressions bTi and bFi , all possible boolean expressions Ba overfB1; � � � ; Bkg have to be 
onsidered. There are 3k � 1 possible expressions as il-lustrated in the following Figure with k = 2. The elements of the set of possible1 B1 + B2B1 + B02B01 + B02B01 +B2 B1:B02 +B01:B2B01:B02 + B1:B2 0 B2B02B01:B2 B1:B2B01:B02 B1:B02B01 B1
Fig. 3. Boolean algebra for 2 boolean variables B1 and B2boolean expressions Ba are the elements of the boolean algebra de�ned by the kboolean variables, that is, 22k expressions. However, the expression Ba appearson the left hand side of an impli
ation. Thus, it is ne
essary to 
onsider onlyexpressions that are 
onjun
tions of boolean variables. That is is only 3k�1 pos-sible expressions that 
an be tested in
rementally by �rst testing ea
h booleanvariable Bi and its negation, and then testing 
onjun
tions of the set of variablesfor whi
h both tests fail.The results in [25℄, shows that the enumeration of 3k � 1 expressions subsumesthe enumeration of the possible 22k expressions. However, the enumeration of thepossible Ba satisfying the above impli
ations 
an be done only for the expressionsBa su
h that FV (post[� ℄(
(Ba))) \ FV (
(Bi)) 6= ;where FV (P ) is the set of free variables of the predi
ate P .5 Model Che
king Guided AnalysisOn
e an abstra
t system is 
onstru
ted, model 
he
king is used to explore itsstate-spa
e. We use both symboli
 and expli
it-state model 
he
king te
hniques.Figure 4 shows the rea
hable abstra
t states of the Bakery proto
ol. It is easyto show that the proto
ol does guarantee mutual ex
lusion for both pro
essessin
e there is no rea
hable state where both 
ontrol variables p
1 and p
2 havethe value 3.The advantage of model 
he
king over other veri�
ation te
hniques is itsability to generate 
ounterexamples when a property is violated. The error tra
eis a sequen
e of states and transitions starting from the initial state of the system
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p1_TryFig. 4. Abstra
t state graph for the Bakery proto
olleading to a state violating the property. Error tra
es of an abstra
t system 
anbe mapped to exe
utions of a 
on
rete system sin
e ea
h abstra
t transition
orresponds to a single 
on
rete one with the same label.Figure 5 shows a more 
omplex version of the Bakery proto
ol (known asBakery C) where the 
riti
al se
tion 
orresponds to 
ontrol lo
ation 7. Thisversion was proposed to avoid the long wait of one pro
ess at lo
ation 2 inthe previous version (known as Bakery A) before the pro
ess enters its 
riti
alse
tion. The abstra
tion of the proto
ol with respe
t the guards y1 = 0, y2 = 0,y1 � y2, x1 = 0, and x2 = 0 is given in Figure 6. Figure 7 shows an errortra
e from the initial abstra
t state 0 to abstra
t state 30 violating the mutualex
lusion property, where for both pro
esses the program 
ounter has value 7.The simulation of the error tra
e on the 
on
rete system indi
ates that it doesnot 
orrespond to an exe
ution of the 
on
rete system. However, this does notrule out the possibility that the property is violated. In the next se
tion, we showhow model 
he
king 
an guide the automati
 re�nement of an abstra
t systemuntil the property is veri�ed or a 
ounterexample 
orresponding to a 
on
reteexe
ution violating the property is generated.6 Automati
 Re�nement of Abstra
tionsUnlike 
urrent model 
he
king tools, the error tra
e we generate is a tree in-di
ating the states where abstra
t variables are nondeterministi
ally assigned.In Figure 7, states 9 and 12 indi
ate loss of information on, respe
tively, theabstra
t variables B1, B3, and B2. The 
on
rete system is deterministi
. Thus,



bakery : systembeginpro
ess 1 : programy1; x1; t1 : var natbeginp1 init x1 1: true ! x1 := 1 : 2p1 init t 2: true ! t1 := y2+1 : 3p1 init y 3: true ! y1 := t1 : 4p1 init x0 4: true ! x1 := 0 : 5p1 Wait 5: x2 = 0 ! SKIP : 6p1 In 6: y2=0 _ y1 � y2! SKIP : 7p1 Out 7: true ! y1 := 0 : 1end pro
ess 1kpro
ess 2 : programy2; x2; t2 : var natbeginp2 init x1 1: true ! x2 := 1 : 2p2 init t 2: true ! t2 := y1+1 : 3p2 init y 3: true ! y2 := t2 : 4p2 init x0 4: true ! x2 := 0 : 5p2 Wait 5: x1 = 0 ! SKIP : 6p2 In 6: y1=0 _ y2 < y1! SKIP : 7p2 Out 7: true ! y2 := 0 : 1end pro
ess 2initially : y1=0 ^ y2=0 ^ x1=0 ^ x2=0 ^ t1=0 ^ t2=0 ^ p
1=1 ^ p
2=1end bakery Fig. 5. Bakery transition system (version C)in an exe
ution of the 
on
rete system, ea
h abstra
t state s, su
h as the ab-stra
tion of s is state 9, has only one su

essor by the transition p1 init y. Also,ea
h state s su
h as the abstra
tion of s is state 12, has only one su

essor bythe transition p2 init y. However, if the error tra
e is a sequen
e and not a tree,that is all assignments in the sequen
e are deterministi
, the following theoremallows us to 
on
lude that the error tra
e 
orresponds to a sequen
e of 
on
retetransitions violating the property. The theorem is a 
orollary of Theorem 2.Theorem 5. Let Let S be a 
on
rete system, and let Sa be a boolean abstra
tionof S using any set of predi
ates that in
ludes all the literals appearing in theguards of S and in the property '. every sequen
e of transitions in Sa where allassignments are deterministi
 is a sequen
e of transitions of S. We 
all su
h asequen
e a deterministi
 tra
e.



Our re�nement methodology 
onsists in 
omputing a new abstra
t system withmore abstra
t variables. This is done by enri
hing the 
urrent abstra
t state byadding additional predi
ates, and therefore additional abstra
t boolean variables.bakery : systemB3 : var boolbeginpro
ess 1 : programB1; B4 : var boolbeginp1 init x1 1: true ! B4 := F : 2p1 init t 2: true ! SKIP : 3p1 init y 3: true ! B1 :=?, B3 :=? : 4p1 init x0 4: true ! B4 := T : 5p1 Wait 5: B5 ! SKIP : 6p1 In 6: B2 _ B3! SKIP : 7p1 Out 7: true ! B1 := T, B3 := T : 1end pro
ess 1kpro
ess 2 : programB2; B5 : var boolbeginp2 init x1 1: true ! B5 := F : 2p2 init t 2: true ! SKIP : 3p2 init y 3: true ! B2 :=?,B3 := if B1 then T else ? : 4p2 init x0 4: true ! B5 := T : 5p2 Wait 5: B4 ! SKIP : 6p2 In 6: B1 _ :B3 ! SKIP : 7p2 Out 7: true ! B2 := T,B3 := if B1then Telse if :B1 _ :B3 then F else ? : 1end pro
ess 2initially : B1 ^ B2 ^ B3 ^B4 ^B5 ^ p
1=1 ^ p
2=1end bakeryFig. 6. Abstra
t version of Bakery transition system (version C)We use Theorem 5 in order to 
onstru
t a new abstra
t system that mayprodu
e more error tra
es that are deterministi
. That is, by eliminating thenondeterminism in the 
urrent error tra
es. This is done by 
omputing the 
on-straints under whi
h the system may exe
ute one of the nondeterministi
 transi-tions. These 
onstraints are 
aptured as pre
onditions and 
omputed using the



predi
ate transformer pre. We use the following lemma, allowing an eÆ
ient
omputation of pre
onditions for assignments.Lemma 1. Let � be a transition. If guard(�) is equivalent to true, then8P: pre[� ℄(P ) � :pre[� ℄(:P )This lemma indi
ates that when 
omputing a pre
ondition for assignments, itis not ne
essary to 
ompute it for both the predi
ate and its negation. Let us
onsider the 
ase of the Bakery proto
ol. The error tra
e indi
ates that nonde-terminism is 
reated for transitions p1 init y and p2 init y at, respe
tively,states 9 and 12. The re�nement te
hnique is applied to ea
h of these states by
omputing the pre
onditions for ea
h boolean variable that is assigned the value? as follows:{ re�ning state 9: pre[p1 init y℄(y1 = 0) � t1 = 0pre[p1 init y℄(y1 � y2) � t1 � y2{ re�ning state 12: pre[p2 init y℄(y2 = 0) � t2 = 0Three new predi
ates t1 = 0, t2 = 0 and t1 � y2 
orresponding to thenew abstra
t variables B6, B7, and B8 are generated. Ea
h transition where avariable is not assigned with the value T or F is re�ned. The re�nement of thetransition p1 init y 3: true! B1 :=?, B3 :=? : 4where B1 and B3 
orrespond to y1 = 0 and y1 � y2 is the transition3: true! B1 := if B6 then T else if :B6 _ :B8 then F else ?,B3 := if B6 then T else ? : 4The re�nement algorithm uses a re�ned way of 
omputing the values bTi andbFi bTi �_fBa j 
(Ra� ) ^ post[� ℄(
(Ba))) 
(Bi)gbFi �_fBa j 
(Ra� ) ^ post[� ℄(
(Ba))) :
(Bi)gwhere Ra� is a boolean expression representing the set of rea
hable states of thealready 
onstru
ted abstra
t system at the sour
e lo
ation of � . For instan
e,Rap1 Try of Bakery A is equal to B1 _B2. The expression Ba is any expressionover the union of the new set of variables and set of the old one that satisfy theinvariant Ra� . Thus, ea
h re�nement step uses the results of model 
he
king the



[29] 
 6   7   B1   B2   B3   B4   B5   

[30] 
 7   7   B1   B2   B3   B4   B5   

p1_In

[28] 
 5   7   B1   B2   B3   B4   B5   

p1_Wait

[21] 
 5   6   B1   B2   B3   B4   B5   

p2_In

[14] 
 5   5   B1   B2   B3   B4   B5   

p2_Wait

[13] 
 5   4   B1   B2   B3   B4   ~B5   

p2_init_x0

[12] 
 5   3   B1   B2   B3   B4   ~B5   

p2_init_y

[36] 
 5   4   B1   ~B2   B3   B4   ~B5   

p2_init_y

[11] 
 5   2   B1   B2   B3   B4   ~B5   

p2_init_t

[10] 
 4   2   B1   B2   B3   ~B4   ~B5   

p1_init_x0

[9] 
 3   2   B1   B2   B3   ~B4   ~B5   

p1_init_y

[167] 
 4   2   ~B1   B2   ~B3   ~B4   ~B5   

p1_init_y

[198] 
 4   2   B1   B2   ~B3   ~B4   ~B5   

p1_init_y

[179] 
 4   2   ~B1   B2   B3   ~B4   ~B5   

p1_init_y

[8] 
 2   2   B1   B2   B3   ~B4   ~B5   

p1_init_t

[0] 
 1   1   B1   B2   B3   B4   B5   

[7] 
 1   2   B1   B2   B3   B4   ~B5   

p2_init_x1

p1_init_x1

Fig. 7. Error tra
e for the Bakery Proto
ol
onstru
ted abstra
t system to generate new abstra
t variables and to redu
ethe 
ost of the re�nement algorithm. Furthermore, the invariant Ra� refers tovariables written by the 
omponent where � belongs and to variables that aremodi�ed by other 
omponents that form its environment. The new generatedpredi
ates are used as new abstra
t boolean variables to 
ompute a re�ned ab-stra
t system. The new abstra
t system is then analyzed and a new error tra
eindi
ates that mutual ex
lusion is violated. However, the tra
e is not determin-isti
, and a new re�nement step is performed where two new predi
ates y1 � t2and t1 � t2 
orresponding to the new boolean variables B9 and B10 are gener-ated. A new abstra
t system is then generated and analyzed, and the propertyis proved to be a property of the abstra
t system. Thus by Theorem 1, it is aproperty of the Bakery proto
ol.In general, the an abstra
t system obtained after re�nement is a more pre
isean a

urate abstra
tion of the 
orresponding original system.



Theorem 6 (re�nement simulation). Let Sa be an abstra
tion of a systemS using a set of predi
ates f'1; � � � ; 'kg. Let Sar be a re�nement of Sa using theadditional predi
ates f'k+1; � � � ; 'jg. Then, Sa simulates Sar .Proof. The proof of the theorem 
an be established by proving that for ea
habstra
t predi
ate P a, the set of su

essors of P a with respe
t to an abstra
ttransition �a is smaller that the set of su

essors of P a with respe
t to the
orresponding re�ned transition �ar of Sar . That is:8P a: post[�ar ℄(P a) ) post[�a℄(P a)Thus, the 
on
retization of the set of rea
hable states of the abstra
t system is amore re�ned invariant of the 
on
rete system. It is a more pre
ise approximationof the rea
hable state of the 
on
rete systems. Even when a property 
an notbe established after a number of su

essive re�nement steps, one 
an use thisinvariant as a starting point for a more elaborate proof and analysis te
hniqueusing for instan
e a theorem prover. It is in fa
t ne
essary for even very simplesystems and property to provide an invariant in order to be able to a
hieve a
orre
tness proof.7 Implementation and Analysis MethodologyWe have implemented the abstra
tion/model 
he
king/re�nement methodologyin a tool dedi
ated to the veri�
ation of in�nite state systems. Figure 8 showsthe ar
hite
ture of the tool. Our tool is built on top of the PVS theorem prover.We explain the role of ea
h 
omponent of the tool and how the analysis pro
essis organized.Syntax: Systems 
an be des
ribed in a Simple Programming Language (SPL),
lose to the one used in [22℄, but with the ri
h data types and expression de�-nition me
hanism available in PVS. Our SPL language in
ludes 
ommon algo-rithmi
 
onstru
tions su
h as single and multiple assignment statements, 
on-ditionals If-Then-Else, and loop statements. We also allow parallel 
ompositionby interleaving and syn
hronization by shared variables as in Unity [4℄. Systemsdes
ribed in SPL are translated automati
ally into guarded 
ommands with ex-pli
it 
ontrol. Program variables 
an be of any type de�nable in PVS, and 
anbe assigned by any de�nable PVS expression of a 
ompatible type. It is possibleto import any de�ned PVS theory. The examples in this paper are presented inthe automati
ally generated LATEX format for guarded 
ommands.Internal representation: Pvs is implemented in LISP. Every obje
t manipulatedin Pvs su
h as a theory, a theorem, or a proof is represented as an instan
e ofa prede�ned obje
t 
lass. We have de�ned for transition systems a representa-tion that is also a 
lass. An important aspe
t of su
h a stru
ture is that it is
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LATEX LATEX/ Graph

Graph Redu
tionFig. 8. Analysis methodologyindependent of the Pvs internal stru
ture, and makes our implementation inde-pendent of the possible 
hanges in the Pvs internal representation. However, theexpression manipulated and the veri�
ation 
ondition generated are representedas Pvs expressions and Pvs obligations. This is ne
essary for the automati
intera
tion with the de
ision pro
edures.Stati
 analysis: We use the te
hniques developed in [24℄ to generate useful in-variants of the 
on
rete system. Stati
 analysis 
onsists in a set of te
hniquesfor the automati
 generation of su
h invariants. These te
hniques are based onpropagation of guards and assignments through program 
ontrol points. Thete
hniques we use 
omputes invariants for ea
h 
omponent and are 
omposedusing a novel 
omposition rule presented in [24℄ to form invariants of the globalsystem. These invariants are used to weaken all the impli
ations that are gen-erated when an abstra
tion is 
omputed. When used, the allow a more eÆ
ient
onstru
tion of abstra
tions. That is, one 
an de
ide with the help of these in-variants that a variable is not assigned the value ? but either T or F, and thus,allows to generate less impli
ations.Automati
 abstra
tion: The abstra
tion module takes a transition system andbuilds a �rst abstra
tion using the predi
ates appearing in the guards and theproperty to verify, and then submits the abstra
t system to our model 
he
ker.This module is also used for automati
 re�nement.



Model 
he
king: The state-spa
e of the 
onstru
ted abstra
t system 
an be ex-plored in two ways. In the symboli
 approa
h, the system is translated into aboolean fun
tion represented by a Bdd that represents the su

essor fun
tion.The exploration 
onsists in applying the fun
tion re
ursively starting from theinitial abstra
t state, represented also by a Bdd until a �x point is rea
hed.In the expli
it approa
h, it 
onsists in translating the abstra
t system into anexe
utable form and then running it and by hashing the visited states. Both ap-proa
hes 
an be exploited to 
onstru
t the 
orresponding abstra
t state graph.The abstra
t state graph 
an then be redu
ed using simulation and bisimulationminimization algorithms as a way of performing additional abstra
tions.Experiments: We have used our analysis methodology to verify several 
ommu-ni
ation proto
ols su
h as the alternating bit proto
ol and a data link proto-
ol. We also applied our methodology on several parametrized systems that are
ompositions of arbitrary numbers of identi
al pro
esses. Figure 7 shows ourexperiments with three versions of the Bakery proto
ol. The versions Bakery Aand Bakery C were des
ribed previously and illustrated in Figures 1 and 5. Theversion Bakery B is obtained by removing the transitions init x0 and Init x1from the des
ription of Bakery C. Figure 7 shows the number of predi
ates usedin the 
ompute a �rst abstra
tion, the re�nement steps used to rea
h a 
on
lu-sive result, that is either the property is veri�ed, or to generate a deterministi
error tra
e. It shows, the number of predi
ates 
omputed ea
h re�nement step.It shows the numbers of impli
ations generate and proved for ea
h abstra
-tion/re�nement step, and the duration of ea
h step. It also shows a 
omparisonwith our previous work in [25℄ where transitions systems are given as relationalpredi
ates, and where the numbers of impli
ations is mu
h higher as shown byTheorem 4. Noti
e that in general the 
omplexity of ea
h re�nement step isless than the 
omplexity of the 
omputation of the �rst abstra
tion. The versionBakery B is shown to violate the mutual ex
lusion property, and a deterministi
error tra
e is generated after two re�nements steps.#of initial #of re�nements #of new #of 
alls to the 
omparison timepredi
ates steps predi
ates de
ision with (s)pro
edure [25℄Bakery A 3 0 27 33 1:8Bakery B 3 2 72 100 5:13 32 178 3:34 134 366 15:5Bakery C 5 2 120 168 123 35 94 3:22 32 136 3:4Fig. 9. Experiments results for 3 versions of the Bakery proto
ol



8 Con
lusion and Future WorkWe presented a general, yet e�e
tive, methodology for the veri�
ation of largesystems, based on abstra
tion followed by model 
he
king. The novelty of ourmethodology 
onsists of an eÆ
ient algorithm for the automati
 
onstru
tionof boolean abstra
tions and an eÆ
ient algorithm for automati
ally re�ning a
oarse abstra
tion when model 
he
king the abstra
t system fails. This method-ology also allows in many 
ases the generation of 
ounterexamples, that is exe-
utions violating the property of interest. Our abstra
tion algorithm 
an be usedto 
ompute abstra
tion for any abstra
t domain whi
h is a boolean algebra. Ourveri�
ation tool represents the 
ore of a veri�
ation and analysis te
hnology forlarge software. The �rst step will be to translate sour
e 
ode into transitionsystems. For large programs, thousands of 
alls to the de
ision pro
edure arene
essary. This 
an be done in few minutes or at most few hours.Referen
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