
Cross-Domain Access Control via PKI�
Grit Denker and Jon Millen

Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USAfdenker,milleng@csl.sri.com
Yutaka Miyake

KDD R&D Laboratories Inc., Kamifukuoka-shi, 356-8502, JAPAN

miyake@kddlabs.co.jp

Abstract

In this note we consider how role-based access control
can be managed on a large scale over the Internet and across
organizational boundaries. We take a PKI approach, in
which users are identified using public key certificates, as are
the servers. The main features of our approach are: access
control by (client, role) pair; implied revocation based onthe
role hierarchy; automatic generation of certificate validity
tickets; and certificate chains to prove a client role hierarchy
to a server.

1 Introduction

The Internet, with Web browsers and Web servers, makes
it convenient for anyone to access publicly available infor-
mation on servers. Some servers provide private or sensi-
tive information and require users to log in with passwords.
This form of access control is suitable if users must be dis-
tinguished from one another, because the information is per-
sonal, or because usage accounts are set up individually.

In other cases a service is restricted, but permission is
given on the basis of the role of the user, and not the indi-
vidual user identity. This is particularly useful if the user and
service belong to different organizations. An example might
be that all members of a certain university department have
access to the online services of a particular library at a differ-
ent university. Another is that all employees in a company’s
retirement program may have access to the external invest-
ment company’s performance summary.

In this note we consider how role-based access control
can be managed on a large scale over the Internet and across
organizational boundaries. For the purposes of this note, we�Supported by KDD Laboratories, Inc.

assume the basic features and terminology of RBAC (Role-
Based Access Control, [5]) as an underlying policy model,
so that we can focus on the cross-domain issues. We take a
PKI approach, in which users and their affiliations are identi-
fied using public key certificates, as are the servers. The use
of “smart certificates” to identify users and their roles was
described in [4]. We use similar certificates, but the cross-
domain issues and other objectives lead us to a different way
of using them: we have two kinds of certificates, and they are
content-chained to reflect the role hierarchy. Timely revoca-
tion checking is also handled in a special way.

One of the challenges of large-scale inter-organizational
PKI is that different organizations may be in the domain of
different certification authorities (CAs). An organizational
CA might have a certificate signed by a commercial CA
(VeriSign, Thawte, etc.), but we will still regard it as the cer-
tificate issuing authority for its own organizational domain.
Organizations are mutually suspicious in general, but may
establish relationships with chosen partner organizations to
support client-server activity.

Different organizations recognize each other by means of
cross-certificates, in which one organization’s identity, trust
status, and CA public key information is signed by the other
organization’s CA. We will make use of cross certificates,
but there are several issues that are not solved simply by the
existence of such certificates.

1.1 Objectives

A server organization may deal with many different client
organizations, andvice versa. The total number of users of a
server may be so large, and changes in it so frequent, that an
individual user identification database is not practical. This
has several implications:� The server uses the role, rather than the individual user

identity, to control access.

 



� User membership and role in a client organization is un-
der the control of the client domain, and the server must
trust the client organization to assign certificates accord-
ingly.

A clientdomain issues certificates to users (clients) giving
them a public key and one or more roles. Aserverdomain
contains one or more Web servers that may be accessible to
users in other domains. The same domain may be both a
client and server domain. Note that a standard X.509 certifi-
cate has anissuerfield identifying the signer of a user certifi-
cate, in our case the client domain.

Server and client agree on certain role names (in the con-
text of that client) as part of a prior administrative agreement.
However, a server cannot be expected to keep track of de-
tailed organizational changes and role hierarchies in client
organizations. The client therefore has to provide proof to
the server that:� the user is still a member of the client organization in

some designated role,� the role needed for access is still recognized in the client
organization, and� the role hierarchy linking the user’s certified role with
the role needed for access permission is still intact.

Certificates can be revoked before their expiration date.
For each certificate used to establish a user-role connection,
there must be a way for the client to generate a short-term
“ticket” either taking the place of the original certificate, or
asserting that the original certificate has not recently been
revoked. Real-time computation of digital signatures is bur-
densome, and should be avoided in high-traffic applications.
However, hash-chain proofs can be used to obviate real-time
signatures.

Our approach is presented conceptually in Section 2. This
approach has been partially implemented in a prototype sys-
tem called XDA (cross-domain access), which is described in
Section 3. Briefly, the XDA system is an extension of Web
page access using an ordinary SSL-capable browser and Web
server. A client-side proxy monitors Web page requests and
contacts the client CA to obtain tickets to send to the server.
The CA module that performs the status response function
is called the Privilege Granting Server (PGS). The prototype
does not yet handle certificate chains, but can be extended
easily to do so.

2 Certificates, Revocation, and Access

In the RBAC model, permissions are given to roles, where
a permission approves access in a designated mode to one or
more objects. A Web server associates permissions to roles
with some form of access control list (ACL). The ACL is in

a directory containing the pages or services it controls, and
each ACL entry gives some mode of access to a specified
user or role. Thus, an ACL entry can be regarded as a(role,
permission)pair.

In our system, to support cross-domain access, the role
is given a structure:(client-organization, local-role), where
the local role name is meaningful for the client organization,
and different roles may be used in ACL entries for different
organizations, for access to the same Web page.

2.1 Role Hierarchy and Certificate Chaining

In a role hierarchy, if roler0 is a subordinate of roler,
written r � r0, then any permissions associated with roler0 are inherited by roler. Thus, if a user has a user-role
certificate showing membership in roler, and a Web page
requires roler0, the user should be able to get permission.

We use two kinds of certificates to validate user role per-
missions.User-rolecertificates are used to prove that a user
is a member of the client organization, give the user a public
key, and specify a most-specific role for that user.Role hi-
erarchycertificates encode direct subordination relationships
among roles.

Normally, the user would begin with a user-role certifi-
cate for her most-privileged role, sayr. Rather than have the
client organization store or generate additional certificates
for this user for all subordinate rolesr � r0, we establish
the relationr � r0 with a chain of role hierarchy certificates
indicatingr � r1; r1 � r2; :::; rn � r0. This set of certifi-
cates is sent by the client to the server, and the server verifies
that this is a continuous chain linking the user to the required
role, and (as discussed below) that all certificates in the chain
are still valid.

In our cross-domain environment, having the server de-
termine the relationshipr � r0 from its own stored account
information, as in [4], would not be consistent with our as-
sumption that the server should not have to keep track of all
client hierarchies.

The two kinds of certificates are shown in Figure 1 (not
showing certificate fields such as validation period and other
standard fields of public-key certificates). Some role hierar-
chy certificates have no sub-role. This is indicated by some
constant value in the sub-role field. This kind of certificate
is ananchorcertificate and its role is an anchor role. Ordi-
nary public key certificates and cross certificates do not have
a role field.

The proposed certificate formats fit well with the X.509
PKI public-key certificates and PMI attribute certificates [1].
The “role” field of a role certificate and the “sub-role” field
of a hierarchy certificate can be defined as extension fields
within the X.509 standard.

Note that role hierarchy certificates arecontent chained
rather thansignature chained. Public key certificates are nor-



sigPK Issuer

User Role Certificate

RoleUser 

Role noPK sigIssuer

Role Hierarchy Certificate

Sub Role

Figure 1. Role and hierarchy certificates

mally signature chained when the issuer CA is not known di-
rectly and its public key must be obtained from a another cer-
tificate. Thus, linking is on the subject-issuer relation, with a
different key for each signature. In our case, linking is on the
user-role and role-sub-role relations, with the same client CA
key for each signature, except for the final cross-certificate.

2.2 Revocation and Access

Content chaining of certificates has advantages when it
comes to revocation and access control. Both user-role and
role-hierarchy relationships can be revoked. We assume an
environment withimplied revocation. In such an environ-
ment, there is a constraint saying that if a roler is eliminated,
thenall more-privileged rolesmust also be eliminated, unless
their existence is preserved by an alternate path through the
hierarchy in the direction of lower privilege to an anchor role.

For example, if a company division is eliminated, all of
its departments are thereby eliminated. If a department is
eliminated, the position of division librarian, who servesall
the departments, is (normally) not eliminated, since thereis
an alternate path from that position through another depart-
ment.

Thus, ifr1 � r2 � r3, andr2 is eliminated, then permis-
sions requiringr3 still make sense but permissions requiringr2 do not. Permissions requiringr1 are still possible ifr1 is
a super-role of some other less-privileged role with a path to
an anchor role.

Eventually, the client domain administrator should tell
each affected server domain administrator that ACL entries
namingr2 should be removed. However, there ought to be a
way to prevent these accesses in the short term, after the re-
vocation in the client domain but before the administrator has
contacted the affected server domains, and this should hap-
pen as an immediate consequence of the revocation of role
hierarchy certificates with roler2.

Two alternative revocation policies are suggested to
achieve this, with a different tradeoff of client work and
server work:full revocation andpartial revocation, explained
below. We assume that client and server establish, at the be-
ginning of their cooperation, which policy they follow, or
that the policy specification is part of the exchange protocol
or certificate format.

In both policies, the server must check the validity of all
certificates in a submitted chain. The full-revocation policy
requires that all affected certificates be revoked. In that case,
checking a certificate chain up to the role required for access
is sufficient. The partial-revocation policy saves some client
revocations but requires a longer chain, extending beyond the
required role to an anchor role. In this case, the role required
for access can be anywhere in the chain.

In the partial revocation policy, to revoke a role, it suffices
to explicitly revoke the role hierarchy certificates namingits
subroles. This way, no valid certificate chain, starting from
a user-role certificate of a user down to an anchor role can
be established. If a role is eliminated by implication because
some descendant role has been eliminated directly, some cer-
tificate in an anchored chain must have been revoked.

One might ask the following: if certificates have been re-
voked, and the client domain is trusted, why can’t we simply
assume that the client will refuse to send any revoked cer-
tificates? Then the server will not have to check their valid-
ity. The security threat here is that an attacker or malicious
individual user (whose certificate has been revoked) might
copy, save, and replay revoked certificates, and continue to
use them until the nominal expiration date.

2.3 Certificate Status Proofs

The client domain, specifically the PGS, finds a valid cer-
tificate chain to accompany an access request. The PGS can
then create and sign a ticket guaranteeing that the required
role is valid for the user. However, it was observed earlier
that it is a burden for a client domain to perform signatures in
real time. Instead, hash chain proofs can be used as they have
been for Certificate Revocation Trees (CRTs) [2]. The idea
is that the CA maintains a certificate revocation list (CRL),
which is authenticated each time it is modified by the CA.
The CA signature is attached to a tree of hash values with the
property that a relatively short chain of hash values, together
with the single previously computed signature, can validate
the absence of a certificate (by serial number) from the CRL.
A proof for each certificate in the chain is required.

3 Experimental Implementation

An important objective in the design of a prototype for the
cross-domain access control (XDA) system was to demon-
strate how the essential features of the XDA architecture can
be implemented in a practical way using current technology.

The implementation was designed for an environment in
which the server is a Web server using the HTTP and SSL
protocols and the client uses a commonly available Web
browser. The certificate authority was in an environment that
we could augment with a trusted PGS module.



XDA provides additional specialized software modules:
the proxy, Privilege Granting Server (PGS), and authoriza-
tion server. These three new software components together
with the main steps of the status request and its relationship
to the SSL protocol are outlined in Figure 2. The data flow
for the ticket occurs in parallel with the SSL protocol.

Domain S
(Server Side)

Domain C
(Client Side)

Web ProxyClient
(Browser)

Certificate

CA PGS

Web Server

(1) CertificateRequest

(2) ClientCertificate

Ticket
Request

(4) Ticket

(5) ChangeCipherSpec

(6) Finished

Check
Revoked
Status

(7)

Authorization

SSL

Result
(Accept
or Deny)

(8)

(9) Data Sequence

(3)

Figure 2. SSL Monitoring

The proxy monitors connection requests from the browser
to Web servers. When the proxy sees that a secure connection
is being set up with a server, using a user role certificate, the
proxy automatically requests the PGS for a status validation.

A response from the PGS is, in general, either a freshly
signed ticket or a certificate chain together with hash chain
proofs for non-revocation. Our prototype PGS generates
tickets consistent with OCSP (Online Certificate Status Pro-
tocol), which has been proposed as a standard for conveying
the revocation status of certificates [3]. The OCSP response
is forwarded by the proxy to the authorization server. Note
that the ticket does not include the user public key or role;
that information is conveyed separately in the user role cer-
tificate.

In the XDA prototype implementation we made use of the
publicly available Tomcat Web server software, which sup-
ports Java servlets for special functions performed as partof
Web page access. XDA servlets are associated with XDA-
protected Web pages. In the prototype XDA system, the ac-
cess control list is a file in the directory of the controlled Web
page, listing the privilege values for which access is permit-
ted. This mechanism is very much like the “.htaccess” file
format used in UNIX-based Web servers, such as Apache.

The authorization server is a servlet that accepts tickets
from the proxy, and it also handles requests from an XDA
servlet associated with the Web page to confirm that a valid
ticket has arrived for a given certificate.

4 Conclusion

Our cross-domain access (XDA) approach makes the
greatest possible use of modern PKI concepts and standards
to support scalable access control. A server ACL needs to
have only one or a few entries for each remote client domain,
since access control is by a role whose actual user member-
ship is managed by the client domain.

We use cross-certificates to support client-domain rela-
tionships, user-role certificates to identify users, and role hi-
erarchy certificates to define the hierarchy in a way that can
be transmitted to server domains that are otherwise unaware
of the hierarchy.

The server can check revocation of role assignments by
checking the validity of certificates on a chain linking the
user to the required role. The partial revocation strategy re-
quires longer chains but permits implied revocation of roles.
Using hash chain proofs, the client can avoid real-time com-
putation of digital signatures.

This approach requires only a few customized software
functions to be added in a modular way to client and server
support.

References

[1] ITU-T. Draft revised ITU-T Recommendation X.509.
ISO/IEC 9594-8: Information Technology – Open Systems
Interconnection – The Directory: Public-Key and Attribute
Certificate Frameworks, 2000.ftp://ftp.bull.com/
pub/OSIdirectory/4thEditionTexts/X.509_
4thEditionDra%ftV2.pdf.

[2] P. Kocher. On Certificate Revocation and Validation. InFinan-
cial Cryptography, volume LNCS 1465, pages 172–177, 1998.

[3] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams.
X.509 Internet Public Key Infrastructure: Onlice Certificate
Status Protocol - OCSP. Technical Report RFC2560, IETF,
June 1999.

[4] J. Park and R. Sandhu. RBAC on the Web by smart certificates.
In ACM Workshop on Role-Based Access Control, 1999.

[5] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based
access control models.IEEE Computer, 9(2):38–47, 1996.


