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Automationsurprisesoccur when an automatedsystembehaves differently
than its operatorexpects. If the actualsystembehavior and the operator’s
“mentalmodel”arebothdescribedasfinite statetransitionsystems,thenmech-
anizedtechniquesknown as“model checking”canbe usedautomaticallyto
discover any scenariosthatcausethe behaviors of the two descriptionsto di-
vergefrom oneanother. Thesescenariosidentify potentialsurprisesandpin-
point areaswheredesignchanges,or revisionsto trainingmaterialsor proce-
dures,shouldbeconsidered.Thementalmodelscanbesuggestedby human
factorsexperts,or canbederivedfrom trainingmaterials,or canexpresssim-
ple requirementsfor “consistent”behavior. Theapproachis demonstratedby
applyingtheMur

�
stateexplorationsystemto a “kill-the-capture”surprisein

theMD-88 autopilot.
This approachdoesnot supplantthe contributionsof thoseworking in hu-

manfactorsandaviation psychology, but ratherprovidesthemwith a tool to
examinepropertiesof their modelsusingmechanizedcalculation.Thesecal-
culationscanbe usedto explore the consequencesof alternative designsand
cues,andof systematicoperatorerror, andto assessthecognitive complexity
of designs.

Thedescriptionof modelcheckingis tutorial andis hopedto beaccessible
to thosefrom thehumanfactorscommunityto whomthis technologymaybe
new.
Keywords: automationsurprise,modeconfusion,model checking,formal
methods,mentalmodel,human-computerinteraction

1 INTRODUCTION

Automatedsystemssometimesbehave in waysthat
surprisetheir operators[23]. These“automationsur-
prises”areparticularlywell-documentedin the cock-
pitsof advancedcommercialaircraft[7,18,22] andsev-
eral fatal crashesandother incidentsareattributed to
problemsin the“flightcrew-automationinterface” [10,
AppendixD].

Cognitivescientistshaveproposedthathumanscon-
struct “mental models”of the world [14]; in particu-
lar, operatorsandusersof anautomatedsystemdevelop
suchmodelsof thesystem’s behavior andusethemto
guidetheir interactionwith it [17]. An automationsur-
prise then occurswhen the actualbehavior of a sys-

temdepartsfrom thatpredictedby its operator’s mental
model.

Complex systemsareoftenstructuredinto “modes”
(for example, an aircraft flight managementsystem
might have differentmodesfor cruise,initial descent,
landing,andsoon),andtheir behavior canchangesig-
nificantly acrossdifferent modes. “Mode confusion”
ariseswhenthesystemis in a differentmodethanthat
assumedby its operator;this is arich sourceof automa-
tion surprises,sincetheoperatormay interactwith the
systemaccordingto a mentalmodelthat is inappropri-
atefor its actualmode.

If we acceptthat automationsurprisesmay be due
to a mismatchbetweentheactualbehavior of a system
andtheoperator’s mentalmodelof thatbehavior, then
oneway to look for potentialsurprisesis to construct
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explicit descriptionsof theactualsystembehavior, and
of a postulatedmentalmodel,andto comparethem.

The discrete behavior of complex control sys-
tems can be describedin terms of “state machines,”
which are a formal, mathematicalrepresentationthat
is amenableto variouskindsof automatedanalysis.It
is becomingacceptedthatsuchformaldescriptionscan
be useful in requirementsanalysisandotherverifica-
tion and validation activities for critical systems[6].
It is alsobecomingacceptedthat statemachinespro-
vide a naturalrepresentationfor mentalmodels[13].
Now, if a statemachinespecificationis available for
the actualsystem,and if we can constructone for a
plausiblementalmodel, then we could, in principle,
“run” the two machinesin parallel to seeif their be-
haviors ever diverge from oneanother. What is poten-
tially valuableaboutthisapproachis thatif thetwostate
machineshave finite statespaces,thena bodyof tech-
niquesfrom thebranchof formalmethodsin computer
scienceknown as“model checking”[5] canbeusedto
compareall possiblebehaviors of the two machines.
If a discrepancy is discoveredin the behaviors of the
two descriptions,ascenariocanbegeneratedthatgives
the sequenceof inputsandinteractionsthat manifests
the divergence. This provides the designeror analyst
with informationthatcanbeusedto bringthedesignof
theactualsysteminto closeralignmentwith themental
model(eitherby changingits behavior, or by improv-
ing thecuesit providesto its operator),or that canbe
usedto guidethe formationof moreappropriatemen-
tal modelsthroughimprovementsin documentationor
operatortraining.

This approachcanbe comparedwith currentprac-
tice, which relies on developmentof a simulationor
rapidprototypeof theproposeddesignthatcanbeeval-
uatedexperimentally(e.g.,by having testpilotsfly sim-
ulatedmissions).A testpilot mayapproximatethebe-
havior andexpectationsof a line pilot moreaccurately
thana hypothesizedmentalmodelencodedasa state
machine,but only a limited numberof experimentscan
be performedin this way, andthesewill cover only a
smallfractionof thepossiblejoint behaviors of theau-
tomationandthepilot. Themodelcheckingapproach
usesa simple model of the pilot, but then examines
all possibleinteractionsandjoint behaviors. The evi-
dencefrom otherapplicationsof modelchecking(e.g.,
in hardwareandprotocoldesign)is that completeex-
plorationof somewhatsimplifiedmodelsgenerallyde-
tectsmoreproblemsthanpartial explorationof thereal
thing (asin testingandsimulation).This is not to sug-

gestthat the modelcheckingapproachshouldreplace
experimentswith humanoperators,but that it is likely
to bea usefuladjunctthatcanidentify someproblems
that may be missedby experiments,and it may also
identify someproblemsearlier or more cheaplythan
experiments.

Therearesomeobvious difficulties with the model
checkingapproach:the statemachinedescriptionsof
real systemsoften are not finite-state,or have finite
statespacesthat are too large for a modelchecker to
analyzeexhaustively (this may be so, for example,if
thestateincludesnumericquantities);also,thereis no
directwayto accessanoperator’s mentalmodelfor the
purposeof encodingit as a statemachine. I am of
theopinionthatboththesedifficultiescanbeovercome
by abstraction and generalization. Becausewe are
performingrefutationratherthanverification(i.e., we
arelookingfor potentialbugs—automationsurprisesin
this case—nottrying to prove their absence)wedo not
needto modelall thedetailsof theactualsystem.For
example,to examinemodeconfusion,we needmodel
only themodetransitionsof thesystem,not thedetails
of its behavior within thosemodes;andto examinethe
modetransitionat,say, acapturealtitude,weneedonly
to modelwhetheror nottheairplaneis ator closeto the
capturealtitudeandnot its exactaltitude.

Similarly, becauseourgoalis to discovererror-prone
designs,not to gain psychologicalinsight into human
behavior, we do not needto examinethementalmodel
of any particularoperator. We will becontentto check
whetherthe actualsystembehavior violatesplausible
modelsandnaturalexpectations(e.g.,assuggestedby
training materials). I believe that humanfactorsspe-
cialists,in combinationwith thoseinvolvedwith devel-
oping, analyzing,documenting,andusing the system
concerned,shouldfind it quiteeasyto suggestsuitably
generalizedmentalmodels.

2 AN EXAMPLE SCENARIO

I describetheproposedmethodusinganexamplere-
portedby Palmer[18, Case2]. This examplehasalso
beenanalyzedby LevesonandPalmer[15]; I compare
theirapproachwith minein Section4.

Theexampleis oneof fivealtitudedeviationscenar-
iosobservedduringaNASA studyin whichtwenty-two
airline crews flew realistictwo hourmissionsin DC-9
andMD-88 aircraftsimulators.To follow thescenario,
it is sufficientto understandthattheautopilotcanbein-
structedtocausetheaircrafttoclimbor toholdacertain
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altitudethroughthesettingof its “pitch mode.” In VERT

SPD (Vertical Speed)modethe aircraft climbs at the
ratesetby the correspondingdial (e.g.,2,000feet per
minute); in IAS (IndicatedAir Speed)mode,it climbs
atwhatever rateis consistentwith holdingtheair speed
setby anotherdial (e.g.,256 knots); in ALT HLD (Al-
titudeHold) mode,it holdsthecurrentaltitude. In ad-
dition, certain“capturemodes”maybearmed. If ALT

(Altitude) captureis armed,theaircraftwill only climb
asfar as the altitudesetby the correspondingdial, at
whichpoint thepitchmodewill changeto ALT HLD; if
thecapturemodeis not armed,however, andthepitch
modeis VERT SPD or IAS, thenthe aircraft will con-
tinue climbing indefinitely. The behavior of this sys-
temis complicatedby theexistenceof anALT CAP (Al-
titude Capture)pitch mode,which is intendedto pro-
vide smoothleveling off at the desiredaltitude. The
ALT CAP pitchmodeis enteredautomaticallywhenthe
aircraft getscloseto the desiredaltitudeand the ALT

capturemodeis armed(do not confusethe ALT CAP

pitch modewith theALT capture mode).TheALT CAP

pitch modedisarmsthe ALT capturemodeandcauses
the planeto level off at the desiredaltitude,at which
point it entersALT HLD pitchmode.

The following scenariodescriptionis slightly re-
wordedfrom Palmer’s original in order to fit my ter-
minology.

The crew had just madea missedapproach
andhadclimbedto andleveledat 2,100feet.
They receivedtheclearanceto “. . . climbnow
and maintain 5,000 feet.. . ” The Captain
settheMCP (MasterControlPanel)altitude
window to 5,000feet (causingALT capture
mode to becomearmed), set the autopilot
pitch modeto VERT SPD with a valueof ap-
proximately2,000ft. perminuteandtheau-
tothrottle to SPD modewith a value of 256
knots.Climbing through3,500feettheCap-
tain called for flaps up and at 4,000 feet
he called for slatsretract. Passingthrough
4000 feet, the Captainpushedthe IAS but-
ton on the MCP. The pitch modebecame
IAS and the autothrottleswent to CLAMP

mode. The ALT capture mode was still
armed.Threesecondslater theautopilotau-
tomaticallyswitchedpitchmodeto ALT CAP.
The FMA (Flight Mode Annunciator)ARM

window went from ALT to blank and the
PITCH window showed ALT CAP. A tenthof
a secondlater, the Captainadjustedthe ver-

tical speedwheel to a valueof about4,000
feetaminute.Thiscausedthepitchautopilot
to switchmodesfrom ALT CAP to VERT SPD.
As the altitudepassedthrough5,000feet at
a vertical velocity of about 4,000 feet per
minute, the Captainremarked, “Five thou-
sand. Oops,it didn’t arm.” He pushedthe
MCP ALT HLD button andswitchedoff the
autothrottle.The aircraft thenleveledoff at
about5,500 feet as the “altitude—altitude”
voicewarningsoundedrepeatedly.

An aircraft climbing through its assignedaltitude
(and potentially into the airspaceassignedto another
aircraft)is colloquiallycalleda“bust,” soPalmerrefers
to the scenarioabove as the “kill-the-capture bust.”
However, the basicproblemis presentwhetheror not
it leadsto a bust,so I preferto speakof it asthe“kill-
the-capturesurprise.” Thesourceof thesurpriseis the
interactionof thepitch andcapturemodesand,in par-
ticular, with theway the ALT CAP pitch modedisarms
the ALT capturemode. When the ALT capturemode
is armed,changingthe pitch modebetweenIAS and
VERT SPD, or changingthe valuessetby their corre-
spondingdials, simply changeshow the planeclimbs
to thedesiredaltitude. Whentheaircraftgetscloseto
the desiredaltitude, however, it autonomouslyenters
ALT CAP pitchmodeanddisarmsALT capturemode.If
thepitchmodeis thenchangedto IAS or VERT SPD, the
aircraft will climb without limit in the newly selected
mode,sincethe ALT capturemodeis now disarmed.
Theonly indicationto thepilot that theautopilotis in
this vulnerablecombinationof modesis that the ARM

window of theFMA changesfrom ALT to blank.

3 ANALYZING THE EXAMPLE

To seehow modelcheckingtechniquescouldreveal
the existenceof the kill-the-capturesurprise,we first
needto constructa mental model that a pilot might
plausibly employ. Differentpilots might have differ-
entmentalmodels,andwecannotknow whatthey are,
but aplausiblebasictenetmightbethatthepitchmode
controlshow theaircraftclimbs,andthecapturemode
controlswhetherthereis a limit to theclimb. Another
plausiblebasictenetis thatoncecapturemodeisarmed,
it becomesdisarmedonly whentheaircraftreachesthe
desiredaltitude(unlessthe pilot manuallydisarmsit).
Sincethis mentalmodelmakesno mentionof the ALT

CAP pitch mode,it obviously differs from therealsys-
tem. This doesnot necessarilymeanthat the system
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harborsa surprise,however, becausea mentalmodel
shouldsuppressdetailsconsideredunnecessaryto un-
derstandinghow to operatethesystem.Thepilot might
well be aware of the ALT CAP pitch modeand of its
role in leveling theplaneoff—andmayevenbeaware
thattheALT CAP pitchmodeandtheALT capturemode
interactin someway—but couldbelieve this is merely
theimplementationof theidealcapturemodeassumed
in the mentalmodel. To discover whethera surprise
really doesresidehere,we needto “run” thestatema-
chinesrepresentingthe actualsystemand the mental
modelonall possiblesequencesof inputsandcompare
theirbehavior.

I now presentan automatedanalysisof this exam-
ple using the Mur � (pronounced“Murphy”) stateex-
ploration systemdevelopedby David Dill’ s group at
StanfordUniversity [8]. Strictly speaking,Mur � is
not a modelchecker (thattermis properlyreservedfor
tools that testwhethera transitionsystemis a Kripke
model for sometemporallogic formula [4]), but the
term “model checking” is looselyappliedto any tool
that uses(explicit or symbolic)stateexplorationtech-
niques. Systemsaredescribedin Mur � by specifying
their statevariables, anda seriesof rules that indicate
the actionsthat can be performedby the systemand
thecircumstancesunderwhich they canbeperformed.
Propertiesthatshouldhold in someor all statescanbe
givenaspartof aMur � specification(asassertionsand
invariants, respectively), andthe Mur � systemunder-
takesa searchof all reachablestatesto ensurethat the
givenpropertiesdo indeedhold. If they do not, Mur �
prints an error tracethat describesthe circumstances
leadingto theviolation. Thosewho have somefamil-
iarity with computerprogrammingshouldfind it fairly
easyto interpretMur � specificationsandcanthink of
Mur � asperformingexhaustive simulationof thespec-
ified system,so that all possiblebehaviors areexam-
ined;this is feasiblebecausethenumberof states(i.e.,
combinationsof valuesof thesystemvariables)is finite
(althoughit maybevery large). In hardwareandpro-
tocol applications,it is routineto applyMur � to speci-
ficationsthatarethousandsof lineslong andthathave
tensof millions of reachablestates.

At the level of abstractionappropriatefor our in-
vestigation,the actual behavior of the example sys-
tem can be describedin termsof two statevariables,
pitch modeandcapture armed , whicharespec-
ified in Mur � asfollows.

Type
pitch_modes: enum�

vert_speed, ias, alt_cap, alt_hold � ;
Var

pitch_mode: pitch_modes;
capture_armed: boolean;

These declarationsspecify that pitch mode can
take one of the four values from the enumerated
type pitch modes, andthat capture armed is a
boolean . Thepitch modestatevariablerepresents
the autopilot’s pitch modein a direct way,1 while the
capture armed variableencodeswhetherthe ALT

capturemodeis armed.The initial stateof thesystem
is specifiedin theMur � Startstate declarationas
follows.

Startstate
Begin

clear pitch_mode;
capture_armed := false;

End;

The clear constructchoosessomearbitrary initial
value.

Now we can specify the actionsof the systemby
meansof Mur � rulesasfollows.

Rule "IAS"
Begin

pitch_mode := ias;
End;

This rule correspondsto the pilot engagingthe IAS
pitch mode(whetherby pushingits button,or entering
avaluein its dial is unimportantat this level of abstrac-
tion). It hasnoguards,meaningthatit can“fire” atany
time, and hasthe effect of settingthe pitch mode
statevariableto thevalueias . Thestring IAS is sim-
ply thenameusedto identify therule.

TheHLDandVSPDrulesaresimilarandcorrespond
to thepilot engagingtheALT HLD andVERT SPD pitch
modes,respectively.

Rule "HLD"
Begin

pitch_mode := alt_hold;
End;

Rule "VSPD"
Begin

pitch_mode := vert_speed;
End;

1I useslightly differentnamesto distinguishthepitchmodesof
the Mur � model from thoseusedin the narrative description,but
theintendedcorrespondenceshouldbeobvious.
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Noticethat I do not modeltheparameters(e.g.,speed,
climb rate) usedby the variouspitch modes,nor the
dialsthatareusedto settheseparameters.Wearecon-
cernedonly with thebasicmodetransitions,soit is ap-
propriateto omit thesedetails. I shouldalsonotethat
I have no ideawhetherthe specificationbeingdevel-
opedhereaccuratelyrepresentstherealDC-9 or MD-
88 autopilots—mypurposeis only to explain the ap-
proach,not to presentanindustrialapplication.

Thefollowing rule correspondsto thepilot pushing
theALT capturemodebutton. I have chosento specify
it asa toggle: initially themodeis not armed,pushing
thebuttonarmsit, andpushingit againdisarmsit once
more.

Rule "ALT CAPTURE"
Begin

capture_armed := !capture_armed;
End;

The next rule correspondsto the aircraft approach-
ing the selectedaltitude. I call the rule near anduse
lower caseto distinguishit from theuppercasenames
usedfor therulesassociatedwith pilot actionsthatwere
presentedabove.

Thisruleonly hasaneffectwhencapture armed
is true , in which case it sets pitch mode to
alt cap and capture armed to false . (Those
familiar with Mur � might wonderwhy I did not use
capture armed asaguardon therule; thereasonis
that I will laterneedto modify the rule to incorporate
thementalmodelandthepresentarrangementis more
convenientfor thispurpose.)

Rule "near"
Begin

If capture_armed Then
pitch_mode := alt_cap;
capture_armed := false;

Endif;
End;

The next rule correspondsto the aircraft reaching
theselectedaltitudewhenthepitch modeis ALT CAP,
therebycausinga transitionto ALT HLD. I originally
specifiedthisasfollows,

Rule "arrived"
Begin

If pitch_mode = alt_cap Then
pitch_mode := alt_hold;

Endif;
End;

However, we also needto accountfor the possibility
thatthepilot armsALT capturemodewhentheaircraft

is alreadyat the selectedaltitude. This circumstance
is dealt with by the secondIf-Then clauseof the
following revisedrule, which disarmsthe ALT capture
modeandbypassesALT CAP toentertheALT HLD pitch
modedirectly. In this and in later specificationfrag-
ments,faint typeis usedfor partspresentedpreviously,
anddarktypefor thenew or changedmaterial.

Rule "arrived"
Begin

If pitch_mode = alt_cap Then
pitch_mode := alt_hold;

Endif;
If capture_armed Then

capture_armed := false;
pitch_mode := alt_hold;

Endif;
End;

Somereadersmay considerthe specificationof the
last two rules to be excessively loose: for exam-
ple, thereis nothingin the specificationthat excludes
physically impossiblesequencesof events, such as
arrived followedby near , or severalnear sin suc-
cession.This loosenessis typical in modelchecking:
by omitting to specifyconstraintsthatareenforcedby
thephysicalworld, or by othercomponentsof thesys-
tem,weallow thespecifiedsystemto havemorebehav-
iors than is actuallypossible. If this lessconstrained
descriptiondoesnotexhibit theflawsweareconcerned
about, then certainly a more tightly specifiedsystem
(having strictly fewerbehaviors)will notexhibit them.2

Only if we get “f alsedrops” (i.e., apparenterrorsthat
wouldbeexcludedif themodelwasmoredetailed)will
weneedto refinethemodel.

Wehavenow specifiedthebehavior of theactualsys-
temandcanturn to thespecificationof an idealization
that constitutesa plausiblementalmodel. A suitable
modelcouldbeonewherereachingthedesiredaltitude
causesALT capturemodeto beturnedoff andthepitch
modeto changeto ALT HLD; thenear eventis notsig-
nificantto thismentalmodel.

To specifythis, I begin by addinga boolean state
variablecalled ideal capture that will recordthe
stateof thealtitudecapturemodein thementalmodel.
This variableis initialized to false in the modified
Startstate shown below.

2This is truefor whataretechnicallycalledsafetyproperties;it
is not trueof livenessproperties.All thepropertiesconsideredhere
aresafetyproperties.
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Var
pitch_mode: pitch_modes;
capture_armed: boolean;
ideal_capture: boolean;

Startstate
Begin

clear pitch_mode;
capture_armed := false;
ideal_capture := false;

End;

The ideal capturemodeis toggledby the ALT cap-
turemodebutton in thesameway asthearmingof the
realmode,soI addthis to thespecificationof theALT
CAPTURErule.

Rule "ALT CAPTURE"
Begin

capture_armed := !capture_armed;
ideal_capture := !ideal_capture;

End;

The ideal capturemodeis unaffectedby the near
event, so that rule is left unchanged.If an arrived
event occurswhen the ideal capturemode is armed,
thenthemodeis disarmed.This is specifiedby adding
a third If-Then clauseto the correspondingrule as
follows.

Rule "arrived"
Begin

If pitch_mode = alt_cap Then
pitch_mode := alt_hold;

Endif;
If capture_armed Then

pitch_mode := alt_hold;
capture_armed := false;

Endif;
If ideal_capture Then

ideal_capture := false;
Endif;

End;

Wenow needto relatetheidealcapturemodeof the
mentalmodelto the modesof the actualsystem.The
actualsystemis set to capturethe desiredaltitude if
either thepitch modeis ALT CAP or thecapturemode
is ALT. In termsof the Mur � model this conditionis
givenby theexpression

(capture_armed | pitch_mode = alt_cap) .

The modesof the actual systemand of the mental
modelareconsistentwith eachotherif this expression
is true exactlywhenideal capture is alsotrue .
Wecanstatethis in a Mur � invariantasfollows.

Invariant ideal_capture =
(capture_armed | pitch_mode = alt_cap);

At this point,we have constructedspecificationsfor
the modetransitionsof the actualsystemand of the
mentalmodelandstated,asaninvariant,thecondition
for theseto beconsistentwith eachother. We cannow
proceedto examinewhetherany sequenceof eventscan
violate the invariant by causingMur � to performex-
haustive explorationof all the reachablestatesof the
specification.Mur � doesthis by systematicallyfiring
therulesof thespecificationin differentordersuntil ei-
ther an error is found or all possiblecaseshave been
examined. In this example,we receive the error trace
shown in Figure1.

Error trace for the error:

Invariant "Invariant 0" failed.

Startstate Startstate 0 fired.
pitch_mode:vert_speed
capture_armed:false
ideal_capture:false
----------
Rule ALT CAPTUREfired.
capture_armed:true
ideal_capture:true
----------
Rule near fired.
pitch_mode:alt_cap
capture_armed:false
----------
Rule VSPD fired.
The last state of the trace (in full) is:
pitch_mode:vert_speed
capture_armed:false
ideal_capture:true
----------

End of the error trace.

Figure1: FirstErrorTrace

This is exactly the scenariothat manifestedthe au-
tomationsurprisedescribedin theprevioussection:the
pilot engagesthe ALT capturemode, the aircraft ap-
proachesthedesiredaltitudeandautomaticallydisarms
thecapturemodeandengagestheALT CAP pitchmode,
andthenthe pilot engagesVERT SPD pitch mode. At
thispoint theidealcapturemodeis still armed,but that
of theactualsystemis not. Mur � foundthisscenarioin
0.24seconds(on a 400MHz PentiumII with 256MB
of memoryrunningLinux).

LevesonandPalmeralsodetectedthe potentialfor
this surpriseusingtheir method[15] (I discussthedif-
ferencesbetweentheir methodandminein thefollow-
ing section),andsuggestedthat it couldbeeliminated
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by makingtwo changesto theactualsystem.(My spec-
ificationis organizeddifferentlyto theirs,sothefollow-
ing translatestheintentof their changesinto theterms
of my specification.)

� Causethe arrived event to engageALT HLD

pitch modewhenthe ALT capturemodeis armed
(asopposedto whenthepitch modeis ALT CAP),
and

� Causedisarmingof ALT capturemode to occur
when the pitch mode becomesALT HLD rather
thanALT CAP.

Theintuition is thattheALT CAP pitchmodeshouldbe
regardedasengagingaparticularcontrollaw thatdeter-
mineshow the aircraft flies the capturetrajectory, but
the ALT capturemodestaysin effect until the desired
altitudeis achieved.

The first of the changesabove is accomplishedin
our specificationby deletingthefirst If-Then clause
in the arrived rule, so that it becomesthe follow-
ing (I usea strikeoutlike this to indicatetext that is
removed).

Rule "arrived"
Begin

If pitch_mode = alt_cap Then
pitch_mode := alt_hold;

Endif;
If capture_armed Then

pitch_mode := alt_hold;
capture_armed := false;

Endif;
If ideal_capture Then

ideal_capture := false;
Endif;

End;

Thesecondchangerequirescapture armed :=
false to beremovedfromall rulesthatcontaintheas-
signmentpitch mode := alt cap and addedto
all rulesthatcontaintheassignmentpitch mode :=
alt hold . Thearrived rule asmodifiedabove al-
readysatisfiesthis condition,but theHLDrule mustbe
changedasfollows.

Rule "HLD"
Begin

pitch_mode := alt_hold;
capture_armed := false;

End;

And thenear rulemustbechangedto thefollowing.

Rule "near"
Begin

If capture_armed Then
pitch_mode := alt_cap;
capture_armed := false;

Endif;
End;

If we causeMur � to perform stateexploration on
this modified specificationwe obtain the error trace
shown in Figure2,whichhighlightsapotentialsurprise
introducedby the changesjust madeto the specifica-
tion: if the pilot engagesALT HLD pitch modewhile
ALT capturemodeis armed,the modifiedactualsys-
tem will disarm the capturemode, while it remains
armedin thementalmodel(andremainedsoin theac-
tual systemprior to the change). Inspectionof Leve-

Error trace for the error:

Invariant "Invariant 0" failed.

Startstate Startstate 0 fired.
pitch_mode:vert_speed
capture_armed:false
ideal_capture:false
----------
Rule ALT CAPTUREfired.
capture_armed:true
ideal_capture:true
----------
Rule HLD fired.
The last state of the trace (in full) is:
pitch_mode:alt_hold
capture_armed:false
ideal_capture:true
----------

End of the error trace.

Figure2: SecondErrorTrace

sonandPalmer’s specificationindicatesthat this issue
is presentin their specificationalso,andis not just an
artifact of my encoding. Several interpretationsseem
plausibleandreasonablefor theintendedbehavior (and
I have no idea what happensin this circumstanceon
a realaircraft),sowe couldmodify eitherthedescrip-
tion of theactualsystem,or that of thementalmodel,
or both. I chooseto supposethatALT HLD pitch mode
causestheaircraft to hold thecurrentaltitude,but that
it shouldmaskratherthandisarmALT capturemode—
which will becomeactive again if the pitch modeis
changedto IAS or VERT SPD. Thisisconsistentwith the
currentmentalmodel,andthe prior systemmodel,so
thedescriptionof theactualsystemshouldbechanged
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by undoingthechangejust madeto the HLD rule (the
other changesremainin place). This revision to the
specificationproducesyetanothererrortrace,shown in
Figure3.

Error trace for the error:

Invariant "Invariant 0" failed.

Startstate Startstate 0 fired.
pitch_mode:vert_speed
capture_armed:false
ideal_capture:false
----------
Rule ALT CAPTUREfired.
capture_armed:true
ideal_capture:true
----------
Rule near fired.
pitch_mode:alt_cap
----------
Rule ALT CAPTUREfired.
The last state of the trace (in full) is:
pitch_mode:alt_cap
capture_armed:false
ideal_capture:false
----------

End of the error trace.

Figure3: Third ErrorTrace

This highlights one more potentialsurprisein our
specification:if thepilot pressestheALT buttonto arm
the ALT capturemodeandlater, but beforethedesired
altitudehasbeenachieved,pressesit again,themental
modelindicatesthatthecapturemodewill bedisarmed.
Thiswill betrueof theactualsystemif thesecondbut-
tonpressoccursbeforetheaircraftis nearenoughto the
desiredaltitudeto engagetheALT CAP pitchmode.But
if thesecondbutton pressoccursafter ALT CAP mode
hasbeenengaged,thenthe actualsystemdoesindeed
disarmthe ALT capturemode,but theaircraftwill still
be in the ALT CAP pitch mode,andhencestill flying a
capturetrajectory.3

3Thissurpriseispresent,in adifferentform, in theoriginalspec-
ification aswell: if the ALT capturemodebutton is pressedafter
ALT CAP pitch modehasbeenengaged,thenthe original specifi-
cationwill armthe ALT capturemode(sinceit will have beendis-
armedwhenALT CAP pitchmodewasentered),but disarmtheideal
capturemode.

Levesonand Palmer’s specificationusesa “push-pull,” rather
thana togglearrangementfor theALT capturemodebutton,sothis
issuedoesnot arisein their specification.However, I suspectthat
somethinglike it mustoccurbecausetheir buttonseemsto hold a

Thebestresolutionto thisissueis notobvious,sofor
simplicity I simply adda guardto theALT CAPTURE
rule that will causeALT button pressesto be ignored
whenthepitchmodeis ALT CAP.

Rule "ALT CAPTURE" pitch_mode != alt_cap ==>
Begin

capture_armed := !capture_armed;
ideal_capture := !ideal_capture;

End;

With this change,we finally bring the behaviors of
theactualsystemandthementalmodelinto alignment;
Mur � confirmsthisasshown in Figure4.

Status:

No error found.

State Space Explored:

7 states, 41 rules fired in 0.23s.

Rules Information:

Fired 7 times - Rule "arrived"
Fired 7 times - Rule "near"
Fired 7 times - Rule "VSPD"
Fired 7 times - Rule "IAS"
Fired 7 times - Rule "HLD"
Fired 6 times - Rule "ALT CAPTURE"

Figure4: Mur � ReportsSuccess

Theoutputdisplaysof thesystemhavenotbeencon-
sideredin thetreatmentpresentedsofar. Thequalityof
informationpresentedto theoperatoris acritical factor
in reducingautomationsurprisesandmodeconfusion,
and shouldcertainlybe examinedin any comprehen-
siveanalysis.As afinal illustration,I will indicatehow
this canbe doneusing the modelcheckingapproach:
the informationdisplayedwill be specifiedaspart of
the systemdescription,the way it usedby the opera-
tor will bepartof mentalmodel,andtheinteractionof
theseelementswill be examinedas part of the auto-
matedanalysis.

An operatordoesnothaveaccesstoall thedataavail-
able to the actualsystem,and hencemay not always
know whena circumstancearisesthatcallsfor a mode
change.Well-designedautomationshouldkeeptheop-
eratorinformedof thesecircumstancesthroughits out-
putdisplays—conversely, abadlydesignedsystemmay

state(i.e.,“pushedin” or “pulledout”) thatis notsynchronizedwith
theinternalsystemstate.
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make it impossiblefor the operatorto accuratelypre-
dict the consequencesof certainactions. (Degani and
Heymanndescribesucha situationin a currentautopi-
lot [7].) In addition, operatorshave limited memory
andattentionspanandshouldnotbeexpectedto retain
theinternalstateof theirmentalmodelinfallibly. Good
outputdisplaysshouldprovide informationthatallows
operatorsto “reload” theirmentalstate.

We canmodelanoccasionallyforgetful operatorby
addinga “whoops” rule to ourspecificationasfollows.

Rule "whoops"
Begin

ideal_capture := !ideal_capture;
End;

This rule flips the value of ideal capture and is
invokednondeterministicallyto modelanoperatorwho
not merely forgetsthe stateof his mentalmodel, but
“misremembers”thewrongone. Obviously, Mur � de-
tectsnumerouserrorswhen this rule is addedto the
modelwithout furtheradjustments.

Let us suppose,however, that the actual system
turns on a light exactly when ALT capturemode is
armed. The pilot’s methodof operationis changed
so that, beforeperformingany operation,shesetsthe
stateof the ideal capturemodeof her mentalmodel
to be that indicated by the light. This is speci-
fied by addingthe assignmentideal capture :=
capture armed to the beginning of the rules that
representpilot actions—namely, IAS , VSPD, HLD,
and ALT CAPTURE.4 Mur � will againfind that the
Invariant fails in numerouscircumstances(e.g.,
following thewhoops rule). However, theonly timeit
is really importantfor theactualsystemandthemental
modelto bein agreementis followingany actionby the
pilot (so that the pilot canaccuratelypredict the con-
sequencesof her actions). This canbe accomplished
by replacingtheInvariant (whichis evaluatedafter
everyrule) by Assert statementsin thebodiesof the
four “pilot action” rules,asshown in Figure5.

Mur � reportsnoerrorsin thismodifiedspecification.
(It is nothardto seeby inspectionthatthismustbeso.)
Additional experimentationwill reveal that the guard
on the ALT CAPTURErule is still required,and that
theonly time ideal capture doesdepartfrom the
actualsystemstateis in thenear eventwhenthis fol-
lows a whoops . We regard this asunimportant,be-
causeit doesnot leadto a surprisein any actionper-

4Becausethelight displaysexactlythevalueof thestatevariable
capture armed , wedonotneedto introduceanew statevariable
or functionto representit.

Rule "IAS"
Begin

ideal_capture := capture_armed;
pitch_mode := IAS;
Assert ideal_capture =

(capture_armed | pitch_mode = alt_cap);
End;

Rule "VSPD"
Begin

ideal_capture := capture_armed;
pitch_mode := vert_speed;
Assert ideal_capture =

(capture_armed | pitch_mode = alt_cap);
End;

Rule "HLD"
Begin

ideal_capture := capture_armed;
pitch_mode := alt_hold;
Assert ideal_capture =

(capture_armed | pitch_mode = alt_cap);
End;

Rule "ALT CAPTURE" pitch_mode != alt_cap ==>
Begin

ideal_capture := capture_armed;
capture_armed := !capture_armed;
ideal_capture := !ideal_capture;
Assert ideal_capture =

(capture_armed | pitch_mode = alt_cap);
End;

Figure5: The“Pilot Action” RulesModifiedto Usethe
DisplayLight

formedby thepilot. Combiningthis analysiswith ear-
lier ones,we concludethat thecurrentdesigndoesnot
harborsurprisesfor a forgetful operatorwho follows
the displaylight, nor for a nonforgetful one(indepen-
dentlyof thelight).

Asnotedearlier, in additionto globalinvariant s,
Mur � alsoallows assert statementsin thebodiesof
its rules; theseprovide a way of checkingadditional
properties,suchasthosethatshouldholdonmodetran-
sitions(asopposedto whenthe systemis in a mode).
For example,we canaddanassert statementto the
rule arrived to checkthat thepitch modeis indeed
ALT HLD whenever theidealcapturemodeis disarmed
asa resultof thearrived event.
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Rule "arrived"
Begin

If capture_armed Then
pitch_mode := alt_hold;
capture_armed := false;

Endif;
If ideal_capture Then

ideal_capture := false;
Assert pitch_mode = alt_hold;

Endif;
End;

This checkis satisfied(providedthereareno whoops
events) in the final specification presentedabove,
but detects issues (that were also found by the
Invariant ) in earlierspecifications.

A notableproperty of all the analysesperformed
hereis their simplicity andefficiency. Oncethe initial
investmenthasbeenmadeto formalizetheactualsys-
tem behavior (andthis might alreadyhave beendone
for otherrequirementsanalysispurposes),makingad-
justmentsto the systemor mentalmodel,performing
stateexploration,andexaminingtheresultsis thework
of minutes(noneof the analysesdescribedheretook
morethan0.25secondsto run). Of course,the spec-
ifications usedhere have almost trivially small state
spaces(from 7 to 14 statesdependingon the specifi-
cation)andrequirevery few rulesto befired (from 14
to 96). However, theevidencefrom otherfieldsof ap-
plication is that stateexplorationandmodelchecking
techniquesscalequitewell: it is routineto examinetens
of millions of stateswith explicit enumeration,andof-
tenvastlymoreusingsymbolicmethods.

4 DISCUSSION

Thereis much excellentwork in the fields of sys-
tem design,aviation psychology, ergonomicsandhu-
man factorsthat seeksto understandand reducethe
sourcesof operatorerror in automatedsystems. The
work describedhereis intendedto complementthese
existing studiesby providing a practical,mechanized
meansto examinesystemdesignsfor featuresthatmay
be error prone. Humanfactorsandotherstudiespro-
videanideaof whatto look for, andthework described
hereprovidesamethodto look for it. Themethoduses
existing toolsfor modelcheckingandstateexploration
thathave,in otherkindsof applications,scaledsuccess-
fully to quitelargesystems.

Model checkingis a memberof the classof tech-
niquesknown as “formal methods,” and thereis also
prior work, principallyby Levesonandhercolleagues,
in applyingformalmethodsto theproblemsof automa-

tion surprises[16]. Leveson’s work usesan evolving
list of design features(currently there are about 15
itemson thelist) thatareproneto causeoperatormode
awarenesserrors. Thesefeaturesprovide criteria that
can be applied to a formal systemdescriptionin or-
der to root out designelementsthat would repayad-
ditional consideration.LevesonandPalmer[15] apply
thisapproachto thekill-the-capturesurpriseconsidered
here.Oneof theerror-pronedesignfeaturesidentified
by Levesonis useof “indirect” modetransitionswhich
occurwithout explicit operatorinput. SheandPalmer
constructa formal specificationof therelevantpartsof
theMD-88 autopilotandexamineit (by hand)to detect
suchtransitions.Thisapproachsuccessfullyleadsthem
to discover the indirect pitch modetransitionto ALT

CAP, and the confusinginteractionbetweenthe pitch
andcapturemodes.

Automationis not a replacementfor careful man-
ual review of perspicuous,carefully structuredformal
specifications,but it is a valuableadjunctwhosevalue
becomesgreateras the specificationsget larger and
their analysiscorrespondinglymoredifficult. The ex-
ample consideredhere is almost trivially small, yet
its automatedanalysisraisedan issuethat wasnot re-
portedin LevesonandPalmer’s manualexamination—
namely, thattherepairedspecificationcausesselection
of the ALT HLD pitch mode to disarmthe ALT cap-
ture mode. To be fair, Levesonand Palmer explic-
itly notethattheir repairto thekill-the-capturesurprise
“may violate other goalsor desiredbehaviors of the
autoflightsystem—thedesignerswould have to deter-
mine this whendecidingwhat solutionto use. In ad-
dition, a moresophisticatedsolutionmaybe required,
e.g., a hysteresisfactor may needto be addedto the
modetransitionlogic to avoid toorapid‘ping-ponging’
transitionsbetweenpitchmodes.” Nonetheless,thefact
remainsthattheapproachusedherefoundtheoriginal
kill-the-capturesurprise,found this issuewith the re-
pairedspecification,andfound anotherissue(namely
that pressingthe ALT capturemode button after the
pitch modehaschangedto ALT CAP doesnot disarm
the altitudecapture)—allwith essentiallyno effort. It
also allowed rapid and inexpensive exploration of an
occasionallyforgetful operatorand of the efficacy of
displays in mitigating this problem. The ability to
use formal analysisin this mannerfor active design
exploration is an underappreciatedattribute of formal
methods—andonethatdependscritically onefficiently
mechanizedmethodsof analysis.
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Many authorshave observed that model checking
andotherformsof automatedformal analysiscanuse-
fully beappliedto requirementsspecifications.Indeed,
Levesonand Palmer proposethat “the pilot’s mental
modelincludesacauseandeffect relationshipbetween
armingthealtitudecaptureandeventually. . . acquiring
that altitude and holding it” and this phraseologyal-
mostimmediatelyinvitesformulationin temporallogic
(suchlogicsprovide aneventuallymodality),which is
the classicalapplicationof model checking. A little
thoughtand experimentation,however, revealsthat it
is generallydifficult or impossibleto formulatea men-
tal model,or the expectationsit engenders,within the
limited expressivity of a temporallogic. In the exam-
ple justquoted,it wouldbenecessaryto addthecaveat
“provided the pilot doesnot explicitly disarmaltitude
capture”andthis is not easilystatedin temporallogic.
Furthermore,thesuggestedformulationrelatesa mode
control issue(“arming the altitudecapture”)to an ex-
ternalevent (“acquiringthataltitude”). In orderto ex-
aminethis relationship,our formal modelwould need
to includesometreatment(e.g.,qualitative physics)for
the notionof an aircraft “climbing” andits relationto
“altitude” thatwouldaddgreatlyto its complexity.

Thenovelty andutility in theapproachusedhereis
thatit movesspecificationof thedesiredbehavior from
the property/assertionlanguageof the model checker
into its systemspecificationlanguage.That is to say,
the desiredproperty is conceived as a mentalmodel
that is specifiedasa statemachinerunningin parallel
with thestatemachinethatspecifiestheactualsystem.
Thisseemsconsistentwith representationsalreadyem-
ployed in thehumanfactorscommunity[13], andpro-
videsthe expressivenessneededto accommodatepos-
sibilities suchasthepilot explicitly disarmingaltitude
capture,while allowing the correctnesscriterion to be
statedin termsof (idealized)modesratherthanexternal
physicalrealities(suchas reachinga desiredheight).
The property/assertionlanguageof the modelchecker
or stateexplorationsystemis usedsimply to state(as
an invariant) the desiredcorrespondencebetweenac-
tualandidealizedmodes.

In more technicalterms,we are really checkinga
simulationor conformancerelationbetweentwo sys-
temdescriptions(thementalmodelandtheactualsys-
tem). This is a basiccapabilityof “model checkers”
for processalgebras,such as the FDR tool for CSP
[19], but mustbeachievedsomewhatindirectly in tools
basedon statetransitionrelationssuchasMur � . The
approachusedhere works in simple cases;in more

complicatedcases,it may be necessaryto usesuper-
positionandan explicit abstraction(or, dually, refine-
ment)relationto connectthe two systemdescriptions
(see[20] for a tutorialexplanation).

Otherwaysto applyformalmethodsto examination
of humanfactorsissuesareexemplifiedin thework of
SageandJohnson[21] andof Butler et al [3]. These
specifythebehavior of theactualautomationasa state
machinein muchthesamewayashere,but specifyuser
expectationsaslogical formulas. Theseareexamined
by modelcheckingin thecaseof SageandJohnsonand
by theoremproving in the caseof Butler et al. The
disadvantageto theseapproachesis that they support
only a simplemodelof theuser;theconceptof mental
modelarosein psychology(andin artificial intelligence
[11]) preciselybecausedeductive ruleswerefound to
beinadequatemodelsof humancognition.

The expressivenessprovided by the mentalmodels
approachopensanumberof interestingpossibilitiesfor
modelingandanalysisin additionto thosealreadyillus-
trated.

� We canexaminetheconsequencesof a faulty op-
erator:simply endow theoperatormodelwith se-
lectedfaulty behaviors and observe their conse-
quences.The effectivenessof remediessuchas
lockinsandlockouts,or improveddisplays,canbe
evaluatedsimilarly.

� We canexaminethe load placedon an operator:
if the simplestmentalmodel that canadequately
track the actualsystemrequiresmany states,or
a moderatelycomplicateddatastructuresuchas
a stack, then we may considerthe systemtoo
complex for reliable humanoperation. We can
use the samemethodto evaluateany improve-
ment achieved by additionalor modified output
displays,or by redesigningthe systembehavior.
This could provide a formal way to evaluatethe
methodsproposedby Vakil andHansmanfor mit-
igatingthecomplexity of interfaces[24].

� We canexaminethe accuracy of an operatorin-
structionmanualby formulatingit asa transition
systemandcomparingit to a similar formulation
of its actualsystem—justas we formulatedand
compareda mentalmodelwith its actualsystem
in theexample.

� JavauxandPolson[13] suggestthatmentalmod-
els have a predictablestructurethat is dueto un-
conscioussimplificationsthat elide partsthat are
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rarely employed. We could take the modelsug-
gestedby training material, apply the simplify-
ing processesof Javaux and Polson,and check
whether the resulting model (which may be a
fairly good approximationto the mentalmodels
of realoperators)is anadequaterepresentationof
therealsystem.

� We could take a mentalmodel from onesystem
(e.g.,anA320)andcheckit againstadifferentac-
tual system(e.g.,an A340). Discrepanciescould
highlight areasthatshouldbegivenspecialatten-
tion in trainingprogramsto convertoperatorsfrom
onesystemto theother.

� We could extend the approachto multi-operator
systems:for example,the air traffic control sys-
tem, wherethe controller and the pilot may act
accordingto differentmentalmodelsof thesame
situation.

A limitation to all theseanalyses,andto our whole
approach,is thatwearemodelingonlyasmallfragment
of thecognitive processesinvolvedin human-computer
interaction. Our approachis silent, for example,on
problemsthat might be dueto an operator’s difficulty
in recallingtheright mentalmodel,or to excessive de-
mandsonanoperator’sattention.Thereisveryinterest-
ing work by BowmanandFaconti[2] andby Dukeand
Duce[9] that appliesformal methodsto deepermod-
elsof cognitionandthisallows themto detectdifferent
kindsof issuesthantheautomationsurprisesdescribed
here.I considerall theseapproachesto becomplemen-
tary andrepresentative of a very promisinggeneraldi-
rection: thedetectionof potentialhumanfactorsprob-
lems by explicitly comparingthe designof a system
againstamodelof someaspectof humancognitionus-
ing mechanizedformal methods.Modelsof different
aspectsof cognitionarelikely to revealdifferentkinds
of problems. The approachdescribedhereusessim-
ple mentalmodelsto find designflaws that leadto au-
tomationsurprises,andit seemsvery effective for that
purpose.

In the future, I hopethat this approachwill be de-
velopedanddocumentedfurther, andextendedin the
directionslistedabove. I alsolook forward to evaluat-
ing it onamorerealisticexample.
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