
The Inquisitive Sensor:
A Tactical Tool for System Survivability

�

Ulf Lindqvist
System Design Laboratory

SRI International
333 Ravenswood Ave
Menlo Park CA 94025

ulf@sdl.sri.com

Abstract

This paper proposes methods by which traditionally pas-
sive intrusion detection sensors can be instrumented to take
certain tactical actions in order to increase the certainty by
which they can make decisions. Examples show how a sen-
sor can request injection of additional data into the event
data stream it is monitoring, as a reaction to its observa-
tion of incomplete indications of threats. As the threat level
increases, the sensor could increase its degree of activeness
and thereby its visibility. When a system is under attack,
an accurate and timely situation assessment enabling effec-
tive countermeasures is probably more important to system
survivability than keeping the sensors concealed.

1. Background

In the EMERALD project, we have developed a num-
ber of intrusion detection (ID) sensors for different anal-
ysis targets, such as network protocol data from differ-
ent communication layers, host audit data, and so forth.
Also, we use different analysis techniques, such as rule-
based forward-reasoning expert systems [1] and probabilis-
tic methods [4]. We strongly believe in the advantages of
this two-dimensional diversity (target and technique) for ID
sensors, especially with respect to the resulting combined
coverage. In this paper, an ID sensor is considered to con-
sist of both an event data collection component (CIDF: E-
box) and an analysis component (CIDF: A-box [3]).

�

This work is part of a project currently funded by the Advanced
Technology Office of the Defense Advanced Research Projects Agency
(DARPA/ATO), under contract number N66001-00-C-8058. Distribution
Statement ’A’, Approved for public release—Distribution Unlimited. The
views presented herein are those of the author and do not necessarily re-
flect the views of the supporting agency.

One common theme for all these sensors is that they pas-
sively monitor a data stream, and the only external action
they are capable of taking is the transmission of an alert
message. That alert message is intended to be picked up
by another component that could, for example, present it
to a human operator, store it in a database, correlate sensor
messages in higher-level analyses, and/or issue automatic
response actions. One advantage of this passive monitoring
is that the sensors function equally well in batch (offline)
mode and in real-time (online) mode. Although most sen-
sor deployment concerns real-time operation, batch mode
is useful for testing, evaluation, and after-the-fact (foren-
sics) analysis. Another advantage is that for certain event
streams, such as network data, a passive sensor could be
made completely invisible and undetectable (provided that
an attacker cannot observe the sensor output channel).

However, if we are ready to give up the requirement that
sensors produce the same results in batch mode as in real-
time mode, we could let the sensors take advantage of the
fact that they are operating in a real-time situation. This
paper presents ideas on how sensors could be instrumented
to perform simple actions that could significantly improve
the correctness of their situation assessments. In a situation
where we suspect that a system is under attack, allowing
sensors to become visible in order to make better response
decisions could be a reasonable tactical trade-off.

2. Queries to confirm compromise

We present examples of how the sensor could use a sim-
ple query to dramatically improve the confidence level of an
alert or, in cases where the result of the query does not con-
firm the suspicion, cancel the issuing of an alert that would
have been a false positive.

In all cases presented, we can cause the data resulting
from the sensor’s query to be injected into the event stream

In Supplement of the 2001 International Conference on Dependable Systems and Networks, pages C-14–C-16, Göteborg, Sweden, July 1–4, 2001.



it is monitoring. Thus, the sensor will still receive all its
input data in the original input channel. This will also en-
able batch mode analysis of data collected while an active
sensor was present, as the additional data will be present
in the batch file. However, we must be aware of the risk
that the attacker also can observe (and, in worst case, ma-
nipulate) the query and/or the result and thereby infer infor-
mation about the sensor’s existence and its knowledge. In
particular, this risk is high when the event stream represents
network traffic.

2.1. Host: Network interface status

This example is based on our experience with the Solaris
BSM event stream. Among many other things, we want a
host-based sensor to raise an alert when the network inter-
face card is set in promiscuous mode, as this indicates that
a network sniffing process was started on the host—a typ-
ical action for an attacker who has taken control of a host
in a network and wants to collect information for further
penetrations.

The problem is that the promiscuous mode is set with ar-
guments to a putmsg() system call, and those arguments are
not provided in the event stream. Even if they were, anal-
ysis of all putmsg() calls would probably be too resource-
intensive for a lightweight host-based sensor.

Instead, our sensor looks for an open() call to the net-
work device, a call that must precede the putmsg() de-
scribed above. However, there are many other reasons for
opening the network device than to put it in promiscuous
mode, and therefore an alert based solely on the open() call
risks being a false positive.

Suggestion: It is relatively easy to query the network
interface to determine whether or not it is in promiscuous
mode. Such a query could be triggered by the sensor after
it has observed the open() call described above, leading to
an alert only if the interface really is in promiscuous mode.

2.2. Host: Critical local processes

Some attacks aim at killing security-critical processes,
such as logging and reporting daemons, authentication ser-
vices, and so forth. As many or all of these critical pro-
cesses are started before a host-based ID sensor is started,
it is very difficult for a passive sensor monitoring an audit
trail to determine whether those processes are running at
any given time. The fact that in an audit trail such as the
Solaris BSM data, processes are identified only by process
ID and not by command name, makes it even more difficult
to identify those critical processes. Even if the sensor sees
information that a process with a certain process ID exited
or dumped core, at that point it is too late to identify the
program image that corresponded to that process.

Suggestion: When starting, the sensor could issue a
query about what processes are running on the system and
compare that information to an operator-supplied list of
critical processes. It could repeat this query periodically
and/or when it suspects that a critical process was killed,
and then alert when one of those processes is no longer
running. It could also use this information to connect the
process ID in an exit() record (or other event records) to a
program name.

2.3. Network: Service availability

We have a network-based sensor using probabilistic
analysis technology [4] capable of service availability mon-
itoring (also known as “blue sensor”). It can determine,
with a certain a posteriori probability, that a monitored net-
work service (such as a Web server) appears to be down be-
cause client requests fail with an unusually high frequency.
The cause could be a denial-of-service attack or other se-
curity problem, or an inadvertent event such as a hardware
failure, misconfiguration, or a software bug in the server
operating system or application.

Suggestion: When the sensor suspects that a service
may be unavailable, it could trigger its own request for ser-
vice and measure the response time. If there is no response
or the response time is longer than some limit, the sensor
now has more confidence in a “service down” alert. On the
other hand, a healthy response indicates that the service it-
self is working, but there could be another reason why client
requests fail. Either way, the additional information helps in
diagnosing the situation. This is an example of the integrity
checking probe suggested in [2].

In this case, the sensor can stay invisible if it has an out-
of-band communications channel (with respect to the event
stream it analyzes) to a simple component that it can order
to issue the probing request. As the probe and the reply
from the service (if one occurs) will be in the event stream,
observable to the sensor and possibly also to the attacker,
we need to masquerade the request so that it looks innocu-
ous.

2.4. Network: Configuration discovery

In our current sensor design, it is left to the operator to ei-
ther judge the relevance of an alert, or to manually configure
the sensor so that it can make relevance judgments. Knowl-
edge that affects alert relevance could, for example, con-
cern target vulnerability, which depends on network topol-
ogy, target configuration, and target platform (attempts to
exploit a Windows vulnerability on a Unix host might be
irrelevant and vice versa). Manual entering of this informa-
tion is error prone and can easily become incomplete, dated,
or otherwise incorrect.

2



Suggestion: Instead of making these judgments manu-
ally outside or inside the sensor, the sensor could trigger
a configuration scan (such as the nmap queso scan) of the
monitored targets, automatically collect the required knowl-
edge, and use it to determine alert relevance when attacks
are detected. This could reduce the risk of misconfiguration
or omissions to update the configuration. A problem with
this approach is that other sensors could observe the scan
and raise alerts about it. In addition, if it is done as an im-
mediate reaction to an observed attack, it could disclose the
existence of the sensor to the attacker.

3. Dynamic level of activeness

An efficient way to make life difficult for an intruder is
to make your environment unknown and unpredictable. If
the attacker does not know what sensors and countermea-
sures you have in place, it is harder for him to circumvent
them. Therefore, keeping sensors concealed and “stealthy”
is often a good initial tactic, and any active behavior should
be carefully crafted not to reveal any information to the at-
tacker.

However, when the system is under attack and initial
countermeasures do not seem to help, we suggest increas-
ing the degree of active sensor behavior along with other
escalated responses. At this point, the sensor input data
could be less reliable because the attacker might be in con-
trol of parts of the environment, and active queries could
help in confirming or denying indications from the regular
data source. Also, as the issued countermeasures have al-
ready given away some information about the presence of
sensors, the benefits of enabling more accurate decisions in
an already dangerous situation could outweigh the risks.

4. Discussion

From a system survivability perspective, it is important
to have tools on a tactical level that can autonomously and
dynamically adapt their behavior to threats to the system.
We have presented the concept of an inquisitive sensor that
can dynamically augment the event data stream it is moni-
toring, by causing queries to be issued and the replies to be
injected into the event stream.

In this paper, we have focused on the individual sensors,
and have not discussed sensor coordination and strategic is-
sues. It could be argued that the limited view of a low-level
sensor is insufficient to make decisions about any active be-
havior, but that depends on the monitored system and the
current threat level.

We plan to augment some of our currently passive sen-
sors with active capabilities and conduct experiments to test
and refine the ideas presented here.

Acknowledgments

Thanks to Ken Theriault and other members of the
DARPA IA and AIA communities for comments on an ear-
lier version of this paper.

References

[1] U. Lindqvist and P. A. Porras. Detecting computer and
network misuse through the production-based expert system
toolset (P-BEST). In Proceedings of the 1999 IEEE Sym-
posium on Security and Privacy, pages 146–161, Oakland,
California, May 9–12, 1999.

[2] P. A. Porras and A. Valdes. Live traffic analysis of TCP/IP
gateways. In Proceedings of the 1998 ISOC Symposium on
Network and Distributed Systems Security, pages 142–154,
San Diego, California, Mar. 11–13, 1998.

[3] B. Tung. The Common Intrusion Detection Framework
(CIDF), June 22, 1999. http://gost.isi.edu/cidf/.

[4] A. Valdes and K. Skinner. Adaptive, model-based monitor-
ing for cyber attack detection. In H. Debar, L. Mé, and
S. F. Wu, editors, Recent Advances in Intrusion Detection
(RAID 2000), volume 1907 of LNCS, pages 80–92, Toulouse,
France, Oct. 2–4, 2000. Springer-Verlag.

3




