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Abstract

Most intrusion detection systems available today are us-
ing a single audit source for detecting all attacks, even
though attacks have distinct manifestations in differ-
ent parts of the system. In this paper we carry out a the-
oretical investigation of the role of the audit source for
the detection capability of the intrusion detection sys-
tem (IDS). Concentrating on web server attacks, we ex-
amine the attack manifestations available to intrusion
detection systems at different abstraction layers, includ-
ing a network-based IDS, an application-based IDS, and
finally a host-based IDS.

Our findings include that attacks indeed have different
manifestations depending on the audit source used. Some
audit sources may lack any manifestation for certain at-
tacks, and, in other cases contain only events that are in-
directly connected to the attack in question. This, in turn,
affects the reliability of the attack detection if the intrusion
detection system uses only a single audit source for collect-
ing security-relevant events. Hence, we conclude that using
a multisource detection model increases the probability of
detecting a range of attacks directed toward the web server.
We also note that this model should account for the detec-
tion quality of each attack / audit stream to be able to rank
alerts.

Keywords: intrusion detection, attack manifestations

1. Introduction

In the field of intrusion detection, people speak about the
importance of using diverse detectors to have better attack
detection coverage. It has been claimed (Tombini et al. [23])
that when combiningdifferent intrusion detection systems
(IDSs), one would improve the attack detection of the sys-
tem as a whole. For example, one can either combine mis-
use IDSs with anomaly-based IDSs, or a commercial mis-

use system with an open-source misuse system. Unfortu-
nately, the results have been mixed: deploying some sys-
tems together has not increased the diversity but rather just
the number of (similar) alerts.

Other researchers have proposed using separate audit
sources to collect security-relevant events, thus improving
the detection of attacks. Most of these papers focus on a sin-
gle system, such as an application-based IDS, with a short
description of its advantages and disadvantages compared
to the ubiquitous network-based IDS. In this paper we take
a slightly different approach. We examine what could be
gained by combining the alerts from several intrusion de-
tection systems using different audit sources. We do this by
examining the role of the audit source to the attack detec-
tion capability of the IDS, and whether this role changes
based on the attack type.

More specifically, we define a typical misuse IDS and
show what type of security-relevant events it can collect
from different audit sources: one audit source at a time and
one attack at a time. We then discuss how a specific at-
tack class would manifest in a particular audit stream and
what implication this manifestation has on the attack de-
tection by the IDS. Thus, we can informally rank the au-
dit sources based on the quality of information they provide
to the IDS. Or, if the quality of information is dependent on
the type of attack in progress, we can point out which au-
dit source is most suitable for detecting a particular attack
class, thus supporting the claim that a multisource detec-
tion model does increase the reliability of attack detection
for the IDS.

We limit our discussion to attacks directed at web servers
and related software. The web server is a complex piece of
software, often outside the perimeter defense, and accessi-
ble to anyone in the world. To complicate matters, the web
server often forwards requests to inside resources (legacy
databases) that were never designed with a robust security
model. Being the analogy of the front door to a company,
numerous attacks have been directed toward web servers
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and the resources with which they communicate. There also
exist open-source web server alternatives that are mature
enough to allow direct instrumentation (to collect security-
relevant events).

The rest of the paper is organized as follows. In Section 2
we outline our approach. We start with discussing the tem-
plate IDS used in the paper, and then the three instances of
it that collect data from three different audit sources. We de-
scribe these audit sources in detail and the type of informa-
tion available to an IDS using that particular audit source.
This section is followed by a description of the attacks we
have chosen. To limit the scope of the paper, we concentrate
on three representative attacks. The execution of the ex-
ploits and the underlying flaws are discussed in Section 2.2.
We describe our analysis methodology in Section 3, and in
Section 4 we discuss what manifestations we expect to see
from the attacks in the audit streams described previously.
For each attack, we discuss how well an IDS using a par-
ticular audit source would detect the attack. We summarize
our findings in Section 5 and discuss related work in Sec-
tion 6. The paper is concluded in Section 7.

2. Background

To be able to investigate the importance of the audit
source to the detection capability of an IDS for various at-
tacks, we need to consider attacks and intrusion detection
systems together.

In Section 2.1, we use a taxonomy by Debar et al. [8] to
define a (theoretical) intrusion detection system that can use
different audit sources. We limit the attack scope by consid-
ering only attacks directed at web servers and related soft-
ware. These attacks are taken from the database described
by Ingham et al. [12]. The attacks we have chosen are pre-
sented in Section 2.2. In Section 4 we then discuss how
these attacks manifest themselves in the audit source used
by a particular IDS.

2.1. Description of Intrusion Detection Sensors

When discussing the suitability of an audit source for at-
tack detection, one indirectly uses an IDS as a point of refer-
ence; it is the IDS that analyzes information captured from
the audit source using the actual detection algorithm. For
this reason, we are going to describe three similar IDS that
only differ in the audit source data they use for their analy-
sis, but which, in other aspects, are very similar. Using the
IDS taxonomy of Debar et al. [8], we concentrate our in-
vestigation on theaudit source locationattribute and fix the
other attributes found in the taxonomy, resulting in the ex-
ample shown in Table 1.

In short, we have chosen three misuse systems: one
network-based IDS, one application-based IDS, and finally

Detection Method: knowledge based
Behavior on Detection: passive alerting
Usage Frequency: continuous monitoring
Detection Paradigm: transition based

Audit Source Location:
host log files| application log files|
network packets

Table 1. The example IDS used in the paper,
categorized according to Debar et al. [8].

a host-based IDS (using a subset of system calls as its au-
dit source). We focus on misuse systems, as these are easier
to reason about than anomaly-based systems. The latter re-
quire a normal profile that may change depending on the en-
vironment.

For the purpose of our analysis, we assume a single
misuse-based detection engine (our template IDS), which
can take input from either one of the different audit sources
we consider. To simplify the presentation, we refer to our
template IDS connected to a network packet audit source—
including preprocessors and other support components—as
a network-based IDS. We use the termsapplication-based
IDS andhost-based IDSin a similar fashion.

2.1.1. Network-based IDS (NIDS)We use Snort as an
example of a network-based IDS, i.e., the audit source loca-
tion attribute is “network packets” in the Debar [8] taxon-
omy. The core function of Snort is in its rules, even though
a number of preprocessors and protocol analyzers are crit-
ical to the function of Snort and its ability to alert for cer-
tain events. A Snort rule is shown in Figure 1. This rule at-
tempts to detect any access to the external cgi-program phf,
infamous for its security weakness [11].

alert tcp $EXTERNAL NET any->$HTTP SERVERS $HTTP PORTS

(msg:"WEB-CGI phf access"; flow:to server,established;

uricontent:"/phf"; nocase; reference:arachnids,128;

reference:bugtraq,629; reference:cve,1999-0067;

classtype:web-application-activity; sid:886; rev:11;)

Figure 1. A typical Snort rule.

A Snort rule contains a header and a rule option (the part
within parentheses). A detailed explanation of Snort and its
rules can be found in [6]. In short, the Snort rule shown in
Figure 1 triggers for any request to the web server that con-
tains the string /phf. Before the pattern match, several plug-
ins have preprocessed the data, such as reassembling the
TCP stream and normalizing the HTTP request. In previ-
ous versions of Snort, there was only an option to match on
the data content after TCP/IP reassembly. However, this left
an opening for attackers to evade the detection, so newer
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versions of Snort include the option to match on uricontent,
where the content has been processed further, including col-
lapsing “xxx/../” into “/” and decoding any %xx-encoded
characters [10]. The hope is to make it easier to write new
rules to detect web attacks with such an option, and more
difficult to evade detection from such rules. We will discuss
this rule further in Section 4.

2.1.2. Application-based IDS (appIDS)A network-
based IDS monitors the traffic from the point of view of the
network. However, one can also directly monitor the ap-
plication in question, thus using an IDS with “application
logs” as the value of the attribute audit source location. Ei-
ther one can use the logs written by the application for anal-
ysis [2], or the monitoring can be instrumented directly
into the application [3]. The latter paper describes sev-
eral advantages with pulling the information directly from
within the application, such as having a richer environ-
ment, and being more resistant to any evasion attempts by
the attacker.

Instrumenting the application directly or using the infor-
mation found in the logs are from the audit source view
quite similar: both approaches use data from the application
directly instead of collecting, from the network, raw data
that needs processing before a proper analysis can be done.
Using the log can be seen as a subset of direct instrumen-
tation, as the information available in the log is also avail-
able to the built-in monitor at the “logging stage.” However,
the built-in module has access to more information and if
one would like more options to react to a request, i.e., let-
ting the attributebehavior on detectionfrom the Debar tax-
onomy be more than justpassive alerting, a module is able
to direct the behavior of the application based on its analy-
sis. Nevertheless, using the data from log files might still be
preferable under certain conditions: direct instrumentation
is more expensive and more intrusive, and logs from many
applications can be sent to a single source for wide-spread
monitoring (compare syslog). Unfortunately, if the applica-
tion crashes before the final logging state, there will be no
record to analyze. The Debar taxonomy makes no differ-
ence between these two modes and seems to only have con-
sidered using the (external) log files. We base this on the
comment found in Section 6.3, saying that attacks can be
detected only when the application log is written.

The appIDS we use for discussion in this paper is simi-
lar to the system described by Almgren and Lindqvist [3].
We take the data from an instrumented module within the
web server and consider how the attacks manifest there.
The information available to an IDS module within Apache
is mostly found in variables concerning the request, which
includes the client address, the URI submitted, and so on.
The whole structure can be found in the source code or
from [21], but below are three variables shown as an ex-
ample.

char* request_rec::unparsed_uri,
char* request_rec::uri,
char* request_rec::filename

One can either analyze the original data or analyze the
parsed URI. Notice how these variables correspond to the
rule options content and uricontent discussed in the previ-
ous section for Snort, but with the notable exception that the
module is less dependent on preprocessing steps. Reusing
the knowledge of the Snort rule shown in Figure 1, we
would match phf to the string uri. However, we can go one
step further and exert even more control over the analysis.
To avoid false alarms and evasion attempts, we can match
directly on the name of the file that corresponds to this re-
sponse: the filename variable.

2.1.3. Host-based IDS (HIDS)Finally, we consider
a system using host log files as its audit source loca-
tion. There are different types of host-based IDSs in the lit-
erature, using different detection methods and audit sources
(within the group of host log files). For example, Lindqvist
et al. [18] use the BSM auditing features of Solaris as in-
put to a forward-reasoning expert system. Forrest et al. [9]
use the sequence of system calls to find anomalous behav-
ior. An aggregated log source found on UNIX computers
is the syslog. Many programs can send their log mes-
sages to this service where they are aggregated into a sin-
gle source. Vigna et al. [25] use this audit source for their
IDS logSTAT.

In this paper, we consider “lightweight logging” as de-
fined by Axelsson et al. [5]. By logging each invocation
of the exec(2) system call, including the arguments, one
can trace most intrusions according to [5]. The HIDS we
consider in this paper uses the information gained from
the exec(2) system call, coupled with a pattern matching
module that is similar to the Snort “content” option de-
scribed above. A typical invocation of execve, a front end
to exec(2), looks like the following:

execve("/usr/bin/perl",
["perl", "./checkPage.pl"],
[/* 97 vars */]
) = 0

In this example, the program perl is run with the argu-
ments “./checkPage.pl,” i.e., the perl script. The environ-
ment variables are suppressed in this printout (97 vars) but
can be included. We choose this particular approach, as it
matches the principle of the other two template IDSs de-
scribed above. Collecting more data, such as the sequence
of system calls, would have been beneficial for the analy-
sis. However, we only found anomaly detection systems do-
ing such analysis because it requires intimate knowledge of
both the normal and attack behavior. Having the classifica-
tion attributedetection methodfixed toknowledge-basedin
Table 1, we forgo such deep analysis.
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2.2. Attack Descriptions

The attack database described by Ingham [12] contains
a total of 65 attacks, of which some are targeting the same
underlying vulnerability or a similar vulnerability. To limit
the scope of the paper, we choose three representative at-
tacks for a more thorough examination. Here we outline our
reasoning behind choosing these particular attacks and then
describe the attacks and the underlying flaws they exploit in
detail.

As with audit sources for IDS, we would like to base our
selection of attacks on well-founded categories within a tax-
onomy. However, in surveying available taxonomies we did
not find any that suited our purpose. We are interested in
the type of manifestation an attack leaves in different audit
sources, but most attack taxonomies concentrate on the ef-
fect of the attack, e.g., user to root. One notable exception
is the defense-centric taxonomy by Killourhy et al. [13], but
they concentrate on a single audit source for an anomaly de-
tection system, and their taxonomy is thus not applicable
here. In the attack database [12], each attack has informally
been described by five attributes.
• Against, i.e., which software / platform is vulnerable
• IDs, i.e., the different IDs the attack / vulnerability has

in the community
• Category, i.e., the type of attack (see below).
• Effect, what can the attacker achieve. The categories

include DoS and file disclosure.
• Source, i.e., how knowledge of the attack was

recorded: Bugtraq, captured with Snort, packet-
storm, and so on.

For our purposes the category attribute is the most inter-
esting. The nine different labels are shown below. The value
in parentheses is how many attacks in the database have this
label.
• Input validation error (22)
• URL decoding error (22)
• Buffer overflow (10)
• Signed interpretation of unsigned value (4)
• Failure to handle exceptional conditions (2)
• Poor resource management (2)
• File disclosure (1)
• Information leak (1)
• Poor memory management (1)
Note that some of these labels are, from the point of view

of other taxonomies, subsets of another label. For example,
the classinput validation errorusually contains bothURL
decoding error, signed interpretation of unsigned value, and
buffer overflow(see for example [24]). Likewise,poor re-
source managementusually containspoor memory manage-
ment. The classfile disclosure, on the other hand, seems to
be more of an effect than a category and looking closer at
this particular attack in question, we would have catego-

rized it as aninput validation error(or aURL decoding er-
ror).

We initially considered using one attack from each cat-
egory above, but to limit the scope of the paper we then
decided to concentrate on only three attack groups. These
groups were selected based on our perceived notion of the
importance of the attacks within the different categories.We
also accounted for the ubiquitousness of the attacks, partly
supported by the number of attack instances found in the
database for each category. Thus, we decided to analyze one
attack each from the classesinput validation error, URL de-
coding error, andbuffer overflow. Having fixed the types of
attack, we decided to choose attack instances that would ex-
ploit flaws located in different parts of the system, such as
within the web server or in an external cgi program. Target-
ing flaws located at different parts of the system should in-
fluence the way attacks manifest themselves in events from
a particular audit source. In Table 2, we show the attacks
studied in this paper.

In the next three sections, we go through each attack
in detail and describe how the attack is executed and what
vulnerability it targets. Even though we use a single attack
for illustration, we point out that many other attacks within
each of these attack category groups share similar traits with
the attack we have chosen.

2.2.1. Attack Category 1: Input Validation Error The
most prevalent attack category group is the one named in-
put validation error. The attacks numbered 27–32, 34–39,
41, 42, 49, 51–56, 59 have been categorized into this cate-
gory. We examine attack 35 in detail.

Description:(The phf attack)Early popular web servers
contained a library routine calledescape shell cmd()
that tried to prevent exploitation of shell-based calls, such
aspopen(), by removing characters with special meaning
to the shell. Ironically, an early version of the routine con-
tained a flaw and did not properly account for the newline
character. The cgi-program phf, included with these servers,
used this routine and was therefore vulnerable [11]. The
Nimda attack variant shown in the database is

GET /cgi-bin/phf?Qalias=x
%0acat%20/etc/passwd HTTP/1.0

Note the hex encoding of the newline character %0a
(see RFC-2396, Section 2.4). Here, the phf program is
run with a query followed by a request to list the con-
tents of the password file. More specifically, the web
server accepts the request above and sets the environ-
ment variable QUERYSTRING to the characters af-
ter the question mark (excluding the HTTP/1.0). The web
server then passes control to the external program phf,
which in turn performs certain checks on the data passed
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Attack 35: the phf attack Attack 1: the MS IIS %xx attack Attack 25: the BO attack
Against Apache, NCSA on Unix IIS on Windows Netscape FastTrack 2.01a on SCO UnixWare

IDs
OSVDB: 136; Bugtraq: 629; MS01-020; Bugtraq: 2708;
CVE-1999-0067; CVE-2001-0333; Bugtraq: 908; CVE-1999-0744
LincolnLabs:1999-Phf CERT-Vuln: 111677; [...]

Category Input validation error URL decoding error Buffer overflow
Effect Unauthorized file access Remote access Remote access
Source Packetstorm Captured with Snort Packetstorm
Target external (cgi) program web server web server

Table 2. Descriptions of the attacks used in the paper. The Ta rget attribute is not part of the attack
database description [12].

server phf shell

ph

cat

N
ID

S

Host
FS

Figure 2. The chain of programs and the in-
terfaces between them and the host OS for
the phf request, where the triangles are avail-
able audit sources and the circle a flaw.

through the environment variable, and then calls the func-
tion escape shell cmd() to ensure that there is no
character within the input that has special meaning to the
shell. This is the step that fails, as the routine does not ac-
count for the newline character; phf then calls the function
popen() to pass control to /bin/sh. The shell runs the lo-
cal program ph with the query. The shell interprets the
newline character as a command separator and thus the re-
quest to list the contents of the password file is also ex-
ecuted. The output from both these commands is passed
back to phf, and phf formats this output into a web page be-
fore giving back control to the web server. The web server
finally returns the created web page to the client (at-
tacker). This sequence is depicted in Figure 2.

The attacker is exploiting a flaw located outside the web
server in this case, but the data is passed through the web
server and it is the server that starts executing the chain of
programs necessary to complete the request. This is a good
example to illustrate the complexity of certain web requests.
The exploit is targeting the shell’s special interpretation of
certain characters, but the flaw is located in phf, as it does
not properly filter the input before passing it to the shell.
Thus, the input validation error is from within this cgi pro-
gram.

2.2.2. Attack Category 2: URL Decoding Error The
next attack category we consider is the URL decoding er-
ror. In the attack database, the attacks numbered 1–18, 43,
44, 57, 58 are in this category. The first 18 attacks belong to
Nimda variants, and most of them are quite similar. We con-
centrate on attack 1 here.

Description: (The MS IIS %xx attack)In RFC-2396 (Sec-
tion 2.4) it is described that characters in a URI may be es-
caped in certain cases. The character is then encoded into a
triplet consisting of “%” followed by two hexadecimal dig-
its representing the ASCII code for the encoded character
in question. The RFC also includes a sentence warning im-
plementers to unescape a URI only once, as one otherwise
might have a misrepresented string.

The flaw in the web server Internet Information Services
(IIS), according to Hernan [10], is that IIS under certain cir-
cumstances decodes the URI twice. It first decodes the path,
followed by a check of whether the server is authorized ac-
cessing the resource in question. When the request concerns
a cgi program, the argument to the program is decoded in a
second phase. By mistake, the path also is decoded at this
time, resulting in it being decoded twice. The cgi program
that the finally decoded URI represents is then run. Thus,
the file access control mechanism checks the permissions
for one resource while another resource is finally executed
(the twice-decoded resource). Attack 1 consists of the fol-
lowing request.

GET /scripts/..%%35%63../winnt/system32/
cmd.exe?/c+dir HTTP/1.0

The attacker is trying to run the command interpreter
cmd.exe and list the contents of a directory. Under no con-
dition should an interpreter be run through the web server
using arbitrary arguments from the user. In normal circum-
stances, with a correctly configured web server and with
proper file permissions on the file cmd.exe, all such ac-
cesses should fail. However, the attacker takes advan-
tage of the decoding flaw described above. In the first
step, %35 is decoded into “5” and %63 to “c.” The file
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/scripts/..%5c../winnt/system32/cmd.exe
is used when checking the file permissions. It should
not exist or give an error. In the second decod-
ing step, “%5c” is decoded into “\” resulting in
/scripts/..\../winnt/system32/cmd.exe.
The web server then runs the command interpreter cmd.exe.

This attack targets a flaw inside the web server code.
Other attacks have targeted similar flaws (see for exam-
ple [7]). Note the difference between this attack and the phf
attack described in Section 2.2.1. Even though both attacks
use hex encoded characters, the underlying flaws are very
different. In this case, the attacker uses the fact that the URI
is decoded twice and can thus circumvent file access con-
trol mechanisms. In the phf attack, the attacker is using the
fact that one character with special meaning to the shell is
not properly removed from the input.

2.2.3. Attack Category 3: Buffer Overflow The final at-
tack example we use is a buffer overflow. Examples of such
attacks have included the infamous Code Red attack. At-
tacks 19, 24–26, 40, 45–48, 50 are categorized as buffer
overflows in the attack database. We concentrate on attack
25 here.

Description: (The BO attack)By sending more than 367
characters in a GET request to the web server, one can over-
flow the stack. By carefully crafting the request, arbitrary
code can be executed with the privileges of the web server.

GET /AAAAAA...

In the database, a sample attack program sends a series of
NOP instructions followed by buffer overflow code. This at-
tack probably directly targets a routine within the web
server. Compare this to the Code Red attack (attack 24)
that is directed to a flaw in an extension. These two at-
tacks thus target two different parts of the system, a
point that is important when discussing their manifesta-
tions.

3. Analysis Methodology

The discussion of the manifestations the attacks leave
within the different audit streams is done from a theoreti-
cal point of view. We have not run these particular attacks
and captured their traces for each audit source discussed in
this paper. We base the discussion on our previous experi-
ence with building intrusion detection systems and we con-
sider the following points.
• Is any attack manifestation found in this audit stream?

– How much preprocessing is necessary before the
data can be extracted reliably?

– How sensitive does this preprocessing step seem
to be to evasion attacks? A typical example is de-
scribed by Ptacek and Newsham [20] but other
schemes are also possible.

• How would one detect this attack, considering the mis-
use IDS we use?

– How sensitive is it to false positives, false nega-
tives?

– Can one easily detect variants of the attack ex-
ploiting the same or similar vulnerabilities?

• Can the audit source be enriched with other types of
knowledge that help in attack detection (for example,
having access to the file system)?

– Is this type of knowledge naturally found in re-
lation to this audit source? For example, illegal
file accesses are more naturally expressed in an
HIDS than in an NIDS.

We try to determine if the information available in the audit
source coupled with the knowledge an IDS using such an
audit source should have results in a satisfactory method of
detecting this particular attack and, where appropriate, any
attack directed at the specific vulnerability in question.

We can formalize the previous discussion within a for-
mal framework. We investigate how the audit source influ-
ences the detection capabilities of the IDS, if at all. We do
this qualitatively, by, from a theoretical standpoint, compar-
ing how well an IDS can detect a particular attack by using
different audit sources. LetI be the set of possible intru-
sion detection systems (excluding the audit source),A be
the set of possible attacks, and finallyS be the set of pos-
sible audit sources. As described in previous sections, we
have the following.







I = {misuse system with pattern matching}
A = {phf attack, %xx attack, BO attack}
S = {network, application, exec-calls}

Furthermore, letI ∈ I, a ∈ A ands ∈ S. We examine the
following hypotheses.

H1: The audit source,s, does not influence the attack de-
tection for the IDS,I.

P (I detectsai|I usessk) = P (I detectsai) ∀i, k (1)

The first part should be read “The probability that the IDS
I detects the attackai, given that the IDSI uses the au-
dit streamsk for collecting security-relevant events.” As we
use only a single IDS in this paper (I is constant), we omit
I in the rest of the paper.

H2: One audit source is better than all others for allowing
an IDS to detect attacks. If so, the following holds.

∃k s.t.P (ai|sk) > P (ai|sl) ∀i, l, l 6= k (2)

Note that even if this is true, combining events from several
audit sources may still increase the probability of detecting
a particular attack (complementary information).
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H3: There exists a pair of audit streams, where one is bet-
ter than the other for one attack but not for another.

∃i, j, k, l s.t.

{

P (ai|sk) > P (ai|sl)
P (aj |sk) < P (aj |sl)

(3)

If this is the case, a particular audit source is better than an-
other for certain attacksonly, i.e., the suitability of the au-
dit source for IDS detection is attack dependent. This is in-
teresting from a correlation point of view. When collecting
alerts from several IDSs using these two audit sources, one
must then account for the source when deciding the prior-
ity of the final alert or when solving conflicts, such as when
the NIDS claims attack, while the appIDS is silent.

If H1 is true, the remaining hypotheses are trivial. In
the next section, we qualitatively compare the suitability
of each audit source for each attack. More specifically, for
each attack,ai, we informally try to rank the quality of de-
tection by pointing out if we consider one audit source to
provide better events for attack detection than another one:
P (ai|sk) > P (ai|sl). Using these informal rankings, if any
exists, we then consider the truth of the hypotheses above in
Section 5.1.

4. Attack Analysis: Manifestations of Attacks

We go through the attacks we described in the previous
section, and consider how these attacks theoretically mani-
fest in different audit streams. We then consider if the IDS,
using that particular audit source, would be able to detect
the attack reliably.

4.1. Attack Category 1: Input Validation Error

The first attack we described in Section 2.2 is the phf
attack. For the attack to be successful, the URI must con-
tain two parts: (1) a request to run the vulnerable program
phf and (2) the encoded newline using hex encodings to ex-
ploit the flaw. An arbitrary command can then be run.

4.1.1. NIDS An NIDS would have several problems with
attacks directed at the web server and cgi programs. First,
the NIDS must be placed in such a way that it can listen to
and analyze traffic to the web server. Switched high-speed
networks have made it more difficult for the NIDS to per-
form its analysis fast enough to keep up with the network
speed. However, this problem and possible solutions are de-
scribed elsewhere [14]. Here, we assume the NIDS can cap-
ture the traffic and not drop packets.

Even though the attack is manifested in the network
packets, an extensive preprocessing step must happen be-
fore a reliable match can be made. IP defragmentation and
TCP stream reassembly should take place before any con-
tent match. For certain early IDSs, this was not done cor-
rectly and the attacker could then easily circumvent the de-

tection by, for example, dividing the attack into two pack-
ets. Such circumvention techniques are in special cases still
possible [20] but network-based IDSs are much more re-
sistant today. As the attack is sent over HTTP, the NIDS
also needs to account for this fact. In Snort, the preproces-
sorHTTP Inspecttakes care of decoding HTTP-specific en-
codings among other things.

After these preprocessing steps, one can try to match on
the content of the stream. Several Snort rules may be appli-
cable to the detection of the phf attack.
• Rule 886detects the string “/phf” within the URI re-

gardless of its location (see Figure 1).
• Rule 1762 detects an attack variant where the URI

contains “/phf” combined with the hex encod-
ing “%0a.” However, the rule also requires the string
“QALIAS” to be present in anunencodedform. This
means that the attacker can circumvent this rule by,
for example, encoding Q into its equivalent hex en-
coding.

• Rule 1882detects output from the id command being
returned to the client. If the phf attack ran the com-
mand id (to check the permissions under which user
cgi programs are launched), this rule would then pos-
sibly alert. Other similar rules detect the output from
other common UNIX utilities.

The last rule, rule 1882, does not apply to our at-
tack example as the attacker directly tries to access
the contents of the password file. Rule 1762 is bet-
ter but can unfortunately be circumvented (creating false
negatives). Finally, rule 886 does alert for any URI con-
taining the string “/phf,” one of the two necessary com-
ponents that must be present in the URI for the attack
to succeed. However, this rule runs the risk of creat-
ing false positives in that it alerts for every URI that
contains the string “/phf,” regardless of it being a cgi pro-
gram to be run or just part of the data sent from the client
to the server. More specifically, this rule does not differ-
entiate between an attempted access to the cgi-program phf:

GET /cgi-bin/phf?Qalias=...

and a database query to pull up the details of the attack:
GET /swsearch?sbm=%2F&metaname=alldoc&

query=%2Fphf&x=0&y=0

directed at search.securityfocus.com. Thus, the rule can-
not determine whether the web server will interpret the
string phf in the context of an external program that should
be run, or as an argument given to another external pro-
gram (here swsearch). Furthermore, the NIDS, using this
rule, can also not determine
• whether the resource exists
• whether the web server can successfully access the re-

source
• whether the attack finally succeeds
Based on the current Snort rules, it seems that a network-
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based IDS can give some indications of whether an attack
against phf is executed, but there may be a significant num-
ber of false positives, depending on the local traffic mix.
What is worse, one of the rules may lead to false negatives.
Looking beyond the currently existing rules and this par-
ticular attack, we ask ourselves if a more general rule can
be created to detect similar types of attack. The flaw ex-
ists in an external program outside the web server, and this
resource can have any name and is not governed by any
standards. Furthermore, the exact type of vulnerability may
vary. Thus, the answer is probably that it is difficult to write
any kind of generalized rule, unless we change the detec-
tion paradigm (see Kruegel et al. [15]).

4.1.2. appIDS The appIDS has several advantages over
the NIDS for detecting this type of attack. There is no need
to preprocess the information before the analysis, because
the host operating system decodes the data before handing
it to the web server process. In fact, the request the appIDS
analyzes is based on the actual data used by the web server.
For this reason, the risk of being vulnerable to evasion at-
tacks is minimized (see Almgren [3]). Furthermore, the app-
IDS can enrich the information found in the audit source by
the use of system calls to access the file system. Using the
example above for the NIDS, an appIDS using data from
within the web server has no ambiguity between a request
for the external program phf or the program swsearch. The
appIDS, being located on the host, can use system calls to
verify
• whether a file resource exists
• whether this file can be accessed by the web server
• with what arguments
For this reason, it is easier to use the audit source avail-

able to the appIDS to detect this particular attack. Reusing
the knowledge of the Snort rules above (but matching on
the appropriate variables instead) we can create rules hav-
ing fewer false positives and false negatives. Furthermore, if
the appIDS detects something slightly suspicious in the re-
quest it can analyze the resulting response before it is sent
to the client. For example, coupling the two Snort rules 886
(detecting phf) and 1882 (detecting output from the util-
ity programid) described above is quite easily done for an
appIDS, resulting in fewer false alarms from the IDS and a
more efficient system. There is no need to analyze the out-
put sent to the client unless there is some evidence of ques-
tionable behavior. However, as the flaw is located outside
the web server, it is difficult to create rules that would cap-
ture unknown (but similar) attacks.

4.1.3. HIDS Finally, we look at what type of manifesta-
tions the HIDS sees from the phf attack. The HIDS is ana-
lyzing the exec system calls and there would be evidence
that the program phf is being requested to run. The in-
put to the program is available in the environment variable

querystring. Thus, one could have a similar rule as within
the appIDS and match on phf and the newline character.
However, the audit source available to the HIDS is in many
ways inferior to the audit source available to the appIDS for
these types of attacks. First, the web server may pass data
to the external program through environment variables or
through the streamSTDIN. The latter is not visible to the
HIDS. The output from the program is sent over the stream
STDOUT, and is thus also hidden from the HIDS (contrary
to the appIDS). Thus, an appIDS can use the name of the
program coupled with the input/output for its analysis. The
HIDS may have access only to the name.

Now consider a generalized rule to detect similar attacks
directed at other cgi programs. The HIDS we have described
in this paper with a simple content matching detection en-
gine has problems detecting variants, unless they are explic-
itly specified in its knowledge base. However, by extending
the HIDS by adding capabilities to keep state, we have a
more powerful system. If the HIDS follows each process
in detail, capturing all its system calls and the system calls
of its subprocesses (keeping state), the HIDS may be able
to create an execution chain such as the one shown in Fig-
ure 2. Only the top chain is valid for this type of request, and
detecting the bottom chain should result in an alert. By in-
cluding other system calls and their arguments, the HIDS
might be able to detect thatcat uses the system callopen
to read the password file. No chain starting with the web
server should end with reading/writing the password file.
With such an HIDS, one can specify normal access patterns
that are allowed as well as resources that are very sensi-
tive, thus having some protection against similar flaws in
other cgi programs. This detection method works only if
the attacker gains access to a resource that normally is not
used by the program. For example, if the attacker used a
flaw to extract credit card numbers from an e-shopping site
we would have trouble seeing this fact from chains such
as the one in Figure 2. The database with credit card num-
bers is a resource often used by the web server / cgi program
running the e-shopping site, and a chain containing this re-
source would thus look normal.

4.1.4. Summary For the phf attack, it seems the audit
stream available to the appIDS is the best one. The at-
tack manifests itself within this stream and there is only a
small risk for evasion attempts. The HIDS might be seen
as slightly better than the NIDS to detect this attack as it
can verify exactly which file within the file system is be-
ing run. However, depending on how the input is passed to
the cgi program, the HIDS might be blind to the arguments
given to the program. Trying to build a general rule to de-
tect any attack within this group is difficult for all three sys-
tems. A powerful HIDS would probably have the best detec-
tion. It could detect strange execution patterns but it would
not detect the particular attacks directly.
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4.2. Attack Category 2: URL Decoding Error

Let us now consider how this common type of attack
manifests itself for the three audit sources.

4.2.1. NIDS There are (or rather have been) some regular
Snort rules in regard to this exploit.
• Rule 970 is old and is now located within the file

deleted.rules (meaning that it should no longer be
used).

• Rule 3201alerts for accesses to the file httpodbc.dll,
thus having nothing to do with the attack we are dis-
cussing here.

• Rule 1002 detects the pattern “cmd.exe” within
a URL. As we wrote in Section 2.2.2, the com-
mand interpreter should never be run with unfiltered
arguments from the user. Thus, this rule would de-
tect this attack, but also other URLs of which some
may be innocuous. It does not detect the exploit di-
rectly.

Rule 970 and rule 3201 are the only ones from Snort’s rule
database with references to CVE-2001-0333 and Bugtraq
ID 2708 (see Table 2).

One problem of detecting this attack through a pattern
matching rule is that it is trivial to create a range of attack
variants: any character in the path can be doubly encoded.
Encoding a different character in the path still exploits the
flaw but changes the pattern of the attack. Instead, Snort re-
lies on theHTTP Inspectpreprocessor that normalizes in-
put. It has code that alerts for attacks seemingly exploiting
this underlying flaw through the optiondoubledecode.

The attack is targeting a flaw in the web server’s file
access control mechanism. Using the network as its audit
source, the NIDS does not have any intrinsic knowledge
about the file system on the web server host. The NIDS can
try to rebuild the whole transaction, but, in the end, it cannot
control whether a certain file is accessed and thus the detec-
tion is always going to be indicative but never certain. Gen-
eralizing the detection rule to detect any attack within this
class is as difficult here as it is for the class of input vali-
dation errors described in Section 4.1.1. Unless the flaw is
known in detail, the NIDS will have problems detecting it.

4.2.2. appIDS Using similar reasoning as done for the phf
attack in Section 4.1.2, one would believe that an appIDS
would be successful in detecting the MS ISS %xx attack.
The main problem here is that the URI decoding is split
into two parts. If the appIDS uses the data after the first step
(the same data used for the file access control step), the at-
tack might go undetected. However, by comparing the data
after the first decoding step with the data after the final de-
coding, the appIDS can detect the difference and also alert
for the fact that the command interpreter is going to be ac-
cessed. In hindsight, knowing the details of the exploit, itis

easy to claim that the appIDS should be able to detect this
attack. Considering that the web server programmers failed
to use the correct data for the file access control mecha-
nisms, it may not be as simple in practice and similar mis-
takes could have been done for the audit stream extraction.

4.2.3. HIDS The host-based IDS using the data from the
exec system calls can easily detect the request to run the
command interpreter. For reasons similar to the ones out-
lined in Section 4.1.3 for the password file, the command
interpreter is a sensitive resource and all such invocations
should be investigated. The HIDS has no problems with
characters being encoded twice, as the argument to the exec
call is the actual file that will be executed. However, therein
is also the problem. The HIDS can never detect this exploit
directly but only the implicit effects of it. The exploit targets
a flaw within the web server and this attack does not directly
manifest in the audit stream used by the HIDS. There are
no hex encoded characters for the HIDS to analyze. Thus,
as this audit stream is detached from the web server, it de-
tects possible effects of the attack but not the attack itself
directed at the web server.

4.2.4. Summary The attack is accessing a resource nor-
mally not available through the web server, by using a flaw
within the web server to circumvent the file access con-
trol. By the time the attack manifestation reaches the audit
stream used by the HIDS, the actual attack is no longer vis-
ible but only the attempt to access a sensitive resource. For
that reason, the HIDS may alert for a symptom but not di-
rectly for the attack. This also implies that the HIDS may be
better to detect similar attacks trying to achieve the same re-
sult. The appIDS has the best chance of detecting the actual
attack, but its success depends on collecting the data cor-
rectly from the web server. If the data is pulled before the fi-
nal decoding step, the attack detection might fail. If the app-
IDS uses the information found in the logging phase, the at-
tack has already taken place. The attack is manifested in the
audit stream used by the NIDS, but the NIDS can only give
an indication that the request contains an attack and may
suffer from false positives and false negatives.

4.3. Attack Category 3: Buffer Overflow

Unfortunately, a misuse IDS may not be the best system
to discover buffer overflows (see Northcutt et al. [19], page
276 and page 279–281). Despite this fact, we consider the
quality of the information available from the different audit
sources.

4.3.1. NIDS After the common preprocessing steps de-
scribed above, the NIDS can detect overlong fields within
the HTTP request. If the length stands out, the NIDS can
alert for the potential buffer overflow. Trying to match a cer-
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tain exploit is fraught with peril as the attacker quite easily
can change the pattern but still achieve the attack.

4.3.2. appIDS A buffer overflow attack usually changes
the execution path for the vulnerable software. The attack
either crashes the software or forces the software to exe-
cute a foreign code sequence. The flaw targeted by attack
25 is most likely located early in the request loop within the
web server, meaning that the attack effect (disable the web
server) will happen before the instrumented module can ex-
tract the attack manifestations from the audit source. Thus,
the appIDS may be blind toward attack 25 because the at-
tack code is executed before the module gains control.

If the attacker is targeting a flaw further on in the request
loop, such as the Code Red attack (attack 24), the appIDS
can extract the data and alert for the attack in a similar fash-
ion to the NIDS described in the previous section.

4.3.3. HIDS The HIDS cannot see any direct signs of this
type of buffer overflow attack, because the attack does not
directly manifest itself within the exec calls. These overlong
strings are targeting a flaw in the web server and its exten-
sions. However, as discussed above, the HIDS may be able
to detect indirect effects of this attack, such as any irregular
resource being accessed by the web server (by the inserted
foreign code). It should also be noted that as shown in [17],
an HIDS can be very well suited to detect other types of
buffer overflow attacks that are targeting exec calls.

4.3.4. Summary Considering that the attack results in the
instrumented module not being run, the appIDS is not suit-
able for detecting this attack. In this case the NIDS has the
most reliable detection of the actual attack. As with the pre-
vious attacks described above, the HIDS may detect indi-
rect effects.

5. Discussion

We summarize the observations made in the previous
section.
Observation 1 The closer to the flaw, the easier it is to in-

terpret the events from the audit source.It seems that it
is easier to detect an exploit the closer the audit source
is to the flaw in question. The data has been decoded
by the routines within the program, meaning less risk
of being vulnerable to evasion attempts.

Observation 2 The closer to the flaw, the higher the risk
that the audit source also is affected by the attack.If
the attack is exploiting a flaw before the instrumented
module can extract and analyze the data, it will in re-
ality be blind to the attack. Hence, any audit source lo-
cated close to a flaw may be vulnerable to the very
same attack. Both application-based and host-based
IDSs can therefore be blinded by attacks that crash the

application or operating system or otherwise disable
the audit source.

Observation 3 Enriching the events collected from an au-
dit source with local information leads to better detec-
tion. For example, knowing whether a file exists may
influence the priority of an alert. Being able to probe
the local environment to verify parts of an attack is
something an NIDS usually cannot do, with it not be-
ing located on the host. Another way to consider such
enrichment is that the IDS is able to query an audit
sourceactively[16]. Thus, such an audit source (with
local information) can be made available to any IDS,
regardless of its other collection methods.

Observation 4 Each audit source has its advantages and
disadvantages.Network-based IDSs see most at-
tacks toward the host, but have problems with
evasion attacks and are blind if the data is en-
crypted. Application-based IDSs have very specific
data, but are blind for attacks targeting other ser-
vices. The HIDS has the same interface regardless
of program, meaning that it can be used to mon-
itor any application. On the other hand, it some-
times lacks data important for the analysis. This leads
us to the next observation.

Observation 5 Using several audit sources to col-
lect security-relevant events should improve the attack
detection. As the audit sources provide such dif-
ferent type of information, an IDS (correlation
engine) should aim to use as many as possible. Fur-
thermore, actively cooperating could create better
detection. As an NIDS first sees the data, it can ana-
lyze it and look for buffer overflows. If it is safe, it
is passed on to the application. There, the final pro-
cessed result from the NIDS is compared with the
processing steps within the application, and any dis-
crepancy is an evasion attempt. If something seems
suspicious, the HIDS collects a full trace of the ex-
ternal program’s system calls for analysis; otherwise,
only a subset (exec) is collected.

Observation 6 Using data from system calls is a neutral
audit source, which works on any program.This has
been mentioned in other papers and also partly in ob-
servation 4 above, but we would like to stress it. An
NIDS may be able to collect all information going to a
host, but it depends on specialized preprocessors to re-
build sessions. The appIDS takes advantage of the lo-
cal routines available in the application but if an ex-
ploit is targeting another application, also the appIDS
needs to be able to interpret the data from the point
of view of the other application (through preprocess-
ing). As instrumenting an application is expensive, it
will probably not be done for all programs, especially
not the small cgi programs that are the most sensi-
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tive from a security point of view. The HIDS, on the
other hand, uses data from a standardized source (sys-
tem calls), which does not change on a program basis.
Thus, it can analyze any program (but may lack some
data as we noted in observation 4).

As can be seen, each audit source comes with its own set
of strengths and weaknesses. We were looking for an ab-
stract model ofwhenan audit source is suitable to detect
an attack, but we found it difficult to make any generalized
statements. Using the observations above, we can consider
only aninside – outsidemodel. Considering Figure 2, if the
flaw is located inside the server, an audit source within the
server (but not affected by the attack) would probably have
the best chance of detecting the attack.

5.1. Theoretical Framework

Let us now consider the hypotheses listed in Section 3.

H1: The audit source,s, does not influence the attack de-
tection for the IDS,I. Equation (1) cannot hold, because
thenP (ai|sk) = P (ai|sl)∀k, l holds. With the BO attack,
we consider the IDS using network packets to have a bet-
ter chance of detecting the attack than any of the other two
systems, thus disproving equation (1).

H2: One audit source is better than all others for allowing
an IDS to detect attacks. Equation 2 does not hold for the at-
tacks and audit sources we have examined. The IDS using
network packets is better for detecting the BO attack than
the other two, but probably worse than the appIDS for de-
tecting the phf attack, considering the NIDS susceptibility
to encrypted content and dependency on preprocessors.

H3: There exists a pair of audit streams, where one is bet-
ter than the other for one attack but not for another. Equa-
tion 3 is true (see the example given in H2 above).

Thus, given the discussion in Section 4, we have shown
that the audit source does influence the attack detection
for the IDS. Of the audit sources we examined, no one
stands out as a winner, and developers of intrusion detec-
tion systems would benefit from using a combination of au-
dit sources. Finally, if one combines the alerts from several
detectors (using different audit streams), it is importantto
know which source should be trusted the most on an attack-
per-attack basis.

6. Related Work

We investigate the role the audit source plays for detect-
ing attacks. Similar investigations have been made for an-
other attribute, the detection method. For example, Alm-
gren et al. [4] examine whether an attack class, as defined
by a taxonomy, can give any indication of whether a detec-
tion algorithm is successful in detecting its members. Tan

et al. [22] go through the types of attacks the anomaly-
based systemstidedetects. Killourhy et al. [13] extend this
work and focus on the manifestations left by an attack and
how these can be detected by an (anomaly-based) IDS sen-
sor. Attacks that have similar manifestations are categorized
into the same class, with the hope that if a detector can de-
tect one attack in a certain class, the detector can detect all
attacks in the class. They only consider a single audit source
when discussing detection ability. We consider their work to
be complementary to this paper.

Alessandri presents a framework to theoretically decide
whether an IDS can detect different attacks [1]. His ap-
proach is quite theoretical, and he has not examined the role
of the audit source in the same detail as we have.

7. Conclusions and Future Work

By considering three attacks and three different audit
sources, we have examined the role of the audit source to
the detection capability of a template IDS. For each attack,
we have in detail discussed how the attack would manifest,
if at all, in events coming from a particular audit source and
how this would affect the detection of the attack for the IDS.
We found that it may be better to use an audit source col-
lecting events close to the flaw, as this limits evasion at-
tacks and the risk of the attack being encrypted. However,
in such a case, there is a risk that also the audit source is af-
fected by the attack in question.

Contrary to the wide-spread dependence on only
network-based intrusion detection, we show that us-
ing a combination of audit sources would improve the
number of attacks that can be detected reliably. How-
ever, when combining information from different audit
sources, it is important to take the attack into considera-
tion. An IDS using a particular audit source may be better
at detecting a certain attack, and when one has conflict-
ing evidence of an attack in progress, such a ranking can
help solve the conflict.

In the future, we will examine this latter fact further and
consider how such rules can be incorporated into a correla-
tion engine.
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